1
|
Grünebast J, Singhal R, Bromley R, Kanatani S, Watson K, Dumetz F, Pascini TV, Tripathi A, Dunning Hotopp JC, Sinnis P, Llinás M, Serre D. Degradation of ribosomal RNA during Plasmodium falciparum gametocytogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637867. [PMID: 39990385 PMCID: PMC11844502 DOI: 10.1101/2025.02.12.637867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The life cycle of Plasmodium falciparum is characterized by complex regulatory changes that allow adaptation of the parasites to different environmental conditions, which are especially pronounced during transmission between the mammalian host and the insect vector. Previous studies have shown that P. falciparum uses three types of ribosomal RNAs (rRNA A-, S1- and S2-types) at different stages of its life cycle. We used Oxford Nanopore Technologies (ONT) direct RNA sequencing to investigate the dynamics of rRNA usage throughout the parasite's intraerythrocytic development, as well as in salivary gland sporozoites. Our study revealed a preponderance of A-type rRNAs during the intraerythrocytic cycle and gametocytogenesis, while S-type rRNAs slowly increase in abundance in mosquito stages starting three days post infection. Salivary gland sporozoites showed an even proportion of all rRNA types. By examining the length distributions of rRNA molecules, we detected an extensive and specific degradation of rRNAs during gametocytogenesis, starting in stage II gametocytes and continuing until the final stages of gametocyte development. We hypothesize that rRNA degradation may be linked to the global translational repression and metabolic quiescence described in stage V gametocytes, similar to mechanisms observed in bacterial and eukaryotic stress responses.
Collapse
|
2
|
Evers F, Roverts R, Boshoven C, Kea-Te Lindert M, Verhoef JMJ, Sommerdijk N, Sinden RE, Akiva A, Kooij TWA. Comparative 3D ultrastructure of Plasmodium falciparum gametocytes. Nat Commun 2025; 16:69. [PMID: 39747010 PMCID: PMC11695595 DOI: 10.1038/s41467-024-55413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Despite the enormous significance of malaria parasites for global health, some basic features of their ultrastructure remain obscure. Here, we apply high-resolution volumetric electron microscopy to examine and compare the ultrastructure of the transmissible male and female sexual blood stages of Plasmodium falciparum as well as the more intensively studied asexual blood stages revisiting previously described phenomena in 3D. In doing so, we challenge the widely accepted notion of a single mitochondrion by demonstrating the presence of multiple mitochondria in gametocytes. We also provide evidence for a gametocyte-specific cytostome, or cell mouth. Furthermore, we generate the first 3D reconstructions of the parasite's endoplasmic reticulum (ER) and Golgi apparatus as well as gametocyte-induced extraparasitic structures in the infected red blood cell. Assessing interconnectivity between organelles, we find frequent structural appositions between the nucleus, mitochondria, and apicoplast. We provide evidence that the ER is a promiscuous interactor with numerous organelles and the trilaminar pellicle of the gametocyte. Public availability of these volumetric electron microscopy resources will facilitate reinterrogation by others with different research questions and expertise. Taken together, we reconstruct the 3D ultrastructure of P. falciparum gametocytes at nanometre scale and shed light on the unique organellar biology of these deadly parasites.
Collapse
Affiliation(s)
- Felix Evers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mariska Kea-Te Lindert
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Anat Akiva
- Electron Microscopy Center, RTC Microscopy, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Pires CV, Chawla J, Sollelis L, Oberstaller J, Zhang M, Wang C, Gibbons J, Rayner JC, Otto TD, Marti M, Adams JH. Genetic factors regulating Plasmodium falciparum gametocytogenesis identified by phenotypic screens. Sci Rep 2024; 14:31010. [PMID: 39730700 PMCID: PMC11680961 DOI: 10.1038/s41598-024-82133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Successful transmission of Plasmodium falciparum from one person to another relies on the complete intraerythrocytic development of non-pathogenic sexual gametocytes infectious for anopheline mosquitoes. Understanding the genetic factors that regulate gametocyte development is vital for identifying transmission-blocking targets in the malaria parasite life cycle. Toward this end, we conducted a forward genetic study to characterize the development of gametocytes from sexual commitment to mature stage V. We described a new analysis pipeline for the piggyBac transposon-based mutagenesis phenotypic screen to identify genes that influence both early and late gametocyte stages. We classified individual mutants that increased or decreased parasite abundance as the hypoproducer and hyperproducer phenotypes, respectively, revealing distinctive temporal genetic factors early and late in the sexual development cycle. The study identifies that disruption in factors involved in transcription, protein trafficking and DNA repair are associated with decreasing gametocyte production, while modifications in phosphatase activity are linked to hyperproduction of gametocytes. Our study provides an optimized approach on genotype-phenotype evaluation, offering a new resource for understanding potential targets for therapeutic intervention strategies to disrupt transmission.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Jyotsna Chawla
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lauriane Sollelis
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jenna Oberstaller
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Min Zhang
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA.
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Ritaparna P, Ray M, Dhal AK, Mahapatra RK. An immunoinformatics approach for design and validation of multi-subunit vaccine against Plasmodium falciparum from essential hypothetical proteins. J Parasit Dis 2024; 48:593-609. [PMID: 39145352 PMCID: PMC11319695 DOI: 10.1007/s12639-024-01696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
Malaria, caused by Plasmodium falciparum, remains a pressing global health concern. Advancements in combating this parasite involve the development of a protein vaccine. This study employs immunoinformatics to identify potential vaccine candidates within the repertoire of 218 P. falciparum exported essential proteins identified through saturaturation mutagenesis study. Our screening approach narrows down to 65 Plasmodium-exported proteins with uncharacterized functions while exhibiting non-mutability in CDS (coding sequences). The transmembrane helix, antigenicity, allergenicity of the shortlisted proteins was assessed through diverse prediction algorithm, culminating in the identification of five promising vaccination contenders, based on probability scores. We discerned B-cell, helper T-lymphocyte, and cytotoxic T-lymphocyte epitopes. Two proteins with the most favorable epitope were harnessed to construct a multi-subunit vaccine, through judicious linker integration. Employing the I-TASSER software, three-dimensional models of the constituent proteins was obtained and was validated using diverse tools like ProSA, VERIFY3D, and ERRAT. The modelled proteins underwent Molecular Dynamics (MD) simulation in a solvent environment to evaluate the stability of the multi-subunit vaccine. Furthermore, we conducted molecular docking through the ClusPro web server to elucidate potential interactions with Toll-like receptors (TLR2 and TLR4). Docking scores revealed a pronounced affinity of the multi-subunit vaccine for TLR2. Significantly, 100 ns MD simulation of the protein-receptor complex unveiled a persistent hydrogen bond linkage between the ARG63 residue of the sub-unit vaccine and the GLU32 residue of the TLR2 receptor. These findings collectively advocate the potential efficacy of the first multi-subunit vaccine from the potential hypothetical proteins of P. falciparum. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-024-01696-w.
Collapse
Affiliation(s)
- Prajna Ritaparna
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
- National Innovation Foundation, India, KIIT-TBI, Bhubaneswar, Odisha 751024 India
| | - Muskan Ray
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | | |
Collapse
|
6
|
Mousavi Shafi ZS, Firouz ZM, Pirahmadi S. Gene expression analysis of Anopheles Meigen, 1818 (Diptera: Culicidae) innate immunity after Plasmodium Marchiafava & Celli, 1885 (Apicomplexa) infection: Toward developing new malaria control strategies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105650. [PMID: 39089500 DOI: 10.1016/j.meegid.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Despite the critical role of the Anopheles innate immune system in defending against Plasmodium infection, there is still limited information about the key immune mechanisms in Anopheles. This review assesses recent findings on the expression characteristics of immune-related genes in Anopheles following exposure to Plasmodium. A literature review, unrestricted by publication date, was conducted to evaluate immune-related gene expression in different organs of Anopheles after Plasmodium infection. Mosquito immune responses in the midgut are essential for reducing parasite populations. Additionally, innate immune responses in the salivary glands and hemocytes circulating in the hemocoel play key roles in defense against the parasite. Transcriptomic analysis of the mosquito's innate immune response to Plasmodium infection provides valuable insights into key immune mechanisms in mosquito defense. A deeper understanding of immune mechanisms in different organs of Anopheles following Plasmodium infection will aid in discovering critical targets for designing novel control strategies.
Collapse
Affiliation(s)
- Zahra Sadat Mousavi Shafi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Liu C, Tang J, Liang K, Liu P, Li Z. Ready for renascence in mosquito: The regulation of gene expression in Plasmodium sexual development. Acta Trop 2024; 254:107191. [PMID: 38554994 DOI: 10.1016/j.actatropica.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kejia Liang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Dinko B, Awuah D, Boampong K, Larbi JA, Bousema T, Sutherland CJ. Prevalence of Plasmodium falciparum gametocytaemia in asymptomatic school children before and after treatment with dihydroartemisinin-piperaquine (DP). Parasite Epidemiol Control 2023; 21:e00292. [PMID: 36860282 PMCID: PMC9969054 DOI: 10.1016/j.parepi.2023.e00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Background Asymptomatic Plasmodium carriers form the majority of malaria-infected individuals in most endemic areas. A proportion of these asymptomatically infected individuals carry gametocytes, the transmissible stages of malaria parasites, that sustain human to mosquito transmission. Few studies examine gametocytaemia in asymptomatic school children who may form an important reservoir for transmission. We assessed the prevalence of gametocytaemia before antimalarial treatment and monitored clearance of gametocytes after treatment in asymptomatic malaria children. Methods A total of 274 primary school children were screened for P. falciparum parasitaemia by microscopy. One hundred and fifty-five (155) parasite positive children were treated under direct observation with dihydroartemisinin-piperaquine (DP). Gametocyte carriage was determined by microscopy seven days prior to treatment, day 0 before treatment, and on days 7, 14 and 21 post initiation of treatment. Results The prevalence of microscopically-detectable gametocytes at screening (day -7) and enrolment (day 0) were 9% (25/274) and 13.6% (21/155) respectively. Following DP treatment, gametocyte carriage dropped to 4% (6/135), 3% (5/135) and 6% (10/151) on days 7, 14 and 21 respectively. Asexual parasites persisted in a minority of treated children, resulting in microscopically detectable parasites on days 7 (9%, 12/135), 14 (4%, 5/135) and 21 (7%, 10/151). Gametocyte carriage was inversely correlated with the age of the participants (p = 0.05) and asexual parasite density (p = 0.08). In a variate analysis, persistent gametocytaemia 7 or more days after treatment was significantly associated with post-treatment asexual parasitaemia at day 7 (P = 0.027) and presence of gametocytes on the day of treatment (P < 0.001). Conclusions Though DP provides both excellent cure rates for clinical malaria and a long prophylactic half-life, our findings suggest that after treatment of asymptomatic infections, both asexual parasites and gametocytes may persist in a minority of individuals during the first 3 weeks after treatment. This indicates DP may be unsuitable for use in mass drug administration strategies towards malaria elimination in Africa.
Collapse
Affiliation(s)
- Bismarck Dinko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dennis Awuah
- Department of Theoretical and Applied Biology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Boampong
- Department of Theoretical and Applied Biology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John A. Larbi
- Department of Theoretical and Applied Biology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Teun Bousema
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medical Microbiology, Nijmegen Medical Centre, Radboud University, Nijmegen, the Netherlands
| | - Colin J. Sutherland
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
10
|
Broni FK, Acquah FK, Obiri-Yeboah D, Obboh EK, Sarpong E, Amoah LE. Profiling the Quality and Quantity of Naturally Induced Antibody Responses Against Pfs230 and Pfs48/45 Among Non-Febrile Children Living in Southern Ghana: A Longitudinal Study. Front Cell Infect Microbiol 2021; 11:770821. [PMID: 34900755 PMCID: PMC8656302 DOI: 10.3389/fcimb.2021.770821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022] Open
Abstract
A clear understanding of the properties of naturally induced antibody responses against transmission-blocking vaccine candidates can accelerate the understanding of the development of transmission-blocking immunity. This study characterized the naturally induced IgG responses against two leading transmission-blocking vaccine antigens, Pfs230 and Pfs48/45, in non-febrile children living in Simiw, Ghana. Consecutive sampling was used to recruit 84 non-febrile children aged from 6 to 12 years old into the 6-month (November 2017 until May 2018) longitudinal study. Venous blood (1 ml) was collected once every 2 months and used to determine hemoglobin levels, P. falciparum prevalence using microscopy and polymerase chain reaction, and the levels and relative avidity of IgG responses against Pfs230 and Pfs48/45 using indirect ELISA. IgG levels against Pfs230 and Pfs48/45 decreased from the start (November) to the middle (January) and end (March) of the dry season respectively, then they began to increase. Participants, especially older children (10-12 years old) with active infections generally had lower antibody levels against both antigens. The relative avidities of IgG against both antigens followed the trend of IgG levels until the middle of the dry season, after which the relative avidities of both antigens correlated inversely with the antibody levels. In conclusion, although IgG antibody levels against both Pfs48/45 and Pfs230 began to increase by the early rainy season, they were inversely correlated to their respective relative avidities.
Collapse
Affiliation(s)
- Fermin K. Broni
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Festus K. Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- Directorate of Research, Innovation and Consultancy, University of Cape Coast, Cape Coast, Ghana
| | - Evans K. Obboh
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Esther Sarpong
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Linda E. Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Ayanful-Torgby R, Sarpong E, Abagna HB, Donu D, Obboh E, Mensah BA, Adjah J, Williamson KC, Amoah LE. Persistent Plasmodium falciparum infections enhance transmission-reducing immunity development. Sci Rep 2021; 11:21380. [PMID: 34725428 PMCID: PMC8560775 DOI: 10.1038/s41598-021-00973-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Subclinical infections that serve as reservoir populations to drive transmission remain a hurdle to malaria control. Data on infection dynamics in a geographical area is required to strategically design and implement malaria interventions. In a longitudinal cohort, we monitored Plasmodium falciparum infection prevalence and persistence, and anti-parasite immunity to gametocyte and asexual antigens for 10 weeks. Of the 100 participants, only 11 were never infected, whilst 16 had persistent infections detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and one participant had microscopic parasites at all visits. Over 70% of the participants were infected three or more times, and submicroscopic gametocyte prevalence was high, ≥ 48% of the parasite carriers. Naturally induced responses against recombinant Pfs48/45.6C, Pfs230proC, and EBA175RIII-V antigens were not associated with either infection status or gametocyte carriage, but the antigen-specific IgG titers inversely correlated with parasite and gametocyte densities consistent with partial immunity. Longitudinal analysis of gametocyte diversity indicated at least four distinct clones circulated throughout the study period. The high prevalence of children infected with distinct gametocyte clones coupled with marked variation in infection status at the individual level suggests ongoing transmission and should be targeted in malaria control programs.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Hamza B Abagna
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dickson Donu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Benedicta A Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joshua Adjah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Linda E Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
12
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
13
|
Chugh A, Kumar A, Verma A, Kumar S, Kumar P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02604-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Kiyuka PK, Meri S, Khattab A. Complement in malaria: immune evasion strategies and role in protective immunity. FEBS Lett 2020; 594:2502-2517. [PMID: 32181490 PMCID: PMC8653895 DOI: 10.1002/1873-3468.13772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The malaria parasite has for long been thought to escape host complement attack as a survival strategy. However, it was only recently that complement evasion mechanisms of the parasite were described. Simultaneously, the role of complement in antibody-mediated naturally acquired and vaccine-induced protection against malaria has also been reported. Such findings should be considered in future vaccine design, given the current need to develop more efficacious vaccines against malaria. Parasite antigens derived from molecules mediating functions crucial for parasite survival, such as complement evasion, or parasite antigens against which antibody responses lead to an efficient complement attack could present new candidates for vaccines. In this review, we discuss recent findings on complement evasion by the malaria parasites and the emerging role of complement in antibody-mediated protection against malaria. We emphasize that immune responses to vaccines based on complement inhibitors should not only induce complement-activating antibodies but also neutralize the escape mechanisms of the parasite.
Collapse
Affiliation(s)
- Patience Kerubo Kiyuka
- Department of Bacteriology and Immunology, Translational Immunology Research Program, Haartman Institute, University of Helsinki, Finland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Seppo Meri
- Department of Bacteriology and Immunology, Translational Immunology Research Program, Haartman Institute, University of Helsinki, Finland
- Helsinki University Central Hospital, Finland
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ayman Khattab
- Department of Bacteriology and Immunology, Translational Immunology Research Program, Haartman Institute, University of Helsinki, Finland
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
15
|
Flammersfeld A, Panyot A, Yamaryo-Botté Y, Aurass P, Przyborski JM, Flieger A, Botté C, Pradel G. A patatin-like phospholipase functions during gametocyte induction in the malaria parasite Plasmodium falciparum. Cell Microbiol 2019; 22:e13146. [PMID: 31734953 DOI: 10.1111/cmi.13146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Patatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down-regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2 . PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway.
Collapse
Affiliation(s)
- Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Atscharah Panyot
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Philipp Aurass
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Jude M Przyborski
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Warncke JD, Passecker A, Kipfer E, Brand F, Pérez-Martínez L, Proellochs NI, Kooij TWA, Butter F, Voss TS, Beck HP. The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cell Microbiol 2019; 22:e13123. [PMID: 31652487 DOI: 10.1111/cmi.13123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte-infected host cell periphery. Co-immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock-out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage-specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Jan D Warncke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Enja Kipfer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Françoise Brand
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lara Pérez-Martínez
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nicholas I Proellochs
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Falk Butter
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Tanaka TQ, Tokuoka SM, Nakatani D, Hamano F, Kawazu SI, Wellems TE, Kita K, Shimizu T, Tokumasu F. Polyunsaturated fatty acids promote Plasmodium falciparum gametocytogenesis. Biol Open 2019; 8:bio.042259. [PMID: 31221627 PMCID: PMC6679406 DOI: 10.1242/bio.042259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.
Collapse
Affiliation(s)
- Takeshi Q Tanaka
- International Medical Zoology, Graduate School of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA.,Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| | - Daichi Nakatani
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Fumie Hamano
- Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shin-Ichiro Kawazu
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan.,Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Fuyuki Tokumasu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA .,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| |
Collapse
|
18
|
Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun 2019; 10:2140. [PMID: 31086187 PMCID: PMC6514009 DOI: 10.1038/s41467-019-10172-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
Plasmodium sexual differentiation is required for malaria transmission, yet much remains unknown about its regulation. Here, we quantify early gametocyte-committed ring (gc-ring) stage, P. falciparum parasites in 260 uncomplicated malaria patient blood samples 10 days before maturation to transmissible stage V gametocytes using a gametocyte conversion assay (GCA). Seventy six percent of the samples have gc-rings, but the ratio of gametocyte to asexual-committed rings (GCR) varies widely (0–78%). GCR correlates positively with parasitemia and is negatively influenced by fever, not hematocrit, age or leukocyte counts. Higher expression levels of GDV1-dependent genes, ap2-g, msrp1 and gexp5, as well as a gdv1 allele encoding H217 are associated with high GCR, while high plasma lysophosphatidylcholine levels are associated with low GCR in the second study year. The results provide a view of sexual differentiation in the field and suggest key regulatory roles for clinical factors and gdv1 in gametocytogenesis in vivo. Here, the authors quantify early gametocyte-committed ring (gc-ring) stage Plasmodium falciparum parasites in 260 malaria patients 10 days before maturation to transmissible stage V gametocytes, and show that the ratio of circulating gc-rings is positively correlated with parasitemia and negatively correlated with body temperature.
Collapse
|
19
|
Henry NB, Sermé SS, Siciliano G, Sombié S, Diarra A, Sagnon N, Traoré AS, Sirima SB, Soulama I, Alano P. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar J 2019; 18:70. [PMID: 30866941 PMCID: PMC6417185 DOI: 10.1186/s12936-019-2707-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2019] [Indexed: 11/10/2022] Open
Abstract
While significant advances have been made in understanding Plasmodium falciparum gametocyte biology and its relationship with malaria parasite transmission, the gametocyte sex ratio contribution to this process still remains a relevant research question. The present review discusses the biology of sex determination in P. falciparum, the underlying host and parasite factors, the sex specific susceptibility to drugs, the effect of sex ratio dynamics on malaria parasite transmission and the development of gametocyte sex specific diagnosis tools. Despite the inherent differences across several studies and approaches, the emerging picture highlights a potentially relevant contribution of the P. falciparum gametocyte sex ratio in the modulation of malaria parasite transmission. The increasing availability of molecular methods to measure gametocyte sex ratio will enable evaluation of important parameters, such as the impact of drug treatment on gametocyte sex ratio in vitro and in vivo as well as the changes of gametocyte sex ratios in natural infections, key steps towards elucidating how these parameters affect parasite infectiousness to the mosquito vectors.
Collapse
Affiliation(s)
- Noëlie Béré Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N'fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Sodiomon Bienvenu Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Groupe de Recherche Action Santé, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
20
|
Kengne-Ouafo JA, Sutherland CJ, Binka FN, Awandare GA, Urban BC, Dinko B. Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites. Front Immunol 2019; 10:136. [PMID: 30804940 PMCID: PMC6378314 DOI: 10.3389/fimmu.2019.00136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/16/2019] [Indexed: 11/13/2022] Open
Abstract
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.
Collapse
Affiliation(s)
- Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Britta C Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
21
|
Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 2019; 4:144-154. [PMID: 30478286 PMCID: PMC6294672 DOI: 10.1038/s41564-018-0291-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment. We demonstrate the existence of PfAP2-G-positive sexually committed parasite stages that precede the previously known committed schizont stage. We also found that sexual conversion can occur by two different routes: the previously described route in which PfAP2-G-expressing parasites complete a replicative cycle as committed forms before converting into gametocytes upon re-invasion, or a direct route with conversion within the same cycle as initial PfAP2-G expression. The latter route is linked to early PfAP2-G expression in ring stages. Reanalysis of published single-cell RNA-sequencing (RNA-seq) data confirmed the presence of both routes. Consistent with these results, using plaque assays we observed that, in contrast to the prevailing model, many schizonts produced mixed plaques containing both asexual parasites and gametocytes. Altogether, our results reveal unexpected features of the initial steps of sexual development and extend the current view of this part of the malaria life cycle.
Collapse
Affiliation(s)
- Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Asaf Poran
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Nötzel
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
22
|
Pathak AK, Shiau JC, Thomas MB, Murdock CC. Cryogenically preserved RBCs support gametocytogenesis of Plasmodium falciparum in vitro and gametogenesis in mosquitoes. Malar J 2018; 17:457. [PMID: 30522507 PMCID: PMC6282341 DOI: 10.1186/s12936-018-2612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The malaria Eradication Research Agenda (malERA) has identified human-to-mosquito transmission of Plasmodium falciparum as a major target for eradication. The cornerstone for identifying and evaluating transmission in the laboratory is standard membrane feeding assays (SMFAs) where mature gametocytes of P. falciparum generated in vitro are offered to mosquitoes as part of a blood-meal. However, propagation of "infectious" gametocytes requires 10-12 days with considerable physico-chemical demands imposed on host RBCs and thus, "fresh" RBCs that are ≤ 1-week old post-collection are generally recommended. However, in addition to the costs, physico-chemical characteristics unique to RBC donors may confound reproducibility and interpretation of SMFAs. Cryogenic storage of RBCs ("cryo-preserved RBCs") is accepted by European and US FDAs as an alternative to refrigeration (4 °C) for preserving RBC "quality" and while cryo-preserved RBCs have been used for in vitro cultures of other Plasmodia and the asexual stages of P. falciparum, none of the studies required RBCs to support parasite development for > 4 days. RESULTS Using the standard laboratory strain, P. falciparum NF54, 11 SMFAs were performed with RBCs from four separate donors to demonstrate that RBCs cryo-preserved in the gaseous phase of liquid nitrogen (- 196 °C) supported gametocytogenesis in vitro and subsequent gametogenesis in Anopheles stephensi mosquitoes. Overall levels of sporogony in the mosquito, as measured by oocyst and sporozoite prevalence, as well as oocyst burden, from each of the four donors thawed after varying intervals of cryopreservation (1, 4, 8, and 12 weeks) were comparable to using ≤ 1-week old refrigerated RBCs. Lastly, the potential for cryo-preserved RBCs to serve as a suitable alternative substrate is demonstrated for a Cambodian isolate of P. falciparum across two independent SMFAs. CONCLUSIONS Basic guidelines are presented for integrating cryo-preserved RBCs into an existing laboratory/insectary framework for P. falciparum SMFAs with significant potential for reducing running costs while achieving greater reliability. Lastly, scenarios are discussed where cryo-preserved RBCs may be especially useful in enhancing the understanding and/or providing novel insights into the patterns and processes underlying human-to-mosquito transmission.
Collapse
Affiliation(s)
- Ashutosh K Pathak
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Justine C Shiau
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and the Department of Entomology, Pennsylvania State University, State College, PA, 16803, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, 30602, USA
- Riverbasin Center, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
23
|
Josling GA, Williamson KC, Llinás M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 2018; 72:501-519. [PMID: 29975590 DOI: 10.1146/annurev-micro-090817-062712] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kim C Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
24
|
Dinko B, Ansah F, Agyare-Kwabi C, Tagboto S, Amoah LE, Urban BC, Sutherland CJ, Awandare GA, Williamson KC, Binka FN, Deitsch KW. Gametocyte Development and Carriage in Ghanaian Individuals with Uncomplicated Plasmodium falciparum Malaria. Am J Trop Med Hyg 2018; 99:57-64. [PMID: 29692310 PMCID: PMC6085798 DOI: 10.4269/ajtmh.18-0077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum gametocytes develop over 9-12 days while sequestered in deep tissues. On emergence into the bloodstream, they circulate for varied amounts of time during which certain host factors might influence their further development. We aimed to evaluate the potential association of patient clinical parameters with gametocyte development and carriage via in vivo methods. Seventy-two patients were enrolled from three hospitals in the Volta region of Ghana in 2016. Clinical parameters were documented for all patients, and gametocyte prevalence by microscopy was estimated at 12.5%. By measuring RNA transcripts representing two distinct gametocyte developmental stages using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), we obtained a more precise estimate of gametocyte carriage while also inferring gametocyte maturation. Fifty-three percent of the study participants harbored parasites expressing transcripts of the immature gametocyte-specific gene (PF3D7_1477700), whereas 36% harbored PF3D7_1438800 RNA-positive parasites, which is enriched in mid and mature gametocytes, suggesting the presence of more immature stages. Linear logistic regression showed that patients older than 5 years but less than 16 years were more likely to carry gametocytes expressing both PF3D7_1477700 and PF3D7_1438800 compared with younger participants, and gametocytemia was more likely in mildly anemic individuals compared with those with severe/moderate anemia. These data provide further evidence that a greater number of malaria patients harbor gametocytes than typically estimated by microscopy and suggest a possible association between age, fever, anemia, and gametocytemia.
Collapse
Affiliation(s)
- Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Comfort Agyare-Kwabi
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Senyo Tagboto
- Department of Internal Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Britta C. Urban
- Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Colin J. Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Kim C. Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Fred N. Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York
| |
Collapse
|
25
|
Pigeault R, Caudron Q, Nicot A, Rivero A, Gandon S. Timing malaria transmission with mosquito fluctuations. Evol Lett 2018; 2:378-389. [PMID: 30283689 PMCID: PMC6122125 DOI: 10.1002/evl3.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Temporal variations in the activity of arthropod vectors can dramatically affect the epidemiology and evolution of vector‐borne pathogens. Here, we explore the “Hawking hypothesis”, which states that these pathogens may evolve the ability to time investment in transmission to match the activity of their vectors. First, we use a theoretical model to identify the conditions promoting the evolution of time‐varying transmission strategies in pathogens. Second, we experimentally test the “Hawking hypothesis” by monitoring the within‐host dynamics of Plasmodium relictum throughout the acute and the chronic phases of the bird infection. We detect a periodic increase of parasitemia and mosquito infection in the late afternoon that coincides with an increase in the biting activity of its natural vector. We also detect a positive effect of mosquito bites on Plasmodium replication in the birds both in the acute and in the chronic phases of the infection. This study highlights that Plasmodium parasites use two different strategies to increase the match between transmission potential and vector availability. We discuss the adaptive nature of these unconditional and plastic transmission strategies with respect to the time scale and the predictability of the fluctuations in the activity of the vector.
Collapse
Affiliation(s)
- Romain Pigeault
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | | | - Antoine Nicot
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| | - Ana Rivero
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
| | - Sylvain Gandon
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| |
Collapse
|
26
|
Bechtsi D, Waters A. Genomics and epigenetics of sexual commitment in Plasmodium. Int J Parasitol 2017; 47:425-434. [DOI: 10.1016/j.ijpara.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/01/2017] [Accepted: 03/11/2017] [Indexed: 11/27/2022]
|
27
|
Simplified Reversed Chloroquines To Overcome Malaria Resistance to Quinoline-Based Drugs. Antimicrob Agents Chemother 2017; 61:AAC.01913-16. [PMID: 28193646 PMCID: PMC5404532 DOI: 10.1128/aac.01913-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/22/2017] [Indexed: 02/01/2023] Open
Abstract
Building on our earlier work of attaching a chemosensitizer (reversal agent) to a known drug pharmacophore, we have now expanded the structure-activity relationship study to include simplified versions of the chemosensitizer. The change from two aromatic rings in this head group to a single ring does not appear to detrimentally affect the antimalarial activity of the compounds. Data from in vitro heme binding and β-hematin inhibition assays suggest that the single aromatic RCQ compounds retain activities against Plasmodium falciparum similar to those of CQ, although other mechanisms of action may be relevant to their activities.
Collapse
|
28
|
Dinko B, King E, Targett GAT, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol 2017; 38:352-64. [PMID: 27084060 PMCID: PMC5089589 DOI: 10.1111/pim.12323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
An essential element for continuing transmission of Plasmodium falciparum is the availability of mature gametocytes in human peripheral circulation for uptake by mosquitoes. Natural immune responses to circulating gametocytes may play a role in reducing transmission from humans to mosquitoes. Here, antibody recognition of the surface of mature intra‐erythrocytic gametocytes produced either by a laboratory‐adapted parasite, 3D7, or by a recent clinical isolate of Kenyan origin (HL1204), was evaluated longitudinally in a cohort of Ghanaian school children by flow cytometry. This showed that a proportion of children exhibited antibody responses that recognized gametocyte surface antigens on one or both parasite lines. A subset of the children maintained detectable anti‐gametocyte surface antigen (GSA) antibody levels during the 5 week study period. There was indicative evidence that children with anti‐GSA antibodies present at enrolment were less likely to have patent gametocytaemia at subsequent visits (odds ratio = 0·29, 95% CI 0·06–1·05; P = 0·034). Our data support the existence of antigens on the surface of gametocyte‐infected erythrocytes, but further studies are needed to confirm whether antibodies against them reduce gametocyte carriage. The identification of GSA would allow their evaluation as potential anti‐gametocyte vaccine candidates and/or biomarkers for gametocyte carriage.
Collapse
Affiliation(s)
- B Dinko
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - E King
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G A T Targett
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - C J Sutherland
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
29
|
López-Gutiérrez B, Dinglasan RR, Izquierdo L. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites. Biochem J 2017; 474:897-905. [PMID: 28104756 PMCID: PMC5340172 DOI: 10.1042/bcj20161030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.
Collapse
Affiliation(s)
- Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rhoel R Dinglasan
- Department of Infectious Diseases & Pathology, The University of Florida Emerging Pathogens Institute, Gainesville, FL 32611, U.S.A
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Siciliano G, Santha Kumar TR, Bona R, Camarda G, Calabretta MM, Cevenini L, Davioud-Charvet E, Becker K, Cara A, Fidock DA, Alano P. A high susceptibility to redox imbalance of the transmissible stages of Plasmodium falciparum revealed with a luciferase-based mature gametocyte assay. Mol Microbiol 2017; 104:306-318. [PMID: 28118506 DOI: 10.1111/mmi.13626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
The goal to prevent Plasmodium falciparum transmission from humans to mosquitoes requires the identification of targetable metabolic processes in the mature (stage V) gametocytes, the sexual stages circulating in the bloodstream. This task is complicated by the apparently low metabolism of these cells, which renders them refractory to most antimalarial inhibitors and constrains the development of specific and sensitive cell-based assays. Here, we identify and functionally characterize the regulatory regions of the P. falciparum gene PF3D7_1234700, encoding a CPW-WPC protein and named here Upregulated in Late Gametocytes (ULG8), which we have leveraged to express reporter genes in mature male and female gametocytes. Using transgenic parasites containing a pfULG8-luciferase cassette, we investigated the susceptibility of stage V gametocytes to compounds specifically affecting redox metabolism. Our results reveal a high sensitivity of mature gametocytes to the glutathione reductase inhibitor and redox cycler drug methylene blue (MB). Using isobologram analysis, we find that a concomitant inhibition of the parasite enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase, a key component of NADPH synthesis, potently synergizes MB activity. These data suggest that redox metabolism and detoxification activity play an unsuspected yet vital role in stage V gametocytes, rendering these cells exquisitely sensitive to decreases in NADPH concentration.
Collapse
Affiliation(s)
- Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Roberta Bona
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - Grazia Camarda
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | | | - Luca Cevenini
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Elisabeth Davioud-Charvet
- European School of Chemistry, Polymers and Materials (ECPM), UMR 7509 Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Germany
| | - Andrea Cara
- Dipartimento Farmaco, Istituto Superiore di Sanità, Rome, Italy
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Miao J, Chen Z, Wang Z, Shrestha S, Li X, Li R, Cui L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol Cell Proteomics 2017; 16:537-551. [PMID: 28126901 DOI: 10.1074/mcp.m116.061804] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote.
Collapse
Affiliation(s)
- Jun Miao
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| | - Zhao Chen
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Zenglei Wang
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Sony Shrestha
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Xiaolian Li
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802
| | - Runze Li
- §Department of Statistics, The Pennsylvania State University, 413 Thomas Building, University Park, Pennsylvania 16802
| | - Liwang Cui
- From the ‡Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, Pennsylvania 16802;
| |
Collapse
|
32
|
Ayanful-Torgby R, Oppong A, Abankwa J, Acquah F, Williamson KC, Amoah LE. Plasmodium falciparum genotype and gametocyte prevalence in children with uncomplicated malaria in coastal Ghana. Malar J 2016; 15:592. [PMID: 27938356 PMCID: PMC5148883 DOI: 10.1186/s12936-016-1640-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum gametocytes are vital to sustaining malaria transmission. Parasite densities, multiplicity of infection as well as asexual genotype are features that have been found to influence gametocyte production. Measurements of the prevalence of Plasmodium sp. gametocytes may serve as a tool to monitor the success of malaria eradication efforts. METHODS Whole blood was collected from 112 children aged between 6 months and 13 years with uncomplicated P. falciparum malaria attending three health facilities in southern Ghana from June to August, 2014 before (day 0) and 4 days after completion of anti-malaria drug treatment (day 7). Malaria parasites were observed by microscopy and polymerase chain reaction (PCR); submicroscopic gametocyte carriage was measured by a Pfs25 (PF3D7_1031000) mRNA real time reverse transcriptase polymerase chain reaction (RT-PCR). Parasite genotyping was performed on gDNA extracted from dried filter paper blood blots by amplification of the polymorphic regions of msp1 (PF3D7_0930300) and msp2 (PF3D7_0206800) using PCR. RESULTS Microscopy estimated 3.1% (3/96) of the total population to carry gametocytes on day 0, which decreased to 2.1% (2/96) on day 7. In contrast, reverse transcriptase-real time PCR (RT-PCR) analysis of a subset of 35 samples estimated submicroscopic gametocyte carriage to be as high as 77% (27/35) using primers specific for Pfs25 (CT < 35) on day 0 and by day 7 this only declined to 60% (21/35). Genotyping the msp2 gene identified higher levels of MOI than the msp1 gene. CONCLUSIONS Although below detection by microscopy, gametocyte prevalence at submicroscopic levels are high in this region and emphasize the need for more effective elimination approaches like the development of transmission-blocking vaccines and safer gametocytocidal drugs.
Collapse
Affiliation(s)
- Ruth Ayanful-Torgby
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Akua Oppong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joana Abankwa
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Festus Acquah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
33
|
Nixon CP. Plasmodium falciparum gametocyte transit through the cutaneous microvasculature: A new target for malaria transmission blocking vaccines? Hum Vaccin Immunother 2016; 12:3189-3195. [PMID: 27184760 DOI: 10.1080/21645515.2016.1183076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Malaria remains one of the most significant infectious diseases worldwide. Concordant with scaled intervention efforts and the emphasis of elimination and eradication on the agenda of many malaria control programs, the development of a malaria vaccine that reduces transmission of the parasite from human host to mosquito vector has been incorporated as an important new strategic goal. Transmission of malaria from man to mosquito relies on gametocytes, highly specialized sexual-stage parasites, that once mature, circulate in the peripheral vasculature of the human host. The complex interplay between mature gametocytes, their uptake in the mosquito bloodmeal and forward maturation/fertilization events provide unique opportunities for intervention. Although recent advances have yielded greater understanding into the mechanisms that mediate sequestration of immature gametocytes in the human host, the spatial dynamics of circulating mature gametocytes in the cutaneous microvaculature remains far less defined, which is the focus of this review.
Collapse
Affiliation(s)
- Christian P Nixon
- a Center for International Health Research , Rhode Island Hospital and Alpert Medical School of Brown University , Providence , RI , USA.,b Department of Transfusion Medicine , Rhode Island Hospital and The Miriam Hospitals, Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
34
|
Rosa TFA, Flammersfeld A, Ngwa CJ, Kiesow M, Fischer R, Zipfel PF, Skerka C, Pradel G. The Plasmodium falciparum blood stages acquire factor H family proteins to evade destruction by human complement. Cell Microbiol 2016; 18:573-90. [PMID: 26457721 PMCID: PMC5063132 DOI: 10.1111/cmi.12535] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 01/24/2023]
Abstract
The acquisition of regulatory proteins is a means of blood-borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL-1 and CFHR-1 to their surface, and FH binding is trypsin-resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH-mediated protection via anti-FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.
Collapse
Affiliation(s)
- Thiago F A Rosa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Che J Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Meike Kiesow
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074, Aachen, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstr. 6, 52074, Aachen, Germany
| |
Collapse
|
35
|
Guttery DS, Roques M, Holder AA, Tewari R. Commit and Transmit: Molecular Players in Plasmodium Sexual Development and Zygote Differentiation. Trends Parasitol 2015; 31:676-685. [PMID: 26440790 DOI: 10.1016/j.pt.2015.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/27/2022]
Abstract
During each cycle of asexual endomitotic division in erythrocytes, the malaria parasite makes a fundamental and crucial decision: to continue to invade and proliferate or to differentiate into gametocytes ready for continuation of sexual development. The proteins and regulatory pathways involved in Plasmodium sexual development have been of great interest in recent years as targets for blocking malaria transmission. However, the 'Holy Grail', the master switch orchestrating asexual-to-sexual commitment and further differentiation, has remained elusive - until now. Here we highlight the recent studies identifying the epigenetic and transcriptional master regulators of sexual commitment and discuss the key players in reversible phosphorylation pathways involved in sexual and zygote differentiation.
Collapse
Affiliation(s)
- David S Guttery
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK; Department of Cancer Studies and Cancer Research UK Leicester Centre, University of Leicester, Robert Kilpatrick Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Magali Roques
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Anthony A Holder
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Rita Tewari
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK.
| |
Collapse
|
36
|
Tibúrcio M, Dixon MWA, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 2015; 14:334. [PMID: 26315106 PMCID: PMC4552133 DOI: 10.1186/s12936-015-0853-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sumera Younis Younis
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,Department of Parasitology, Biomedical Primate Research Centre, PO Box 306, 2280 GH, Rijswijk, The Netherlands.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
37
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites. Curr Genet 2015; 62:31-8. [PMID: 26194054 DOI: 10.1007/s00294-015-0506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.
Collapse
|
39
|
Salinomycin and other ionophores as a new class of antimalarial drugs with transmission-blocking activity. Antimicrob Agents Chemother 2015; 59:5135-44. [PMID: 26055362 DOI: 10.1128/aac.04332-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads.
Collapse
|
40
|
DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2015; 78:469-86. [PMID: 25184562 DOI: 10.1128/mmbr.00059-13] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research into the complex genetic underpinnings of the malaria parasite Plasmodium falciparum is entering a new era with the arrival of site-specific genome engineering. Previously restricted only to model systems but now expanded to most laboratory organisms, and even to humans for experimental gene therapy studies, this technology allows researchers to rapidly generate previously unattainable genetic modifications. This technological advance is dependent on DNA double-strand break repair (DSBR), specifically homologous recombination in the case of Plasmodium. Our understanding of DSBR in malaria parasites, however, is based largely on assumptions and knowledge taken from other model systems, which do not always hold true in Plasmodium. Here we describe the causes of double-strand breaks, the mechanisms of DSBR, and the differences between model systems and P. falciparum. These mechanisms drive basic parasite functions, such as meiosis, antigen diversification, and copy number variation, and allow the parasite to continually evolve in the contexts of host immune pressure and drug selection. Finally, we discuss the new technologies that leverage DSBR mechanisms to accelerate genetic investigations into this global infectious pathogen.
Collapse
|
41
|
Tibúrcio M, Sauerwein R, Lavazec C, Alano P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol 2015; 31:270-8. [PMID: 25824624 DOI: 10.1016/j.pt.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
The spread of malaria critically relies on the presence of Plasmodium transmission stages - the gametocytes - circulating in the blood of an infected individual, which are taken up by Anopheles mosquitoes. A striking feature of Plasmodium falciparum gametocytes is their long development inside the erythrocytes while sequestered in the internal organs of the human host. Recent studies of the molecular and cellular remodeling of the host erythrocyte induced by P. falciparum during gametocyte maturation are shedding light on how these may affect the establishment and maintenance of sequestration of the immature transmission stages and the subsequent release and circulation of mature gametocytes in the peripheral bloodstream.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Nijmegen HB 6500, The Netherlands
| | - Catherine Lavazec
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes - Sorbonne Paris Cité, 75270 Paris, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
42
|
Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R, Milner DA, Brancucci NM, Ma S, Voss TS, Ketman K, Seydel KB, Taylor TE, Barteneva NS, Huttenhower C, Marti M. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med 2015; 7:19. [PMID: 25722744 PMCID: PMC4342211 DOI: 10.1186/s13073-015-0133-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. RESULTS We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. CONCLUSIONS This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages in circulation, adding significantly to our understanding of the dynamics of gametocyte sequestration in vivo.
Collapse
Affiliation(s)
- Karell G Pelle
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Keunyoung Oh
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Kathrin Buchholz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Vagheesh Narasimhan
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Regina Joice
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA ; Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Siyuan Ma
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland
| | - Ken Ketman
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA
| | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Terrie E Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48825 USA ; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, 3 Malawi
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA 02115 USA ; Department of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115 USA ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
43
|
A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob Agents Chemother 2014; 58:7292-302. [PMID: 25267664 DOI: 10.1128/aac.03666-14] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Malaria elimination will require interventions that prevent parasite transmission from the human host to the mosquito. Experimentally, this is usually determined by the expensive and laborious Plasmodium falciparum standard membrane feeding assay (PfSMFA), which has limited utility for high-throughput drug screening. In response, we developed the P. falciparum dual gamete formation assay (PfDGFA), which faithfully simulates the initial stages of the PfSMFA in vitro. It utilizes a dual readout that individually and simultaneously reports on the functional viability of male and female mature stage V gametocytes. To validate, we screen the Medicines for Malaria Venture (MMV) Malaria Box library with the PfDGFA. Unique to this assay, we find compounds that target male gametocytes only and also compounds with reversible and irreversible activity. Most importantly, we show that compound activity in the PfDGFA accurately predicts activity in PfSMFAs, which validates and supports its adoption into the transmission-stage screening pipeline.
Collapse
|
44
|
Chaubey S, Grover M, Tatu U. Endoplasmic reticulum stress triggers gametocytogenesis in the malaria parasite. J Biol Chem 2014; 289:16662-74. [PMID: 24755215 DOI: 10.1074/jbc.m114.551549] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite experiences a significant amount of redox stress during its growth in human erythrocytes and heavily relies on secretory functions for pathogenesis. Most certainly, the parasite is equipped with machinery to tackle perturbations in the secretory pathway, like the unfolded protein response pathway in higher eukaryotes. Our bioinformatics analysis revealed the complete absence of genes involved in the canonical unfolded protein response pathway in Plasmodium falciparum. Accordingly, the parasite was unable to up-regulate endoplasmic reticulum (ER) chaperones or ER-associated degradation in response to DTT-mediated ER stress. Global profiling of gene expression upon DTT treatment revealed a network of AP2 transcription factors and their targets being activated. The overall outcome was up-regulation of genes involved in protein export and the sexual stage of the parasite life cycle culminating in gametocytogenesis. Our results suggest that the malaria parasite uses ER stress as a cue to switch to the transmissible sexual stages.
Collapse
Affiliation(s)
- Shweta Chaubey
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Manish Grover
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Utpal Tatu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
45
|
Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, Williams AE, Drought LG, Kwiatkowski DP, Baker DA, Cortés A, Llinás M. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 2014; 507:248-52. [PMID: 24572369 PMCID: PMC4040541 DOI: 10.1038/nature12920] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.
Collapse
Affiliation(s)
- Björn F C Kafsack
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Núria Rovira-Graells
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain
| | - Taane G Clark
- 1] Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK [2] Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Cristina Bancells
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain
| | - Valerie M Crowley
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Susana G Campino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - April E Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Dominic P Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Wellcome Trust Sanger Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Alfred Cortés
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalonia, Spain
| | - Manuel Llinás
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| |
Collapse
|
46
|
Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol 2014; 30:170-5. [PMID: 24636355 PMCID: PMC3989997 DOI: 10.1016/j.pt.2014.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
The hypothesis offers a framework to explain the atypical features of parasite metabolism. Aerobic glycolysis is hypothesised to meet the biosynthetic demands of rapid proliferation. Differentiation may be epigenetically regulated in response to nutrient-linked metabolism.
We hypothesise that intraerythrocytic malaria parasite metabolism is not merely fulfilling the need for ATP generation, but is evolved to support rapid proliferation, similar to that seen in other rapidly proliferating cells such as cancer cells. Deregulated glycolytic activity coupled with impaired mitochondrial metabolism is a metabolic strategy to generate glycolytic intermediates essential for rapid biomass generation for schizogony. Further, we discuss the possibility that Plasmodium metabolism is not only a functional consequence of the ‘hard-wired’ genome and argue that metabolism may also have a causal role in triggering the cascade of events that leads to developmental stage transitions. This hypothesis offers a framework to rationalise the observations of aerobic glycolysis, atypical mitochondrial metabolism, and metabolic switching in nonproliferating stages.
Collapse
Affiliation(s)
| | - Eva Caamano-Gutierrez
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL, UK
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
47
|
Ingmundson A, Alano P, Matuschewski K, Silvestrini F. Feeling at home from arrival to departure: protein export and host cell remodelling during Plasmodium liver stage and gametocyte maturation. Cell Microbiol 2014; 16:324-33. [PMID: 24330249 DOI: 10.1111/cmi.12251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022]
Abstract
Obligate intracellular pathogens actively remodel their host cells to boost propagation, survival, and persistence. Plasmodium falciparum, the causative agent of the most severe form of malaria, assembles a complex secretory system in erythrocytes. Export of parasite factors to the erythrocyte membrane is essential for parasite sequestration from the blood circulation and a major factor for clinical complications in falciparum malaria. Historic and recent molecular reports show that host cell remodelling is not exclusive to P. falciparum and that parasite-induced intra-erythrocytic membrane structures and protein export occur in several Plasmodia. Comparative analyses of P. falciparum asexual and sexual blood stages and imaging of liver stages from transgenic murine Plasmodium species show that protein export occurs in all intracellular phases from liver infection to sexual differentiation, indicating that mammalian Plasmodium species evolved efficient strategies to renovate erythrocytes and hepatocytes according to the specific needs of each life cycle phase. While the repertoireof identified exported proteins is remarkably expanded in asexual P. falciparum blood stages, the putative export machinery and known targeting signatures are shared across life cycle stages. A better understanding of the molecular mechanisms underlying Plasmodium protein export could assist in designing novel strategies to interrupt transmission between Anopheles mosquitoes and humans.
Collapse
Affiliation(s)
- Alyssa Ingmundson
- Max Planck Institute for Infection Biology, Parasitology Unit, 10117, Berlin, Germany
| | | | | | | |
Collapse
|
48
|
Aguilar R, Moraleda C, Achtman AH, Mayor A, Quintó L, Cisteró P, Nhabomba A, Macete E, Schofield L, Alonso PL, Menéndez C. Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. Br J Haematol 2014; 164:877-87. [PMID: 24386973 DOI: 10.1111/bjh.12716] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/28/2013] [Indexed: 11/29/2022]
Abstract
There are no large-scale ex vivo studies addressing the contribution of Plasmodium falciparum in the bone marrow to anaemia. The presence of malaria parasites and haemozoin were studied in bone marrows from 290 anaemic children attending a rural hospital in Mozambique. Peripheral blood infections were determined by microscopy and polymerase chain reactions. Bone marrow parasitaemia, haemozoin and dyserythropoiesis were microscopically assessed. Forty-two percent (123/290) of children had parasites in the bone marrow and 49% (111/226) had haemozoin, overlapping with parasitaemia in 83% (92/111) of cases. Sexual and mature asexual parasites were highly prevalent (62% gametocytes, 71% trophozoites, 23% schizonts) suggesting their sequestration in this tissue. Sixteen percent (19/120) of children without peripheral infection had haemozoin in the bone marrow. Haemozoin in the bone marrow was independently associated with decreased Hb concentration (P = 0·005) and was more common in dyserythropoietic bone marrows (P = 0·010). The results of this ex vivo study suggest that haemozoin in the bone marrow has a role in the pathogenesis of malarial-anaemia through ineffective erythropoiesis. This finding may have clinical implications for the development of drugs targeted to prevent and treat malarial-anaemia.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic - University of Barcelona), Barcelona, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain; Manhiça Health Research Centre (CISM), Maputo, Mozambique
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ankarklev J, Hjelmqvist D, Mantel PY. Uncovering the Role of Erythrocyte-Derived Extracellular Vesicles in Malaria: From Immune Regulation to Cell Communication. J Circ Biomark 2014. [DOI: 10.5772/58596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Johan Ankarklev
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daisy Hjelmqvist
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Yves Mantel
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA
| |
Collapse
|
50
|
Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 2013; 123:959-66. [PMID: 24335496 DOI: 10.1182/blood-2013-08-520767] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue.
Collapse
|