1
|
Jaswal K, Todd OA, Flores Audelo RC, Santus W, Paul S, Singh M, Miao J, Underhill DM, Peters BM, Behnsen J. Commensal Yeast Promotes Salmonella Typhimurium Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606421. [PMID: 39211098 PMCID: PMC11360897 DOI: 10.1101/2024.08.08.606421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enteric pathogens engage in complex interactions with the host and the resident microbiota to establish gut colonization. Although mechanistic interactions between enteric pathogens and bacterial commensals have been extensively studied, whether and how commensal fungi affect pathogenesis of enteric infections remains largely unknown. Here we show that colonization with the common human gut commensal fungus Candida albicans worsened infections with the enteric pathogen Salmonella enterica serovar Typhimurium. Presence of C. albicans in the mouse gut increased Salmonella cecum colonization and systemic dissemination. We investigated the underlying mechanism and found that Salmonella binds to C. albicans via Type 1 fimbriae and uses its Type 3 Secretion System (T3SS) to deliver effector proteins into C. albicans . A specific effector, SopB, was sufficient to manipulate C. albicans metabolism, triggering increased arginine biosynthesis in C. albicans and the release of millimolar amounts of arginine into the extracellular environment. The released arginine, in turn, induced T3SS expression in Salmonella , increasing its invasion of epithelial cells. C. albicans deficient in arginine production was unable to increase Salmonella virulence in vitro or in vivo . In addition to modulating pathogen invasion, arginine also directly influenced the host response to infection. Arginine-producing C. albicans dampened the inflammatory response during Salmonella infection, whereas C. albicans deficient in arginine production did not. Arginine supplementation in the absence of C. albicans increased the systemic spread of Salmonella and decreased the inflammatory response, phenocopying the presence of C. albicans . In summary, we identified C. albicans colonization as a susceptibility factor for disseminated Salmonella infection, and arginine as a central metabolite in the cross-kingdom interaction between fungi, bacteria, and host.
Collapse
|
2
|
Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959. [PMID: 31339948 PMCID: PMC6682159 DOI: 10.1371/journal.ppat.1007959] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The enteric bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilizes two type III secretion systems (T3SSs) to invade host cells, survive and replicate intracellularly. T3SS1 and its dedicated effector proteins are required for bacterial entry into non-phagocytic cells and establishment and trafficking of the nascent Salmonella-containing vacuole (SCV). Here we identify the first T3SS1 effector required to maintain the integrity of the nascent SCV as SopF. SopF associates with host cell membranes, either when translocated by bacteria or ectopically expressed. Recombinant SopF binds to multiple phosphoinositides in protein-lipid overlays, suggesting that it targets eukaryotic cell membranes via phospholipid interactions. In yeast, the subcellular localization of SopF is dependent on the activity of Mss4, a phosphatidylinositol 4-phosphate 5-kinase that generates PI(4,5)P2 from PI(4)P, indicating that membrane recruitment of SopF requires specific phospholipids. Ectopically expressed SopF partially colocalizes with specific phosphoinositide pools present on the plasma membrane in mammalian cells and with cytoskeletal-associated markers at the leading edge of cells. Translocated SopF concentrates on plasma membrane ruffles and around intracellular bacteria, presumably on the SCV. SopF is not required for bacterial invasion of non-phagocytic cells but is required for maintenance of the internalization vacuole membrane as infection with a S. Typhimurium ΔsopF mutant led to increased lysis of the SCV compared to wild type bacteria. Our structure-function analysis shows that the carboxy-terminal seven amino acids of SopF are essential for its membrane association in host cells and to promote SCV membrane stability. We also describe that SopF and another T3SS1 effector, SopB, act antagonistically to modulate nascent SCV membrane dynamics. In summary, our study highlights that a delicate balance of type III effector activities regulates the stability of the Salmonella internalization vacuole.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Brittany J. O’Keeffe
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Eleanor A. Latomanski
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Hayley J. Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (LAK); (HJN)
| | - Leigh A. Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail: (LAK); (HJN)
| |
Collapse
|
3
|
Controlled Activity of the Salmonella Invasion-Associated Injectisome Reveals Its Intracellular Role in the Cytosolic Population. mBio 2017; 8:mBio.01931-17. [PMID: 29208746 PMCID: PMC5717391 DOI: 10.1128/mbio.01931-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Salmonella invasion-associated type III secretion system (T3SS1) is an essential virulence factor required for entry into nonphagocytic cells and consequent uptake into a Salmonella-containing vacuole (SCV). While Salmonella is typically regarded as a vacuolar pathogen, a subset of bacteria escape from the SCV in epithelial cells and eventually hyperreplicate in the cytosol. T3SS1 is downregulated following bacterial entry into mammalian cells, but cytosolic Salmonella cells are T3SS1 induced, suggesting prolonged or resurgent activity of T3SS1 in this population. In order to investigate the postinternalization contributions of T3SS1 to the Salmonella infectious cycle in epithelial cells, we bypassed its requirement for bacterial entry by tagging the T3SS1-energizing ATPase InvC at the C terminus with peptides that are recognized by bacterial tail-specific proteases. This caused a dramatic increase in InvC turnover which rendered even assembled injectisomes inactive. Bacterial strains conditionally expressing these unstable InvC variants were proficient for invasion but underwent rapid and sustained intracellular inactivation of T3SS1 activity when InvC expression ceased. This allowed us to directly implicate T3SS1 activity in cytosolic colonization and bacterial egress. We subsequently identified two T3SS1-delivered effectors, SopB and SipA, that are required for efficient colonization of the epithelial cell cytosol. Overall, our findings support a multifaceted, postinvasion role for T3SS1 and its effectors in defining the cytosolic population of intracellular Salmonella. A needle-like apparatus, the type III secretion system (T3SS) injectisome, is absolutely required for Salmonella enterica to enter epithelial cells; this requirement has hampered the analysis of its postentry contributions. To identify T3SS1-dependent intracellular activities, in this study we overcame this limitation by developing a conditional inactivation in the T3SS whereby T3SS activity is chemically induced during culture in liquid broth, permitting bacterial entry into epithelial cells, but is quickly and perpetually inactivated in the absence of inducer. In this sense, the mutant acts like wild-type bacteria when extracellular and as a T3SS mutant once it enters a host cell. This “conditional” mutant allowed us to directly link activity of this T3SS with nascent vacuole lysis, cytosolic proliferation, and cellular egress, demonstrating that the invasion-associated T3SS also contributes to essential intracellular stages of the S. enterica infectious cycle.
Collapse
|
4
|
Cooper KG, Chong A, Starr T, Finn CE, Steele-Mortimer O. Predictable, Tunable Protein Production in Salmonella for Studying Host-Pathogen Interactions. Front Cell Infect Microbiol 2017; 7:475. [PMID: 29201859 PMCID: PMC5696353 DOI: 10.3389/fcimb.2017.00475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 12/30/2022] Open
Abstract
Here we describe the use of synthetic genetic elements to improve the predictability and tunability of episomal protein production in Salmonella. We used a multi-pronged approach, in which a series of variable-strength synthetic promoters were combined with a synthetic transcriptional terminator, and plasmid copy number variation. This yielded a series of plasmids that drive uniform production of fluorescent and endogenous proteins, over a wide dynamic range. We describe several examples where this system is used to fine-tune constitutive expression in Salmonella, providing an efficient means to titrate out toxic effects of protein production.
Collapse
Affiliation(s)
- Kendal G Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Tregei Starr
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Ciaran E Finn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
5
|
Shen L, Macnaughtan MA, Frohlich KM, Cong Y, Goodwin OY, Chou CW, LeCour L, Krup K, Luo M, Worthylake DK. Multipart Chaperone-Effector Recognition in the Type III Secretion System of Chlamydia trachomatis. J Biol Chem 2015; 290:28141-28155. [PMID: 26438824 DOI: 10.1074/jbc.m115.670232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology, and Parasitology.
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Range, Louisiana 70803
| | | | - Yanguang Cong
- Department of Microbiology, Immunology, and Parasitology
| | - Octavia Y Goodwin
- Department of Chemistry, Louisiana State University, Baton Range, Louisiana 70803
| | - Chau-Wen Chou
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Louis LeCour
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Kristen Krup
- Department of Microbiology, Immunology, and Parasitology
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology
| | - David K Worthylake
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
6
|
Roblin P, Dewitte F, Villeret V, Biondi EG, Bompard C. A Salmonella type three secretion effector/chaperone complex adopts a hexameric ring-like structure. J Bacteriol 2015; 197:688-98. [PMID: 25404693 PMCID: PMC4334183 DOI: 10.1128/jb.02294-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022] Open
Abstract
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.
Collapse
Affiliation(s)
- Pierre Roblin
- INRA Biopolymères, Interactions et Assemblages, Nantes, France Synchrotron SOLEIL, Gif sur Yvette, France
| | - Frédérique Dewitte
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Emanuele G Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Coralie Bompard
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, Université Lille Nord de France, Villeneuve d'Ascq, France
| |
Collapse
|
7
|
Giacomodonato MN, Llana MN, Castañeda MDRA, Buzzola F, García MD, Calderón MG, Sarnacki SH, Cerquetti MC. Dam methylation regulates the expression of SPI-5-encoded sopB gene in Salmonella enterica serovar Typhimurium. Microbes Infect 2014; 16:615-22. [DOI: 10.1016/j.micinf.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 02/04/2023]
|
8
|
Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells. Cell Microbiol 2014; 16:64-77. [PMID: 23931152 PMCID: PMC3921270 DOI: 10.1111/cmi.12180] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022]
Abstract
The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non-phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin-driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium- and phospholipid-binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS-mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho-family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.
Collapse
Affiliation(s)
- Carrie Jolly
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Seth Winfree
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| | - Olivia Steele-Mortimer
- Salmonella Host-Cell Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, 59840, USA
| |
Collapse
|
9
|
Roblin P, Lebrun P, Rucktooa P, Dewitte F, Lens Z, Receveur-Brechot V, Raussens V, Villeret V, Bompard C. The structural organization of the N-terminus domain of SopB, a virulence factor of Salmonella, depends on the nature of its protein partners. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2564-72. [PMID: 24075929 DOI: 10.1016/j.bbapap.2013.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/03/2013] [Accepted: 09/18/2013] [Indexed: 01/17/2023]
Abstract
The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors.
Collapse
Affiliation(s)
- Pierre Roblin
- INRA Biopolymères, Interactions et Assemblages, Rue de la Geraudière, 44316 Nantes, France; Synchrotron SOLEIL, L'orme des Merisiers, Saint Aubin, BP 48, 91192 Gif sur Yvette Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, Steele-Mortimer O, Heinzen RA. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 2013; 9:e1003107. [PMID: 23358892 PMCID: PMC3554619 DOI: 10.1371/journal.ppat.1003107] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/16/2012] [Indexed: 12/21/2022] Open
Abstract
Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. Clustered receptors associated with cholesterol-rich microdomains, termed lipid rafts, are thought to provide plasma membrane signaling platforms that bacterial pathogens can subvert to gain entry into host cells. Moreover, cholesterol has been implicated as a critical structural lipid of several pathogen-occupied vacuoles. Cumulative data supporting these models have principally been derived using inhibitors of cholesterol metabolism and various sterol sequestering compounds, agents that can lack specificity and cause unwanted cellular affects. Here, we employed a new system to investigate pathogen reliance on cholesterol for host cell colonization that utilizes mouse embryonic fibroblasts that can synthesize precursor sterols, but not cholesterol. Cells lacking cholesterol displayed strong defects in lipid raft-based signaling. However, no defects were observed in entry, vacuole development, and growth of Salmonella enterica and Chlamydia trachomatis, bacterial pathogens previously shown to rely on cholesterol for optimal host cell parasitism. Entry by Coxiella burnetii, the bacterial cause of human Q fever, was significantly decreased in cholesterol-negative cells as was trafficking of membranous material to the pathogen vacuole. However, subsequent bacterial replication was unaltered. Our results should prompt a reevaluation of the overall importance of cholesterol in bacterial pathogenesis with the described experimental system providing an alternative approach for such studies.
Collapse
Affiliation(s)
- Stacey D. Gilk
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Diane C. Cockrell
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Courtney Luterbach
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Leigh A. Knodler
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - J. Antonio Ibarra
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Salmonella-Host Cell Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
12
|
Brouwers E, Ma I, Thomas NA. Dual temporal transcription activation mechanisms control cesT expression in enteropathogenic Escherichia coli. Microbiology (Reading) 2012; 158:2246-2261. [DOI: 10.1099/mic.0.059444-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erin Brouwers
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Irene Ma
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil A. Thomas
- Department of Medicine (Division of Infectious Diseases), Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Knodler LA, Ibarra JA, Pérez-Rueda E, Yip CK, Steele-Mortimer O. Coiled-coil domains enhance the membrane association of Salmonella type III effectors. Cell Microbiol 2011; 13:1497-517. [PMID: 21679290 PMCID: PMC3418822 DOI: 10.1111/j.1462-5822.2011.01635.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.
| | | | | | | | | |
Collapse
|
14
|
Cooper KG, Winfree S, Malik-Kale P, Jolly C, Ireland R, Knodler LA, Steele-Mortimer O. Activation of Akt by the bacterial inositol phosphatase, SopB, is wortmannin insensitive. PLoS One 2011; 6:e22260. [PMID: 21779406 PMCID: PMC3136525 DOI: 10.1371/journal.pone.0022260] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/22/2011] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P(2) rather than phosphoinositide (3,4,5) P(3). Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Seth Winfree
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Preeti Malik-Kale
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Carrie Jolly
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Robin Ireland
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Leigh A. Knodler
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| |
Collapse
|
15
|
Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 2010; 107:17733-8. [PMID: 20876119 DOI: 10.1073/pnas.1006098107] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica is an intracellular bacterial pathogen that resides and proliferates within a membrane-bound vacuole in epithelial cells of the gut and gallbladder. Although essential to disease, how Salmonella escapes from its intracellular niche and spreads to secondary cells within the same host, or to a new host, is not known. Here, we demonstrate that a subpopulation of Salmonella hyperreplicating in the cytosol of epithelial cells serves as a reservoir for dissemination. These bacteria are transcriptionally distinct from intravacuolar Salmonella. They are induced for the invasion-associated type III secretion system and possess flagella; hence, they are primed for invasion. Epithelial cells laden with these cytosolic bacteria are extruded out of the monolayer, releasing invasion-primed and -competent Salmonella into the lumen. This extrusion mechanism is morphologically similar to the process of cell shedding required for turnover of the intestinal epithelium. In contrast to the homeostatic mechanism, however, bacterial-induced extrusion is accompanied by an inflammatory cell death characterized by caspase-1 activation and the apical release of IL-18, an important cytokine regulator of gut inflammation. Although epithelial extrusion is obviously beneficial to Salmonella for completion of its life cycle, it also provides a mechanistic explanation for the mucosal inflammation that is triggered during Salmonella infection of the gastrointestinal and biliary tracts.
Collapse
|
16
|
Triplett LR, Wedemeyer WJ, Sundin GW. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE. Res Microbiol 2010; 161:613-8. [PMID: 20600860 DOI: 10.1016/j.resmic.2010.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 01/02/2023]
Abstract
The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function.
Collapse
Affiliation(s)
- Lindsay R Triplett
- Department of Plant Pathology, Michigan State University, 103 Center for Integrated Plant Systems, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
17
|
Cooper CA, Zhang K, Andres SN, Fang Y, Kaniuk NA, Hannemann M, Brumell JH, Foster LJ, Junop MS, Coombes BK. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host. PLoS Pathog 2010; 6:e1000751. [PMID: 20140193 PMCID: PMC2816692 DOI: 10.1371/journal.ppat.1000751] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 01/06/2010] [Indexed: 02/02/2023] Open
Abstract
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 Å revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS. Systemic typhoid fever caused by Salmonella enterica serovar Typhi leads to high mortality in the developing world and can be linked with chronic, persistent infections in survivors. To cause disease, Salmonella uses a specialized secretion device called a type III secretion system to disarm cells of the immune system and replicate within them. The assembly and function of this secretion system requires a set of chaperone proteins to direct the process, but the chaperone proteins themselves have remained elusive. Here, we found a new chaperone protein, called SrcA, which is required for proper function of the type III secretion system. Using a bacterial mutant lacking the srcA gene, we found that this chaperone was needed for Salmonella to compete against wild type cells during systemic disease because it controls secretion of at least 2 key proteins involved in immune escape and cell-to-cell transmission. This chaperone is present in all types of virulent Salmonella, but not in Salmonella that don't cause human infections, providing new insights into the pathogenic nature of this organism.
Collapse
Affiliation(s)
- Colin A. Cooper
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kun Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sara N. Andres
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Yuan Fang
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Natalia A. Kaniuk
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mandy Hannemann
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John H. Brumell
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics and the Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray S. Junop
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
18
|
Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 2009; 5:309. [PMID: 19756048 PMCID: PMC2758716 DOI: 10.1038/msb.2009.62] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/24/2009] [Indexed: 01/02/2023] Open
Abstract
The type III secretion system (T3SS) exports proteins from the cytoplasm, through both the inner and outer membranes, to the external environment. Here, a system is constructed to harness the T3SS encoded within Salmonella Pathogeneity Island 1 to export proteins of biotechnological interest. The system is composed of an operon containing the target protein fused to an N-terminal secretion tag and its cognate chaperone. Transcription is controlled by a genetic circuit that only turns on when the cell is actively secreting protein. The system is refined using a small human protein (DH domain) and demonstrated by exporting three silk monomers (ADF-1, -2, and -3), representative of different types of spider silk. Synthetic genes encoding silk monomers were designed to enhance genetic stability and codon usage, constructed by automated DNA synthesis, and cloned into the secretion control system. Secretion rates up to 1.8 mg l(-1) h(-1) are demonstrated with up to 14% of expressed protein secreted. This work introduces new parts to control protein secretion in Gram-negative bacteria, which will be broadly applicable to problems in biotechnology.
Collapse
Affiliation(s)
- Daniel M Widmaier
- Chemistry and Chemical Biology Graduate Program, University of California--San Francisco, San Francisco, CA 94110, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Knodler LA, Winfree S, Drecktrah D, Ireland R, Steele-Mortimer O. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane. Cell Microbiol 2009; 11:1652-70. [PMID: 19614667 PMCID: PMC2762020 DOI: 10.1111/j.1462-5822.2009.01356.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella-containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K6R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K6R mutant. At later times, fewer SCV were decorated with SopB-K6R compared with SopB. Instead SopB-K6R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | | | | | | | | |
Collapse
|