1
|
Nozaki M, Otomo A, Mitsui S, Ono S, Shirakawa R, Chen Y, Hama Y, Sato K, Chen X, Suzuki T, Shang HF, Hadano S. SQSTM1 L341V variant that is linked to sporadic ALS exhibits impaired association with MAP1LC3 in cultured cells. eNeurologicalSci 2020; 22:100301. [PMID: 33319079 PMCID: PMC7723791 DOI: 10.1016/j.ensci.2020.100301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/19/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are genetically, pathologically and clinically-related progressive neurodegenerative diseases. Thus far, several SQSTM1 variations have been identified in patients with ALS and FTD. However, it remains unclear how SQSTM1 variations lead to neurodegeneration. To address this issue, we investigated the effects of ectopic expression of SQSTM1 variants, which were originally identified in Japanese and Chinese sporadic ALS patients, on the cellular viability, their intracellular distributions and the autophagic activity in cultured cells. Expression of SQSTM1 variants in PC12 cells exerted no observable effects on viabilities under both normal and oxidative-stressed conditions. Further, although expression of SQSTM1 variants in PC12 cells and Sqstm1-deficient mouse embryonic fibroblasts resulted in the formation of numerous granular SQSTM1-positive structures, called SQSTM1-bodies, their intracellular distributions were indistinguishable from those of wild-type SQSTM1. Nonetheless, quantitative colocalization analysis of SQSTM1-bodies with MAP1LC3 demonstrated that among ALS-linked SQSTM1 variants, L341V variant showed the significantly lower level of colocalization. However, there were no consistent effects on the autophagic activities among the variants examined. These results suggest that although some ALS-linked SQSTM1 variations have a discernible effect on the intracellular distribution of SQSTM1-bodies, the impacts of other variations on the cellular homeostasis are rather limited at least under transiently-expressed conditions. Ectopic expression of ALS-linked SQSTM1 variants does not affect cell viability. Ectopic expression of SQSTM1 in cells results in formation of SQSTM1-body. Ectopic expression of SQSTM1 in cells has marginal impacts on the autophagic activity. SQSTM1L341V variant exhibits impaired association with LC3 in cultured cells.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- Amyotrophic lateral sclerosis (ALS)
- Autophagy
- CCCP, carbonyl cyanide 3-chlorophenylhydrazone
- CI, complete protease inhibitor
- CQ, chloroquine
- DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride
- DMEM, Dulbecco's Modified Eagle's medium
- DTT, dithiothreitol
- EBSS, Earle's Balanced Salt Solution
- Frontotemporal dementia (FTD)
- GST, glutathione S-transferase
- HA, hemagglutinin
- HRP, horseradish peroxidase
- IPTG, isopropyl thio-beta-D-galactoside
- MAP1LC3/LC3
- MEF, mouse embryonic fibroblast
- MND, motor neuron disease
- NGS, normal goat serum
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- PVDF, polyvinylidene difluoride
- RT, room temperature
- SBMA, spinal and bulbar muscular atrophy
- SDS, sodium dodecyl sulfate
- SQSTM1
- SQSTM1/p62-body
- WT, wild-type
Collapse
Affiliation(s)
- Masahisa Nozaki
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Shun Mitsui
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Suzuka Ono
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Ryohei Shirakawa
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yutaro Hama
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kai Sato
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - XuePing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Toshiyasu Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
- Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa 259-1193, Japan
- Corresponding author at: Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
2
|
Aggresome formation and liquid-liquid phase separation independently induce cytoplasmic aggregation of TAR DNA-binding protein 43. Cell Death Dis 2020; 11:909. [PMID: 33097688 PMCID: PMC7585435 DOI: 10.1038/s41419-020-03116-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cytoplasmic inclusion of TAR DNA-binding protein 43 (TDP-43) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and a subtype of frontotemporal lobar degeneration (FTLD). Recent studies have suggested that the formation of cytoplasmic TDP-43 aggregates is dependent on a liquid-liquid phase separation (LLPS) mechanism. However, it is unclear whether TDP-43 pathology is induced through a single intracellular mechanism such as LLPS. To identify intracellular mechanisms responsible for TDP-43 aggregation, we established a TDP-43 aggregation screening system using a cultured neuronal cell line stably expressing EGFP-fused TDP-43 and a mammalian expression library of the inherited ALS/FTLD causative genes, and performed a screening. We found that microtubule-related proteins (MRPs) and RNA-binding proteins (RBPs) co-aggregated with TDP-43. MRPs and RBPs sequestered TDP-43 into the cytoplasmic aggregates through distinct mechanisms, such as microtubules and LLPS, respectively. The MRPs-induced TDP-43 aggregates were co-localized with aggresomal markers and dependent on histone deacetylase 6 (HDAC6), suggesting that aggresome formation induced the co-aggregation. However, the MRPs-induced aggregates were not affected by 1,6-hexanediol, an LLPS inhibitor. On the other hand, the RBPs-induced TDP-43 aggregates were sensitive to 1,6-hexanediol, but not dependent on microtubules or HDAC6. In sporadic ALS patients, approximately half of skein-like TDP-43 inclusions were co-localized with HDAC6, but round and granular type inclusion were not. Moreover, HDAC6-positive and HDAC6-negative inclusions were found in the same ALS patient, suggesting that the two distinct pathways are both involved in TDP-43 pathology. Our findings suggest that at least two distinct pathways (i.e., aggresome formation and LLPS) are involved in inducing the TDP-43 pathologies.
Collapse
|
3
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
4
|
Shen L, Wang C, Chen L, Leung KL, Lo E, Lakso M, Wong G. TDP-1/TDP-43 potentiates human α-Synuclein (HASN) neurodegeneration in Caenorhabditis elegans. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165876. [PMID: 32531261 DOI: 10.1016/j.bbadis.2020.165876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
TAR DNA binding protein (TDP-43) is a DNA/RNA binding protein whose pathological role in amyotrophic lateral sclerosis (ALS) and frontal temporal lobe dementia (FTLD) via formation of protein aggregates is well established. In contrast, knowledge concerning its interactions with other neuropathological aggregating proteins is poorly understood. Human α-synuclein (HASN) elicits dopaminergic neuron degeneration via protein aggregation in Parkinson's disease. HASN protein aggregates are also found in TDP-43 lesions and colocalize in Lewy Body Dementia (LBD). To better understand the interactions of TDP-43 and HASN, we investigated the effects of genetic deletion of tdp-1, the Caenorhabditis elegans ortholog of human TDP-43, as well as overexpression of TDP-43, in transgenic models overexpressing HASNWT and HASNA53T. Tdp-1 deletion improved the posture, movement, and developmental delay observed in transgenic animals pan-neuronally overexpressing HASNA53T, and attenuated the loss and impairment of dopaminergic neurons caused by HASNA53T or HASNWT overexpression. Tdp-1 deletion also led to a decrease in protein level, mRNA level and aggregate formation of HASN in living animals. RNA-seq studies suggested that tdp-1 supports expression of lysosomal genes and decreases expression of genes involved in heat shock. RNAi demonstrated that heat shock proteins can mediate HASN neuropathology. Co-overexpression of both human TDP-43 and HASNWT resulted in locomotion deficits, shorter lifespan, and more severe dopaminergic neuron impairments compared to single transgenes. Our results suggest TDP-1/TDP-43 potentiates HASN mediated neurodegeneration in C. elegans. This study indicates a multifunctional role for TDP-1/TDP-43 in neurodegeneration involving HASN.
Collapse
Affiliation(s)
- Linjing Shen
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Changliang Wang
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou 515063, China; Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou 515063, China
| | - Ka Lai Leung
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Esther Lo
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Merja Lakso
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China
| | - Garry Wong
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa 999078, Macau SAR, China.
| |
Collapse
|
5
|
Geser F, Fellner L, Haybaeck J, Wenning GK. Development of neurodegeneration in amyotrophic lateral sclerosis: from up or down? J Neural Transm (Vienna) 2020; 127:1097-1105. [PMID: 32500222 DOI: 10.1007/s00702-020-02213-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease associated with neurodegeneration and intracellular pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) positive inclusions. The various clinical symptoms, such as motor disorders and cognitive impairment, reflect the degeneration of certain areas of the nervous system. Since the discovery of the significance of pathological TDP-43 for human disease including ALS, there has been an increasing number of studies reporting on the distribution and severity of neurodegeneration. These have rekindled the old debate about whether the first or second motor neuron is the primary site of degeneration in ALS. To shed light on this question, the following is a review of the relevant neuropathological studies.
Collapse
Affiliation(s)
- F Geser
- Department of Neurology, Hegau-Bodensee-Klinikum Singen, Virchowstr. 10, 78224, Singen (Hohentwiel), Germany.
| | - L Fellner
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Neuropathology, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - G K Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Chen HJ, Topp SD, Hui HS, Zacco E, Katarya M, McLoughlin C, King A, Smith BN, Troakes C, Pastore A, Shaw CE. RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy. Brain 2019; 142:3753-3770. [PMID: 31605140 PMCID: PMC6885686 DOI: 10.1093/brain/awz313] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents with focal muscle weakness due to motor neuron degeneration that becomes generalized, leading to death from respiratory failure within 3-5 years from symptom onset. Despite the heterogeneity of aetiology, TDP-43 proteinopathy is a common pathological feature that is observed in >95% of ALS and tau-negative frontotemporal dementia (FTD) cases. TDP-43 is a DNA/RNA-binding protein that in ALS and FTD translocates from being predominantly nuclear to form detergent-resistant, hyperphosphorylated aggregates in the cytoplasm of affected neurons and glia. Mutations in TARDBP account for 1-4% of all ALS cases and almost all arise in the low complexity C-terminal domain that does not affect RNA binding and processing. Here we report an ALS/FTD kindred with a novel K181E TDP-43 mutation that is located in close proximity to the RRM1 domain. To offer predictive gene testing to at-risk family members, we undertook a series of functional studies to characterize the properties of the mutation. Spectroscopy studies of the K181E protein revealed no evidence of significant misfolding. Although it is unable to bind to or splice RNA, it forms abundant aggregates in transfected cells. We extended our study to include other ALS-linked mutations adjacent to the RRM domains that also disrupt RNA binding and greatly enhance TDP-43 aggregation, forming detergent-resistant and hyperphosphorylated inclusions. Lastly, we demonstrate that K181E binds to, and sequesters, wild-type TDP-43 within nuclear and cytoplasmic inclusions. Thus, we demonstrate that TDP-43 mutations that disrupt RNA binding greatly enhance aggregation and are likely to be pathogenic as they promote wild-type TDP-43 to mislocalize and aggregate acting in a dominant-negative manner. This study highlights the importance of RNA binding to maintain TDP-43 solubility and the role of TDP-43 aggregation in disease pathogenesis.
Collapse
Affiliation(s)
- Han-Jou Chen
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Simon D Topp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Ho Sang Hui
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Elsa Zacco
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Malvika Katarya
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Conor McLoughlin
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Andrew King
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Claire Troakes
- MRC London Neurodegenerative Diseases Brain Bank, De Crespigny Park, SE5 8AF, London, UK
| | - Annalisa Pastore
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 125 Coldharbour Lane, Camberwell, SE5 9NU, London, UK
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Takeda T, Iijima M, Shimizu Y, Yoshizawa H, Miyashiro M, Onizuka H, Yamamoto T, Nishiyama A, Suzuki N, Aoki M, Shibata N, Kitagawa K. p.N345K mutation in
TARDBP
in a patient with familial amyotrophic lateral sclerosis: An autopsy case. Neuropathology 2019; 39:286-293. [DOI: 10.1111/neup.12559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Takahiro Takeda
- Department of NeurologyTokyo Women's Medical University Tokyo Japan
- Department of Neurology, National Hospital OrganizationChibahigashi National Hospital Chiba Japan
| | - Mutsumi Iijima
- Department of NeurologyTokyo Women's Medical University Tokyo Japan
| | - Yuko Shimizu
- Department of NeurologyTokyo Women's Medical University Tokyo Japan
| | | | - Mayu Miyashiro
- Faculty of MedicineTokyo Women's Medical University Tokyo Japan
| | - Hiromi Onizuka
- Department of PathologyTokyo Women's Medical University Tokyo Japan
| | - Tomoko Yamamoto
- Department of PathologyTokyo Women's Medical University Tokyo Japan
| | - Ayumi Nishiyama
- Department of NeurologyTohoku University School of Medicine Sendai Japan
| | - Naoki Suzuki
- Department of NeurologyTohoku University School of Medicine Sendai Japan
| | - Masashi Aoki
- Department of NeurologyTohoku University School of Medicine Sendai Japan
| | - Noriyuki Shibata
- Department of PathologyTokyo Women's Medical University Tokyo Japan
| | - Kazuo Kitagawa
- Department of NeurologyTokyo Women's Medical University Tokyo Japan
| |
Collapse
|
8
|
Ren Y, Liu W, Li Y, Sun B, Li Y, Yang F, Wang H, Li M, Cui F, Huang X. Cutaneous somatic and autonomic nerve TDP-43 deposition in amyotrophic lateral sclerosis. J Neurol 2018; 265:1753-1763. [PMID: 29804146 DOI: 10.1007/s00415-018-8897-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the involvement of the sensory and autonomic nervous system in amyotrophic lateral sclerosis (ALS) and to determine whether TDP-43/pTDP-43 deposits in skin nerve fibers signify a valuable biomarker for ALS. METHODS Eighteen patients with ALS and 18 age- and sex-matched control subjects underwent physical examinations, in addition to donating skin biopsies from the distal leg. The density of epidermal, Meissner's corpuscle (MC), sudomotor, and pilomotor nerve fibers were measured. Confocal microscopy was used to determine the cutaneous somatic and autonomic nerve fiber density and TDP-43/pTDP-43 deposition. RESULTS Intraepidermal nerve fiber density (IENFD) was reduced in individuals with ALS (P < 0.001). MC density (MCD) (P = 0.001), sweat gland nerve fiber density (SGNFD) (P < 0.001), and pilomotor nerve fiber density (PNFD) (P < 0.001) were all reduced in ALS patients. The SGNFD correlated with the small-fiber neuropathy Symptoms Inventory Questionnaire (SFN-SIQ), VAS and age. The SFN-SIQ was higher in ALS with sensory symptoms than without sensory symptoms (P = 0.000). Furthermore, the SFN-SIQ was higher in ALS with autonomic symptoms than without autonomic symptoms (P = 0.002). SFN-SIQ was higher in ALS patients that were pTDP-43 positive than pTDP-43 negative (P = 0.04), respectively. CONCLUSIONS We established in the peripheral nervous system that higher SFN-SIQ and VAS was involved in ALS, indicating the loss of SGNF. The deposition of TDP-43/pTDP-43 in ALS nerve fibers may indicate an important role in the underlying pathogenesis of ALS. This observation might be used as a potential biomarker for diagnosing ALS.
Collapse
Affiliation(s)
- Yuting Ren
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenxiu Liu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yifan Li
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Bo Sun
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yanran Li
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fei Yang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Hongfen Wang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mao Li
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Fang Cui
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xusheng Huang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
9
|
Purice MD, Taylor JP. Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 2018; 12:326. [PMID: 29867335 PMCID: PMC5962818 DOI: 10.3389/fnins.2018.00326] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Following years of rapid progress identifying the genetic underpinnings of amyotrophic lateral sclerosis (ALS) and related diseases such as frontotemporal dementia (FTD), remarkable consistencies have emerged pointing to perturbed biology of heterogeneous nuclear ribonucleoproteins (hnRNPs) as a central driver of pathobiology. To varying extents these RNA-binding proteins are deposited in pathological inclusions in affected tissues in ALS and FTD. Moreover, mutations in hnRNPs account for a significant number of familial cases of ALS and FTD. Here we review the normal function and potential pathogenic contribution of TDP-43, FUS, hnRNP A1, hnRNP A2B1, MATR3, and TIA1 to disease. We highlight recent evidence linking the low complexity sequence domains (LCDs) of these hnRNPs to the formation of membraneless organelles and discuss how alterations in the dynamics of these organelles could contribute to disease. In particular, we discuss the various roles of disease-associated hnRNPs in stress granule assembly and disassembly, and examine the emerging hypothesis that disease-causing mutations in these proteins lead to accumulation of persistent stress granules.
Collapse
Affiliation(s)
- Maria D Purice
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| |
Collapse
|
10
|
Chang JC, Morton DB. Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects. PLoS One 2017; 12:e0180828. [PMID: 28686708 PMCID: PMC5501610 DOI: 10.1371/journal.pone.0180828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to replace the endogenous TDP-43 orthologue with wild type or mutant human TDP-43(hTDP-43). In contrast to other models, these flies express both mutant and wild type hTDP-43 at similar levels to those of the endogenous gene and importantly, no age-related TDP-43 accumulation observed among all the transgenic fly lines. Immunoprecipitation of TDP-43 showed that flies with hTDP-43 mutations had increased levels of ubiquitination and phosphorylation of the hTDP-43 protein. Furthermore, histologically, flies expressing hTDP-43 M337V showed global, robust neuronal staining for phospho-TDP. All three lines: wild type hTDP-43, -G294A and -M337V were homozygous viable, with no defects in development, life span or behaviors observed. The primary behavioral defect was that flies expressing either hTDP-43 G294A or M337V showed a faster decline with age in negative geotaxis. Together, these observations implied that neurons could handle these TDP-43 mutations by phosphorylation- and ubiquitin-dependent proteasome systems, even in a background without the wild type TDP-43. Our findings suggest that these two specific TDP-43 mutations are not inherently toxic, but may require additional environmental or genetic factors to affect longevity or survival.
Collapse
Affiliation(s)
- Jer-Cherng Chang
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
| | - David B. Morton
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
TDP-43 is a dimeric nuclear protein that plays a central role in RNA metabolism. In recent years, this protein has become a focal point of research in the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, as pathognomonic inclusions within affected neurons contain post-translationally modified TDP-43. A key question in TDP-43 research involves determining the mechanisms and triggers that cause TDP-43 to form pathological aggregates. This review gives a brief overview of the physiological and pathological roles of TDP-43 and focuses on the structural features of its protein domains and how they may contribute to normal protein function and to disease. A special emphasis is placed on the C-terminal prion-like region thought to be implicated in pathology, as it is where nearly all ALS/FTD-associated mutations reside. Recent structural studies of this domain revealed its crucial role in the formation of phase-separated liquid droplets through a partially populated α-helix. This new discovery provides further support for the theory that liquid droplets such as stress granules may be precursors to pathological aggregates, linking environmental effects such as stress to the potential etiology of the disease. The transition of TDP-43 among soluble, droplet, and aggregate phases and the implications of these transitions for pathological aggregation are summarized and discussed.
Collapse
Affiliation(s)
- Yulong Sun
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G1L7, Canada
| | - Avijit Chakrabartty
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5G1L7, Canada.,Department of Biochemistry, University of Toronto , Toronto, Ontario M5G1L7, Canada
| |
Collapse
|
12
|
Okamoto K, Fujita Y, Hoshino E, Tamura Y, Fukuda T, Hasegawa M, Takatama M. An autopsy case of familial amyotrophic lateral sclerosis with aTARDBPQ343R mutation. Neuropathology 2015; 35:462-8. [DOI: 10.1111/neup.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Koichi Okamoto
- Department of Neurology; Geriatrics Research Institute and Hospital; Maebashi Japan
| | - Yukio Fujita
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Eri Hoshino
- Department of Neurology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Yuhji Tamura
- Department of Internal Medicine; Kiboukan Hospital; Takasaki Japan
| | - Toshio Fukuda
- Department of Histopathology and Cytopathology; Gunma University Graduate School of Health Sciences; Maebashi Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Masamitsu Takatama
- Department of Internal Medicine; Geriatrics Research Institute and Hospital; Maebashi Japan
| |
Collapse
|
13
|
Sabatelli M, Zollino M, Conte A, Del Grande A, Marangi G, Lucchini M, Mirabella M, Romano A, Piacentini R, Bisogni G, Lattante S, Luigetti M, Rossini PM, Moncada A. Primary fibroblasts cultures reveal TDP-43 abnormalities in amyotrophic lateral sclerosis patients with and without SOD1 mutations. Neurobiol Aging 2015; 36:2005.e5-2005.e13. [PMID: 25792239 DOI: 10.1016/j.neurobiolaging.2015.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a major component of the pathologic inclusions observed in the motor neurons of amyotrophic lateral sclerosis (ALS) patients. We examined TDP-43 expression in primary fibroblasts cultures from 22 ALS patients, including cases with SOD1 (n = 4), TARDBP (n = 4), FUS (n = 2), and C9ORF72 (n = 3) mutations and 9 patients without genetic defect. By using a phosphorylation-independent antibody, 15 patients showed notable alterations of TDP-43 level in the nuclear or cytoplasmic compartments. In particular, a marked accumulation of TDP-43 was observed in the cytoplasm of all cases with C9ORF72 and TARDBP mutations, 1 patient with FUS mutation and 3 patients without genetic defect. Patients with SOD1 mutations revealed a significant reduction of TDP-43 in the nuclei without cytoplasmic mislocalization. These changes were associated with the presence of truncated and phosphorylated TDP-43 species. Our results show that fibroblasts recapitulate some of hallmark TDP-43 abnormalities observed in neuronal cells. The reduction of full-length TDP-43 level in mutant SOD1 cells indicates that at least some SOD1 mutations alter TDP-43 metabolism.
Collapse
Affiliation(s)
- Mario Sabatelli
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Marcella Zollino
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Amelia Conte
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giuseppe Marangi
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Lucchini
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Angela Romano
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberto Piacentini
- Istituto di Fisiologia Umana, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Bisogni
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Lattante
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Luigetti
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS S. Raffaele-Pisana and Casa di Cura S Raffaele, Cassino, Italy
| | - Alice Moncada
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Buratti E. Functional Significance of TDP-43 Mutations in Disease. ADVANCES IN GENETICS 2015; 91:1-53. [DOI: 10.1016/bs.adgen.2015.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Galloway JN, Shaw C, Yu P, Parghi D, Poidevin M, Jin P, Nelson DL. CGG repeats in RNA modulate expression of TDP-43 in mouse and fly models of fragile X tremor ataxia syndrome. Hum Mol Genet 2014; 23:5906-15. [PMID: 24986919 DOI: 10.1093/hmg/ddu314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Determining the molecular mechanism(s) leading to Purkinje neuron loss in the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS) is limited by the complex morphology of this cell type. Purkinje neurons are notoriously difficult to isolate and maintain in culture presenting considerable difficultly to identify molecular changes in response to expanded CGG repeat (rCGG)-containing mRNA that induces neurotoxicity in FXTAS. Several studies have uncovered a number of RNA-binding proteins involved in translation that aberrantly interact with the CGG-containing RNA; however, whether these interactions alter the translational profile of cells has not been investigated. Here we employ bacTRAP translational profiling to demonstrate that Purkinje neurons ectopically expressing 90 CGG repeats exhibit a dramatic change in their translational profile even prior to the onset of rCGG-induced phenotypes. This approach identified ∼500 transcripts that are differentially associated with ribosomes in r(CGG)₉₀-expressing mice. Functional annotation cluster analysis revealed broad ontologies enriched in the r(CGG)₉₀ list, including RNA binding and response to stress. Intriguingly, a transcript for the Tardbp gene, implicated in a number of other neurodegenerative disorders, exhibits altered association with ribosomes in the presence of r(CGG)₉₀ repeats. We therefore tested and showed that reduced association of Tardbp mRNA with the ribosomes results in a loss of TDP-43 protein expression in r(CGG)₉₀-expressing Purkinje neurons. Furthermore, we showed that TDP-43 could modulate the rCGG repeat-mediated toxicity in a Drosophila model that we developed previously. These findings together suggest that translational dysregulation may be an underlying mechanism of rCGG-induced neurotoxicity in FXTAS.
Collapse
Affiliation(s)
| | - Chad Shaw
- Department of Human and Molecular Genetics and
| | - Peng Yu
- Department of Human and Molecular Genetics and
| | - Deena Parghi
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA and
| | - Mickael Poidevin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Nelson
- Interdepartmental Program in Cell and Molecular Biology, Department of Human and Molecular Genetics and
| |
Collapse
|
16
|
Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2014; 111:E1121-9. [PMID: 24616503 DOI: 10.1073/pnas.1322641111] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease that causes motor neuron degeneration, progressive motor dysfunction, paralysis, and death. Although multiple causes have been identified for this disease, >95% of ALS cases show aggregation of transactive response DNA binding protein (TDP-43) accompanied by its nuclear depletion. Therefore, the TDP-43 pathology may be a converging point in the pathogenesis that originates from various initial triggers. The aggregation is thought to result from TDP-43 misfolding, which could generate cellular toxicity. However, the aggregation as well as the nuclear depletion could also lead to a partial loss of TDP-43 function or TDP-43 dysfunction. To investigate the impact of TDP-43 dysfunction, we generated a transgenic mouse model for a partial loss of TDP-43 function using transgenic RNAi. These mice show ubiquitous transgene expression and TDP-43 knockdown in both the periphery and the central nervous system (CNS). Strikingly, these mice develop progressive neurodegeneration prominently in cortical layer V and spinal ventral horn, motor dysfunction, paralysis, and death. Furthermore, examination of splicing patterns of TDP-43 target genes in human ALS revealed changes consistent with TDP-43 dysfunction. These results suggest that the CNS, particularly motor neurons, possess a heightened vulnerability to TDP-43 dysfunction. Additionally, because TDP-43 knockdown predominantly occur in astrocytes in the spinal cord of these mice, our results suggest that TDP-43 dysfunction in astrocytes is an important driver for motor neuron degeneration and clinical phenotypes of ALS.
Collapse
|
17
|
Disease-associated mutations of TDP-43 promote turnover of the protein through the proteasomal pathway. Mol Neurobiol 2014; 50:1049-58. [PMID: 24477737 DOI: 10.1007/s12035-014-8644-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/13/2014] [Indexed: 12/12/2022]
Abstract
TAR DNA-binding protein (TDP-43) is a major component of most ubiquitin-positive neuronal and glial inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of missense mutations in the TARDBP gene have been identified in patients with familial and sporadic ALS, as well as familial FTLD with ALS. In the diseased states, TDP-43 proteins exhibit characteristic alterations, including truncation, abnormal phosphorylation, and altered subcellular distribution. However, the mechanisms by which TDP-43 mutations induce neurodegeneration remain unclear at present. In the current study, we analyzed protein turnover and subcellular distribution of wild-type TDP-43 and two disease-associated mutants (G298S and A382T) in human neuroblastoma SH-SY5Y cells stably expressing TDP-43 with a C-terminal tag. Cycloheximide chase experiments revealed more rapid turnover of TDP-43 mutant proteins than their wild-type counterpart. The decrease in the TDP-43 level after cycloheximide treatment was partially recovered upon co-treatment with the proteasome inhibitor, epoxomicin, but not the lysosomotropic agent, chloroquine, suggesting involvement of the proteasomal pathway in TDP-43 degradation. Analysis of the subcellular distribution of TDP-43 revealed predominant localization in the nuclear fraction, whereas the relative level in the cytoplasm remained unaltered in cells expressing either mutant protein, compared with wild-type protein. Our results suggest that higher turnover of disease-associated mutant TDP-43 proteins through the ubiquitin proteasome system is pathogenetically relevant and highlight the significance of proteolysis in the pathogenetic mechanism of TDP-43 proteinopathy.
Collapse
|
18
|
Homma T, Nagaoka U, Kawata A, Mochizuki Y, Kawakami H, Maruyama H, Matsubara S, Komori T. Neuropathological features of Japanese familial amyotrophic lateral sclerosis with p.N352S mutation inTARDBP. Neuropathol Appl Neurobiol 2014; 40:231-6. [DOI: 10.1111/nan.12090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Affiliation(s)
- T. Homma
- Department of Laboratory Medicine and Pathology (Neuropathology); Tokyo Metropolitan Neurological Hospital; Tokyo Japan
- Department of Pathology; Saitama Medical University; Saitama Japan
| | - U. Nagaoka
- Department of Neurology; Tokyo Metropolitan Neurological Hospital; Tokyo Japan
| | - A. Kawata
- Department of Neurology; Tokyo Metropolitan Neurological Hospital; Tokyo Japan
| | - Y. Mochizuki
- Department of Laboratory Medicine and Pathology (Neuropathology); Tokyo Metropolitan Neurological Hospital; Tokyo Japan
- Department of Neurology; Tokyo Metropolitan Kita Medical and Rehabilitation Center for the Disabled; Tokyo Japan
| | - H. Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - H. Maruyama
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - S. Matsubara
- Department of Neurology; Tokyo Metropolitan Neurological Hospital; Tokyo Japan
| | - T. Komori
- Department of Laboratory Medicine and Pathology (Neuropathology); Tokyo Metropolitan Neurological Hospital; Tokyo Japan
| |
Collapse
|
19
|
Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 2013; 79:416-38. [PMID: 23931993 DOI: 10.1016/j.neuron.2013.07.033] [Citation(s) in RCA: 1320] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 12/12/2022]
Abstract
Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.
Collapse
Affiliation(s)
- Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093-0670, USA
| | | | | |
Collapse
|
20
|
Gendron TF, Rademakers R, Petrucelli L. TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis 2013; 33 Suppl 1:S35-45. [PMID: 22751173 DOI: 10.3233/jad-2012-129036] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of TAR DNA-binding protein 43 (TDP-43) as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions has defined a new class of neurodegenerative conditions: the TDP-43 proteinopathies. This breakthrough was quickly followed by mutation analysis of TARDBP, the gene encoding TDP-43. Herein, we provide a review of our previously published efforts that led to the identification of 3 TARDBP mutations (p.M337V, p.N345K, and p.I383V) in familial ALS patients, two of which were novel. With over 40 TARDBP mutations now discovered, there exists conclusive evidence that TDP-43 plays a direct role in neurodegeneration. The onus is now on researchers to elucidate the mechanisms by which mutant TDP-43 confers toxicity, and to exploit these findings to gain a better understanding of how TDP-43 contributes to the pathogenesis of disease. Our biochemical analysis of TDP-43 in ALS patient lymphoblastoid cell lines revealed a substantial increase in TDP-43 truncation products, including a ≈ 25 kDa fragment, compared to control lymphoblastoid cell lines. We discuss the putative harmful consequence of abnormal TDP-43 fragmentation, as well as highlight additional mechanisms of toxicity associated with mutant TDP-43.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
21
|
Van Langenhove T, van der Zee J, Van Broeckhoven C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012; 44:817-28. [PMID: 22420316 PMCID: PMC3529157 DOI: 10.3109/07853890.2012.665471] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 02/07/2012] [Indexed: 01/21/2023] Open
Abstract
There is increasing evidence that frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) represent a continuum of neurodegenerative diseases. FTLD is complicated by ALS in a significant proportion of patients, and neuropsychological studies have demonstrated frontotemporal dysfunction in up to 50% of ALS patients. More recently, advances in neuropathology and molecular genetics have started to disclose the biological basis for the observed clinical concurrence. TDP-43 and FUS have been discovered as key pathological proteins in both FTLD and ALS. The most recent discovery of a pathological hexanucleotide repeat expansion in the gene C9orf72 as a frequent cause of both FTLD and ALS has eventually confirmed the association of these two at first sight distinct neurodegenerative diseases. Mutations in the TARDBP, FUS, and VCP genes had previously been associated with different phenotypes of the FTLD-ALS spectrum, although in these cases one end of the spectrum predominates. Whilst on the one hand providing evidence for overlap, these discoveries have also highlighted that FTLD and ALS are etiologically diverse. In this review, we review the recent advances that support the existence of an FTLD-ALS spectrum, with particular emphasis on the molecular genetic aspect.
Collapse
Affiliation(s)
- Tim Van Langenhove
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | | | |
Collapse
|
22
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
23
|
Lee EB, Lee VMY, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2011; 13:38-50. [PMID: 22127299 DOI: 10.1038/nrn3121] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins, and in particular TAR DNA-binding protein 43 (TDP43), are central to the pathogenesis of motor neuron diseases and related neurodegenerative disorders. Studies on human tissue have implicated several possible mechanisms of disease and experimental studies are now attempting to determine whether TDP43-mediated neurodegeneration results from a gain or a loss of function of the protein. In addition, the distinct possibility of pleotropic or combined effects - in which gains of toxic properties and losses of normal TDP43 functions act together - needs to be considered.
Collapse
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 605B Stellar Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
24
|
Kryndushkin D, Shewmaker F. Modeling ALS and FTLD proteinopathies in yeast: an efficient approach for studying protein aggregation and toxicity. Prion 2011; 5:250-7. [PMID: 22052354 DOI: 10.4161/pri.17229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years there have been several reports of human neurodegenerative diseases that involve protein misfolding being modeled in the yeast Saccharomyces cerevisiae. This review summarizes recent advances in understanding the specific mechanisms underlying intracellular neuronal pathology during Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD), including SOD1, TDP-43 and FUS protein inclusions and the potential of these proteins to be involved in pathogenic prion-like mechanisms. More specifically, we focus on findings from yeast systems that offer tremendous possibilities for screening for genetic and chemical modifiers of disease-related proteotoxicity.
Collapse
Affiliation(s)
- Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | | |
Collapse
|
25
|
Onodera O, Yokoseki A, Tan CF, Ishihara T, Nishiira Y, Toyoshima Y, Kakita A, Nishizawa M, Takahashi H. [Clinical and pathological spectrum of TDP-43 associated ALS]. Rinsho Shinkeigaku 2011; 50:940-2. [PMID: 21921519 DOI: 10.5692/clinicalneurol.50.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The molecular pathogenesis of amyotrophic lateral sclerosis (ALS) is unclear. TAR DNA-binding proteins of 43 KDa (TDP-43) immunopositive cytoplasmic inclusions have been found in glia and neurons of ALS patients. The discovery of TDP-43 mutations in ALS patients indicates a direct role of TDP-43 in ALS. More than 30 mutations in the TDP-43 gene have been identified in patients with familial and sporadic ALS. ALS with a TDP-43 mutation is classified as ALS-10. The clinical features of ALS-10 are quite similar to those of sporadic ALS. Furthermore, the neuropathological findings for ALS-10, including TDP-43 immunopositive inclusions and Bunina bodies, are identical to those in sporadic ALS. Most of the mutations are located in the C-terminus of TDP-43, which may function as a binding domain of heterogeneous nuclear ribonucleoprotein. Frontotemporal lobar degeneration: FTLD and FTLD/MND (motor neuron disease) also have TDP-43 immunopositive inclusions. These disorders have been named as TDP-43 proteinopathy. However, patients with TDP-43 mutations rarely develop FTLD. Causative genes for familial FTLD and FTLD/MND are not linked to the TDP-43 gene. Thus, other factors may contribute to the TDP-43 pathology in these diseases. Further analysis is required to elucidate the molecular mechanism of ALS-10 and TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Osamu Onodera
- Department of Molecular Neuroscience, Center for Bioresource-based Researches, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|
27
|
Estes PS, Boehringer A, Zwick R, Tang JE, Grigsby B, Zarnescu DC. Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Hum Mol Genet 2011; 20:2308-21. [PMID: 21441568 DOI: 10.1093/hmg/ddr124] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding protein TDP-43 has been linked to amyotrophic lateral sclerosis (ALS) both as a causative locus and as a marker of pathology. With several missense mutations being identified within TDP-43, efforts have been directed towards generating animal models of ALS in mouse, zebrafish, Drosophila and worms. Previous loss of function and overexpression studies have shown that alterations in TDP-43 dosage recapitulate hallmark features of ALS pathology, including neuronal loss and locomotor dysfunction. Here we report a direct in vivo comparison between wild-type and A315T mutant TDP-43 overexpression in Drosophila neurons. We found that when expressed at comparable levels, wild-type TDP-43 exerts more severe effects on neuromuscular junction architecture, viability and motor neuron loss compared with the A315T allele. A subset of these differences can be compensated by higher levels of A315T expression, indicating a direct correlation between dosage and neurotoxic phenotypes. Interestingly, larval locomotion is the sole parameter that is more affected by the A315T allele than wild-type TDP-43. RNA interference and genetic interaction experiments indicate that TDP-43 overexpression mimics a loss-of-function phenotype and suggest a dominant-negative effect. Furthermore, we show that neuronal apoptosis does not require the cytoplasmic localization of TDP-43 and that its neurotoxicity is modulated by the proteasome, the HSP70 chaperone and the apoptosis pathway. Taken together, our findings provide novel insights into the phenotypic consequences of the A315T TDP-43 missense mutation and suggest that studies of individual mutations are critical for elucidating the molecular mechanisms of ALS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Patricia S Estes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
28
|
Camdessanché JP, Belzil VV, Jousserand G, Rouleau GA, Créac'h C, Convers P, Antoine JC. Sensory and motor neuronopathy in a patient with the A382P TDP-43 mutation. Orphanet J Rare Dis 2011; 6:4. [PMID: 21294910 PMCID: PMC3042904 DOI: 10.1186/1750-1172-6-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/05/2011] [Indexed: 12/12/2022] Open
Abstract
Patients with TARDBP mutations have so far been classified as ALS, sometimes with frontal lobe dysfunction. A 66-year-old patient progressively developed a severe sensory disorder, followed by a motor disorder, which evolved over nine years. Symptoms started in the left hand and slowly involved the four limbs. Investigations were consistent with a mixed sensory and motor neuronopathy. A heterozygous change from an alanine to a proline at amino acid 382 was identified in exon 6 of the TARDPB gene (p.A382P). This case expands the phenotypic spectrum associated with mutations in the TARDBP gene and shows that sensory neurons can be severely damaged early in the course of the disease, following a propagating process, with an orderly progression from a focal starting point. A combination of severe sensory and motor neuronopathy is rarely encountered in clinical practice. The possibility of an A382P TDP-43 mutation should be considered in patients with such an association.
Collapse
|
29
|
|
30
|
Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010; 9:995-1007. [PMID: 20864052 DOI: 10.1016/s1474-4422(10)70195-2] [Citation(s) in RCA: 712] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abnormal intracellular protein aggregates comprise a key characteristic in most neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The seminal discoveries of accumulation of TDP-43 in most cases of ALS and the most frequent form of FTD, frontotemporal lobar degeneration with ubiquitinated inclusions, followed by identification of FUS as the novel pathological protein in a small subset of patients with ALS and various FTD subtypes provide clear evidence that these disorders are related. The creation of a novel molecular classification of ALS and FTD based on the identity of the predominant protein abnormality has, therefore, been possible. The striking functional and structural similarities of TDP-43 and FUS, which are both DNA/RNA binding proteins, imply that abnormal RNA metabolism is a pivotal event, but the mechanisms leading to TDP-43 and FUS accumulation and the resulting neurodegeneration are currently unknown. Nonetheless, TDP-43 and FUS are promising candidates for the development of novel biomarker assays and targeted therapies.
Collapse
Affiliation(s)
- Ian Ra Mackenzie
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | | | | |
Collapse
|
31
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 751] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
32
|
Geser F, Lee VMY, Trojanowski JQ. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 2010; 30:103-12. [PMID: 20102519 DOI: 10.1111/j.1440-1789.2009.01091.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is now established that pathological transactive response DNA-binding protein with a Mr of 43 kD (TDP-43) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin-positive inclusions (now known as FTLD-TDP). In fact, the discovery of pathological TDP-43 solidified the idea that these disorders are multi-system diseases and this led to the concept of a TDP-43 proteinopathy as a spectrum of disorders comprised of different clinical and pathological entities extending from ALS to ALS with cognitive impairment/dementia and FTLD-TDP without or with motor neuron disease (FTLD-MND). These align along a broad disease continuum sharing similar pathogenetic mechanisms linked to pathological TDP-43. We here review salient findings in the development of a concept of TDP-43 proteinopathy as a novel group of neurodegenerative diseases similar in concept to alpha-synucleinopathies and tauopathies.
Collapse
Affiliation(s)
- Felix Geser
- The Institute on Aging, Center for Neurodegenerative Disease Research and the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
33
|
Luquin N, Yu B, Saunderson RB, Trent RJ, Pamphlett R. Genetic variants in the promoter of TARDBP in sporadic amyotrophic lateral sclerosis. Neuromuscul Disord 2009; 19:696-700. [PMID: 19695877 DOI: 10.1016/j.nmd.2009.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
All patients with sporadic amyotrophic lateral sclerosis (SALS) have TDP-43 inclusions in their motor neurons, suggesting this protein plays a major role in the disease. Coding mutations in the gene for TDP-43, TARDBP, have been found in only a few patients with SALS. However, the non-coding regulatory regions of TARDBP have not yet been examined in SALS. We therefore sequenced both coding and non-coding regions of TARDBP in 46 tissue-banked SALS brains (brain DNA was used to detect somatic mutations). Non-coding variants (in the promoter or intron 1) were detected in 16 patients (35%) and coding variants in 4 (9%). Two known promoter variants were found more frequently in SALS patients than in controls. Two other variants, found in one patient each but not in controls, have potential regulatory functions. In addition, a novel exon 2 change with predicted functional effects was found in one patient. In summary, variants in the promoter and other non-coding regions of TARDBP may disturb the regulation of this gene in some patients with SALS.
Collapse
Affiliation(s)
- Natasha Luquin
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, The University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
34
|
Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 2009; 284:20329-39. [PMID: 19465477 DOI: 10.1074/jbc.m109.010264] [Citation(s) in RCA: 609] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-amyloid, ubiquitinated cytoplasmic inclusions containing TDP-43 and its C-terminal fragments are pathological hallmarks of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder, and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Importantly, TDP-43 mutations are linked to sporadic and non-SOD1 familial ALS. However, TDP-43 is not the only protein in disease-associated inclusions, and whether TDP-43 misfolds or is merely sequestered by other aggregated components is unclear. Here, we report that, in the absence of other components, TDP-43 spontaneously forms aggregates bearing remarkable ultrastructural similarities to TDP-43 deposits in degenerating neurons of ALS and FTLD-U patients [corrected] . The C-terminal domain of TDP-43 is critical for spontaneous aggregation. Several ALS-linked TDP-43 mutations within this domain (Q331K, M337V, Q343R, N345K, R361S, and N390D) increase the number of TDP-43 aggregates and promote toxicity in vivo. Importantly, mutations that promote toxicity in vivo accelerate aggregation of pure TDP-43 in vitro. Thus, TDP-43 is intrinsically aggregation-prone, and its propensity for toxic misfolding trajectories is accentuated by specific ALS-linked mutations.
Collapse
Affiliation(s)
- Brian S Johnson
- Department of Cell and Developmental Biology, the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Neumann M. Molecular neuropathology of TDP-43 proteinopathies. Int J Mol Sci 2009; 10:232-246. [PMID: 19333444 PMCID: PMC2662455 DOI: 10.3390/ijms10010232] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/06/2009] [Accepted: 01/08/2009] [Indexed: 12/12/2022] Open
Abstract
The identification of TDP-43 as the major component of the pathologic inclusions in most forms of sporadic and familial frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS) resolved a long-standing enigma concerning the nature of the ubiquitinated disease protein under these conditions. Anti-TDP-43 immunohistochemistry and the recent development of novel tools, such as phosphorylation-specific TDP-43 antibodies, have increased our knowledge about the spectrum of pathological changes associated with FTLD-U and ALS and moreover, facilitated the neuropathological routine diagnosis of these conditions. This review summarizes the recent advances in our understanding on the molecular neuropathology and pathobiology of TDP-43 in FTLD and ALS.
Collapse
Affiliation(s)
- Manuela Neumann
- Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstr. 12, 8091 Zurich, Switzerland
| |
Collapse
|