1
|
Cai X, Tang L, Wang H, Zhang S, Li X, Liu C, Zhang X, Zhang J. Identification of the cysteine-rich transmembrane module CYSTM family in upland cotton and functional analysis of GhCYSTM5_A in cold and drought stresses. Int J Biol Macromol 2025; 292:139058. [PMID: 39710036 DOI: 10.1016/j.ijbiomac.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Abiotic stress poses adverse impacts on cotton production, raising demands for a better understanding of stress-response mechanisms and developing strategies to improve plant performance to cope with stress. CYSTM (Cysteine-rich transmembrane module) is a widely distributed and conserved family in eukaryotes that performs potential functions in stress tolerance. However, CYSTM genes and their role in stress response is uncharacterized in cotton. Herein, we identified a total of 23 CYSTM genes from upland cotton. They underwent mainly segmental duplications and experienced purifying selection during evolution. Expression profiles revealed GhCYSTMs were closely related to abiotic stress response. Furthermore, GhCYSTM5_A overexpression enhanced the cold and drought tolerance of cotton, while RNAi-mediated knockdown of GhCYSTM5_A decreased stress tolerance. Transcriptome analysis revealed GhCYSTM5_A may contribute to cold and drought tolerance by regulating the expression of oxidative stress-related genes through MAPK signaling. GhCYSTM5_A, localized in the nucleus and cytoplasm interacted with a secreted cysteine-rich peptide GhGASA14. Moreover, GhGASA14 silencing rendered cotton plants vulnerable to cold and drought. These results suggested the potential functions of GhCYSTM genes in abiotic stress and a positive role of GhCYSTM5_A in cold and drought tolerance. This study sheds light on comprehensive characteristics of GhCYSTM, and provides candidate genes for genetic breeding.
Collapse
Affiliation(s)
- Xiao Cai
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Sujun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
2
|
Cai X, Liu C, Tang L, Zhang S, Li X, Wang H, Zhang J. A cysteine-rich transmembrane module peptide GhCYSTM9 is involved in cold stress response. BMC PLANT BIOLOGY 2025; 25:262. [PMID: 40011827 DOI: 10.1186/s12870-025-06271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Cysteine-rich transmembrane module (CYSTM) peptides, which are widely distributed and highly conserved in eukaryotes, are largely involved in stress response and defence. However, the role of cotton CYSTM genes in the stress response has not been functionally characterized. RESULTS In this study, we identified GhCYSTM9 as a cold stress-responsive CYSTM member from upland cotton. Compared with that in control cotton plants, GhCYSTM9 silencing in cotton resulted in reduced tolerance under cold stress, accompanied by higher MDA contents and lower proline contents and SOD activities in leaves. Overexpressing GhCYTMS9 in Arabidopsis significantly increased the seed germination rates and root elongation at the germination stage. Compared with wild-type seedlings, GhCYSTM9-overexpressing seedlings presented lower MDA contents and greater proline contents in leaves under cold stress. Transcriptome analysis of transgenic Arabidopsis revealed that GhCYSTM9 may contribute to the cold response by regulating oxidative stress-related genes to mediate ROS levels. Yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that GhCYSTM9 interacted with the light-harvesting chlorophyll a/b-binding protein GhLHBC2A1. CONCLUSIONS Overall, our results revealed a positive role of GhCYSTM9 in cold stress defence and suggested candidate genes for the genetic breeding of cold defence.
Collapse
Affiliation(s)
- Xiao Cai
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Sujun Zhang
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China
| | - Jianhong Zhang
- Institute of Cotton, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Hebei Academy of Agriculture and Forestry Sciences, No. 598 Heping west Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
3
|
Kim JH, Kim MS, Seo YW. The RING-type E3 ligase, TaFRFP, regulates flowering by controlling a salicylic acid-mediated floral promotion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112241. [PMID: 39216697 DOI: 10.1016/j.plantsci.2024.112241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The initiation of transition to flowering is carefully managed by endogenous and environmental cues, which is critical for flowering plant reproductive success. Here, we found that wheat RING-type E3 ligase TaFRFP was highly expressed from the double ridge to degeneration stage (WS2.5-WS9). TaFRFP is localized in the nucleus and has E3 ligase activity in vitro. TaFRFP overexpression in Arabidopsis resulted in an early flowering phenotype, but to a lesser extent, under short-day conditions. Under the SA-treated condition, overexpression of TaFRFP shows higher root growth and has more accumulation of SA contents. A proteomic comparison revealed that the amount of FRL4A protein, a FRIGIDA LIKE 4 A, was considerably lower in SA-treated TaFRFP seedlings compared to normal condition. We further found that TaFRFP directly interacts with FRL4A in the nucleus and recruits it to the FLC locus in Arabidopsis. Moreover, an ubiquitination assay showed that TaFRPF physically interact and ubiquitinates TaFRL as a substrate. Our findings support the concept that the TaFRFP E3 ligase works as a positive regulator, and that the ubiquitination of its substrate proteins plays a significant role in controlling flowering time via an SA-dependent pathway.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Liu Y, Zhang H, Feng W, Lin X, Gao A, Cao Y, Yang Q, Wang Y, Li W, Fu F, Yu H. The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic Arabidopsis and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2995. [PMID: 37631206 PMCID: PMC10459471 DOI: 10.3390/plants12162995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region; Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Ding Q, Liu H, Lin R, Wang Z, Jian S, Zhang M. Genome-wide functional characterization of Canavalia rosea cysteine-rich trans-membrane module (CrCYSTM) genes to reveal their potential protective roles under extreme abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107786. [PMID: 37257408 DOI: 10.1016/j.plaphy.2023.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of the Chinese Academy of Sciences, Beijing, 100039, China; Dongguan Research Institute of Forestry/Forest Ecosystem Research Station in City Cluster of the Pearl River Estuary, Dongguan, 523106, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems&Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany&South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
6
|
Li X, Deng D, Cataltepe G, Román Á, Buckley CR, Cassano Monte‐Bello C, Skirycz A, Caldana C, Haydon MJ. A reactive oxygen species Ca 2+ signalling pathway identified from a chemical screen for modifiers of sugar-activated circadian gene expression. THE NEW PHYTOLOGIST 2022; 236:1027-1041. [PMID: 35842791 PMCID: PMC9804775 DOI: 10.1111/nph.18380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 06/10/2023]
Abstract
Sugars are essential metabolites for energy and anabolism that can also act as signals to regulate plant physiology and development. Experimental tools to disrupt major sugar signalling pathways are limited. We performed a chemical screen for modifiers of activation of circadian gene expression by sugars to discover pharmacological tools to investigate and manipulate plant sugar signalling. Using a library of commercially available bioactive compounds, we identified 75 confident hits that modified the response of a circadian luciferase reporter to sucrose in dark-adapted Arabidopsis thaliana seedlings. We validated the transcriptional effect on a subset of the hits and measured their effects on a range of sugar-dependent phenotypes for 13 of these chemicals. Chemicals were identified that appear to influence known and unknown sugar signalling pathways. Pentamidine isethionate was identified as a modifier of a sugar-activated Ca2+ signal that acts as a calmodulin inhibitor downstream of superoxide in a metabolic signalling pathway affecting circadian rhythms, primary metabolism and plant growth. Our data provide a resource of new experimental tools to manipulate plant sugar signalling and identify novel components of these pathways.
Collapse
Affiliation(s)
- Xiang Li
- School of BioSciencesUniversity of MelbourneParkvilleVic.3010Australia
| | - Dongjing Deng
- School of BioSciencesUniversity of MelbourneParkvilleVic.3010Australia
| | - Gizem Cataltepe
- School of BioSciencesUniversity of MelbourneParkvilleVic.3010Australia
- Max Planck Institute of Molecular Plant Physiology14476PotsdamGermany
| | - Ángela Román
- School of BioSciencesUniversity of MelbourneParkvilleVic.3010Australia
| | | | | | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology14476PotsdamGermany
| | - Michael J. Haydon
- School of BioSciencesUniversity of MelbourneParkvilleVic.3010Australia
| |
Collapse
|
7
|
The E3 Ubiquitin Ligase ATL9 Affects Expression of Defense Related Genes, Cell Death and Callose Deposition in Response to Fungal Infection. Pathogens 2022; 11:pathogens11010068. [PMID: 35056016 PMCID: PMC8778023 DOI: 10.3390/pathogens11010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Plants use diverse strategies to defend themselves from biotic stresses in nature, which include the activation of defense gene expression and a variety of signal transduction pathways. Previous studies have shown that protein ubiquitination plays a critical role in plant defense responses, however the details of its function remain unclear. Our previous work has shown that increasing expression levels of ATL9, an E3 ubiquitin ligase in Arabidopsis thaliana, increased resistance to infection by the fungal pathogen, Golovinomyces cichoracearum. In this study, we demonstrate that the defense-related proteins PDF1.2, PCC1 and FBS1 directly interact with ATL9 and are targeted for degradation to the proteasome by ATL9. The expression levels of PDF1.2, PCC1 and FBS1 are decreased in T-DNA insertional mutants of atl9 and T-DNA insertional mutants of pdf1.2, pcc1 and fbs1 are more susceptible to fungal infection. In addition, callose is more heavily deposited at infection sites in the mutants of atl9, fbs1, pcc1 and pdf1.2. Overexpression of ATL9 and of mutants in fbs1, pcc1 and pdf1.2 showed increased levels of cell death during infection. Together these results indicate that ubiquitination, cell death and callose deposition may work together to enhance defense responses to fungal pathogens.
Collapse
|
8
|
Gu X, Gao S, Li J, Song P, Zhang Q, Guo J, Wang X, Han X, Wang X, Zhu Y, Zhu Z. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:269-279. [PMID: 34823144 DOI: 10.1016/j.plaphy.2021.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major abiotic stress limiting crop growth and yield. In this study, we characterized a novel drought tolerance induced WIH gene in rice, OsWIH2. Overexpression of OsWIH2 in rice resulted in significantly higher drought tolerance, probably due to the decreased water loss rate and reactive oxygen species (ROS) accumulation under drought stress. We identified a long-chain fatty acid HOTHEAD (HTH) that interacted with OsWIH2 using yeast two-hybrid screening. OsWIH2 is an enzyme which is involved in fatty acid synthesis. We further demonstrated that the drought-inducible bHLH transcription factor OsbHLH130 could activate the expression of OsWIH2. Overall, our results suggest that drought stress may induce OsbHLH130 accumulation, which in turn activates OsWIH2 expression, and the latter improves rice drought tolerance by participating in cuticular wax biosynthesis and reducing the water loss rate as well as ROS accumulation. This research provides new genes for crop improvement.
Collapse
Affiliation(s)
- Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shuxin Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jinfeng Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyu Han
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
9
|
Pereira Mendes M, Hickman R, Van Verk MC, Nieuwendijk NM, Reinstädler A, Panstruga R, Pieterse CMJ, Van Wees SCM. A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. PLANTA 2021; 253:102. [PMID: 33856567 PMCID: PMC8049917 DOI: 10.1007/s00425-021-03606-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 06/01/2023]
Abstract
Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.
Collapse
Affiliation(s)
- Marciel Pereira Mendes
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Richard Hickman
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Marcel C Van Verk
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
- Bioinformatics, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Nicole M Nieuwendijk
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Anja Reinstädler
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 800.56, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, Yan K, Zhang S, Zheng C. CYSTM, a Novel Non-Secreted Cysteine-Rich Peptide Family, Involved in Environmental Stresses in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:423-438. [PMID: 29272523 DOI: 10.1093/pcp/pcx202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/12/2017] [Indexed: 05/24/2023]
Abstract
The cysteine-rich transmembrane module (CYSTM) is comprised of a small molecular protein family that is found in a diversity of tail-anchored membrane proteins across eukaryotes. This protein family belongs to novel uncharacteristic non-secreted cysteine-rich peptides (NCRPs) according to their conserved domain and small molecular weight, and genome-wide analysis of this family has not yet been undertaken in plants. In this study, 13 CYSTM genes were identified and located on five chromosomes with diverse densities in Arabidopsis thaliana. The CYSTM proteins could be classified into four subgroups based on domain similarity and phylogenetic topology. Encouragingly, the CYSTM members were expressed in at least one of the tested tissues and dramatically responded to various abiotic stresses, indicating that they played vital roles in diverse developmental processes, especially in stress responses. CYSTM peptides displayed a complex subcellular localization, and most were detected at the plasma membrane and cytoplasm. Of particular interest, CYSTM members could dimerize with themselves or others through the C-terminal domain, and we built a protein-protein interaction map between CYSTM members in Arabidopsis for the first time. In addition, an analysis of CYSTM3 overexpression lines revealed negative regulation for this gene in salt stress responses. We demonstrate that the CYSTM family, as a novel and ubiquitous non-secreted cysteine-rich peptide family, plays a vital role in resistance to abiotic stress. Collectively, our comprehensive analysis of CYSTM members will facilitate future functional studies of the small peptides.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zipeng Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Di Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
11
|
Conti L. Hormonal control of the floral transition: Can one catch them all? Dev Biol 2017; 430:288-301. [PMID: 28351648 DOI: 10.1016/j.ydbio.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/05/2023]
Abstract
The transition to flowering marks a key adaptive developmental switch in plants which impacts on their survival and fitness. Different signaling pathways control the floral transition, conveying both endogenous and environmental cues. These cues are often relayed and/or modulated by different hormones, which might confer additional developmental flexibility to the floral process in the face of varying conditions. Among the different hormonal pathways, the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting modules for different signaling proteins. In this review, I will highlight the role of DELLAs as spatial and temporal modulators of different consolidated floral pathways. Next, building on recent data, I will provide an update on some emerging themes connecting other hormone signaling cascades to flowering time control. I will finally provide examples for some established as well as potential cross-regulatory mechanisms between hormonal pathways mediated by the DELLA proteins.
Collapse
Affiliation(s)
- Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
12
|
Sánchez-López ÁM, Baslam M, De Diego N, Muñoz FJ, Bahaji A, Almagro G, Ricarte-Bermejo A, García-Gómez P, Li J, Humplík JF, Novák O, Spíchal L, Doležal K, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. PLANT, CELL & ENVIRONMENT 2016; 39:2592-2608. [PMID: 27092473 DOI: 10.1111/pce.12759] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 05/21/2023]
Abstract
It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.
Collapse
Affiliation(s)
- Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Adriana Ricarte-Bermejo
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Jun Li
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
- College of Agronomy and Plant Protection, Qingdao Agricultural University, 266109, Qingdao, China
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Olomouc, CZ-78371, Czech Republic
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192, Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
13
|
Takeno K. Stress-induced flowering: the third category of flowering response. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4925-34. [PMID: 27382113 DOI: 10.1093/jxb/erw272] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective.
Collapse
Affiliation(s)
- Kiyotoshi Takeno
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181, Japan
| |
Collapse
|
14
|
Kazan K, Lyons R. The link between flowering time and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:47-60. [PMID: 26428061 DOI: 10.1093/jxb/erv441] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Rebecca Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Belda-Palazón B, Almendáriz C, Martí E, Carbonell J, Ferrando A. Relevance of the Axis Spermidine/eIF5A for Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2016; 7:245. [PMID: 26973686 PMCID: PMC4773603 DOI: 10.3389/fpls.2016.00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/13/2016] [Indexed: 05/22/2023]
Abstract
One key role of the essential polyamine spermidine in eukaryotes is to provide the 4-aminobutyl moiety group destined to the post-translational modification of a lysine in the highly conserved translation factor eIF5A. This modification is catalyzed by two sequential enzymatic steps leading to the activation of eIF5A by the conversion of one conserved lysine to the unusual amino acid hypusine. The active translation factor facilitates the sequence-specific translation of polyproline sequences that otherwise cause ribosome stalling. In spite of the well-characterized involvement of active eIF5A in the translation of proline repeat-rich proteins, its biological role has been recently elucidated only in mammals, and it is poorly described at the functional level in plants. Here we describe the alterations in plant growth and development caused by RNAi-mediated conditional genetic inactivation of the hypusination pathway in Arabidopsis thaliana by knocking-down the enzyme deoxyhypusine synthase. We have uncovered that spermidine-mediated activation of eIF5A by hypusination is involved in several aspects of plant biology such as the control of flowering time, the aerial and root architecture, and root hair growth. In addition this pathway is required for adaptation to challenging growth conditions such as high salt and high glucose medium and to elevated concentrations of the plant hormone ABA. We have also performed a bioinformatic analysis of polyproline-rich containing proteins as putative eIF5A targets to uncover their organization in clusters of protein networks to find molecular culprits for the disclosed phenotypes. This study represents a first attempt to provide a holistic view of the biological relevance of the spermidine-dependent hypusination pathway for plant growth and development.
Collapse
|
16
|
Krzymuski M, Andrés F, Cagnola JI, Jang S, Yanovsky MJ, Coupland G, Casal JJ. The dynamics of FLOWERING LOCUS T expression encodes long-day information. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015. [PMID: 26212862 DOI: 10.1111/tpj.12938] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Long days repeatedly enhance the expression of the FLOWERING LOCUS T (FT) gene during the evening and early night. This signal induces flowering despite low FT expression the rest of the day. To investigate whether this temporal behaviour transmits information, plants of Arabidopsis thaliana were exposed to different day-night cycles, including combinations that induced FT expression out of normal hours. Flowering time best correlated with the integral of FT expression over several days, corrected for a higher evening and early night sensitivity to FT. We generated a system to induce FT expression in a leaf removed 8-12 h later. The expression of flowering genes in the apex and flowering required cycles of induction repeated over several days. Evening and early night FT induction was the most effective. The temporal pattern of FT expression encodes information that discriminates long days from other inputs.
Collapse
Affiliation(s)
- Martín Krzymuski
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Juan I Cagnola
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D-50829 Cologne, Germany
| | - Jorge J Casal
- IFEVA, Faculty of Agronomy, University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
17
|
Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:1084-1096. [PMID: 25913773 DOI: 10.1111/nph.13419] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Biotic and abiotic stress responses of plants are linked to developmental programs. Proteins involved in different signaling pathways are the molecular basis of this concerted interplay. In our study, we show that Arabidopsis thaliana HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN3 (HIPP3; At5g60800) acts as an upstream regulator of stress- and development-related regulatory networks. Localization, metal-binding and stress-responsive gene expression of HIPP3 were analyzed via microscopy, protein and inductively coupled plasma (ICP)-MS analyses and quantitative real-time PCR. In addition, transcriptome and phenotype analyses of plants overexpressing HIPP3 were used to unravel its function. Our data show that HIPP3 is a nuclear, zinc-binding protein. It is repressed during drought stress and abscisic acid (ABA) treatment and, similar to other pathogen-related genes, is induced after infection with Pseudomonas syringae pv. tomato. HIPP3 overexpression affects the regulation of > 400 genes. Strikingly, most of these genes are involved in pathogen response, especially in the salicylate pathway. In addition, many genes of abiotic stress responses and seed and flower development are affected by HIPP3 overexpression. Plants overexpressing HIPP3 show delayed flowering. We conclude that HIPP3 acts via its bound zinc as an upstream regulator of the salicylate-dependent pathway of pathogen response and is also involved in abiotic stress responses and seed and flower development.
Collapse
Affiliation(s)
- Wiebke Zschiesche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Olaf Barth
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Katharina Daniel
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Sandra Böhme
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Juliane Rausche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| |
Collapse
|
18
|
Koshio A, Hasegawa T, Okada R, Takeno K. Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: The involvement of metabolic pathways regulated by aminooxyacetic acid. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:82-88. [PMID: 25462081 DOI: 10.1016/j.jplph.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/20/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
The short-day plant pharbitis (also called Japanese morning glory), Ipomoea nil (formerly Pharbitis nil), was induced to flower by poor-nutrition stress. This stress-induced flowering was inhibited by aminooxyacetic acid (AOA), which is a known inhibitor of phenylalanine ammonia-lyase (PAL) and the synthesis of indole-3-acetic acid (IAA) and 1-aminocycropropane-1-carboxylic acid (ACC) and thus regulates endogenous levels of salicylic acid (SA), IAA and polyamine (PA). Stress treatment increased PAL activity in cotyledons, and AOA suppressed this increase. The observed PAL activity and flowering response correlate positively, indicating that AOA functions as a PAL inhibitor. The inhibition of stress-induced flowering by AOA was also overcome by IAA. An antiauxin, 4-chlorophenoxy isobutyric acid, inhibited stress-induced flowering. Both SA and IAA promoted flowering induced by stress. PA also promoted flowering, and the effective PA was found to be putrescine (Put). These results suggest that all of the pathways leading to the synthesis of SA, IAA and Put are responsive to the flowering inhibition by AOA and that these endogenous factors may be involved in the regulation of stress-induced flowering. However, as none of them induced flowering under non-stress conditions, they may function cooperatively to promote flowering.
Collapse
Affiliation(s)
- Aya Koshio
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Tomomi Hasegawa
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Rieko Okada
- Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Kiyotoshi Takeno
- Graduate School of Science and Technology, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan; Department of Biology, Faculty of Science, Niigata University, Ikarashi, Nishi-ku, Niigata, Niigata 950-2181, Japan.
| |
Collapse
|
19
|
Mir R, León J. Pathogen and circadian controlled 1 (PCC1) protein is anchored to the plasma membrane and interacts with subunit 5 of COP9 signalosome in Arabidopsis. PLoS One 2014; 9:e87216. [PMID: 24475254 PMCID: PMC3903633 DOI: 10.1371/journal.pone.0087216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/25/2013] [Indexed: 12/03/2022] Open
Abstract
The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).
Collapse
Affiliation(s)
- Ricardo Mir
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
20
|
Mir R, Hernández ML, Abou-Mansour E, Martínez-Rivas JM, Mauch F, Métraux JP, León J. Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3385-95. [PMID: 23833195 DOI: 10.1093/jxb/ert177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pathogen and Circadian Controlled 1 (PCC1) was previously characterized as a regulator of defence against pathogens and stress-activated transition to flowering. Plants expressing an RNA interference construct for the PCC1 gene (iPCC1 plants) showed a pleiotropic phenotype. They were hypersensitive to abscisic acid (ABA) as shown by reduced germination potential and seedling establishment, as well as reduced stomatal aperture and main root length in ABA-supplemented media. In addition, iPCC1 plants displayed alterations in polar lipid contents and their corresponding fatty acids. Importantly, a significant reduction in the content of phosphatidylinositol (PI) was observed in iPCC1 leaves when compared with wild-type plants. A trend in reduced levels of 18:0 and increased levels of 18:2 and particularly 18:3 was also detected in several classes of polar lipids. The enhanced ABA-mediated responses and the reduced content of PI might be responsible for iPCC1 plants displaying a complex pattern of defence against pathogens of different lifestyles. iPCC1 plants were more susceptible to the hemi-biotrophic oomycete pathogen Phytophthora brassicae and more resistant to the necrotrophic fungal pathogen Botrytis cinerea compared with wild-type plants.
Collapse
Affiliation(s)
- Ricardo Mir
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Edificio 8E, Avda. Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Puga-Freitas R, Barot S, Taconnat L, Renou JP, Blouin M. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS One 2012; 7:e49504. [PMID: 23226498 PMCID: PMC3513312 DOI: 10.1371/journal.pone.0049504] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/09/2012] [Indexed: 12/23/2022] Open
Abstract
Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid) in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships.
Collapse
Affiliation(s)
- Ruben Puga-Freitas
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| | - Sébastien Barot
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Institut de Recherche pour le Développement, Ecole Normale Supérieure, Paris, France
| | | | | | - Manuel Blouin
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
22
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
23
|
Feng Y, Peng H, Liang S. Molecular analysis of the PGYRP (proline-, glycine- and tyrosine-rich protein) gene family in soybean. Mol Biol Rep 2011; 38:2739-50. [PMID: 21104142 DOI: 10.1007/s11033-010-0419-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022]
Abstract
The genes coding for PGYRPs (proline-, glycine- and tyrosine-rich proteins) are widely distributed across eukaryotes and have been proposed to have critical role in plant development, especially in response to environmental stresses. In this study, total of 12 soybean PGYRPs (GmPGYRP1-12) were identified from the soybean genome database for the first time and full-length cDNA and DNA sequences of GmPGYRP7 was cloned. GmPGYRP1-12 genes encoded a set of small predicted proteins (<120 aa) with molecular mass of 7.20-13.29 kDa and isoelectric point of 4.06-6.57. All GmPGYRPs contained three exons and two introns with fixed occurring sites within genomic DNA sequences. In the putative GmPGYRP sequences, 4 amino acids (proline, glycine, tyrosine, and glutamine) account for more than 39% of the total protein composition. GmPGYRPs had a relatively flexible GYPPX motif followed by a highly conserved cysteine-rich domain (GCLAAXCCCCXLXC) and showed high similarity to other known PGYRPs, especially in C-terminal region. Most of PGYRPs can be divided into five subgroups according to phylogenetic analysis. The transcripts of GmPGYRP1, 3, 5, and 7, representing different PGYRP subgroups, appeared in different organs including seedling leaves, stems, roots, flowers, and developing seeds, but mainly accumulated in seedling roots. Furthermore, the expression of GmPGYRP1, 3, 5, and 7 was significantly regulated by drought, salt and cold, but obviously repressed by abscisic acid (ABA) at early stage. Our data suggest that GmPGYRP genes encoding a class of conservative XYPPX-repeat proteins probably play an important role in plant development as well as in response to abiotic stresses.
Collapse
Affiliation(s)
- Yingmei Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, College of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | | | | |
Collapse
|