1
|
Ma Z, Buckley TN, Sack L. The determination of leaf size on the basis of developmental traits. THE NEW PHYTOLOGIST 2025; 246:461-480. [PMID: 39994877 DOI: 10.1111/nph.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Mature leaf area (LA) is a showcase of diversity - varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA. We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal 'developmental traits': initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments. Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade-offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade-offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild-type comparisons showed these trade-offs have a genetic basis in Arabidopsis. Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts.
Collapse
Affiliation(s)
- Zeqing Ma
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Sarmiento-Mañús R, Fontcuberta-Cervera S, Kawade K, Oikawa A, Tsukaya H, Quesada V, Micol JL, Ponce MR. Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair. Heliyon 2025; 11:e41019. [PMID: 39801971 PMCID: PMC11720913 DOI: 10.1016/j.heliyon.2024.e41019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable Arabidopsis thaliana ortholog of SAMHD1, also functions in DSB repair by HR. The ven4 loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation. Hydroxyurea, which blocks DNA replication and generates DSBs, induced VEN4 expression. The ven4 mutants were hypersensitive to hydroxyurea, with decreased DSB repair by HR. Metabolomic analysis of the strong ven4-0 mutant revealed depletion of metabolites associated with DNA damage responses. In contrast to SAMHD1, VEN4 showed no evident involvement in preventing R-loop accumulation. Our study thus reveals functional conservation in DNA repair by VEN4 and SAMHD1.
Collapse
Affiliation(s)
- Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | | | - Kensuke Kawade
- Graduate School of Science and Engineering, Saitama University, Saitama City, 338-8570, Saitama, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
| | - Akira Oikawa
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Hirokazu Tsukaya
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
3
|
Sarmiento-Mañús R, Fontcuberta-Cervera S, González-Bayón R, Hannah MA, Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V, Quesada V, Ponce MR, Micol JL. Analysis of the Arabidopsis venosa4-0 mutant supports the role of VENOSA4 in dNTP metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111819. [PMID: 37562732 DOI: 10.1016/j.plantsci.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.
Collapse
Affiliation(s)
- Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Matthew A Hannah
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Francisco Javier Álvarez-Martínez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
4
|
Navarro-Quiles C, Mateo-Bonmatí E, Candela H, Robles P, Martínez-Laborda A, Fernández Y, Šimura J, Ljung K, Rubio V, Ponce MR, Micol JL. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. FRONTIERS IN PLANT SCIENCE 2022; 13:1009895. [PMID: 36325553 PMCID: PMC9618717 DOI: 10.3389/fpls.2022.1009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Collapse
Affiliation(s)
| | | | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
5
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
6
|
Morphometric Analysis of Surface Utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry within Individual Segments. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments.
Collapse
|
7
|
Stewart JJ, Polutchko SK, Demmig-Adams B, Adams WW. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:693. [PMID: 29910820 DOI: 10.3389/fpls.2018.00693/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.
Collapse
Affiliation(s)
- Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Stephanie K Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
8
|
Stewart JJ, Polutchko SK, Demmig-Adams B, Adams WW. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:693. [PMID: 29910820 PMCID: PMC5992485 DOI: 10.3389/fpls.2018.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 05/05/2023]
Abstract
An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.
Collapse
|
9
|
Bringmann M, Bergmann DC. Tissue-wide Mechanical Forces Influence the Polarity of Stomatal Stem Cells in Arabidopsis. Curr Biol 2017; 27:877-883. [DOI: 10.1016/j.cub.2017.01.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
|
10
|
Muñoz-Nortes T, Pérez-Pérez JM, Ponce MR, Candela H, Micol JL. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:870-884. [PMID: 28008672 DOI: 10.1111/tpj.13466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed.
Collapse
Affiliation(s)
- Tamara Muñoz-Nortes
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, 03202, Spain
| |
Collapse
|
11
|
Li Y, Heckmann D, Lercher MJ, Maurino VG. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:117-125. [PMID: 27660481 DOI: 10.1093/jxb/erw333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C3-C4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C4 anatomy and biochemistry.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - David Heckmann
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
12
|
Tong YG, Ding XX, Zhang KC, Yang X, Huang W. Effect of the Gall Wasp Leptocybe invasa on Hydraulic Architecture in Eucalyptus camaldulensis Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:130. [PMID: 26913043 PMCID: PMC4753697 DOI: 10.3389/fpls.2016.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The gall wasp, Leptocybe invasa (Hymenoptera; Eulophidae), is a devastating pest of eucalypt plantations in the Middle East, the Mediterranean basin, Africa, India, South-East Asia, and China. Heavy galling causes the leaves to warp and in extreme cases it may stunt the growth of the trees of Eucalyptus camaldulensis. However, the physiological mechanisms underlying how L. invasa inhibits the growth of plants of E. camaldulensis are unclear. Because the growth rate of plants is mainly dependent on photosynthesis that is largely correlated with hydraulic architecture, we speculate that galling of L. invasa depresses hydraulic conductance of stem and leaf. In the present study, we examined the effects of L. invasa galling on hydraulic architecture and photosynthetic parameters in E. camaldulensis plants. We found that galling of L. invasa significantly decreased stem hydraulic conductance (K stem), midday leaf water potential (Ψmd), minor vein density, and stomatal density (SD). Furthermore, the stomatal conductance (g s), chlorophyll content, CO2 assimilation rate (A n) and photosynthetic electron flow were reduced in infected plants. Therefore, the galling of L. invasa not only declined the water supply from stem to leaves, but also restricted water transport within leaf. As a result, galled plants of E. camaldulensis reduced leaf number, leaf area, SD and g s to balance water supply and transpirational demand. Furthermore, galled plants had lower leaf nitrogen content, leading to decreases in chlorophyll content, CO2 assimilation rate and photosynthetic electron flow. These results indicate that the change in hydraulic architecture is responsible for the inhibition of growth rate in galled plants.
Collapse
Affiliation(s)
- You-Gui Tong
- Forestry Bureau of Dongchuan CountyKunming, China
| | - Xiao-Xi Ding
- Kunming Forest Resources AdministrationKunming, China
| | | | - Xin Yang
- Forestry Bureau of Dongchuan CountyKunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| |
Collapse
|
13
|
Mateo-Bonmatí E, Casanova-Sáez R, Quesada V, Hricová A, Candela H, Micol JL. Plastid control of abaxial-adaxial patterning. Sci Rep 2015; 5:15975. [PMID: 26522839 PMCID: PMC4629159 DOI: 10.1038/srep15975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
Translational regulation, exerted by the cytosolic ribosome, has been shown to participate in the establishment of abaxial-adaxial polarity in Arabidopsis thaliana: many hypomorphic and null alleles of genes encoding proteins of the cytosolic ribosome enhance the leaf polarity defects of asymmetric leaves1 (as1) and as2 mutants. Here, we report the identification of the SCABRA1 (SCA1) nuclear gene, whose loss-of-function mutations also enhance the polarity defects of the as2 mutants. In striking contrast to other previously known enhancers of the phenotypes caused by the as1 and as2 mutations, we found that SCA1 encodes a plastid-type ribosomal protein that functions as a structural component of the 70S plastid ribosome and, therefore, its role in abaxial-adaxial patterning was not expected.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
14
|
Birlanga V, Villanova J, Cano A, Cano EA, Acosta M, Pérez-Pérez JM. Quantitative Analysis of Adventitious Root Growth Phenotypes in Carnation Stem Cuttings. PLoS One 2015; 10:e0133123. [PMID: 26230608 PMCID: PMC4521831 DOI: 10.1371/journal.pone.0133123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders’ rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.
Collapse
Affiliation(s)
- Virginia Birlanga
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | - Emilio A. Cano
- Research and Development Department, Barberet & Blanc S.A., Puerto Lumbreras, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
15
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
16
|
Dhondt S, Gonzalez N, Blomme J, De Milde L, Van Daele T, Van Akoleyen D, Storme V, Coppens F, T S Beemster G, Inzé D. High-resolution time-resolved imaging of in vitro Arabidopsis rosette growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:172-84. [PMID: 25041085 DOI: 10.1111/tpj.12610] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 05/20/2023]
Abstract
Although quantitative characterization of growth phenotypes is of key importance for the understanding of essential networks driving plant growth, the majority of growth-related genes are still being identified based on qualitative visual observations and/or single-endpoint quantitative measurements. We developed an in vitro growth imaging system (IGIS) to perform time-resolved analysis of rosette growth. In this system, Arabidopsis plants are grown in Petri dishes mounted on a rotating disk, and images of each plate are taken on an hourly basis. Automated image analysis was developed in order to obtain several growth-related parameters, such as projected rosette area, rosette relative growth rate, compactness and stockiness, over time. To illustrate the use of the platform and the resulting data, we present the results for the growth response of Col-0 plants subjected to three mild stress conditions. Although the reduction in rosette area was relatively similar at 19 days after stratification, the time-lapse analysis demonstrated that plants react differently to salt, osmotic and oxidative stress. The rosette area was altered at various time points during development, and leaf movement and shape parameters were also affected differently. We also used the IGIS to analyze in detail the growth behavior of mutants with enhanced leaf size. Analysis of several growth-related parameters over time in these mutants revealed several specificities in growth behavior, underlining the high complexity of leaf growth coordination. These results demonstrate that time-resolved imaging of in vitro rosette growth generates a better understanding of growth phenotypes than endpoint measurements.
Collapse
Affiliation(s)
- Stijn Dhondt
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5115-23. [PMID: 25118296 PMCID: PMC4157720 DOI: 10.1093/jxb/eru305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 05/22/2023]
Abstract
It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area ( MA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A(mass)), nitrogen concentration per mass (N(mass)) and leaf lifespan (LL). In a previous paper we argued that this 'vein origin' hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the 'vein origin' hypothesis in our analyses of compiled data. In contrast to the 'vein origin' hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A(area)), which scales up to driving a higher A(mass), all independently of LMA, N(mass) and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the 'vein origin' hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments.
Collapse
Affiliation(s)
- Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | - Christine Scoffoni
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | - Grace P John
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | - Hendrik Poorter
- IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Chase M Mason
- Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, Georgia 30602, USA
| | - Rodrigo Mendez-Alonzo
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, 2502 Miller Plant Sciences, Athens, Georgia 30602, USA
| |
Collapse
|
18
|
Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Pérez JM, Jover-Gil S, Ponce MR, Micol JL. Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:878-91. [PMID: 24946828 DOI: 10.1111/tpj.12595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 05/10/2023]
Abstract
The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T-DNA is responsible for the phenotype. To quickly map non-annotated T-DNA insertions, we developed a reliable, cost-effective and easy method based on whole-genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf (http://genetics.umh.es/phenoleaf) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal-distal cell cycle-driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Hu J, Yang QY, Huang W, Zhang SB, Hu H. Effects of temperature on leaf hydraulic architecture of tobacco plants. PLANTA 2014; 240:489-96. [PMID: 24915747 DOI: 10.1007/s00425-014-2097-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
MAIN CONCLUSION Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) 'k326' in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | | | | | | | | |
Collapse
|
20
|
Kollist H, Nuhkat M, Roelfsema MRG. Closing gaps: linking elements that control stomatal movement. THE NEW PHYTOLOGIST 2014; 203:44-62. [PMID: 24800691 DOI: 10.1111/nph.12832] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/27/2014] [Indexed: 05/18/2023]
Abstract
Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.
Collapse
Affiliation(s)
- Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | | | | |
Collapse
|
21
|
Casanova-Sáez R, Mateo-Bonmatí E, Kangasjärvi S, Candela H, Micol JL. Arabidopsis ANGULATA10 is required for thylakoid biogenesis and mesophyll development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2391-404. [PMID: 24663344 PMCID: PMC4036511 DOI: 10.1093/jxb/eru131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chloroplasts of land plants contain internal membrane systems, the thylakoids, which are arranged in stacks called grana. Because grana have not been found in Cyanobacteria, the evolutionary origin of genes controlling the structural and functional diversification of thylakoidal membranes in land plants remains unclear. The angulata10-1 (anu10-1) mutant, which exhibits pale-green rosettes, reduced growth, and deficient leaf lateral expansion, resulting in the presence of prominent marginal teeth, was isolated. Palisade cells in anu10-1 are larger and less packed than in the wild type, giving rise to large intercellular spaces. The ANU10 gene encodes a protein of unknown function that localizes to both chloroplasts and amyloplasts. In chloroplasts, ANU10 associates with thylakoidal membranes. Mutant anu10-1 chloroplasts accumulate H2O2, and have reduced levels of chlorophyll and carotenoids. Moreover, these chloroplasts are small and abnormally shaped, thylakoidal membranes are less abundant, and their grana are absent due to impaired thylakoid stacking in the anu10-1 mutant. Because the trimeric light-harvesting complex II (LHCII) has been reported to be required for thylakoid stacking, its levels were determined in anu10-1 thylakoids and they were found to be reduced. Together, the data point to a requirement for ANU10 for chloroplast and mesophyll development.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Saijaliisa Kangasjärvi
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
22
|
Camargo A, Papadopoulou D, Spyropoulou Z, Vlachonasios K, Doonan JH, Gay AP. Objective definition of rosette shape variation using a combined computer vision and data mining approach. PLoS One 2014; 9:e96889. [PMID: 24804972 PMCID: PMC4013065 DOI: 10.1371/journal.pone.0096889] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 04/13/2014] [Indexed: 12/12/2022] Open
Abstract
Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.
Collapse
Affiliation(s)
- Anyela Camargo
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Dimitra Papadopoulou
- Aristotle University of Thessaloniki, Faculty of Science, School of Biology, Department of Botany, Thessaloniki, Greece
| | - Zoi Spyropoulou
- Aristotle University of Thessaloniki, Faculty of Science, School of Biology, Department of Botany, Thessaloniki, Greece
| | - Konstantinos Vlachonasios
- Aristotle University of Thessaloniki, Faculty of Science, School of Biology, Department of Botany, Thessaloniki, Greece
| | - John H. Doonan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| | - Alan P. Gay
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, United Kingdom
| |
Collapse
|
23
|
Talbot MJ, White RG. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope. PLANT METHODS 2013; 9:40. [PMID: 24135233 PMCID: PMC3853341 DOI: 10.1186/1746-4811-9-40] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. RESULTS Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. CONCLUSIONS Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM.
Collapse
Affiliation(s)
- Mark J Talbot
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra ACT 2601, Australia
| | - Rosemary G White
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra ACT 2601, Australia
| |
Collapse
|
24
|
John GP, Scoffoni C, Sack L. Allometry of cells and tissues within leaves. AMERICAN JOURNAL OF BOTANY 2013; 100:1936-48. [PMID: 24070860 DOI: 10.3732/ajb.1200608] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PREMISE OF THE STUDY Allometric relationships among the dimensions of leaf cells, cell walls, and tissues, and whole-leaf thickness and area are likely to have key implications for leaf construction and function, but have remained virtually untested, despite the explosion of interest in allometric analysis of numerous plant properties at larger scales. • METHODS Using leaf transverse cross sections and light microscopy, we measured leaf dimensions, tissue thicknesses, mesophyll and xylem cell sizes, and cell wall thicknesses for 14 diverse angiosperm species of wet and dry habitats and tested hypothesized allometric relationships based on geometric scaling due to development and/or function. • KEY RESULTS We found strong novel allometries relating the dimensions of cells, cell walls, tissues, and gross leaf form. Cell sizes and cell wall thicknesses tended to scale isometrically across mesophyll tissues within the leaf, such that species with large cells or thick cell walls in one tissue had these also in the other tissues; however, leaf vein xylem conduit sizes were independent of those of other cell types. We also found strong geometric scaling of cell wall thicknesses with cell sizes throughout the mesophyll, but not in the leaf vein xylem. Further, leaf thickness scaled with cell sizes, cell wall thicknesses and the thicknesses of component mesophyll tissues, but leaf area was independent of anatomical traits across species. • CONCLUSIONS These novel allometries suggest design rules operating at the smallest scales of leaf construction and the possibility of applying these relationships to better characterizing the basis for differences among species in leaf form and functional traits.
Collapse
Affiliation(s)
- Grace P John
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California 90095-1606, USA
| | | | | |
Collapse
|
25
|
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4053-80. [PMID: 24123455 DOI: 10.1093/jxb/ert316] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.
Collapse
Affiliation(s)
- Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Triviño M, Martín-Trillo M, Ballesteros I, Delgado D, de Marcos A, Desvoyes B, Gutiérrez C, Mena M, Fenoll C. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:808-22. [PMID: 23662679 DOI: 10.1111/tpj.12244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 05/09/2013] [Indexed: 05/07/2023]
Abstract
Epidermal differentiation in Arabidopsis thaliana aerial organs involves stomatal lineage development. Lineages derive from meristemoids, which arise from asymmetric divisions of protodermal cells. Each meristemoid divides repeatedly in an inward spiral before it transits to a guard mother cell (GMC) that produces the stoma, leaving a trail of surrounding stomatal lineage ground cells (SLGCs) that eventually differentiate into endoreplicated pavement cells. MUTE is a bHLH transcription factor that is expressed in late meristemoids and drives their transition to GMCs. Loss-of-function mute mutants are stomata-less dwarf plants with arrested lineages, in which stunted putative SLGCs surround a halted meristemoid. We analysed MUTE functions using a chemically inducible system for mute-3 complementation based on conditional MUTE expression in its normal domain. Continuous induction from germination produced stomata-bearing, normal-sized plants with viable mute-3 seeds. In 2-week-old mute-3 cotyledons, meristemoids appeared to retain their identity and synchronously formed stomata in response to induced MUTE expression. However, arrested SLGCs were not complemented: many produced stomata, leading to stomatal clusters, and others remained unexpanded and diploid. In contrast, non-lineage pavement cells, which are under-endoreplicated in mute-3, expanded and increased their ploidy level upon induction, showing that the lack of response of SLGCs is specific to this arrested cell type. Leaf phenotypic mosaics include wild-type lineages and adjacent mute-3 lineages, whose meristemoids and putative SLGCs remained arrested, indicating that the role of MUTE in SLGC fate is strictly lineage-autonomous. These results show that timely MUTE expression is essential to prevent stomatal fate in SLGCs and to promote their differentiation as pavement cells.
Collapse
Affiliation(s)
- Magdalena Triviño
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Avenida Carlos III s/n, Toledo, 45071, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. TRENDS IN PLANT SCIENCE 2013; 18:428-39. [PMID: 23706697 DOI: 10.1016/j.tplants.2013.04.008] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 05/18/2023]
Abstract
Imaging and image processing have revolutionized plant phenotyping and are now a major tool for phenotypic trait measurement. Here we review plant phenotyping systems by examining three important characteristics: throughput, dimensionality, and resolution. First, whole-plant phenotyping systems are highlighted together with advances in automation that enable significant throughput increases. Organ and cellular level phenotyping and its tools, often operating at a lower throughput, are then discussed as a means to obtain high-dimensional phenotypic data at elevated spatial and temporal resolution. The significance of recent developments in sensor technologies that give access to plant morphology and physiology-related traits is shown. Overall, attention is focused on spatial and temporal resolution because these are crucial aspects of imaging procedures in plant phenotyping systems.
Collapse
Affiliation(s)
- Stijn Dhondt
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | | |
Collapse
|
28
|
Brodribb TJ, Jordan GJ, Carpenter RJ. Unified changes in cell size permit coordinated leaf evolution. THE NEW PHYTOLOGIST 2013; 199:559-570. [PMID: 23647069 DOI: 10.1111/nph.12300] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/27/2013] [Indexed: 05/25/2023]
Abstract
The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats.
Collapse
Affiliation(s)
- Tim J Brodribb
- School of Plant Science, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Greg J Jordan
- School of Plant Science, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Raymond J Carpenter
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
29
|
Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. THE NEW PHYTOLOGIST 2013; 198:983-1000. [PMID: 23600478 DOI: 10.1111/nph.12253] [Citation(s) in RCA: 355] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
The design and function of leaf venation are important to plant performance, with key implications for the distribution and productivity of ecosystems, and applications in paleobiology, agriculture and technology. We synthesize classical concepts and the recent literature on a wide range of aspects of leaf venation. We describe 10 major structural features that contribute to multiple key functions, and scale up to leaf and plant performance. We describe the development and plasticity of leaf venation and its adaptation across environments globally, and a new global data compilation indicating trends relating vein length per unit area to climate, growth form and habitat worldwide. We synthesize the evolution of vein traits in the major plant lineages throughout paleohistory, highlighting the multiple origins of individual traits. We summarize the strikingly diverse current applications of leaf vein research in multiple fields of science and industry. A unified core understanding will enable an increasing range of plant biologists to incorporate leaf venation into their research.
Collapse
Affiliation(s)
- Lawren Sack
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Christine Scoffoni
- Department of Ecology and Evolution, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Lièvre M, Wuyts N, Cookson SJ, Bresson J, Dapp M, Vasseur F, Massonnet C, Tisné S, Bettembourg M, Balsera C, Bédiée A, Bouvery F, Dauzat M, Rolland G, Vile D, Granier C. Phenotyping the kinematics of leaf development in flowering plants: recommendations and pitfalls. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:809-21. [PMID: 24123939 DOI: 10.1002/wdev.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.
Collapse
Affiliation(s)
- Maryline Lièvre
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|