1
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Omole Z, Dorrell N, Elmi A, Nasher F, Gundogdu O, Wren BW. Pathogenicity and virulence of Campylobacter jejuni: What do we really know? Virulence 2024; 15:2436060. [PMID: 39648291 PMCID: PMC11633169 DOI: 10.1080/21505594.2024.2436060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and is a major public health concern worldwide. Despite its importance, our understanding of how C. jejuni causes diarrhoea and interacts with its hosts is limited due to the absence of appropriate infection models and established virulence factors found in other enteric pathogens. Additionally, despite its genetic diversity, non-pathogenic C. jejuni strains are unknown. Regardless of these limitations, significant progress has been made in understanding how C. jejuni uses a complex array of factors which aid the bacterium to survive and respond to host defences. This review provides an update on fitness and virulence determinants of this important pathogen and questions our knowledge on these determinants that are often based on inferred genomics knowledge and surrogate infection models.
Collapse
Affiliation(s)
- Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Brendan W. Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
3
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
4
|
Teixeira SC, Teixeira TL, Tavares PCB, Alves RN, da Silva AA, Borges BC, Martins FA, Dos Santos MA, de Castilhos P, E Silva Brígido RT, Notário AFO, Silveira ACA, da Silva CV. Subversion strategies of lysosomal killing by intracellular pathogens. Microbiol Res 2023; 277:127503. [PMID: 37748260 DOI: 10.1016/j.micres.2023.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thaise Lara Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Aline Alves da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Flávia Alves Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marlus Alves Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Patrícia de Castilhos
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | - Claudio Vieira da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Kato I, Minkevitch J, Sun J. Oncogenic potential of Campylobacter infection in the gastrointestinal tract: narrative review. Scand J Gastroenterol 2023; 58:1453-1465. [PMID: 37366241 DOI: 10.1080/00365521.2023.2228954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Campylobacter jejuni is the leading cause of zoonotic gastroenteritis. The other emerging group of Campylobacters spp. are part of human oral commensal, represented by C. concisus (CC), which has been recently linked to non-oral conditions. Although long-term gastrointestinal (GI) complications from these two groups of Campylobacters have been previously reviewed individually, overall impact of Campylobacter infection on GI carcinogenesis and their inflammatory precursor lesions has not been assessed collectively. AIMS To evaluate the available evidence concerning the association between Campylobacter infection/colonization and inflammatory bowel disease (IBD), reflux esophagitis/metaplasia colorectal cancer (CRC) and esophageal cancer (EC). METHODS We performed a comprehensive literature search of PubMed for relevant original publications and systematic reviews/meta-analyses of epidemiological and clinical studies. In addition, we gathered additional information concerning microbiological data, animal models and mechanistic data from in vitro studies. RESULTS Both retrospective and prospective studies on IBD showed relatively consistent increased risk associated with Campylobacter infection. Despite lack of supporting prospective studies, retrospective studies based on tissue/fecal microbiome revealed consistent enrichment of Campylobacter in CRC samples. Studies on EC precursor lesions (esophagitis and metaplasia) were generally supportive for the association with Campylobacter, while inconsistent observations on EC. Studies on both IBD and EC precursors suggested the predominant role of CC, but studies on CRC were not informative of species. CONCLUSIONS There is sufficient evidence calling for concerted effort in unveiling direct and indirect connection of this organism to colorectal and esophageal cancer in humans.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julia Minkevitch
- Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Jun Sun
- Department of Microbiology/Immunology, University of Illinois at Chicago (UIC), Chicago, IL, USA
- UIC Cancer Center, Chicago, IL, USA
| |
Collapse
|
6
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
7
|
Gabbert AD, Mydosh JL, Talukdar PK, Gloss LM, McDermott JE, Cooper KK, Clair GC, Konkel ME. The Missing Pieces: The Role of Secretion Systems in Campylobacter jejuni Virulence. Biomolecules 2023; 13:135. [PMID: 36671522 PMCID: PMC9856085 DOI: 10.3390/biom13010135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Campylobacter jejuni is likely the most common bacterial cause of gastroenteritis worldwide, responsible for millions of cases of inflammatory diarrhea characterized by severe abdominal cramps and blood in the stool. Further, C. jejuni infections are associated with post-infection sequelae in developed countries and malnutrition and growth-stunting in low- and middle-income countries. Despite the increasing prevalence of the disease, campylobacteriosis, and the recognition that this pathogen is a serious health threat, our understanding of C. jejuni pathogenesis remains incomplete. In this review, we focus on the Campylobacter secretion systems proposed to contribute to host-cell interactions and survival in the host. Moreover, we have applied a genomics approach to defining the structural and mechanistic features of C. jejuni type III, IV, and VI secretion systems. Special attention is focused on the flagellar type III secretion system and the prediction of putative effectors, given that the proteins exported via this system are essential for host cell invasion and the inflammatory response. We conclude that C. jejuni does not possess a type IV secretion system and relies on the type III and type VI secretion systems to establish a niche and potentiate disease.
Collapse
Affiliation(s)
- Amber D. Gabbert
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jennifer L. Mydosh
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Prabhat K. Talukdar
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Lisa M. Gloss
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jason E. McDermott
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Geremy C. Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Survival of Campylobacter jejuni 11168H in Acanthamoebae castellanii Provides Mechanistic Insight into Host Pathogen Interactions. Microorganisms 2022; 10:microorganisms10101894. [PMID: 36296171 PMCID: PMC9612045 DOI: 10.3390/microorganisms10101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis worldwide but is rarely transferred between human hosts. Although a recognized microaerophile, the majority of C. jejuni are incapable of growing in an aerobic environment. The persistence and transmission of this pathogen outside its warm-blooded avian and mammalian hosts is poorly understood. Acanthamoebae species are predatory protists and form an important ecological niche with several bacterial species. Here, we investigate the interaction of C. jejuni 11168H and Acanthamoebae castellanii at the single-cell level. We observe that a subpopulation of C. jejuni cells can resist killing by A. castellanii, and non-digested bacteria are exocytosed into the environment where they can persist. In addition, we observe that A. castellanii can harbor C. jejuni 11168H even upon encystment. Transcriptome analyses of C. jejuni interactions revealed similar survival mechanisms when infecting both A. castellanii and warm-blooded hosts. In particular, nitrosative stress defense mechanisms and flagellum function are important as confirmed by mutational analyses of C. jejuni 11168H. This study describes a new host–pathogen interaction for C. jejuni and confirms that amoebae are transient hosts for the persistence, adaptability, and potential transmission of C. jejuni.
Collapse
|
9
|
St. Charles JL, Brooks PT, Bell JA, Ahmed H, Van Allen M, Manning SD, Mansfield LS. Zoonotic Transmission of Campylobacter jejuni to Caretakers From Sick Pen Calves Carrying a Mixed Population of Strains With and Without Guillain Barré Syndrome-Associated Lipooligosaccharide Loci. Front Microbiol 2022; 13:800269. [PMID: 35591997 PMCID: PMC9112162 DOI: 10.3389/fmicb.2022.800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni causes foodborne gastroenteritis and may trigger acute autoimmune sequelae including Guillain Barré Syndrome. Onset of neuromuscular paralysis is associated with exposure to C. jejuni lipooligosaccharide (LOS) classes A, B, C, D, and E that mimic and evoke antibodies against gangliosides on myelin and axons of peripheral nerves. Family members managing a Michigan dairy operation reported recurring C. jejuni gastroenteritis. Because dairy cattle are known to shed C. jejuni, we hypothesized that calves in the sick pen were the source of human infections. Fecal samples obtained from twenty-five calves, one dog, and one asymptomatic family member were cultured for Campylobacter. C. jejuni isolates were obtained from thirteen calves and the family member: C. coli from two calves, and C. hyointestinalis from two calves. Some calves had diarrhea; most were clinically normal. Typing of lipooligosaccharide biosynthetic loci showed that eight calf C. jejuni isolates fell into classes A, B, and C. Two calf isolates and the human isolate possessed LOS class E, associated mainly with enteric disease and rarely with Guillain Barré Syndrome. Multi-locus sequence typing, porA and flaA typing, and whole genome comparisons of the thirteen C. jejuni isolates indicated that the three LOS class E strains that included the human isolate were closely related, indicating zoonotic transmission. Whole-genome comparisons revealed that isolates differed in virulence gene content, particularly in loci encoding biosynthesis of surface structures. Family members experienced diarrheal illness repeatedly over 2 years, yet none experienced GBS despite exposure to calves carrying invasive C. jejuni with LOS known to elicit antiganglioside autoantibodies.
Collapse
Affiliation(s)
- Jessica L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip T. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Husnain Ahmed
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mia Van Allen
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- *Correspondence: Linda S. Mansfield,
| |
Collapse
|
10
|
Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, Padilha da Silva W. Virulence factors of foodborne pathogen Campylobacterjejuni. Microb Pathog 2021; 161:105265. [PMID: 34699927 DOI: 10.1016/j.micpath.2021.105265] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.
Collapse
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
The Host Cellular Immune Response to Infection by Campylobacter Spp. and Its Role in Disease. Infect Immun 2021; 89:e0011621. [PMID: 34031129 DOI: 10.1128/iai.00116-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Campylobacter spp. are the leading cause of bacterium-derived gastroenteritis worldwide, impacting 96 million individuals annually. Unlike other bacterial pathogens of the gastrointestinal tract, Campylobacter spp. lack many of the classical virulence factors that are often associated with the ability to induce disease in humans, including an array of canonical secretion systems and toxins. Consequently, the clinical manifestations of human campylobacteriosis and its resulting gastrointestinal pathology are believed to be primarily due to the host immune response toward the bacterium. Further, while gastrointestinal infection is usually self-limiting, numerous postinfectious disorders can occur, including the development of Guillain-Barré syndrome, reactive arthritis, and irritable bowel syndrome. Because gastrointestinal disease likely results from the host immune response, the development of these postinfectious disorders may be due to dysregulation or misdirection of the same inflammatory response. As a result, it is becoming increasingly important to the Campylobacter field, and human health, that the cellular immune responses toward Campylobacter be better understood, including which immunological events are critical to the development of disease and the postinfectious disorders mentioned above. In this review, we collectively cover the cellular immune responses across susceptible hosts to Campylobacter jejuni infection, along with the tissue pathology and postinfectious disorders which may develop.
Collapse
|
13
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
14
|
Abstract
Campylobacter jejuni and Campylobacter coli can be frequently isolated from poultry and poultry-derived products, and in combination these two species cause a large portion of human bacterial gastroenteritis cases. While birds are typically colonized by these Campylobacter species without clinical symptoms, in humans they cause (foodborne) infections at high frequencies, estimated to cost billions of dollars worldwide every year. The clinical outcome of Campylobacter infections comprises malaise, diarrhea, abdominal pain and fever. Symptoms may continue for up to two weeks and are generally self-limiting, though occasionally the disease can be more severe or result in post-infection sequelae. The virulence properties of these pathogens have been best-characterized for C. jejuni, and their actions are reviewed here. Various virulence-associated bacterial determinants include the flagellum, numerous flagellar secreted factors, protein adhesins, cytolethal distending toxin (CDT), lipooligosaccharide (LOS), serine protease HtrA and others. These factors are involved in several pathogenicity-linked properties that can be divided into bacterial chemotaxis, motility, attachment, invasion, survival, cellular transmigration and spread to deeper tissue. All of these steps require intimate interactions between bacteria and host cells (including immune cells), enabled by the collection of bacterial and host factors that have already been identified. The assortment of pathogenicity-associated factors now recognized for C. jejuni, their function and the proposed host cell factors that are involved in crucial steps leading to disease are discussed in detail.
Collapse
|
15
|
Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing. Front Cell Infect Microbiol 2021; 10:607704. [PMID: 33614526 PMCID: PMC7887314 DOI: 10.3389/fcimb.2020.607704] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni–mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
17
|
An Investigation of the Effect of Catecholamines and Glucocorticoids on the Growth and Pathogenicity of Campylobacter jejuni. Pathogens 2020; 9:pathogens9070555. [PMID: 32664224 PMCID: PMC7400237 DOI: 10.3390/pathogens9070555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
Campylobacter spp. are major causes of foodborne illness globally, and are mostly transmitted through the consumption and handling of poultry. Campylobacter infections have widely variable outcomes, ranging from mild enteritis to severe illness, which are attributed to host interactions and the virulence of the infecting strain. In this study, in order to investigate the effect of host stress on the growth and pathogenicity of C. jejuni, three strains associated with human infection and two strains from broilers were subject to growth, motility, adhesion and invasion assays, in response to exposure to catecholamines; epinephrine, norepinephrine and the glucocorticoid neuroendocrine hormones corticosterone, cortisol and cortisone which are associated with stress in humans and broilers. Catecholamines resulted in significantly increased growth, adhesion and invasion of Caco-2 cells. Corticosterone promoted growth in one of five strains, and cortisone resulted in a significant increase in motility in two out of five strains, while no significant differences were observed with the addition of cortisol. It was concluded that stress-associated hormones, especially catecholamines, may promote growth and virulence in Campylobacter.
Collapse
|
18
|
Konkel ME, Talukdar PK, Negretti NM, Klappenbach CM. Taking Control: Campylobacter jejuni Binding to Fibronectin Sets the Stage for Cellular Adherence and Invasion. Front Microbiol 2020; 11:564. [PMID: 32328046 PMCID: PMC7161372 DOI: 10.3389/fmicb.2020.00564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni, a foodborne pathogen, is one of the most common bacterial causes of gastroenteritis in the world. Undercooked poultry, raw (unpasteurized) dairy products, untreated water, and contaminated produce are the most common sources associated with infection. C. jejuni establishes a niche in the gut by adhering to and invading epithelial cells, which results in diarrhea with blood and mucus in the stool. The process of colonization is mediated, in part, by surface-exposed molecules (adhesins) that bind directly to host cell ligands or the extracellular matrix (ECM) surrounding cells. In this review, we introduce the known and putative adhesins of the foodborne pathogen C. jejuni. We then focus our discussion on two C. jejuni Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs), termed CadF and FlpA, which have been demonstrated to contribute to C. jejuni colonization and pathogenesis. In vitro studies have determined that these two surface-exposed proteins bind to the ECM glycoprotein fibronectin (FN). In vivo studies have shown that cadF and flpA mutants exhibit impaired colonization of chickens compared to the wild-type strain. Additional studies have revealed that CadF and FlpA stimulate epithelial cell signaling pathways necessary for cell invasion. Interestingly, CadF and FlpA have distinct FN-binding domains, suggesting that the functions of these proteins are non-redundant. In summary, the binding of FN by C. jejuni CadF and FlpA adhesins has been demonstrated to contribute to adherence, invasion, and cell signaling.
Collapse
Affiliation(s)
- Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | | | | | | |
Collapse
|
19
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
20
|
Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb Pathog 2020; 144:104160. [PMID: 32194181 DOI: 10.1016/j.micpath.2020.104160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/20/2022]
Abstract
Bacterial secretome is a comprehensive catalog of bacterial proteins that are released or secreted outside the cells. They offer a number of factors that possess several significant roles in virulence as well as cell to cell communication and hence play a core role in bacterial pathogenesis. Sometimes these proteins are bounded with membranes giving them the shape of vesicles called extracellular vesicles (EVs) or outer membrane vesicles (OMVs). Bacteria secrete these proteins via Sec and Tat pathways into the periplasm. Secreted proteins have found to be important as diagnostic markers as well as antigenic factors for the development of an effective candidate vaccine. Recently, the research in the field of secretomics is growing up and getting more interesting due to their direct involvement in the pathogenesis of the microorganisms leading to the infection. Many pathogenic bacteria have been studied for their secretome and the results illustrated novel antigens. This review highlights the secretome studies of different pathogenic bacteria in humans and animals, general secretion mechanisms, different approaches and challenges in the secretome of Mycoplasma sp.
Collapse
|
21
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
22
|
Henderson LD, Matthews-Palmer TRS, Gulbronson CJ, Ribardo DA, Beeby M, Hendrixson DR. Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes. mBio 2020; 11:e02286-19. [PMID: 31911488 PMCID: PMC6946799 DOI: 10.1128/mbio.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial flagella are reversible rotary motors that rotate external filaments for bacterial propulsion. Some flagellar motors have diversified by recruiting additional components that influence torque and rotation, but little is known about the possible diversification and evolution of core motor components. The mechanistic core of flagella is the cytoplasmic C ring, which functions as a rotor, directional switch, and assembly platform for the flagellar type III secretion system (fT3SS) ATPase. The C ring is composed of a ring of FliG proteins and a helical ring of surface presentation of antigen (SPOA) domains from the switch proteins FliM and one of two usually mutually exclusive paralogs, FliN or FliY. We investigated the composition, architecture, and function of the C ring of Campylobacter jejuni, which encodes FliG, FliM, and both FliY and FliN by a variety of interrogative approaches. We discovered a diversified C. jejuni C ring containing FliG, FliM, and both FliY, which functions as a classical FliN-like protein for flagellar assembly, and FliN, which has neofunctionalized into a structural role. Specific protein interactions drive the formation of a more complex heterooligomeric C. jejuni C-ring structure. We discovered that this complex C ring has additional cellular functions in polarly localizing FlhG for numerical regulation of flagellar biogenesis and spatial regulation of division. Furthermore, mutation of the C. jejuni C ring revealed a T3SS that was less dependent on its ATPase complex for assembly than were other systems. Our results highlight considerable evolved flagellar diversity that impacts motor output, biogenesis, and cellular processes in different species.IMPORTANCE The conserved core of bacterial flagellar motors reflects a shared evolutionary history that preserves the mechanisms essential for flagellar assembly, rotation, and directional switching. In this work, we describe an expanded and diversified set of core components in the Campylobacter jejuni flagellar C ring, the mechanistic core of the motor. Our work provides insight into how usually conserved core components may have diversified by gene duplication, enabling a division of labor of the ancestral protein between the two new proteins, acquisition of new roles in flagellar assembly and motility, and expansion of the function of the flagellum beyond motility, including spatial regulation of cell division and numerical control of flagellar biogenesis in C. jejuni Our results highlight that relatively small changes, such as gene duplications, can have substantial ramifications on the cellular roles of a molecular machine.
Collapse
Affiliation(s)
- Louie D Henderson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Connor J Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Campana R, Baffone W. Intracellular Survival and Translocation Ability of Human and Avian Campylobacter jejuni and Campylobacter coli Strains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:115-125. [PMID: 32329029 DOI: 10.1007/5584_2020_531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter acts using complex strategies to establish and promote intestinal infections. After ingestion via contaminated foods, this bacterium invades and can survive within the intestinal cells, also inducing epithelial translocation of non-invasive intestinal bacteria. In this investigation, the ability of human and avian C. jejuni and C. coli isolates to survive within two different intestinal epithelial cells lines, Caco-2 and INT 407, as well as the intestinal translocation phenomenon, was assessed. Our data demonstrated that both C. jejuni and C. coli strains survived in Caco-2 (81.8% and 100% respectively) and INT 407 monolayers (72.7% and 100% respectively) within the first 24 h post-infection period, with a progressive reduction in the prolonged period of 48 h and 72 h post-infection. The translocation of the non-invasive E. coli 60/06 FB was remarkably increased in C. jejuni treated Caco-2 monolayers (2.36 ± 0.42 log cfu/mL) (P < 0.01) and less in those treated with C. coli (1.2 ± 0.34 log cfu/mL), compared to E. coli 60/06 FB alone (0.37 ± 0.14 log cfu/mL). Our results evidenced the ability of both human and avian strains of C. jejuni and C. coli to efficiently survive within intestinal cells and induce the translocation of a non-invasive pathogen. Overall, these findings stress how this pathogen can interact with host cells and support the hypothesis that defects in the intestinal barrier function induced by Campylobacter spp. could have potentially negative implications for human health.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Science, Division of Pharmacology and Hygiene, University of Urbino, Urbino, Italy.
| | - Wally Baffone
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| |
Collapse
|
24
|
Burnham PM, Hendrixson DR. Campylobacter jejuni: collective components promoting a successful enteric lifestyle. Nat Rev Microbiol 2019; 16:551-565. [PMID: 29892020 DOI: 10.1038/s41579-018-0037-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial diarrhoeal disease in many areas of the world. The high incidence of sporadic cases of disease in humans is largely due to its prevalence as a zoonotic agent in animals, both in agriculture and in the wild. Compared with many other enteric bacterial pathogens, C. jejuni has strict growth and nutritional requirements and lacks many virulence and colonization determinants that are typically used by bacterial pathogens to infect hosts. Instead, C. jejuni has a different collection of factors and pathways not typically associated together in enteric pathogens to establish commensalism in many animal hosts and to promote diarrhoeal disease in the human population. In this Review, we discuss the cellular architecture and structure of C. jejuni, intraspecies genotypic variation, the multiple roles of the flagellum, specific nutritional and environmental growth requirements and how these factors contribute to in vivo growth in human and avian hosts, persistent colonization and pathogenesis of diarrhoeal disease.
Collapse
Affiliation(s)
- Peter M Burnham
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, Wang X, Liu Z, Yuan Z, Hao H. The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni. Front Cell Infect Microbiol 2018; 8:285. [PMID: 30177957 PMCID: PMC6109747 DOI: 10.3389/fcimb.2018.00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is considered as the leading cause of gastroenteritis all over the world. This bacterium has the CRISPR–cas9 system, which is used as a gene editing technique in different organisms. However, its role in bacterial virulence has just been discovered; that discovery, however, is just the tip of the iceberg. The purpose of this study is to find out the relationship between cas9 and virulence both phenotypically and genotypically in C. jejuni NCTC11168. Understanding both aspects of this relationship allows for a much deeper understanding of the mechanism of bacterial pathogenesis. The present study determined virulence in wild and mutant strains by observing biofilm formation, motility, adhesion and invasion, intracellular survivability, and cytotoxin production, followed by the transcriptomic analysis of both strains. The comparative gene expression profile of wild and mutant strains was determined on the basis of De-Seq transcriptomic analysis, which showed that the cas9 gene is involved in enhancing virulence. Differential gene expression analysis revealed that multiple pathways were involved in virulence, regulated by the CRISPR-cas9 system. Our findings help in understanding the potential role of cas9 in regulating the other virulence associated genes in C. jejuni NCTC11168. The findings of this study provide critical information about cas9's potential involvement in enhancing the virulence of C. jejuni, which is a major public health threat.
Collapse
Affiliation(s)
- Muhammad A B Shabbir
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanping Tang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zihui Xu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Mingyue Lin
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhengli Liu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Abstract
Measuring bacterial adherence and invasion of cells in vitro has enabled researchers to dissect the interactions of Campylobacter jejuni with eukaryotic cells. Numerous C. jejuni virulence determinants and host cell factors that contribute to the process of adherence, invasion, and immune modulation have been identified utilizing in vitro adherence and invasion assays. In this chapter, we describe the evaluation of C. jejuni adherence to and invasion of HeLa cells using the gentamicin-protection assay.
Collapse
|
28
|
Elmi A, Dorey A, Watson E, Jagatia H, Inglis NF, Gundogdu O, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N. The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity. Cell Microbiol 2017; 20. [PMID: 29205766 DOI: 10.1111/cmi.12814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber Dorey
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Heena Jagatia
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David G E Smith
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
29
|
John DA, Williams LK, Kanamarlapudi V, Humphrey TJ, Wilkinson TS. The Bacterial Species Campylobacter jejuni Induce Diverse Innate Immune Responses in Human and Avian Intestinal Epithelial Cells. Front Microbiol 2017; 8:1840. [PMID: 29033908 PMCID: PMC5626877 DOI: 10.3389/fmicb.2017.01840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Campylobacter remain the major cause of human gastroenteritis in the Developed World causing a significant burden to health services. Campylobacter are pathogens in humans and chickens, although differences in mechanistic understanding are incomplete, in part because phenotypic strain diversity creates inconsistent findings. Here, we took Campylobacter jejuni isolates (n = 100) from multi-locus sequence typed collections to assess their pathogenic diversity, through their inflammatory, cytotoxicity, adhesion, invasion and signaling responses in a high-throughput model using avian and human intestinal epithelial cells. C. jejuni induced IL-8 and CXCLi1/2 in human and avian epithelial cells, respectively, in a MAP kinase-dependent manner. In contrast, IL-10 responses in both cell types were PI 3-kinase/Akt-dependent. C. jejuni strains showed diverse levels of invasion with high invasion dependent on MAP kinase signaling in both cell lines. C. jejuni induced diverse cytotoxic responses in both cell lines with cdt-positive isolates showing significantly higher toxicity. Blockade of endocytic pathways suggested that invasion by C. jejuni was clathrin- and dynamin-dependent but caveolae- independent in both cells. In contrast, IL-8 (and CXCLi1/2) production was dependent on clathrin, dynamin, and caveolae. This study is important because of its scale, and the data produced, suggesting that avian and human epithelial cells use similar innate immune pathways where the magnitude of the response is determined by the phenotypic diversity of the Campylobacter species.
Collapse
Affiliation(s)
- Daniel A John
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Lisa K Williams
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Venkateswarlu Kanamarlapudi
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom.,Cellular Biology, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas J Humphrey
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease, Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
30
|
Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence. mBio 2017; 8:mBio.00407-17. [PMID: 28487428 PMCID: PMC5424204 DOI: 10.1128/mbio.00407-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or infection are largely lacking. By analyzing a C. jejuni acetogenesis mutant, we discovered a set of genes whose expression is modulated by lactate and short-chain fatty acids produced by the microbiota in the intestinal tract. These genes include those encoding catabolic enzymes and transport systems for amino acids that are required by C. jejuni for in vivo growth and intestinal colonization. We propose that gradients of these microbiota-generated metabolites are cues for spatial discrimination between areas of the intestines so that the bacterium can locate niches in the lower intestinal tract for optimal growth for commensalism in avian species and possibly infection of human hosts leading to diarrheal disease.
Collapse
|
31
|
Scanlan E, Ardill L, Whelan MVX, Shortt C, Nally JE, Bourke B, Ó Cróinín T. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni. Mol Microbiol 2017; 104:92-104. [PMID: 28019693 DOI: 10.1111/mmi.13614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which this could be mediated. A significant correlation between more relaxed DNA supercoiling and an increased ability of C. jejuni strains to penetrate human epithelial cells was demonstrated. Directly inducing relaxation of DNA supercoiling in C. jejuni was shown to significantly increase invasion of epithelial cells. Mutants in the fibronectin binding proteins CadF and FlpA still displayed an increased invasion after treatment with novobiocin suggesting these proteins were not essential for the observed phenotype. However, a large increase in protein secretion from multiple C. jejuni strains upon relaxation of DNA supercoiling was demonstrated. This increase in protein secretion was not mediated by outer membrane vesicles and appeared to be dependent on an intact flagellar structure. This study identifies relaxation of DNA supercoiling as playing a key role in enhancing C. jejuni pathogenesis during infection of the human intestine and identifies proteins present in a specific invasion associated secretome induced by relaxation of DNA supercoiling.
Collapse
Affiliation(s)
- Eoin Scanlan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Laura Ardill
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew V X Whelan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Shortt
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,National Childrens Research Centre, Our Ladys Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | - Jarlath E Nally
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Billy Bourke
- National Childrens Research Centre, Our Ladys Hospital for Sick Children, Crumlin, Dublin 12, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tadhg Ó Cróinín
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,National Childrens Research Centre, Our Ladys Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| |
Collapse
|
32
|
Scanlan E, Yu L, Maskell D, Choudhary J, Grant A. A quantitative proteomic screen of the Campylobacter jejuni flagellar-dependent secretome. J Proteomics 2017; 152:181-187. [PMID: 27865792 PMCID: PMC5223770 DOI: 10.1016/j.jprot.2016.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis in the world. A number of factors are believed to contribute to the ability of C. jejuni to cause disease within the human host including the secretion of non-flagellar proteins via the flagellar type III secretion system (FT3SS). Here for the first time we have utilised quantitative proteomics using stable isotope labelling by amino acids in cell culture (SILAC), and label-free liquid chromatography-mass spectrometry (LC/MS), to compare supernatant samples from C. jejuni M1 wild type and flagella-deficient (flgG mutant) strains to identify putative novel proteins secreted via the FT3SS. Genes encoding proteins that were candidates for flagellar secretion, derived from the LC/MS and SILAC datasets, were deleted. Infection of human CACO-2 tissue culture cells using these mutants resulted in the identification of novel genes required for interactions with these cells. This work has shown for the first time that both CJM1_0791 and CJM1_0395 are dependent on the flagellum for their presence in supernatants from C. jejuni stains M1 and 81-176. BIOLOGICAL SIGNIFICANCE This study provides the most complete description of the Campylobac er jejuni secretome to date. SILAC and label-free proteomics comparing mutants with or without flagella have resulted in the identification of two C. jejuni proteins that are dependent on flagella for their export from the bacterial cell.
Collapse
Affiliation(s)
- Eoin Scanlan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Andrew Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
33
|
Koolman L, Whyte P, Burgess C, Bolton D. Virulence gene expression, adhesion and invasion of Campylobacter jejuni exposed to oxidative stress (H2O2). Int J Food Microbiol 2016; 220:33-8. [DOI: 10.1016/j.ijfoodmicro.2016.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 11/24/2022]
|
34
|
Le MT, van Veldhuizen M, Porcelli I, Bongaerts RJ, Gaskin DJH, Pearson BM, van Vliet AHM. Conservation of σ28-Dependent Non-Coding RNA Paralogs and Predicted σ54-Dependent Targets in Thermophilic Campylobacter Species. PLoS One 2015; 10:e0141627. [PMID: 26512728 PMCID: PMC4626219 DOI: 10.1371/journal.pone.0141627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 12/28/2022] Open
Abstract
Assembly of flagella requires strict hierarchical and temporal control via flagellar sigma and anti-sigma factors, regulatory proteins and the assembly complex itself, but to date non-coding RNAs (ncRNAs) have not been described to regulate genes directly involved in flagellar assembly. In this study we have investigated the possible role of two ncRNA paralogs (CjNC1, CjNC4) in flagellar assembly and gene regulation of the diarrhoeal pathogen Campylobacter jejuni. CjNC1 and CjNC4 are 37/44 nt identical and predicted to target the 5' untranslated region (5' UTR) of genes transcribed from the flagellar sigma factor σ54. Orthologs of the σ54-dependent 5' UTRs and ncRNAs are present in the genomes of other thermophilic Campylobacter species, and transcription of CjNC1 and CNC4 is dependent on the flagellar sigma factor σ28. Surprisingly, inactivation and overexpression of CjNC1 and CjNC4 did not affect growth, motility or flagella-associated phenotypes such as autoagglutination. However, CjNC1 and CjNC4 were able to mediate sequence-dependent, but Hfq-independent, partial repression of fluorescence of predicted target 5' UTRs in an Escherichia coli-based GFP reporter gene system. This hints towards a subtle role for the CjNC1 and CjNC4 ncRNAs in post-transcriptional gene regulation in thermophilic Campylobacter species, and suggests that the currently used phenotypic methodologies are insufficiently sensitive to detect such subtle phenotypes. The lack of a role of Hfq in the E. coli GFP-based system indicates that the CjNC1 and CjNC4 ncRNAs may mediate post-transcriptional gene regulation in ways that do not conform to the paradigms obtained from the Enterobacteriaceae.
Collapse
Affiliation(s)
- My Thanh Le
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Mart van Veldhuizen
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Ida Porcelli
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Roy J. Bongaerts
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Duncan J. H. Gaskin
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Bruce M. Pearson
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Arnoud H. M. van Vliet
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Koolman L, Whyte P, Burgess C, Bolton D. Distribution of virulence-associated genes in a selection of Campylobacter isolates. Foodborne Pathog Dis 2015; 12:424-32. [PMID: 25826607 DOI: 10.1089/fpd.2014.1883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This study tested 24 Campylobacter isolates for the presence of 35 virulence genes using the polymerase chain reaction. The target genes included those involved in motility (flaA, flaB, flhA, flhB, flgB, flgE2, fliM, fliY), chemotaxis (cheA, cheB, cheR, cheW, cheY, cheZ), cell adhesion (cadF, dnaJ, jlpA, pldA, racR, virB11), invasion (iamA, ciaB, ceuE), cytotoxin production (cdtA, cdtB, cdtC, wlaN), capsule (kpsM), multidrug and bile resistance (cmeA, cmeB, cmeC), stress response/survival (katA, sodB), and the iron uptake system (cfrA, fur). The motility genes (with the exception of flaB), the CmeABC efflux system, cdtABC genes, and the sodB gene were commonly distributed among Campylobacter strains while the virB11 and wlaN genes were rarely detected. Interestingly, the findings suggest that flaB is not essential for full motility and C. coli lacking the flhA gene may be highly invasive. This study provides additional information on the distribution of Campylobacter virulence factors and the effect of their presence/absence on adhesion and invasion. It will inform future studies designed to elucidate the exact mechanisms of pathogenesis in Campylobacter.
Collapse
Affiliation(s)
- Leonard Koolman
- 1 Food Safety Department, Teagasc Food Research Centre , Ashtown, Dublin, Ireland
| | | | | | | |
Collapse
|
36
|
Gerbaba TK, Gupta P, Rioux K, Hansen D, Buret AG. Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut. Am J Physiol Gastrointest Liver Physiol 2015; 308:G550-61. [PMID: 25573177 PMCID: PMC4360045 DOI: 10.1152/ajpgi.00335.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota.
Collapse
Affiliation(s)
- Teklu K. Gerbaba
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; ,2Host-Parasite Interactions, NSERC-CREATE Program, University of Calgary, Calgary, Alberta, Canada;
| | - Pratyush Gupta
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada;
| | - Kevin Rioux
- 3Department of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Dave Hansen
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada;
| | - Andre G. Buret
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; ,2Host-Parasite Interactions, NSERC-CREATE Program, University of Calgary, Calgary, Alberta, Canada; ,4Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
38
|
Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2014; 48:99-108. [PMID: 25790997 DOI: 10.1016/j.fm.2014.11.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Despite over 30 years of research, campylobacteriosis is the most prevalent foodborne bacterial infection in many countries including in the European Union and the United States of America. However, relatively little is known about the virulence factors in Campylobacter or how an apparently fragile organism can survive in the food chain, often with enhanced pathogenicity. This review collates information on the virulence and survival determinants including motility, chemotaxis, adhesion, invasion, multidrug resistance, bile resistance and stress response factors. It discusses their function in transition through the food processing environment and human infection. In doing so it provides a fundamental understanding of Campylobacter, critical for improved diagnosis, surveillance and control.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
39
|
A Cronobacter turicensis O1 antigen-specific monoclonal antibody inhibits bacterial motility and entry into epithelial cells. Infect Immun 2014; 83:876-87. [PMID: 25534937 DOI: 10.1128/iai.02211-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cronobacter turicensis is an opportunistic foodborne pathogen that can cause a rare but sometimes lethal infection in neonates. Little is known about the virulence mechanisms and intracellular lifestyle of this pathogen. In this study, we developed an IgG monoclonal antibody (MAb; MAb 2G4) that specifically recognizes the O1 antigen of C. turicensis cells. The antilipopolysaccharide antibody bound predominantly monovalently to the O antigen and reduced bacterial growth without causing cell agglutination. Furthermore, binding of the antibody to the O1 antigen of C. turicensis cells caused a significant reduction of the membrane potential which is required to energize flagellar rotation, accompanied by a decreased flagellum-based motility. These results indicate that binding of IgG to the O antigen of C. turicensis causes a direct antimicrobial effect. In addition, this feature of the antibody enabled new insight into the pathogenicity of C. turicensis. In a tissue culture infection model, pretreatment of C. turicensis with MAb 2G4 showed no difference in adhesion to human epithelial cells, whereas invasion of bacteria into Caco-2 cells was significantly inhibited.
Collapse
|
40
|
Ferreira S, Queiroz JA, Oleastro M, Domingues FC. Genotypic and phenotypic features of Arcobacter butzleri pathogenicity. Microb Pathog 2014; 76:19-25. [PMID: 25218724 DOI: 10.1016/j.micpath.2014.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Even though Arcobacter butzleri has been implicated in some human disease as diarrhoea and bacteraemia, much of its pathogenesis and virulence factors remain unclear. In this work we have compared pathogenic and genotypic properties of six A. butzleri isolates from human and non-human sources. The tested isolates showed to be susceptible to tetracyclines and aminoglycosides, however non-human isolates were all resistant to quinolones. The ability to form biofilms was variable among the tested strains, and all of them showed a weak haemolytic activity. The presence of nine putative virulence genes was determined, with cadF, ciaB, cj1349, mviN, pldA, tlyA being detected in all strains, while irgA (3/6), hecA (5/6), hecB (4/6) were detected only in some strains. High levels of adhesion were observed for A. butzleri on Caco-2 cells, with pre-existing inflammation showing no significant effect on the adherence ability; yet variable levels of invasion were observed. A. butzleri isolates were able to survive intracellularly in Caco-2 cells and to induce a significant up-regulation of interleukin-8 secretion and structural cell rearrangements. These data brings new insights on A. butzleri virulence and highlights its pathogenic potential.
Collapse
Affiliation(s)
- Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Mónica Oleastro
- National Institute of Health Dr. Ricardo Jorge, Department of Infectious Diseases, National Reference Laboratory for Gastrointestinal Infections, Av. Padre Cruz, Lisbon, Portugal
| | - Fernanda C Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
41
|
Barrero-Tobon AM, Hendrixson DR. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. Mol Microbiol 2014; 93:957-74. [PMID: 25041103 DOI: 10.1111/mmi.12711] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 01/26/2023]
Abstract
The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.
Collapse
Affiliation(s)
- Angelica M Barrero-Tobon
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Room NL 4.138A, Dallas, TX, 75390-9048, USA
| | | |
Collapse
|
42
|
Burgos-Portugal JA, Mitchell HM, Castaño-Rodríguez N, Kaakoush NO. The role of autophagy in the intracellular survival of Campylobacter concisus. FEBS Open Bio 2014; 4:301-9. [PMID: 24918042 PMCID: PMC4048850 DOI: 10.1016/j.fob.2014.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/03/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
Autophagy is involved in host clearance of Campylobacter concisus. C. concisus can be found within Campylobacter-containing vacuoles. Some C. concisus strains may subvert autophagy to survive intracellularly. Proteins specific to invasive C. concisus may be involved in autophagy subversion. Proteins of interest in C. concisus infection: ATG4B, ATG7, ATG9B, CTSD and LAMP1.
Campylobacter concisus is an emerging pathogen that has been associated with gastrointestinal diseases. Given the importance of autophagy for the elimination of intracellular bacteria and the subversion of this process by pathogenic bacteria, we investigated the role of autophagy in C. concisus intracellular survival. Gentamicin protection assays were employed to assess intracellular levels of C. concisus within Caco-2 cells, following autophagy induction and inhibition. To assess the interaction between C. concisus and autophagosomes, confocal microscopy, scanning electron microscopy, and transmission electron microscopy were employed. Expression levels of 84 genes involved in the autophagy process were measured using qPCR. Autophagy inhibition resulted in two- to four-fold increases in intracellular levels of C. concisus within Caco-2 cells, while autophagy induction resulted in a significant reduction in intracellular levels or bacterial clearance. C. concisus strains with low intracellular survival levels showed a dramatic increase in these levels upon autophagy inhibition. Confocal microscopy showed co-localization of the bacterium with autophagosomes, while transmission electron microscopy identified intracellular bacteria persisting within autophagic vesicles. Further, qPCR showed that following infection, 13 genes involved in the autophagy process were significantly regulated, and a further five showed borderline results, with an overall indication towards a dampening effect exerted by the bacterium on this process. Our data collectively indicates that while autophagy is important for the clearance of C. concisus, some strains may manipulate this process to benefit their intracellular survival.
Collapse
Affiliation(s)
- Jose A Burgos-Portugal
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
Konkel ME, Samuelson DR, Eucker TP, Shelden EA, O'Loughlin JL. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae. Cell Commun Signal 2013; 11:100. [PMID: 24364863 PMCID: PMC3880046 DOI: 10.1186/1478-811x-11-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner.
Collapse
Affiliation(s)
- Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Life Sciences Bldg, Room 302c, Pullman, WA, USA.
| | | | | | | | | |
Collapse
|
44
|
Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. Clin Dev Immunol 2013; 2013:526860. [PMID: 24324507 PMCID: PMC3845433 DOI: 10.1155/2013/526860] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF- κ B triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response.
Collapse
|
45
|
Samuelson DR, Konkel ME. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni. Cell Commun Signal 2013; 11:82. [PMID: 24188565 PMCID: PMC3832248 DOI: 10.1186/1478-811x-11-82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. RESULTS This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. CONCLUSION We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time that cortactin and N-WASP have been shown to be involved in C. jejuni invasion of host cells. These data also provide a mechanistic basis for the requirement of Erk 1/2 in C. jejuni-mediated cytoskeletal rearrangement.
Collapse
Affiliation(s)
| | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, College of Veterinary Medicine, Life Sciences Bldg, Room 302c, Pullman, Washington 99164-7520, USA.
| |
Collapse
|
46
|
Samuelson DR, Eucker TP, Bell JA, Dybas L, Mansfield LS, Konkel ME. The Campylobacter jejuni CiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease. Cell Commun Signal 2013; 11:79. [PMID: 24144181 PMCID: PMC3833307 DOI: 10.1186/1478-811x-11-79] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Enteric pathogens utilize a distinct set of proteins to modulate host cell signaling events that promote host cell invasion, induction of the inflammatory response, and intracellular survival. Human infection with Campylobacter jejuni, the causative agent of campylobacteriosis, is characterized by diarrhea containing blood and leukocytes. The clinical presentation of acute disease, which is consistent with cellular invasion, requires the delivery of the Campylobacter invasion antigens (Cia) to the cytosol of host cells via a flagellar Type III Secretion System (T3SS). We identified a novel T3SS effector protein, which we termed CiaD that is exported from the C. jejuni flagellum and delivered to the cytosol of host cells. Results We show that the host cell kinases p38 and Erk 1/2 are activated by CiaD, resulting in the secretion of interleukin-8 (IL-8) from host cells. Additional experiments revealed that CiaD-mediated activation of p38 and Erk 1/2 are required for maximal invasion of host cells by C. jejuni. CiaD contributes to disease, as evidenced by infection of IL-10 knockout mice. Noteworthy is that CiaD contains a Mitogen-activated protein (MAP) kinase-docking site that is found within effector proteins produced by other enteric pathogens. These findings indicate that C. jejuni activates the MAP kinase signaling pathways Erk 1/2 and p38 to promote cellular invasion and the release of the IL-8 pro-inflammatory chemokine. Conclusions The identification of a novel T3SS effector protein from C. jejuni significantly expands the knowledge of virulence proteins associated with C. jejuni pathogenesis and provides greater insight into the mechanism utilized by C. jejuni to invade host cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael E Konkel
- School of Molecular Biosciences, Washington State University, College of Veterinary Medicine, Life Sciences Bldg, Room 302c, Pullman, WA 99164-7520, USA.
| |
Collapse
|
47
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
48
|
A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes. mBio 2013; 4:e00432-13. [PMID: 24003178 PMCID: PMC3760246 DOI: 10.1128/mbio.00432-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many polarly flagellated bacteria require similar two-component regulatory systems (TCSs) and σ54 to activate transcription of genes essential for flagellar motility. Herein, we discovered that in addition to the flagellar type III secretion system (T3SS), the Campylobacter jejuni flagellar MS ring and rotor are required to activate the FlgSR TCS. Mutants lacking the FliF MS ring and FliG C ring rotor proteins were as defective as T3SS mutants in FlgSR- and σ54-dependent flagellar gene expression. Also, FliF and FliG required each other for stability, which is mediated by atypical extensions to the proteins. A FliF mutant that presumably does not interact with the T3SS protein FlhA did not support flagellar gene transcription, suggesting that FliF-T3SS interactions are essential to generate a signal sensed by the cytoplasmic FlgS histidine kinase. Furthermore, the flagellar T3SS was required for FlgS to immunoprecipitate with FliF and FliG. We propose a model whereby the flagellar T3SS facilitates FliF and FliG multimerization into the MS ring and rotor. As a result, these flagellar structures form a cytoplasmic complex that interacts with and is sensed by FlgS. The synthesis of these structures appears to be a regulatory checkpoint in flagellar biogenesis that the FlgS kinase monitors to initiate signal transduction that activates σ54 and expression of genes required for the next stage of flagellation. Given that other polar flagellates have flagellar transcriptional hierarchies that are organized similarly as in C. jejuni, this regulatory checkpoint may exist in a broad range of bacteria to influence similar TCSs and flagellar gene transcription. Despite the presence of numerous two-component regulatory systems (TCSs) in bacteria, direct signals sensed by TCSs to activate signal transduction are known for only a minority. Polar flagellates, including Pseudomonas, Vibrio, Helicobacter, and Campylobacter species, require a similar TCS and σ54 for flagellar gene transcription, but the activating signals for these TCSs are unknown. We explored signals that activate the Campylobacter jejuni FlgSR TCS to initiate σ54-dependent flagellar gene transcription. Our discoveries suggest that the FlgS histidine kinase monitors the formation of the flagellar type III secretion system and the surrounding MS and C rings. The synthesis of these structures creates a regulatory checkpoint in flagellar biogenesis that is sensed by FlgS to ensure proper transcription of the next set of genes for subsequent steps in flagellation. Given the conservation of flagellar-associated TCSs and transcriptional cascades in polar flagellates, this regulatory checkpoint in flagellar biogenesis likely impacts flagellation in a broad range of bacteria.
Collapse
|
49
|
Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 2012; 80:4089-98. [PMID: 22966047 DOI: 10.1128/iai.00161-12] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT.
Collapse
|
50
|
Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures. Infect Immun 2012; 80:3307-18. [PMID: 22778098 DOI: 10.1128/iai.06270-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C. jejuni lipooligosaccharide (LOS) structures, generating human nerve ganglioside mimics, is important for intestinal epithelial translocation. We here show that C. jejuni isolates expressing ganglioside-like LOS bound in larger numbers to the Caco-2 intestinal epithelial cells than C. jejuni isolates lacking such structures. Next, we found that ganglioside-like LOS facilitated endocytosis of bacteria into Caco-2 cells, as visualized by quantitative microscopy using the early and late endosomal markers early endosome-associated protein 1 (EEA1), Rab5, and lysosome-associated membrane protein 1 (LAMP-1). This increased endocytosis was associated with larger numbers of surviving and translocating bacteria. Next, we found that two different intestinal epithelial cell lines (Caco-2 and T84) responded with an elevated secretion of the T-cell attractant CXCL10 to infection by ganglioside-like LOS-expressing C. jejuni isolates. We conclude that C. jejuni translocation across Caco-2 cells is facilitated by ganglioside-like LOS, which is of clinical relevance since C. jejuni ganglioside-like LOS-expressing isolates are linked with severe gastroenteritis and bloody stools in C. jejuni-infected patients.
Collapse
|