1
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
2
|
Mohamad SF, Gunawan A, Blosser R, Childress P, Aguilar-Perez A, Ghosh J, Hong JM, Liu J, Kanagasabapathy D, Kacena MA, Srour EF, Bruzzaniti A. Neonatal Osteomacs and Bone Marrow Macrophages Differ in Phenotypic Marker Expression and Function. J Bone Miner Res 2021; 36:1580-1593. [PMID: 33900648 DOI: 10.1002/jbmr.4314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/27/2023]
Abstract
Osteomacs (OM) are specialized bone-resident macrophages that are a component of the hematopoietic niche and support bone formation. Also located in the niche are a second subset of macrophages, namely bone marrow-derived macrophages (BM Mφ). We previously reported that a subpopulation of OM co-express both CD166 and CSF1R, the receptor for macrophage colony-stimulating factor (MCSF), and that OM form more bone-resorbing osteoclasts than BM Mφ. Reported here are single-cell quantitative RT-PCR (qRT-PCR), mass cytometry (CyTOF), and marker-specific functional studies that further identify differences between OM and BM Mφ from neonatal C57Bl/6 mice. Although OM express higher levels of CSF1R and MCSF, they do not respond to MCSF-induced proliferation, in contrast to BM Mφ. Moreover, receptor activator of NF-κB ligand (RANKL), without the addition of MCSF, was sufficient to induce osteoclast formation in OM but not BM Mφ cultures. OM express higher levels of CD166 than BM Mφ, and we found that osteoclast formation by CD166-/- OM was reduced compared with wild-type (WT) OM, whereas CD166-/- BM Mφ showed enhanced osteoclast formation. CD110/c-Mpl, the receptor for thrombopoietin (TPO), was also higher in OM, but TPO did not alter OM-derived osteoclast formation, whereas TPO stimulated BM Mφ osteoclast formation. CyTOF analyses demonstrated OM uniquely co-express CD86 and CD206, markers of M1 and M2 polarized macrophages, respectively. OM performed equivalent phagocytosis in response to LPS or IL-4/IL-10, which induce polarization to M1 and M2 subtypes, respectively, whereas BM Mφ were less competent at phagocytosis when polarized to the M2 subtype. Moreover, in contrast to BM Mφ, LPS treatment of OM led to the upregulation of CD80, an M1 marker, as well as IL-10 and IL-6, known anti-inflammatory cytokines. Overall, these data reveal that OM and BM Mφ are distinct subgroups of macrophages, whose phenotypic and functional differences in proliferation, phagocytosis, and osteoclast formation may contribute physiological specificity during health and disease. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Safa F Mohamad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrea Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandra Aguilar-Perez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
3
|
Huang WH, Zhou MW, Zhu YF, Xiang JB, Li ZY, Wang ZH, Zhou YM, Yang Y, Chen ZY, Gu XD. The Role Of Hepatic Stellate Cells In Promoting Liver Metastasis Of Colorectal Carcinoma. Onco Targets Ther 2019; 12:7573-7580. [PMID: 31571908 PMCID: PMC6754330 DOI: 10.2147/ott.s214409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/31/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose Colorectal cancer (CRC) is the most common malignancy in the gastrointestinal tract. The liver is the most common location of CRC metastases, which are the main causes of CRC-related death. However, the mechanisms underlying metastasis of CRC to the liver have not been characterized, resulting in therapeutic challenges. Methods The effects of hepatic stellate cells (HSCs) on T cells were evaluated using in vitro mixed lymphocyte reactions (MLRs) and cytokine production assays. HSC-induced CT26 cell migration and proliferation were evaluated in vitro and in vivo. Results HSCs induced T cell hypo-responsiveness, promoted T cell apoptosis, and induced regulatory T cell expansion in vitro. IL-2 and IL-4 were significantly lower in MLRs incubated with HSCs. Supernatants of MLRs with HSCs promoted CT26 cell proliferation and migration. Furthermore, the presence of HSCs increased the number of liver metastases and promoted proliferation of liver metastatic tumor cells in vivo. Conclusion HSCs may contribute to an immunosuppressive liver microenvironment, resulting in a favorable environment for the colonization of CRC cells in the liver. These findings highlight a potential strategy for treatment of CRC liver metastases.
Collapse
Affiliation(s)
- Wen-Hai Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Min-Wei Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yan-Feng Zhu
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Zhen-Yang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Zi-Hao Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi-Ming Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Yang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Xiao-Dong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
4
|
Sato Y, Sakurai Y, Kajimoto K, Nakamura T, Yamada Y, Akita H, Harashima H. Innovative Technologies in Nanomedicines: From Passive Targeting to Active Targeting/From Controlled Pharmacokinetics to Controlled Intracellular Pharmacokinetics. Macromol Biosci 2016; 17. [PMID: 27797146 DOI: 10.1002/mabi.201600179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 Japan
| | - Kazuaki Kajimoto
- Health Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); 2217-14 Hayashi-cho Takamatsu, Kagawa 761-0395 Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 Japan
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana Chuo-ku, Chiba-shi, Chiba 260-8675 Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences; Hokkaido University; Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 Japan
| |
Collapse
|
5
|
Sato Y, Nakamura T, Yamada Y, Harashima H. Development of a multifunctional envelope-type nano device and its application to nanomedicine. J Control Release 2016; 244:194-204. [PMID: 27374187 DOI: 10.1016/j.jconrel.2016.06.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Successful nanomedicines should be based on sound drug delivery systems (DDS) the permit intracellular trafficking as well as the biodistribution of cargos to be controlled. We have been developing new types of DDS that are multifunctional envelope-type nano devices referred to as MENDs. First, we will focus the in vivo delivery of siRNA to hepatocytes using a YSK-MEND which is composed of pH-responsive cationic lipids. The YSK-MEND is capable of inducing efficient silencing activity in hepatocytes and can be used to cure mice that are infected with hepatitis C or B. The YSK-MEND can also be applied to cancer immunotherapy through the activation of immune cells by delivering different compounds such as cyclic-di-GMP, siRNA or alpha-galactosylceramide as a lipid antigen. The findings indicate that, as predicted, these compounds, when encapsulated in the YSK-MEND, can be delivered to the site of action and induced immune activation through different mechanisms. Finally, a MITO-Porter, a membrane fusion-based delivery system to mitochondria, is introduced as an organelle targeting DDS and a new strategy for cancer therapy is proposed by delivering gentamicin to mitochondria of cancer cells. These new technologies are expected to extend the therapeutic area of Nanomedicine by increasing the power of DDS, especially from the view point of controlled intracellular trafficking.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
6
|
Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H, Harashima H. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J Control Release 2016; 225:183-91. [PMID: 26820519 DOI: 10.1016/j.jconrel.2016.01.042] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/06/2016] [Accepted: 01/23/2016] [Indexed: 01/08/2023]
Abstract
Applying small interfering RNA (siRNA) to dendritic cell (DC) based therapy represents a potential candidate for cancer immunotherapy. However, delivering siRNA to DCs is a challenging issue for non-viral vectors. To date, only viral vectors have achieved efficient gene silencing in DCs. We report herein that a novel cationic lipid, YSK12-C4, when loaded in a nanoparticle with siRNA (YSK12-C4 multifunctional envelope type nano device [YSK12-MEND]), greatly facilitated gene silencing in mouse DCs. The use of the YSK12-MEND resulted in a gene silencing efficiency in excess of 90%, with a median effective dose (ED50) of 1.5nM, whereas the maximum gene silencing efficiency of Lipofectamine RNAiMAX was less than 60% and the ED50 was 25nM. Furthermore, suppressor of cytokine signaling 1, an immune suppressive molecule in DCs, silenced in the mouse DC by the YSK12-MEND showed a drastic enhancement in cytokine production, resulting in the significant suppression of tumor growth when it was applied to DC-based therapy against a mouse lymphoma. These results clearly indicate that YSK12-MEND overcomes the obstacle associated with non-viral vectors and can be considered to be a promising non-viral vector for siRNA delivery to DCs, thus accelerating DC-based therapies with siRNA.
Collapse
Affiliation(s)
- Shota Warashina
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mamoru Hyodo
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-Cho, Toyota 470-0392, Japan
| | - Hiroto Hatakeyama
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
7
|
Li JG, DU YM, Yan ZD, Yan J, Zhuansun YX, Chen R, Zhang W, Feng SL, Ran PX. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp Ther Med 2016; 11:878-884. [PMID: 26998006 DOI: 10.3892/etm.2016.2989] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are associated with the activation and differentiation of T helper (Th) cells. Cluster of differentiation (CD)80 and CD86, the co-stimulatory molecules highly expressed in DCs, have are prominent in promoting the differentiation of Th cells toward Th2 cells. However, little is known about the effect of CD80 and CD86 knockdown on Th1/Th2 cytokine production in mature DCs (mDCs). The aim of the present study was to investigate whether small-interfering RNA (siRNA) could suppress the surface expression of CD80 and CD86 in mDCs. The effects of CD80 and CD86 knockdown in mDCs on Th1/Th2 cytokine expression were examined using an asthmatic murine model. DCs were isolated, separated and cultured in vitro. Flow cytometry was used to examine the expression of CD11c, CD80 and CD86 on the DCs. The DCs were transfected with CD80- and CD86-specific siRNA, while non-siRNA and negative siRNA controls were also designed. Then, the mRNA and protein expression levels of CD80 and CD86 were determined by reverse transcription-quantitative polymerase chain reaction and flow cytometry, respectively. The levels of interferon (IFN)-γ and interleukin (IL)-4 produced by T cells co-cultured with mDCs were measured by enzyme-linked immunosorbent assay. Substantial downregulation of CD80 and CD86 mRNA and protein levels were observed in the mDCs following transfection with siRNA. The level of IFN-γ produced by T cells co-cultured with mDCs was significantly increased in the siRNA group, while IL-4 production was significantly decreased. These results show that specific targeting of CD80 and CD86 with siRNA is able to suppress CD80/CD86 expression and consequently regulate Th1/Th2 cytokine levels by increasing IFN-γ production and decreasing IL-4 levels in an asthmatic murine model.
Collapse
Affiliation(s)
- Jian-Guo Li
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu-Mo DU
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhi-Dong Yan
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jia Yan
- Department of Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yong-Xun Zhuansun
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Rui Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Zhang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Su-Ling Feng
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute of Respiratory Diseases, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Pi-Xin Ran
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
8
|
Nakamura T, Fujiwara Y, Warashina S, Harashima H. The intracellular pharmacodynamics of siRNA is responsible for the low gene silencing activity of siRNA-loaded nanoparticles in dendritic cells. Int J Pharm 2015; 494:271-7. [PMID: 26253379 DOI: 10.1016/j.ijpharm.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/14/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022]
Abstract
The delivery of small interfering RNA (siRNA) to dendritic cells (DCs) is a challenging issue for siRNA-loaded lipid nanoparticles. The cause of this difficulty is unknown. The findings reported herein indicate that the rate-limiting step in gene silencing using siRNA-loaded lipid nanoparticles in DCs, as evidenced by a quantitative analysis of each process in siRNA delivery between mouse bone marrow derived DC (BMDC) and other cell lines, was not associated with the actual delivery of siRNA. A gene silencing of only 50% was observed in BMDC, even when a high dose was used. Contrary to our expectation, the interval between cellular uptake and the delivery of siRNA to the cytosol was not responsible for the low gene silencing. Meanwhile, a drastic difference was found in the relationship between the efficiency of gene silencing and the amount of intracellular intact siRNA. This fact indicates that the processes after cytosolic delivery of siRNA, namely the intracellular pharmacodynamics (PD) of siRNA, appear to be the rate-limiting step in gene silencing in BMDC. The findings reported here demonstrate the importance of the intracellular PD of siRNA delivered to cytosol in the development of siRNA delivery systems for gene silencing in DCs.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Shota Warashina
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
9
|
Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells. Eur J Pharm Biopharm 2015; 92:216-27. [DOI: 10.1016/j.ejpb.2015.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/20/2022]
|
10
|
Asai-Tajiri Y, Matsumoto K, Fukuyama S, Kan-O K, Nakano T, Tonai K, Ohno T, Azuma M, Inoue H, Nakanishi Y. Small interfering RNA against CD86 during allergen challenge blocks experimental allergic asthma. Respir Res 2014; 15:132. [PMID: 25344652 PMCID: PMC4216659 DOI: 10.1186/s12931-014-0132-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Background CD86-CD28 interaction has been suggested as the principal costimulatory pathway for the activation and differentiation of naïve T cells in allergic inflammation. However, it remains uncertain whether this pathway also has an essential role in the effector phase. We sought to determine the contribution of CD86 on dendritic cells in the reactivation of allergen-specific Th2 cells. Methods We investigated the effects of the downregulation of CD86 by short interfering RNAs (siRNAs) on Th2 cytokine production in the effector phase in vitro and on asthma phenotypes in ovalbumin (OVA)-sensitized and -challenged mice. Results Treatment of bone marrow-derived dendritic cells (BMDCs) with CD86 siRNA attenuated LPS-induced upregulation of CD86. CD86 siRNA treatment impaired BMDCs’ ability to activate OVA-specific Th2 cells. Intratracheal administration of CD86 siRNA during OVA challenge downregulated CD86 expression in the airway mucosa. CD86 siRNA treatment ameliorated OVA-induced airway eosinophilia, airway hyperresponsiveness, and the elevations of OVA-specific IgE in the sera and IL-5, IL-13, and CCL17 in the bronchoalveolar lavage fluid, but not the goblet cell hyperplasia. Conclusion These results suggest that local administration of CD86 siRNA during the effector phase ameliorates lines of asthma phenotypes. Targeting airway dendritic cells with siRNA suppresses airway inflammation and hyperresponsiveness in an experimental model of allergic asthma.
Collapse
Affiliation(s)
- Yukari Asai-Tajiri
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takako Nakano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tatsukuni Ohno
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiromasa Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Basha G, Novobrantseva TI, Rosin N, Tam YYC, Hafez IM, Wong MK, Sugo T, Ruda VM, Qin J, Klebanov B, Ciufolini M, Akinc A, Tam YK, Hope MJ, Cullis PR. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther 2011; 19:2186-200. [PMID: 21971424 PMCID: PMC3242662 DOI: 10.1038/mt.2011.190] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipid nanoparticles (LNPs) are currently the most effective in vivo delivery systems for silencing target genes in hepatocytes employing small interfering RNA. Antigen-presenting cells (APCs) are also potential targets for LNP siRNA. We examined the uptake, intracellular trafficking, and gene silencing potency in primary bone marrow macrophages (bmMΦ) and dendritic cells of siRNA formulated in LNPs containing four different ionizable cationic lipids namely DLinDAP, DLinDMA, DLinK-DMA, and DLinKC2-DMA. LNPs containing DLinKC2-DMA were the most potent formulations as determined by their ability to inhibit the production of GAPDH target protein. Also, LNPs containing DLinKC2-DMA were the most potent intracellular delivery agents as indicated by confocal studies of endosomal versus cytoplamic siRNA location using fluorescently labeled siRNA. DLinK-DMA and DLinKC2-DMA formulations exhibited improved gene silencing potencies relative to DLinDMA but were less toxic. In vivo results showed that LNP siRNA systems containing DLinKC2-DMA are effective agents for silencing GAPDH in APCs in the spleen and peritoneal cavity following systemic administration. Gene silencing in APCs was RNAi mediated and the use of larger LNPs resulted in substantially reduced hepatocyte silencing, while similar efficacy was maintained in APCs. These results are discussed with regard to the potential of LNP siRNA formulations to treat immunologically mediated diseases.
Collapse
Affiliation(s)
- Genc Basha
- NanoMedicine Research Group, Department of Biochemistry and Molecular Biology Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Endoplasmic reticulum stress-mediated apoptosis involved in indirect recognition pathway blockade induces long-term heart allograft survival. J Biomed Biotechnol 2010; 2010:705431. [PMID: 20490280 PMCID: PMC2871569 DOI: 10.1155/2010/705431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 02/24/2010] [Indexed: 12/30/2022] Open
Abstract
Implementation of dendritic cell- (DC-) based therapies in organ transplantation can reduce dependency on nonspecific immunosuppression. Despite extensive research, mechanisms of equipped DCs inducing transplant tolerance remain incomplete. Here, we applied RNA interference technique to inhibit CD80 and CD86 expression in host bone marrow-derived DCs. This approach could specifically and effectively knock down CD80 and CD86 expression. T cells primed by these DCs inhibited allogeneic responses. Administration of recipient DCs loaded with alloantigen after CD80 and CD86 blockade prolonged cardiac allograft survival. We also found a higher percentage of apoptotic T cells in lymph tissues and grafts than that detected in control group. In addition, these T cells expressed high expression of GRP78 than controls, indicating activation of unfolded protein responses. Upregulation of CHOP expression among these cells suggested that the endoplasmic reticulum stress (ERS) response switched to a proapoptotic response. Our results indicated that ERS-induced apoptosis may be involved in allogeneic T-cell apoptosis, and the ERS-mediated apoptosis pathway may be a novel target in clinical prevention and therapy of allograft rejection.
Collapse
|
13
|
Pedersen CD, Fang JJ, Pedersen AE. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells. Scand J Immunol 2009; 70:447-56. [PMID: 19874549 DOI: 10.1111/j.1365-3083.2009.02320.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective gene silencing using RNA interference (RNAi) has been shown to be an efficient method for manipulation of cellular functions. In this study, we compare three previously established methods for transfection of murine bone marrow-derived DC (BM-DC). We tested the efficacy of electroporation with the Mouse Nucleofector kit((R)) from Amaxa Biosystems and lipid-based transfection methods using transfection reagents from Santa Cruz Biotechnology or Genlantis. To analyse the transfection efficacy we used FITC-conjugated siRNA as a positive control together with CD80 and CD86 specific siRNA. We show that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface expression. In contrast, the most effective method was the lipid-based method using the siRNA transfection reagent GeneSilencer((R)) from Genlantis. This protocol resulted in up to 92% FITC-siRNA positive cells after 4 h which declined to 62% and 59% 24 and 48 h post-transfection, respectively. The transfected BM-DC remained CD11c positive, expressed high MHC class II and intermediate CD40 and were functional as APC. In conclusion, this protocol was effective for manipulation of murine BM-DC function through the use of specific siRNA and such methods can be important for the future study of DC-T cell interactions.
Collapse
Affiliation(s)
- C D Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
14
|
Zhang L, Procuik M, Fang T, Kung SKP. Functional analysis of the quantitative expression of a costimulatory molecule on dendritic cells using lentiviral vector-mediated RNA interference. J Immunol Methods 2009; 344:87-97. [PMID: 19303417 DOI: 10.1016/j.jim.2009.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 12/13/2022]
Abstract
The increasing number of co-stimulatory molecules identified on dendritic cells (DC) to date highlights the complex regulation of co-stimulatory signals in T cell activation. We previously established a single lentiviral vector system to stably express short hairpin RNA (shRNA) to induce RNA interference (RNAi) in cell lines and primary T cells. We reasoned that the choice of shRNA target sequences in the lentiviral vector system would also allow us to regulate different levels of surface expression of a co-stimulatory molecule stably and reproducibly. In this study, we first demonstrated that lentiviral vectors delivered RNA interference in DC without functional impairments. We used CD40 as a target co-stimulatory molecule to demonstrate the feasibility of using lentiviral vectors in delivering different shRNA target sequences to genetically modify DC that expressed different levels of CD40. We provided functional data to further demonstrate that quantitative expression of CD40 on LPS-stimulated DC have different functional outcomes on Ag-specific T cell responses in vitro. Collectively, we developed a simple system that will allow us to examine functional significance(s) of the quantitative and/or qualitative expression of a single or multiple co-stimulatory molecule(s) on DC.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Immunology, University of Manitoba, Room 417, Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, Canada R3E0T5
| | | | | | | |
Collapse
|
15
|
Karimi MH, Ebadi P, Pourfathollah AA, Soheili ZS, Samiee S, Ataee Z, Tabei SZ, Moazzeni SM. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells. Cell Immunol 2009; 259:74-81. [DOI: 10.1016/j.cellimm.2009.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 05/12/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
|
16
|
Ritprajak P, Hashiguchi M, Azuma M. Topical Application of Cream-emulsified CD86 siRNA Ameliorates Allergic Skin Disease by Targeting Cutaneous Dendritic Cells. Mol Ther 2008; 16:1323-30. [DOI: 10.1038/mt.2008.91] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
17
|
Jantsch J, Turza N, Volke M, Eckardt KU, Hensel M, Steinkasserer A, Willam C, Prechtel AT. Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation. J Immunol Methods 2008; 337:71-7. [PMID: 18514219 DOI: 10.1016/j.jim.2008.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/13/2008] [Accepted: 04/02/2008] [Indexed: 12/21/2022]
Abstract
Selective gene silencing by RNA interference (RNAi) has been shown to be an efficient method for the targeted manipulation of cellular functions. In this study we describe for the first time electroporation as a suitable and efficient method for the delivery of small interfering RNA (siRNA) into murine bone marrow-derived dendritic cells (BM-DC). Using a fluorescein-labeled non-silencing siRNA duplex, we established an electroporation protocol yielding routinely >90% positive cells. We investigated the effects of siRNA electroporation on BM-DC viability, phenotype and ability to induce allogeneic T cell proliferation. Finally, using siRNAs directed against MAPK1 and the transcription factor HIF-1alpha we were able to demonstrate an efficient knock down of cellular mRNA- and protein level in electroporated BM-DC. Furthermore, knocking down the transcription factor HIF-1alpha impeded hypoxic induction of HIF-1alpha target genes. We therefore propose siRNA electroporation into murine BM-DC as an efficient method to manipulate BM-DC function without the use of chemical transfection reagents. This new approach is superior to lipofection regarding detrimental effects of lipid-based transfection agents on BM-DC immunobiology.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xiang J, Gu X, Qian S, Chen Z. Graded function of CD80 and CD86 in initiation of T-cell immune response and cardiac allograft survival. Transpl Int 2007; 21:163-8. [PMID: 17971032 DOI: 10.1111/j.1432-2277.2007.00590.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4), which have opposing functions in T-cell responses, share the two ligands, CD80 (B7-1) and CD86 (B7-2). To understand the functions of CD80 and CD86, respectively, CD80(low) dendritic cells (DCs) and CD86(low) DCs were prepared by using RNA interference. Then CD80 and CD86 functions were analysed by in vitro mixed lymphocyte reaction and cytokine production assay. Effect on cardiac allograft survival was assayed in vivo. In this study, graded stimulatory function of CD80 and CD86, stronger inhibition of proliferation, and stronger prolongation of transplant survival were observed when CD80 and CD86 were blocked simultaneously.
Collapse
Affiliation(s)
- Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
19
|
Xiang J, Gu X, Zhou Y, Gong X, Qian S, Chen Z. Administration of dendritic cells modified by RNA interference prolongs cardiac allograft survival. Microsurgery 2007; 27:320-3. [PMID: 17477425 DOI: 10.1002/micr.20364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Systemic administration of immature donor-dendritic cells (DC) that are deficient in co-stimulatory molecules delays the onset of allograft rejection. However, it is not easy to control culture condition and guarantee that the administered DC are in the immature stages, which obviously affects their therapeutic effect. In this study, we attempted to inhibit expression of CD86 on DC using an RNA interference technology. The function of CD86(low) DC was determined by the influence on their capacity to stimulate T cell proliferation and by the effect of DC systemic administration on survival of cardiac allografts. CD86(low) DC stimulated low T cell proliferative responses in vitro and administration of CD86(low) DC prolonged survival of heart allografts in vivo. These results suggest that RNA interference is a useful approach to modify DC function, which has potentials for clinical application.
Collapse
Affiliation(s)
- Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
20
|
Prechtel AT, Turza NM, Theodoridis AA, Steinkasserer A. CD83 knockdown in monocyte-derived dendritic cells by small interfering RNA leads to a diminished T cell stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:5454-64. [PMID: 17442926 DOI: 10.4049/jimmunol.178.9.5454] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mature human dendritic cells (mDCs) are the most powerful APCs known today, having the unique ability to induce primary immune responses. One of the best known surface markers for mDCs is the glycoprotein CD83, which is strongly up-regulated during maturation, together with costimulatory molecules such as CD80 and CD86. When CD83 surface expression was inhibited by interference with the messenger RNA export or by infection with certain viruses, DCs showed a dramatically reduced capability to induce T cell proliferation. However, in these cases side effects on other cellular functions cannot be excluded completely. In this study we present an efficient method to specifically influence CD83 surface expression by the use of RNA interference. We used small-interfering RNA targeted against CD83 and carefully evaluated an electroporation protocol for the delivery of the duplex into the cells. Furthermore, we identified freshly prepared immature DCs as the best target for the application of a CD83 knockdown and we were also able to achieve a long lasting silencing effect for this molecule. Finally, we were able to confirm that CD83 functions as an enhancer during the stimulation of T cells, significantly increases DC-mediated T cell proliferation, and goes hand in hand with clear changes in cytokine expression during T cell priming. These results were obtained for the first time without the use of agents that might cause unwanted side effects, such as low m.w. inhibitors or viruses. Therefore, this method presents a suitable way to influence DC biology.
Collapse
Affiliation(s)
- Alexander T Prechtel
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, Erlangen, Germany.
| | | | | | | |
Collapse
|