1
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
2
|
Sun X, Yu Z, Xu Y, Pu S, Gao X. The role of spexin in energy metabolism. Peptides 2023; 164:170991. [PMID: 36914115 DOI: 10.1016/j.peptides.2023.170991] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Spexin, also identified as neuropeptide Q (NPQ), is a 14 amino acid peptide discovered by bioinformatic methods. It has a conserved structure in many species and is widely expressed in the central nervous system and peripheral tissues. It has an associated receptor, galanin receptor 2/3 (GALR2/3). Mature spexin peptides can exert various functions by activating GALR2/3, such as inhibiting food intake, inhibiting lipid absorption, reducing body weight, and improving insulin resistance. Spexin is expressed in the adrenal gland, pancreas, visceral fat, and thyroid, with the highest expression in the adrenal gland, followed by the pancreas. Physiologically, spexin and insulin interact in pancreatic islets. Spexin may be one of the regulators of endocrine function in the pancreas. Spexin is a possible indicator of insulin resistance and it has a variety of functional properties, here we review its role in energy metabolism.
Collapse
Affiliation(s)
- Xiaotong Sun
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China.
| | - Ziwei Yu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Yuxin Xu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Shengdan Pu
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| | - Xinyuan Gao
- The First Affiliated Hospital of Harbin Medical University, People's Republic of China
| |
Collapse
|
3
|
Michalickova D, Kramarikova I, Ozturk HK, Kucera T, Vacik T, Hrncir T, Kutinova Canova N, Sima M, Slanar O. Detection of galanin receptors in the spinal cord in experimental autoimmune encephalomyelitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:36-42. [PMID: 35147137 DOI: 10.5507/bp.2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The aims of the present study were to investigate the expression of galanin receptors (GalR1, GalR2, GalR3) in the spinal cords in a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) using qPCR analysis and to determine GalR1 cellular localization (oligodendrocytes, microglia, astrocytes, ependymal cells, and endothelial cells in the capillaries) by immunohistochemistry. METHODS Twelve samples from the EAE group and 14 samples from the control group were analyzed. Spinal cords samples were obtained at the peak of the EAE disease. RESULTS The GalR1 mRNA level was significantly decreased in the EAE mice compared with the controls (P=0.016), whereas the mRNA levels of GalR2 and GalR3 were not significantly different for the EAE and the control mice. No significant correlations were found between the severity of the EAE disease and the mRNA levels of GalR1, GalR2 and GalR3. Immunochemical detection of the GalR1 revealed its expression in the ependymal and endothelial cells. Additionally, a weak GalR1 immunoreactivity was occasionally detected in the oligodendrocytes. CONCLUSION This study provides additional evidence of galanin involvement in EAE pathophysiology, but this has to be further investigated.
Collapse
Affiliation(s)
- Danica Michalickova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ivana Kramarikova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hatice Kubra Ozturk
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Kucera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Tomas Hrncir
- Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Martin Sima
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondrej Slanar
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
4
|
Ortega JT, Parmar T, Jastrzebska B. Galanin receptor 3 - A new pharmacological target in retina degeneration. Pharmacol Res 2023; 188:106675. [PMID: 36693600 PMCID: PMC9918719 DOI: 10.1016/j.phrs.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The neuropeptide galanin receptor 3 (GALR3) is a class A G protein-coupled receptor (GPCR) broadly expressed in the nervous system, including the retina. GALR3 is involved in the modulation of immune and inflammatory responses. Tight control of these processes is critical for maintaining homeostasis in the retina and is required to sustain vision. Here, we investigated the role of GALR3 in retina pathologies triggered by bright light and P23H mutation in the rhodopsin (RHO) gene, associated with the activation of oxidative stress and inflammatory responses. We used a multiphase approach involving pharmacological inhibition of GALR3 with its antagonist SNAP-37889 and genetic depletion of GALR3 to modulate the GALR3 signaling. Our in vitro experiments in the retinal pigment epithelium-derived cells (ARPE19) susceptible to all-trans-retinal toxicity indicated that GALR3 could be involved in the cellular stress response to this phototoxic product. Indeed, blocking the GALR3 signaling in Abca4-/-/Rdh8-/- and wild-type Balb/cJ mice, sensitive to bright light-induced retina damage, protected retina health in these mice exposed to light. The retina morphology and function were substantially improved, and stress response processes were reduced in these mouse models compared to the controls. Furthermore, in P23H Rho knock-in mice, a model of retinitis pigmentosa (RP), both pharmacological inhibition and genetic ablation of GALR3 prolonged the survival of photoreceptors. These results indicate that GALR3 signaling contributes to acute light-induced and chronic RP-linked retinopathies. Together, this work provides the pharmacological knowledge base to evaluate GALR3 as a potential target for developing novel therapies to combat retinal degeneration.
Collapse
Affiliation(s)
- Joseph T Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Tanu Parmar
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
5
|
Hampton RF, Jimenez-Gonzalez M, Stanley SA. Unravelling innervation of pancreatic islets. Diabetologia 2022; 65:1069-1084. [PMID: 35348820 PMCID: PMC9205575 DOI: 10.1007/s00125-022-05691-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
The central and peripheral nervous systems play critical roles in regulating pancreatic islet function and glucose metabolism. Over the last century, in vitro and in vivo studies along with examination of human pancreas samples have revealed the structure of islet innervation, investigated the contribution of sympathetic, parasympathetic and sensory neural pathways to glucose control, and begun to determine how the structure and function of pancreatic nerves are disrupted in metabolic disease. Now, state-of-the art techniques such as 3D imaging of pancreatic innervation and targeted in vivo neuromodulation provide further insights into the anatomy and physiological roles of islet innervation. Here, we provide a summary of the published work on the anatomy of pancreatic islet innervation, its roles, and evidence for disordered islet innervation in metabolic disease. Finally, we discuss the possibilities offered by new technologies to increase our knowledge of islet innervation and its contributions to metabolic regulation.
Collapse
Affiliation(s)
- Rollie F Hampton
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jimenez-Gonzalez
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
7
|
Brunner SM, Reichmann F, Leitner J, Wölfl S, Bereswill S, Farzi A, Schneider AM, Klieser E, Neureiter D, Emberger M, Heimesaat MM, Weghuber D, Lang R, Holzer P, Kofler B. Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Sci Rep 2021; 11:564. [PMID: 33436730 PMCID: PMC7803768 DOI: 10.1038/s41598-020-79456-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The regulatory (neuro)peptide galanin and its three receptors (GAL1-3R) are involved in immunity and inflammation. Galanin alleviated inflammatory bowel disease (IBD) in rats. However, studies on the galanin receptors involved are lacking. We aimed to determine galanin receptor expression in IBD patients and to evaluate if GAL2R and GAL3R contribute to murine colitis. Immunohistochemical analysis revealed that granulocytes in colon specimens of IBD patients (Crohn's disease and ulcerative colitis) expressed GAL2R and GAL3R but not GAL1R. After colitis induction with 2% dextran sulfate sodium (DSS) for 7 days, mice lacking GAL3R (GAL3R-KO) lost more body weight, exhibited more severe colonic inflammation and aggravated histologic damage, with increased infiltration of neutrophils compared to wild-type animals. Loss of GAL3R resulted in higher local and systemic inflammatory cytokine/chemokine levels. Remarkably, colitis-associated changes to the intestinal microbiota, as assessed by quantitative culture-independent techniques, were most pronounced in GAL3R-KO mice, characterized by elevated numbers of enterobacteria and bifidobacteria. In contrast, GAL2R deletion did not influence the course of colitis. In conclusion, granulocyte GAL2R and GAL3R expression is related to IBD activity in humans, and DSS-induced colitis in mice is strongly affected by GAL3R loss. Consequently, GAL3R poses a novel therapeutic target for IBD.
Collapse
MESH Headings
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/microbiology
- Crohn Disease/therapy
- Gastrointestinal Microbiome
- Gene Expression
- Humans
- Inflammation
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- Rats
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Receptor, Galanin, Type 3/physiology
- Mice
Collapse
Affiliation(s)
- Susanne M Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Julia Leitner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Soraya Wölfl
- Laboratory for Pathology Weger, Emberger, Strubergasse 20, 5020, Salzburg, Austria
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Garystr. 5, 14195, Berlin, Germany
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Anna-Maria Schneider
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Michael Emberger
- Laboratory for Pathology Weger, Emberger, Strubergasse 20, 5020, Salzburg, Austria
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Garystr. 5, 14195, Berlin, Germany
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| |
Collapse
|
8
|
Sternberg F, Vidali S, Holub BS, Stockinger J, Brunner SM, Ebner S, Koller A, Trost A, Reitsamer HA, Schwarzenbacher D, Lang R, Kofler B. Lack of Galanin Receptor 3 Alleviates Psoriasis by Altering Vascularization, Immune Cell Infiltration, and Cytokine Expression. J Invest Dermatol 2018; 138:199-207. [PMID: 28844939 DOI: 10.1016/j.jid.2017.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 01/30/2023]
Abstract
The neuropeptide galanin is distributed in the central and peripheral nervous systems and in non-neuronal peripheral organs, including the skin. Galanin acts via three G protein-coupled receptors which, except galanin receptor 1, are expressed in various skin structures. The galanin system has been associated with inflammatory processes of the skin and of several other organs. Psoriasis is an inflammatory skin disease with increased neovascularization, keratinocyte hyperproliferation, a proinflammatory cytokine milieu, and immune cell infiltration. In this study, we showed that galanin receptor 3 is present in endothelial cells in human and murine dermal vessels and is co-expressed with nestin in neo-vessels of psoriatic patients. Moreover, in a murine psoriasis model, we showed that C57/BL6 mice lacking galanin receptor 3 display a milder course of psoriasis upon imiquimod treatment, leading to decreased disease severity, delayed neo-vascularization, reduced infiltration of neutrophils, and significantly lower levels of proinflammatory cytokines compared with wild-type mice. In contrast, galanin receptor 2-knockout animals did not differ significantly from wild type mice at both the macroscopic and molecular levels in their inflammatory response to imiquimod treatment. Our data indicate that galanin receptor 3, but not galanin receptor 2, plays an important role in psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara S Holub
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria; Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Julia Stockinger
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Ebner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Koller
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - Herbert A Reitsamer
- Department of Ophthalmology/Optometry, Research Program Experimental Ophthalmology, Paracelsus Medical University Salzburg, Austria
| | - David Schwarzenbacher
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Roland Lang
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
9
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 2017; 29. [PMID: 28251760 DOI: 10.1111/nmo.13046] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cells within the gastrointestinal (GI) tract provide almost all body serotonin (5-hydroxytryptamine [5-HT]). Peripheral 5-HT, released from EC cells lining the gut wall, serves diverse physiological roles. These include modulating GI motility, bone formation, hepatic gluconeogenesis, thermogenesis, insulin resistance, and regulation of fat mass. Enterochromaffin cells are nutrient sensors, but which nutrients they are responsive to and how this changes in different parts of the GI tract are poorly understood. METHODS To accurately undertake such an examination, we undertook the first isolation and purification of primary mouse EC cells from both the duodenum and colon in the same animal. This allowed us to compare, in an internally controlled manner, regional differences in the expression of nutrient sensors in EC cells using real-time PCR. KEY RESULTS Both colonic and duodenal EC cells expressed G protein-coupled receptors and facilitative transporters for sugars, free fatty acids, amino acids, and lipid amides. We find differential expression of nutrient receptor and transporters in EC cells obtained from duodenal and colonic EC cells. Duodenal EC cells have higher expression of tryptophan hydroxylase-1, sugar transporters GLUT2, GLUT5, and free fatty acid receptors 1 and 3 (FFAR1 and FFAR3). Colonic EC cells express higher levels of GLUT1, FFAR2, and FFAR4. CONCLUSIONS & INFERENCES We highlight the diversity of EC cell physiology and identify differences in the regional sensing repertoire of EC cells to an assortment of nutrients. These data indicate that not all EC cells are similar and that differences in their physiological responses are likely dependent on their location within the GI tract.
Collapse
Affiliation(s)
- A M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - A L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - C F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - N J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
10
|
Botz B, Kemény Á, Brunner SM, Sternberg F, Csepregi J, Mócsai A, Pintér E, McDougall JJ, Kofler B, Helyes Z. Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis. J Mol Neurosci 2016; 59:260-9. [PMID: 26941032 PMCID: PMC4884566 DOI: 10.1007/s12031-016-0732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.
Collapse
Affiliation(s)
- Bálint Botz
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Ágnes Kemény
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Susanne M Brunner
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Felix Sternberg
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria
| | - Janka Csepregi
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine and MTA-SE "Lendület" Inflammation Physiology Research Group, Budapest, Hungary
| | - Erika Pintér
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jason J McDougall
- Departments of Pharmacology and Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Muellner Hauptstr. 48, 5020, Salzburg, Austria.
| | - Zsuzsanna Helyes
- Molecular Pharmacology Research Team, Neuroscience Centre and János Szentágothai Research Centre, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
11
|
Koller A, Rid R, Beyreis M, Bianchini R, Holub BS, Lang A, Sternberg F, Brodowicz B, Velickovic O, Jakab M, Kerschbaum H, Önder K, Kofler B. In vitro toxicity of the galanin receptor 3 antagonist SNAP 37889. Neuropeptides 2016; 56:83-8. [PMID: 26725588 DOI: 10.1016/j.npep.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 12/20/2022]
Abstract
Galanin and its receptors (GAL1, GAL2, GAL3) modulate a range of neuronal, immune and vascular activities. In vivo administration of SNAP 37889 (1-phenyl-3-[[3-(trifluoromethyl)phenyl]imino]-1H-indol-2-one), a potent small non-peptidergic antagonist of GAL3, was reported to reduce anxiety- and depression-related behavior, ethanol consumption, and antagonizes the effect of galanin on plasma extravasation in rodent models. Accordingly, SNAP 37889 has been proposed as a potential therapeutic agent to treat anxiety and depression disorders. Therefore, we evaluated the toxicity of SNAP 37889 to different cell types. Our experiments revealed that SNAP 37889 (≥10μM) induced apoptosis in epithelial (HMCB) and microglial (BV-2) cell lines expressing endogenous GAL3, in peripheral blood mononuclear cells and promyelocytic leukemia cells (HL-60) expressing GAL2, and in a neuronal cell line (SH-SY5Y) lacking galanin receptor expression altogether. In conclusion, SNAP 37889 is toxic to a variety of cell types independent of GAL3 expression. We caution that the clinical use of SNAP 37889 at doses that might be used to treat anxiety- or depression- related diseases could have unexpected non-galanin receptor-mediated toxicity, especially on immune cells.
Collapse
Affiliation(s)
- Andreas Koller
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Raphaela Rid
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Marlena Beyreis
- Department of Cell Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria; Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria; Gastein Research Institute, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Rodolfo Bianchini
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Barbara S Holub
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Andreas Lang
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Felix Sternberg
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Bernhard Brodowicz
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Ognjen Velickovic
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Hubert Kerschbaum
- Department of Cell Biology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Kamil Önder
- Division of Molecular Dermatology, Department of Dermatology, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria; Procomcure Biotech GmbH, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| |
Collapse
|
12
|
Barreto SG. How does cigarette smoking cause acute pancreatitis? Pancreatology 2016; 16:157-163. [PMID: 26419886 DOI: 10.1016/j.pan.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Acute Pancreatitis (AP) is an emerging health problem world-wide and it is a major cause of admissions for gastrointestinal disease in many countries. Amongst the more common causes (alcohol and gallstones), recent evidence has emerged indicating that smoking is an independent risk factor for AP. However, the mechanisms involved in smoking-induced AP have not been completely elucidated. This review puts together all the published evidence in literature to present the clinical and laboratory evidence relating smoking to the causation of AP. DISCUSSION The two main metabolites from cigarette smoke, namely nicotine and NNK are able to induce functional and histological changes within the pancreas consistent with AP. The major mechanisms involved include their action on acinar cells and zymogen secretion through pathways involving CCK and the nicotinic preganglionic receptors. Effects on the pancreatic microvasculature may be mediated through the nitric oxide pathway. There is indirect evidence to suggest that nicotine and acrolein may lead to CFTR dysfunction thereby influencing ductal secretion. However, direct evidence for this effect is needed. The effect of cigarette smoke metabolites on stellate cells and the islets warrants further investigation in the context of pathogenesis of AP. CONCLUSION Using a step-wise approach, the review revisits the effects of the various metabolites of cigarette smoke on the constituents of the pancreas (exocrine, endocrine, neurohormonal, stellate cells, ductal system) and highlights their proven, and potential, mechanisms in triggering off an attack of AP.
Collapse
Affiliation(s)
- Savio G Barreto
- Department of Gastrointestinal Surgery, Gastrointestinal Oncology, and Bariatric Surgery, Medanta Institute of Digestive and Hepatobiliary Sciences, Medanta, The Medicity, Sector 38, Gurgaon, Haryana, India.
| |
Collapse
|
13
|
Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol 2015; 145:105-17. [PMID: 26496922 PMCID: PMC4710661 DOI: 10.1007/s00418-015-1376-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 02/02/2023]
Abstract
The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.
Collapse
|
14
|
Kerr N, Holmes FE, Hobson SA, Vanderplank P, Leard A, Balthasar N, Wynick D. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Mol Cell Neurosci 2015; 68:258-71. [PMID: 26292267 PMCID: PMC4604734 DOI: 10.1016/j.mcn.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1-3 gene products). There is a wealth of data on expression of Gal1-3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs).
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Neurons/physiology
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Spinal Cord/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Niall Kerr
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Fiona E Holmes
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sally-Ann Hobson
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Penny Vanderplank
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Alan Leard
- Wolfson Bioimaging Facility, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nina Balthasar
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Wynick
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
15
|
Barreto SG. Acute pancreatitis: watch what you eat! Am J Clin Nutr 2015; 101:1097. [PMID: 25934866 DOI: 10.3945/ajcn.115.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Savio G Barreto
- From the Department of Gastrointestinal Surgery, Gastrointestinal Oncology, and Bariatric Surgery, Medanta Institute of Digestive and Hepatobiliary Sciences, Medanta, The Medicity, Gurgaon, India (e-mail: )
| |
Collapse
|
16
|
Flynn SP, White HS. Regulation of glucose and insulin release following acute and repeated treatment with the synthetic galanin analog NAX-5055. Neuropeptides 2015; 50:35-42. [PMID: 25690510 PMCID: PMC4402648 DOI: 10.1016/j.npep.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/19/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems. However there is limited understanding of how individual galanin receptor (GalR1, 2, and 3) subtypes mediate the physiological activity of galanin in vivo. To address this issue we utilized NAX-5055, a systemically available, metabolically stable galanin analog. NAX-5055 displays a preference for GalR1 receptors and possesses potent anticonvulsant activity in vivo, suggesting that NAX-5055 engages central galanin receptors. To determine if NAX-5055 also modulates the activity of peripheral galanin receptors, we evaluated the effect of NAX-5055 on blood glucose and insulin levels in mice. Acute and repeated (once daily for four days) systemic administration of NAX-5055 (4 mg/kg) significantly increased blood glucose levels compared to vehicle treated mice. However, a hyperglycemic response was not observed following systemic administration of NAX-805-1, a scrambled analog of NAX-5055, with critical receptor binding residues, Trp(2) and Tyr(9), reversed. These results suggest that chemical modifications independent of the galanin backbone of NAX-5055 are not responsible for the hyperglycemic response. The effect of NAX-5055 on glucose homeostasis was further evaluated with a glucose tolerance test (GTT). Mice administered either acute or repeated (once daily for four days) injections of NAX-5055 (4 mg/kg) displayed impaired glucose handling and reduced insulin response to an acute glucose (1g/kg) challenge. Here we have shown that systemic administration of a centrally active GalR1-preferring galanin analog produces acute hyperglycemia and an inhibition of insulin release in vivo and that these effects are not attenuated with repeated administration. NAX-5055 thus provides a new pharmacological tool to further the understanding of function of both central and peripheral GalR1 receptors in vivo.
Collapse
Affiliation(s)
- Sean P Flynn
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA
| | - H Steve White
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84108, USA; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
17
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
18
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
19
|
Abstract
Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
20
|
Mansouri S, Barde S, Ortsäter H, Eweida M, Darsalia V, Langel U, Sjöholm A, Hökfelt T, Patrone C. GalR3 activation promotes adult neural stem cell survival in response to a diabetic milieu. J Neurochem 2013; 127:209-20. [PMID: 23927369 DOI: 10.1111/jnc.12396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes impairs adult neurogenesis which could play a role in the CNS complications of this serious disease. The goal of this study was to determine the potential role of galanin in protecting adult neural stem cells (NSCs) from glucolipotoxicity and to analyze whether apoptosis and the unfolded protein response were involved in the galanin-mediated effect. We also studied the regulation of galanin and its receptor subtypes under diabetes in NSCs in vitro and in the subventricular zone (SVZ) in vivo. The viability of mouse SVZ-derived NSCs and the involvement of apoptosis (Bcl-2, cleaved caspase-3) and unfolded protein response [C/EBP homologous protein (CHOP) Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP), spliced X-box binding protein 1 (XBP1), c-Jun N-terminal kinases (JNK) phosphorylation] were assessed in the presence of glucolipotoxic conditions after 24 h. The effect of diabetes on the regulation of galanin and its receptor subtypes was assessed on NSCs in vitro and in SVZ tissues isolated from normal and type 2 diabetes ob/ob mice. We show increased NSC viability following galanin receptor (GalR)3 activation. This protective effect correlated with decreased apoptosis and CHOP levels. We also report how galanin and its receptors are regulated by diabetes in vitro and in vivo. This study shows GalR3-mediated neuroprotection, supporting a potential future therapeutic development, based on GalR3 activation, for the treatment of brain disorders.
Collapse
Affiliation(s)
- Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Peiris H, Raghupathi R, Jessup CF, Zanin MP, Mohanasundaram D, Mackenzie KD, Chataway T, Clarke JN, Brealey J, Coates PT, Pritchard MA, Keating DJ. Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, β-cell dysfunction, and diabetes. Endocrinology 2012; 153:5212-21. [PMID: 23011918 DOI: 10.1210/en.2011-2149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RCAN1 is a chromosome 21 gene that controls secretion in endocrine cells, regulates mitochondrial function, and is sensitive to oxidative stress. Regulator of calcineurin 1 (RCAN1) is also an endogenous inhibitor of the protein phosphatase calcineurin, the inhibition of which leads to hypoinsulinemia and diabetes in humans and mice. However, the presence or the role of RCAN1 in insulin-secreting β-cells and its potential role in the pathogenesis of diabetes is unknown. Hence, the aim of this study is to investigate the presence of RCAN1 in β-cells and identify its role in β-cell function. RCAN1 is expressed in mouse islets and in the cytosol of pancreatic β-cells. We find RCAN1 is a glucose-responsive gene with a 1.5-fold increase in expression observed in pancreatic islets in response to chronic hyperglycemia. The overexpression of the human RCAN1.1 isoform in mice under the regulation of its endogenous promoter causes diabetes, age-associated hyperglycemia, reduced glucose tolerance, hypoinsulinemia, loss of β-cells, reduced β-cell insulin secretion, aberrant mitochondrial reactive oxygen species production, and the down-regulation of key β-cell genes. Our data therefore identifies a novel molecular link between the overexpression of RCAN1 and β-cell dysfunction. The glucose-responsive nature of RCAN1 provides a potential mechanism of action associated with the β-cell dysfunction observed in diabetes.
Collapse
Affiliation(s)
- Heshan Peiris
- Flinders Medical Science and Technology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Webling KEB, Runesson J, Bartfai T, Langel Ü. Galanin receptors and ligands. Front Endocrinol (Lausanne) 2012; 3:146. [PMID: 23233848 PMCID: PMC3516677 DOI: 10.3389/fendo.2012.00146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions.
Collapse
Affiliation(s)
- Kristin E. B. Webling
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- *Correspondence: Kristin E. B. Webling, Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm University, Svante Arrheniusv. 21A, 10691 Stockholm, Sweden. e-mail:
| | - Johan Runesson
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
| | - Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Ülo Langel
- Department of Neurochemistry, Arrhenius Laboratories for Natural Science, Stockholm UniversityStockholm, Sweden
- Institute of Technology, University of TartuTartu, Estonia
| |
Collapse
|