1
|
Fan H, Zhan Y, Cheng X, Tan M, Li Y, Xiong Y, Li Q, Liu W. Lacidophilin tablets relieve irritable bowel syndrome in rats by regulating gut microbiota dysbiosis and intestinal inflammation. Sci Rep 2025; 15:8151. [PMID: 40059226 PMCID: PMC11891319 DOI: 10.1038/s41598-025-91883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common clinical functional gastrointestinal disease. It has a complex pathophysiological mechanism, in which the imbalance of gut microbiota might play an important role. Lacidophilin tablets (LH) can regulate gut microbiota, but their effect on IBS is unknown. In this study, the IBS model was established by acetic acid enema combined with the constrained stress method, and rats were fed LH for 2 weeks. LH significantly reduced visceral sensitivity and intestinal propulsion rate and improved IBS-induced anxiety and depressive behavior in IBS rats. LH elevated the expression levels of mucin 2, claudin1, and occludin, and ameliorated IBS-induced structural damage to colonic tissues. The gut microbiota analysis revealed that LH altered the structure and composition of the gut microbiota in IBS rats. In addition, LH reduced the expression levels of inflammatory factor-related genes. These results suggest that LH could significantly improve the visceral sensitivity and intestinal motility disorders of IBS rats, relieve anxiety and depression levels, and alleviate the symptoms of IBS rats by regulating gut microbiota and reducing intestinal inflammation.
Collapse
Affiliation(s)
- Huiqun Fan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Yang Zhan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Xiaoying Cheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Mintao Tan
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Yingmeng Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Yanxia Xiong
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China
| | - Qiong Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China.
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, No. 1899 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, 330096, Jiangxi, China.
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd, Nanchang, 330103, Jiangxi, China.
| |
Collapse
|
2
|
Cao Y, Li R, Bai L. Vagal sensory pathway for the gut-brain communication. Semin Cell Dev Biol 2024; 156:228-243. [PMID: 37558522 DOI: 10.1016/j.semcdb.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.
Collapse
Affiliation(s)
- Yiyun Cao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Rui Li
- Chinese Institute for Brain Research, Beijing 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Ling Bai
- Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
3
|
Li J, Wang X, Xun S, Guo Q, Wang Y, Jia Y, Wang W, Wang Y, Li T, Tang T, Zou J, Wang M, Yang M, Wang F, Zhang X, Wang C. Study of the Mechanism of Antiemetic Effect of Lavandula angustifolia Mill. Essential Oil Based on Ca 2+/CaMKII/ERK1/2 Pathway. Drug Des Devel Ther 2022; 16:2407-2422. [PMID: 35923932 PMCID: PMC9341382 DOI: 10.2147/dddt.s366597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To investigate the effective components and possible mechanism of action of Lavandula angustifolia Mill. essential oil (LEO) in preventing vomiting through the olfactory pathway. Materials and Methods A new network pharmacology-based method was established to analyze main components and pathways of LEO involved in antiemetic effects by introducing component content; biological activities of key proteins of the olfactory pathway and their corresponding compounds were verified by molecular docking technique; and finally pica in a rat model was established to verify the molecular mechanism of antiemetic effects of LEO by enzyme-linked immunosorbent assay (ELISA) to determine the serum 5-HT, substance P, and DA levels in each group and by immunohistochemistry to determine the contents of 5-HT3R, CaMKII and ERK1/2 proteins in the medulla oblongata tissue. Results Network pharmacology combined with molecular docking analysis showed that the mechanism of the antiemetic effect of LEO may be related to (2Z)-3,7-dimethyl-2,6-octadienyl acetate, linalyl acetate, butanoic acid, hexyl ester, 4-hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, acetate, .tau.-cadinol and other active ingredients, which regulate the cyclic adenosine monophosphate (cAMP) signaling pathway and the expression of BRAF, PDE and other targets on the pathway. An ELISA revealed that LEO reduced the levels of 5-hydroxytryptamine (5-HT), substance P, and dopamine in serum compared with the model group (P <0.05). Immunohistochemical analysis showed that LEO decreased the expression of 5-HT3R, CaMKII, and ERK1/2 proteins in the medulla oblongata of rats compared with the model group (P <0.01). Conclusion LEO may achieve the antiemetic effect by reducing the content of 5-HT and inhibiting its related receptors, thereby regulating downstream Ca2+/CaMKII/ERK1/2 pathway of the cAMP signaling pathway.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Xiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Shining Xun
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, People’s Republic of China
| | - Yao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yanzuo Jia
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Wenfei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Yujiao Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Taotao Li
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Tiantian Tang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Junbo Zou
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Mei Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Ming Yang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Fang Wang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Xiaofei Zhang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Changli Wang
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| |
Collapse
|
4
|
Huang HH, Lin TL, Lee WJ, Chen SC, Lai WF, Lu CC, Lai HC, Chen CY. Impact of Metabolic Surgery on Gut Microbiota and Sera Metabolomic Patterns among Patients with Diabetes. Int J Mol Sci 2022; 23:ijms23147797. [PMID: 35887145 PMCID: PMC9320451 DOI: 10.3390/ijms23147797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023] Open
Abstract
Metabolic surgery is a promising treatment for obese individuals with type 2 diabetes mellitus (T2DM), but the mechanism is not completely understood. Current understanding of the underlying ameliorative mechanisms relies on alterations in parameters related to the gastrointestinal hormones, biochemistry, energy absorption, the relative composition of the gut microbiota, and sera metabolites. A total of 13 patients with obesity and T2DM undergoing metabolic surgery treatments were recruited. Systematic changes of critical parameters and the effects and markers after metabolic surgery, in a longitudinal manner (before surgery and three, twelve, and twenty-four months after surgery) were measured. The metabolomics pattern, gut microbiota composition, together with the hormonal and biochemical characterizations, were analyzed. Body weight, body mass index, total cholesterol, triglyceride, fasting glucose level, C-peptide, HbA1c, HOMA-IR, gamma-glutamyltransferase, and des-acyl ghrelin were significantly reduced two years after metabolic surgery. These were closely associated with the changes of sera metabolomics and gut microbiota. Significant negative associations were found between the Eubacterium eligens group and lacosamide glucuronide, UDP-L-arabinose, lanceotoxin A, pipercyclobutanamide B, and hordatine B. Negative associations were identified between Ruminococcaceae UCG-003 and orotidine, and glucose. A positive correlation was found between Enterococcus and glutamic acid, and vindoline. Metabolic surgery showed positive effects on the amelioration of diabetes and metabolic syndromes, which were closely associated with the change of sera metabolomics, the gut microbiota, and other disease-related parameters.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Emergency and Critical Medicine, National Yang Ming Chiao Tung University College of Medicine, Taipei 11221, Taiwan
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Jei Lee
- Department of Surgery, Min-Sheng General Hospital, Taoyuan 33044, Taiwan;
- Taiwan Society for Metabolic and Bariatric Surgery, Taipei 11031, Taiwan;
| | - Shu-Chun Chen
- Taiwan Society for Metabolic and Bariatric Surgery, Taipei 11031, Taiwan;
- Department of Nursing, Chang-Gung Institute of Technology, Taoyuan 33303, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chia-Chen Lu
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24352, Taiwan;
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Central Research Laboratory, Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen 361028, China
- Correspondence: (H.-C.L.); (C.-Y.C.); Tel.: +886-2-28712121 (ext. 2050) (C.-Y.C.)
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Bariatric and Metabolic Surgery Center, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Chinese Taipei Society for the Study of Obesity, Taipei 11031, Taiwan
- Taiwan Association for the Study of Small Intestinal Diseases, Taoyuan 333423, Taiwan
- Correspondence: (H.-C.L.); (C.-Y.C.); Tel.: +886-2-28712121 (ext. 2050) (C.-Y.C.)
| |
Collapse
|
5
|
Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 2022; 54:377-392. [PMID: 35474341 PMCID: PMC9076644 DOI: 10.1038/s12276-021-00677-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract plays a role in the development and treatment of metabolic diseases. During a meal, the gut provides crucial information to the brain regarding incoming nutrients to allow proper maintenance of energy and glucose homeostasis. This gut-brain communication is regulated by various peptides or hormones that are secreted from the gut in response to nutrients; these signaling molecules can enter the circulation and act directly on the brain, or they can act indirectly via paracrine action on local vagal and spinal afferent neurons that innervate the gut. In addition, the enteric nervous system can act as a relay from the gut to the brain. The current review will outline the different gut-brain signaling mechanisms that contribute to metabolic homeostasis, highlighting the recent advances in understanding these complex hormonal and neural pathways. Furthermore, the impact of the gut microbiota on various components of the gut-brain axis that regulates energy and glucose homeostasis will be discussed. A better understanding of the gut-brain axis and its complex relationship with the gut microbiome is crucial for the development of successful pharmacological therapies to combat obesity and diabetes.
Collapse
Affiliation(s)
| | | | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, AZ, USA. .,BIO5, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Rezzani R, Franco C, Franceschetti L, Gianò M, Favero G. A Focus on Enterochromaffin Cells among the Enteroendocrine Cells: Localization, Morphology, and Role. Int J Mol Sci 2022; 23:ijms23073758. [PMID: 35409109 PMCID: PMC8998884 DOI: 10.3390/ijms23073758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium plays a key role in managing the relationship with the environment, the internal and external inputs, and their changes. One percent of the gut epithelium is represented by the enteroendocrine cells. Among the enteroendocrine cells, a group of specific cells characterized by the presence of yellow granules, the enterochromaffin cells, has been identified. These granules contain many secretion products. Studies showed that these cells are involved in gastrointestinal inflammatory conditions and hyperalgesia; their number increases in these conditions both in affected and not-affected zones of the gut. Moreover, they are involved in the preservation and modulation of the intestinal function and motility, and they sense metabolic-nutritional alterations. Sometimes, they are confused or mixed with other enteroendocrine cells, and it is difficult to define their activity. However, it is known that they change their functions during diseases; they increased in number, but their involvement is related mainly to some secretion products (serotonin, melatonin, substance P). The mechanisms linked to these alterations are not well investigated. Herein, we provide an up-to-date highlight of the main findings about these cells, from their discovery to today. We emphasized their origin, morphology, and their link with diet to better evaluate their role for preventing or treating metabolic disorders considering that these diseases are currently a public health burden.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs—(ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society of Orofacial Pain (SISDO), 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-483
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Lorenzo Franceschetti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.); (M.G.); (G.F.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs—(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
8
|
Browning KN, Carson KE. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence. Nutrients 2021; 13:nu13030908. [PMID: 33799575 PMCID: PMC7998662 DOI: 10.3390/nu13030908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.
Collapse
|
9
|
Soták M, Casselbrant A, Rath E, Zietek T, Strömstedt M, Adingupu DD, Karlsson D, Fritsch Fredin M, Ergang P, Pácha J, Batorsky A, Alpers CE, Börgeson E, Hansen PBL, Ericsson A, Björnson Granqvist A, Wallenius V, Fändriks L, Unwin RJ. Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 2020; 267:118974. [PMID: 33385407 DOI: 10.1016/j.lfs.2020.118974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
AIM We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.
Collapse
Affiliation(s)
- Matúš Soták
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| | - Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Maria Strömstedt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Damilola D Adingupu
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch Fredin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Batorsky
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Sweden
| | - Pernille B L Hansen
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anette Ericsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Unwin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Renal Medicine, Division of Medicine, University College London, UK
| |
Collapse
|
10
|
Abstract
The regulation of glycemia is under a tight neuronal detection of glucose levels performed by the gut-brain axis and an efficient efferent neuronal message sent to the peripheral organs, as the pancreas to induce insulin and inhibit glucagon secretions. The neuronal detection of glucose levels is performed by the autonomic nervous system including the enteric nervous system and the vagus nerve innervating the gastro-intestinal tractus, from the mouth to the anus. A dysregulation of this detection leads to the one of the most important current health issue around the world i.e. diabetes mellitus. Furthemore, the consequences of diabetes mellitus on neuronal homeostasis and activities participate to the aggravation of the disease establishing a viscious circle. Prokaryotic cells as bacteria, reside in our gut. The strong relationship between prokaryotic cells and our eukaryotic cells has been established long ago, and prokaryotic and eukaryotic cells in our body have evolved synbiotically. For the last decades, studies demonstrated the critical role of the gut microbiota on the metabolic control and how its shift can induce diseases such as diabetes. Despite an important increase of knowledge, few is known about 1) how the gut microbiota influences the neuronal detection of glucose and 2) how the diabetes mellitus-induced gut microbiota shift observed participates to the alterations of autonomic nervous system and the gut-brain axis activity.
Collapse
Affiliation(s)
- Estelle Grasset
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Dyslipidemia', F-31432, Toulouse, Cedex 4, France
| |
Collapse
|
11
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
12
|
Sugar Responses of Human Enterochromaffin Cells Depend on Gut Region, Sex, and Body Mass. Nutrients 2019; 11:nu11020234. [PMID: 30678223 PMCID: PMC6412251 DOI: 10.3390/nu11020234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.
Collapse
|
13
|
Troll JV, Hamilton MK, Abel ML, Ganz J, Bates JM, Stephens WZ, Melancon E, van der Vaart M, Meijer AH, Distel M, Eisen JS, Guillemin K. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development 2018; 145:145/4/dev155317. [PMID: 29475973 DOI: 10.1242/dev.155317] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022]
Abstract
Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.
Collapse
Affiliation(s)
- Joshua V Troll
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - M Kristina Hamilton
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Melissa L Abel
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Julia Ganz
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jennifer M Bates
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - W Zac Stephens
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA
| | - Ellie Melancon
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | | | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Martin Distel
- Children's Cancer Research Institute, 1090 Vienna, Austria
| | - Judith S Eisen
- Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, Department of Biology, 1229 University of Oregon, Eugene, OR 97403, USA .,Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| |
Collapse
|
14
|
Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol 2017; 806:25-31. [DOI: 10.1016/j.ejphar.2017.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
15
|
Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ. The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 2017; 29. [PMID: 28251760 DOI: 10.1111/nmo.13046] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Enterochromaffin (EC) cells within the gastrointestinal (GI) tract provide almost all body serotonin (5-hydroxytryptamine [5-HT]). Peripheral 5-HT, released from EC cells lining the gut wall, serves diverse physiological roles. These include modulating GI motility, bone formation, hepatic gluconeogenesis, thermogenesis, insulin resistance, and regulation of fat mass. Enterochromaffin cells are nutrient sensors, but which nutrients they are responsive to and how this changes in different parts of the GI tract are poorly understood. METHODS To accurately undertake such an examination, we undertook the first isolation and purification of primary mouse EC cells from both the duodenum and colon in the same animal. This allowed us to compare, in an internally controlled manner, regional differences in the expression of nutrient sensors in EC cells using real-time PCR. KEY RESULTS Both colonic and duodenal EC cells expressed G protein-coupled receptors and facilitative transporters for sugars, free fatty acids, amino acids, and lipid amides. We find differential expression of nutrient receptor and transporters in EC cells obtained from duodenal and colonic EC cells. Duodenal EC cells have higher expression of tryptophan hydroxylase-1, sugar transporters GLUT2, GLUT5, and free fatty acid receptors 1 and 3 (FFAR1 and FFAR3). Colonic EC cells express higher levels of GLUT1, FFAR2, and FFAR4. CONCLUSIONS & INFERENCES We highlight the diversity of EC cell physiology and identify differences in the regional sensing repertoire of EC cells to an assortment of nutrients. These data indicate that not all EC cells are similar and that differences in their physiological responses are likely dependent on their location within the GI tract.
Collapse
Affiliation(s)
- A M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - A L Lumsden
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - R L Young
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - C F Jessup
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - N J Spencer
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
16
|
The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017; 170:148-165. [DOI: 10.1016/j.pharmthera.2016.10.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Soták M, Marks J, Unwin RJ. Putative tissue location and function of the SLC5 family member SGLT3. Exp Physiol 2017; 102:5-13. [DOI: 10.1113/ep086042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/08/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Matúš Soták
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
| | - Joanne Marks
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
| | - Robert J. Unwin
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Mölndal Sweden
- Department of Neuroscience; Physiology and Pharmacology; University College London; London UK
- Department of Physiology and Neuroscience; University of Gothenburg; Gothenburg Sweden
- Centre for Nephrology; University College London; London UK
| |
Collapse
|
18
|
Ndjim M, Poinsignon C, Parnet P, Le Dréan G. Loss of Vagal Sensitivity to Cholecystokinin in Rats Born with Intrauterine Growth Retardation and Consequence on Food Intake. Front Endocrinol (Lausanne) 2017; 8:65. [PMID: 28443064 PMCID: PMC5385335 DOI: 10.3389/fendo.2017.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Perinatal malnutrition is associated with low birth weight and an increased risk of developing metabolic syndrome in adulthood. Modification of food intake (FI) regulation was observed in adult rats born with intrauterine growth retardation induced by maternal dietary protein restriction during gestation and maintained restricted until weaning. Gastrointestinal peptides and particularly cholecystokinin (CCK) play a major role in short-term regulation of FI by relaying digestive signals to the hindbrain via the vagal afferent nerve (VAN). We hypothesized that vagal sensitivity to CCK could be affected in rats suffering from undernutrition [low protein (LP)] during fetal and postnatal life, leading to an altered gut-brain communication and impacting satiation. Our aim was to study short-term FI along with signals of appetite and satiation in adult LP rats compared to control rats. The dose-response to CCK injection was investigated on FI as well as the associated signaling pathways activated in nodose ganglia. We showed that LP rats have a reduced first-meal satiety ratio after a fasting period associated to a higher postprandial plasmatic CCK release, a reduced sensitivity to CCK when injected at low concentration and a reduced presence of CCK-1 receptor in nodose ganglia. Accordingly, the lower basal and CCK-induced phosphorylation of calcium/calmodulin-dependent protein kinase in nodose ganglia of LP rats could reflect an under-expressed vanilloid family of transient receptor potential cation channels on VAN. Altogether, the present data demonstrated a reduced vagal sensitivity to CCK in LP rats at adulthood, which could contribute to deregulation of FI reported in this model.
Collapse
Affiliation(s)
- Marième Ndjim
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Camille Poinsignon
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Patricia Parnet
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Gwenola Le Dréan
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
- *Correspondence: Gwenola Le Dréan,
| |
Collapse
|
19
|
Hamilton MK, Raybould HE. Bugs, guts and brains, and the regulation of food intake and body weight. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S8-S14. [PMID: 28685024 DOI: 10.1038/ijosup.2016.3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The microbiota-gut-brain axis is currently being explored in many types of rodent models, including models of behavioral, neurodegenerative and metabolic disorders. Our laboratory is interested in determining the mechanisms and consequences of activation of vagal afferent neurons that lead to activation of parasympathetic reflexes and changes in feeding behavior in the context of obesity. Obesity is associated with microbial dysbiosis, decreased intestinal barrier function, gut inflammation, metabolic endotoxemia, chronic low-grade systemic inflammation and desensitization of vagal afferent nerves. This review will present the evidence that altered gut microbiota together with decreased gut barrier function allows the passage of bacterial components or metabolites in obese individuals, leading to the disruption of vagal afferent signaling and consequently resulting in an increase in body weight. We first review the most recent descriptions of gut microbial dysbiosis due to a high fat diet and describe changes in the gut barrier and the evidence of increased intestinal permeability in obesity. We then will review the evidence to show how manipulating the gut microbiota via pre and probiotics can restore gut barrier function and prevent weight gain. Lastly, we present possible mechanisms by which the microbe-gut-brain axis may have a role in obesity. The studies mentioned in this review have provided new targets to treat and prevent obesity and have highlighted how the microbiota-gut-brain axis is involved.
Collapse
Affiliation(s)
- M K Hamilton
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - H E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
20
|
Starup-Linde J, Gejl M, Borghammer P, Knop FK, Gregersen S, Rungby J, Vestergaard P. Vagotomy and subsequent development of diabetes - A nested case-control study. Metabolism 2016; 65:954-60. [PMID: 27282866 DOI: 10.1016/j.metabol.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Vagal signaling is involved in gastric emptying and the secretion and effect of a number of hormones regulating gluco-metabolic processes and, thus, crucial for metabolic homeostasis. PURPOSE We hypothesized that vagotomy would increase the risk of developing type 2 diabetes and examined the association between vagotomy and subsequent development of diabetes. METHODS A nested case-control study was conducted with information on cases and controls from the Danish National Patient Registry. Cases included individuals with a diabetes diagnosis subsequent (>12months) to the first registration of vagotomy and/or upper gastrointestinal disease in the period 1977-2011. Controls had no subsequent diagnosis of diabetes and were matched by incidence density sampling, age and gender. Logistic regression analyses were conducted. RESULTS 501,724 diabetes patients and 1,375,567 matched controls were included in the analysis. Vagotomy was performed on 2772 individuals and 148,489 individuals had an upper gastrointestinal diagnosis. In this combined population, 30,902 were diagnosed with diabetes. The mean follow-up was 16years. The unadjusted odds ratio for developing diabetes following vagotomy was 0.64 (95% confidence interval (CI): 0.58-0.71) and did not change in an adjusted analysis (0.64, 95% CI: 0.58-0.70). When restricting the multivariate-adjusted analysis to patients with type 2 diabetes and type 1 diabetes, respectively, the multivariate odds ratios were 0.79 (95% CI: 0.70-0.89) and 0.75 (95% CI 0.53-1.08), respectively. CONCLUSION Vagotomy was associated with a significantly decreased risk of developing type 2 diabetes in a population of patients with upper gastrointestinal disease.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark.
| | - Michael Gejl
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Peter Vestergaard
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
21
|
Lehmann A, Hornby PJ. Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G887-98. [PMID: 27012770 DOI: 10.1152/ajpgi.00068.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 01/31/2023]
Abstract
The Na(+)-glucose cotransporter 1 (SGLT1/SLC5A1) is predominantly expressed in the small intestine. It transports glucose and galactose across the apical membrane in a process driven by a Na(+) gradient created by Na(+)-K(+)-ATPase. SGLT2 is the major form found in the kidney, and SGLT2-selective inhibitors are a new class of treatment for type 2 diabetes mellitus (T2DM). Recent data from patients treated with dual SGLT1/2 inhibitors or SGLT2-selective drugs such as canagliflozin (SGLT1 IC50 = 663 nM) warrant evaluation of SGLT1 inhibition for T2DM. SGLT1 activity is highly dynamic, with modulation by multiple mechanisms to ensure maximal uptake of carbohydrates (CHOs). Intestinal SGLT1 inhibition lowers and delays the glucose excursion following CHO ingestion and augments glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) secretion. The latter is likely due to increased glucose exposure of the colonic microbiota and formation of metabolites such as L cell secretagogues. GLP-1 and PYY secretion suppresses food intake, enhances the ileal brake, and has an incretin effect. An increase in colonic microbial production of propionate could contribute to intestinal gluconeogenesis and mediate positive metabolic effects. On the other hand, a threshold of SGLT1 inhibition that could lead to gastrointestinal intolerability is unclear. Altered Na(+) homeostasis and increased colonic CHO may result in diarrhea and adverse gastrointestinal effects. This review considers the potential mechanisms contributing to positive metabolic and negative intestinal effects. Compounds that inhibit SGLT1 must balance the modulation of these mechanisms to achieve therapeutic efficacy for metabolic diseases.
Collapse
Affiliation(s)
- Anders Lehmann
- Division of Endocrinology, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; and
| | - Pamela J Hornby
- Cardiovascular and Metabolic Disease, Janssen Research and Development, LLC, Spring House, Pennsylvania
| |
Collapse
|
22
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
23
|
Bauer PV, Hamr SC, Duca FA. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 2016; 73:737-55. [PMID: 26542800 PMCID: PMC11108299 DOI: 10.1007/s00018-015-2083-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.
Collapse
Affiliation(s)
- Paige V Bauer
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sophie C Hamr
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Frank A Duca
- Department of Medicine, Toronto General Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.
- MaRS Centre, Toronto Medical Discovery Tower, Room 10-701H, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
24
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
25
|
Lee EY, Kaneko S, Jutabha P, Zhang X, Seino S, Jomori T, Anzai N, Miki T. Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion. J Endocrinol 2015; 224:205-14. [PMID: 25486965 PMCID: PMC4324305 DOI: 10.1530/joe-14-0555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral ingestion of carbohydrate triggers glucagon-like peptide 1 (GLP1) secretion, but the molecular mechanism remains elusive. By measuring GLP1 concentrations in murine portal vein, we found that the ATP-sensitive K(+) (KATP) channel is not essential for glucose-induced GLP1 secretion from enteroendocrine L cells, while the sodium-glucose co-transporter 1 (SGLT1) is required, at least in the early phase (5 min) of secretion. By contrast, co-administration of the α-glucosidase inhibitor (α-GI) miglitol plus maltose evoked late-phase secretion in a glucose transporter 2-dependent manner. We found that GLP1 secretion induced by miglitol plus maltose was significantly higher than that by another α-GI, acarbose, plus maltose, despite the fact that acarbose inhibits maltase more potently than miglitol. As miglitol activates SGLT3, we compared the effects of miglitol on GLP1 secretion with those of acarbose, which failed to depolarize the Xenopus laevis oocytes expressing human SGLT3. Oral administration of miglitol activated duodenal enterochromaffin (EC) cells as assessed by immunostaining of phosphorylated calcium-calmodulin kinase 2 (phospho-CaMK2). In contrast, acarbose activated much fewer enteroendocrine cells, having only modest phospho-CaMK2 immunoreactivity. Single administration of miglitol triggered no GLP1 secretion, and GLP1 secretion by miglitol plus maltose was significantly attenuated by atropine pretreatment, suggesting regulation via vagal nerve. Thus, while α-GIs generally delay carbohydrate absorption and potentiate GLP1 secretion, miglitol also activates duodenal EC cells, possibly via SGLT3, and potentiates GLP1 secretion through the parasympathetic nervous system.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Shuji Kaneko
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Promsuk Jutabha
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Xilin Zhang
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Susumu Seino
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Takahito Jomori
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Naohiko Anzai
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| | - Takashi Miki
- Department of Medical PhysiologyGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, JapanDepartment of Molecular PharmacologyGraduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, JapanDepartment of Pharmacology and ToxicologyDokkyo Medical University School of Medicine, Tochigi 321-0293, JapanDivision of Molecular and Metabolic MedicineKobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, JapanDrug Development CenterSanwa Kagaku Kenkyusho Co., Ltd, 35 Higashisotobori-cho, Higashi-ku, Nagoya 461-8631, Japan
| |
Collapse
|
26
|
Zhong W, Hutchinson TE, Chebolu S, Darmani NA. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS One 2014; 9:e104718. [PMID: 25121483 PMCID: PMC4133232 DOI: 10.1371/journal.pone.0104718] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022] Open
Abstract
Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Tarun E. Hutchinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kilpatrick LA, Coveleskie K, Connolly L, Labus JS, Ebrat B, Stains J, Jiang Z, Suyenobu BY, Raybould HE, Tillisch K, Mayer EA. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women. Gastroenterology 2014; 146:1212-21. [PMID: 24480616 PMCID: PMC4113508 DOI: 10.1053/j.gastro.2014.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. METHODS In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. RESULTS Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. CONCLUSIONS In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Kristen Coveleskie
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles
| | - Lynn Connolly
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Jennifer S. Labus
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles,Ahmanson-Lovelace Brain Mapping Center, Los Angeles, California,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Bahar Ebrat
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Jean Stains
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Zhiguo Jiang
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Brandall Y. Suyenobu
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Helen E. Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Kirsten Tillisch
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles
| | - Emeran A. Mayer
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress, David Geffen School of Medicine, University of California, Los Angeles,Department of Medicine, Division of Digestive Diseases, University of California, Los Angeles,Ahmanson-Lovelace Brain Mapping Center, Los Angeles, California,Department of Psychiatry, University of California, Los Angeles, Los Angeles, California,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
28
|
Wang K, Bertrand RL, Senadheera S, Polglaze KE, Murphy TV, Sandow SL, Liu L, Bornstein JC, Bertrand PP. Motility changes induced by intraluminal FeSO4 in guinea pig jejunum. Neurogastroenterol Motil 2014; 26:385-96. [PMID: 24330033 DOI: 10.1111/nmo.12276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dietary iron supplementation is associated with gastrointestinal (GI) side effects including vomiting, nausea, and diarrhea. Although inorganic iron in high concentrations may be damaging to the intestinal mucosa, we hypothesize that there are physiological effects on the GI tract that occur at concentrations achieved by supplementation. Thus, our aim was to investigate the effect of intraluminal ferrous sulfate (FeSO4 ) on jejunal motility. METHODS Segments of guinea pig jejunum were cannulated and the intraluminal pressure recorded with a transducer, while movements were recorded with a video camera. Peristaltic threshold was the oral pressure that evoked four consecutive propulsive contractions. The nutrients decanoic acid (1 mM), l-phenylalanine (50 mM), or the micronutrient FeSO4 (1 mM) were infused intraluminally. We also tested the effect of FeSO4 on electrochemically detected serotonin (5-HT, 5-hydroxytryptamine) released from in vitro tissues, both at rest and following mechanical stimulation. KEY RESULTS The jejuna peristaltic threshold was significantly decreased by all three nutrients: FeSO4 : 31 ± 2-23 ± 3 mmH2 O; decanoic acid: 27 ± 2-14 ± 2 mmH2 O; and l-phenylalanine: 30 ± 3-14 ± 3mmH2 O. Of the three, only decanoic acid induced segmentation, while FeSO4 inhibited decanoic acid-induced segmentation. Resting 5-HT release was increased by FeSO4 (128% of control), but mechanically evoked 5-HT release was reduced (70% of control). CONCLUSIONS & INFERENCES These data suggest that some luminal effects of inorganic iron on jejunal motility could be mediated through a pathway involving altered release of 5-HT. A better understanding of the interaction between luminal iron and 5-HT containing enterochromaffin cells could improve iron supplementation strategies, thus reducing side effects.
Collapse
Affiliation(s)
- K Wang
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dockray GJ. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol 2013; 13:954-8. [DOI: 10.1016/j.coph.2013.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023]
|
30
|
Grasset E, Reichardt F, Garret C, Waget A, Tercé F, Collet X, Burcelin R. O17 La sérotonine intestinale, régulateur de la sécrétion de GLP-1. NUTR CLIN METAB 2013. [DOI: 10.1016/s0985-0562(13)70289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Browning KN. Modulation of gastrointestinal vagal neurocircuits by hyperglycemia. Front Neurosci 2013; 7:217. [PMID: 24324393 PMCID: PMC3840437 DOI: 10.3389/fnins.2013.00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
32
|
Abstract
The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|
33
|
CaMKII is essential for the function of the enteric nervous system. PLoS One 2012; 7:e44426. [PMID: 22952977 PMCID: PMC3432132 DOI: 10.1371/journal.pone.0044426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species. Methodology/Principal Findings CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue. Conclusion ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.
Collapse
|
34
|
Bertrand RL, Senadheera S, Tanoto A, Tan KL, Howitt L, Chen H, Murphy TV, Sandow SL, Liu L, Bertrand PP. Serotonin availability in rat colon is reduced during a Western diet model of obesity. Am J Physiol Gastrointest Liver Physiol 2012; 303:G424-34. [PMID: 22595993 DOI: 10.1152/ajpgi.00048.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Constipation and slowed transit are associated with diet-induced obesity, although the mechanisms by which this occurs are unclear. Enterochromaffin (EC) cells within the intestinal epithelium respond to mechanical stimulation with the release of serotonin [5-hydroxytryptamine (5-HT)], which promotes transit. Thus our aim was to characterize 5-HT availability in the rat colon of a physiologically relevant model of diet-induced obesity. EC cell numbers were determined immunohistochemically in chow-fed (CF) and Western diet-fed (WD) rats, while electrochemical methods were used to measure mechanically evoked (peak) and steady-state (SS) 5-HT levels. Fluoxetine was used to block the 5-HT reuptake transporter (SERT), and the levels of mRNA for tryptophan hydroxylase 1 and SERT were determined by quantitative PCR, and SERT protein was determined by Western blot. In WD rats, there was a significant decrease in the total number of EC cells per crypt (0.86 ± 0.06 and 0.71 ± 0.05 in CF and WD, respectively), which was supported by a reduction in the levels of 5-HT in WD rats (2.9 ± 1.0 and 10.5 ± 2.6 μM at SS and peak, respectively) compared with CF rats (7.3 ± 0.4 and 18.4 ± 3.4 μM at SS and peak, respectively). SERT-dependent uptake of 5-HT was unchanged, which was supported by a lack of change in SERT protein levels. In WD rats, there was no change in tryptophan hydroxylase 1 mRNA but an increase in SERT mRNA. In conclusion, our data show that foods typical of a WD are associated with decreased 5-HT availability in rat colon. Decreased 5-HT availability is driven primarily by a reduction in the numbers and/or 5-HT content of EC cells, which are likely to be associated with decreased intestinal motility in vivo.
Collapse
Affiliation(s)
- R L Bertrand
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roosen L, Boesmans W, Dondeyne M, Depoortere I, Tack J, Vanden Berghe P. Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity. J Physiol 2012; 590:4321-33. [PMID: 22711954 DOI: 10.1113/jphysiol.2012.231134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although hunger and satiety are mainly centrally regulated, there is convincing evidence that also gastrointestinal motor activity and hormone fluctuations significantly contribute to appetite signalling. In this study, we investigated how motility and enteric nerve activity are set by fasting and feeding. By means of video-imaging, we tested whether peristaltic activity differs in ex vivo preparations from fasted and re-fed guinea pigs. Ca(2+) imaging was used to investigate whether the feeding state directly alters neuronal activity, either occurring spontaneously or evoked by (an)orexigenic signalling molecules. We found that pressure-induced (2 cmH(2)O) peristaltic activity occurs at a higher frequency in ileal segments from re-fed animals (re-fed versus fasted, 6.12 ± 0.22 vs. 4.84 ± 0.52 waves min(-1), P = 0.028), even in vitro hours after death. Myenteric neuronal responses were tuned to the feeding status, since neurons in tissues from re-fed animals remained hyper-responsive to high K(+)-evoked depolarization (P < 0.001) and anorexigenic molecules (P < 0.001), while being less responsive to orexigenic ghrelin (P = 0.013). This illustrates that the feeding status remains ‘imprinted' ex vivo. We were able to reproduce this feeding state-related memory in vitro and found humoral feeding state-related factors to be implicated. Although the molecular link with hyperactivity is not entirely elucidated yet, glucose-dependent pathways are clearly involved in tuning neuronal excitability. We conclude that a bistable memory system that tunes neuronal responses to fasting and re-feeding is present in the enteric nervous system, increasing responses to depolarization and anorexigenic molecules in the re-fed state, while decreasing responses to orexigenic ghrelin. Unlike the hypothalamus, where specific cell populations sensitive to either orexigenic or anorexigenic molecules exist, the enteric feeding state-related memory system is present at the functional level of receptor signalling rather than confined to specific neuron subtypes.
Collapse
Affiliation(s)
- Lina Roosen
- Laboratory for Enteric NeuroScience (LENS), Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
37
|
Barcelona S, Menegaz D, Díez-Sampedro A. Mouse SGLT3a generates proton-activated currents but does not transport sugar. Am J Physiol Cell Physiol 2012; 302:C1073-82. [DOI: 10.1152/ajpcell.00436.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium-glucose cotransporters (SGLTs) are secondary active transporters belonging to the SLC5 gene family. SGLT1, a well-characterized member of this family, electrogenically transports glucose and galactose. Human SGLT3 (hSGLT3), despite sharing a high amino acid identity with human SGLT1 (hSGLT1), does not transport sugar, although functions as a sugar sensor. In contrast to humans, two different genes in mice and rats code for two different SGLT3 proteins, SGLT3a and SGLT3b. We previously cloned and characterized mouse SGLT3b (mSGLT3b) and showed that, while it does transport sugar like SGLT1, it likely functions as a physiological sugar sensor like hSGLT3. In this study, we cloned mouse SGLT3a (mSGLT3a) and characterized it by expressing it in Xenopus laevis oocytes and performing electrophysiology and sugar transport assays. mSGLT3a did not transport sugar, and sugars did not induce currents at pH 7.4, though acidic pH induced inward currents that increased in the presence of sugar. Moreover, mutation of residue 457 from glutamate to glutamine resulted in a Na+-dependent transport of sugar that was inhibited by phlorizin. To corroborate our results in oocytes, we expressed and characterized mSGLT3a in mammalian cells and confirmed our findings. In addition, we cloned, expressed, and characterized rat SGLT3a in oocytes and found characteristics similar to mSGLT3a. In summary, acidic pH induces currents in mSGLT3a, and sugar-induced currents are increased at acidic pH, but wild-type SGLT3a does not transport sugar.
Collapse
Affiliation(s)
- Stephanie Barcelona
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Danusa Menegaz
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ana Díez-Sampedro
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
38
|
Abstract
Ingestion of a meal triggers a range of physiological responses both within and outside the gut, and results in the remote modulation of appetite and glucose homeostasis. Luminal contents are sensed by specialised chemosensitive cells scattered throughout the intestinal epithelium. These enteroendocrine and tuft cells make direct contact with the gut lumen and release a range of chemical mediators, which can either act in a paracrine fashion interacting with neighbouring cells and nerve endings or as classical circulating hormones. At the molecular level, the chemosensory machinery involves multiple and complex signalling pathways including activation of G-protein-coupled receptors and solute carrier transporters. This chapter will discuss our current knowledge of the molecular mechanisms underlying intestinal chemosensation with a particular focus on the relatively well-characterised nutrient-triggered secretion from the enteroendocrine system.
Collapse
Affiliation(s)
- Gwen Tolhurst
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
39
|
Lee J, Cummings BP, Martin E, Sharp JW, Graham JL, Stanhope KL, Havel PJ, Raybould HE. Glucose sensing by gut endocrine cells and activation of the vagal afferent pathway is impaired in a rodent model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2011; 302:R657-66. [PMID: 22160540 DOI: 10.1152/ajpregu.00345.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 μmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|