1
|
Johnson MJ, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut microbiota and other factors associated with increased T cell regulation in HIV-exposed uninfected infants. Front Immunol 2025; 16:1533003. [PMID: 40098966 PMCID: PMC11911520 DOI: 10.3389/fimmu.2025.1533003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Infants exposed to HIV and uninfected (HEUs) are at higher risk of infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple immune defects of unknown origin were observed in HEUs. We hypothesized that HEUs have more regulatory and inhibitory checkpoint-expressing T cells (Treg, Tici) than HUUs, which may dampen their immune defenses against pathogens. Method We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut microbiome data reported in a previous study to establish correlations with the Treg/Tici. Results At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3 subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/Tici subsets that diverged between HEUs and HUUs at birth correlated with differential relative abundances of bacterial taxa in the maternal gut microbiome. The Treg/Tici subsets with significantly different frequencies at subsequent visits correlated with the concurrent composition of the infant gut microbiome. In vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher frequencies in HEUs than HUUs, recapitulating the in vivo correlations. Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici frequencies. Other factors that correlated with increased Treg/Tici frequencies were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28 weeks of life. Discussion This study shows that maternal and infant gut dysbiosis are central to the increase in Treg/Tici in HEUs and may be targeted by mitigating interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah K. Lazarus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashlynn E. Bennett
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Tovar-Salazar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaobing Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce McCollister
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marta C. Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
3
|
Arora S, Tayade A, Bhardwaj T, Pathak SS. Unveiling the Link: A Comprehensive Narrative Review of the Relationship Between Type 1 Diabetes Mellitus and Celiac Disease. Cureus 2023; 15:e47726. [PMID: 38022113 PMCID: PMC10676227 DOI: 10.7759/cureus.47726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune condition with a genetic predisposition. It has underlying autoimmune destruction of the pancreatic cells that produce insulin. It is often accompanied by other autoimmune conditions. This article focuses on celiac disease (CD), also an autoimmune disease. It is caused by gluten exposure. Both these conditions have genetic predisposing factors. Apart from the genetic background, aberrant small intestine immune response, inflammation, and different grades of enteropathy present in T1DM and CD are the same. With a mean frequency of 8%, the CD frequency of T1DM ranges from 3 to 16%. All T1DM patients should undergo serological testing for CD using antibodies to tissue transglutaminase at the time of T1DM onset. Individuals with T1DM and those accompanied by CD must follow a diet with no gluten. To outline the steps that can avert the development of these disorders and reduce the morbidity of the affected people, a complete understanding of the intricate pathophysiology of T1DM and its connection to CD has been undertaken in this review. The use of resources, such as PubMed and Google Scholar, has made this possible.
Collapse
Affiliation(s)
- Sanvi Arora
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ayush Tayade
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanya Bhardwaj
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swanand S Pathak
- Pharmacology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Wang F, Zhang Q, Cui J, Bao B, Deng X, Liu L, Guo MY. Polystyrene microplastics induce endoplasmic reticulum stress, apoptosis and inflammation by disrupting the gut microbiota in carp intestines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121233. [PMID: 36804561 DOI: 10.1016/j.envpol.2023.121233] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been recognized as a widespread new pollutant in nature and have induced an increase in the occurrence of a variety of diseases in carp. An animal model of microplastic ingestion was successfully established in an aqueous environment. The gut microbiota was analysed using a metagenomic approach. The results showed a significant reduction in the relative abundances of Lactococcus garvieae, Bacteroides_paurosaccharolyticus, and Romboutsia_ilealis after PS-MPs treatment. The 16S Silva database was used to predict and analyse the known genes. Intestinal flora disorders related to infectious diseases, cancers, neurodegenerative diseases, endocrine and metabolic diseases, cardiovascular diseases, and other diseases were found. The intake of PS-MPs resulted in damage to carp intestinal tissue and apoptosis of intestinal epithelial cells. The levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α were significantly increased with the intake of PS-MPs. The gene and protein levels of GRP78, Caspase-3, Caspase-7, Caspase-9, Caspase-12, PERK, IRE1, and ATF6 were further examined in PS group. The occurrence of ERS and apoptosis in carp intestines was confirmed. These results suggest that the accumulation of PS-MPs in the aquatic environment can disturb the carp gut microbiota and induce ERS, apoptosis, and inflammation in the intestinal tissue.
Collapse
Affiliation(s)
- Fuhan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, People's Republic of China.
| | - Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Bowen Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xian Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, People's Republic of China.
| |
Collapse
|
5
|
Gluten-Free Diet in Co-Existent Celiac Disease and Type 1 Diabetes Mellitus: Is It Detrimental or Beneficial to Glycemic Control, Vascular Complications, and Quality of Life? Nutrients 2022; 15:nu15010199. [PMID: 36615856 PMCID: PMC9824312 DOI: 10.3390/nu15010199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Celiac disease (CeD) is associated with type 1 diabetes mellitus (T1DM), and both have the same genetic background. Most patients with T1DM who develop CeD are either asymptomatic or have mild CeD-related gastrointestinal symptoms. Therefore, children affected by T1DM should undergo screening for asymptomatic CeD. The aim of this review is to highlight the influence of a gluten-free diet (GFD) on glycemic control, growth rate, microvascular complications, and quality of life in patients with T1DM and CeD. PubMed, Google Scholar, Web of Science, and Cochrane Central databases were searched. Reports reviewed were those published from 1969 to 2022 that focused on the interplay of T1DM and CeD and examined the effect of diet on glycemic control, growth rate, and quality of life. The most challenging aspect for a child with T1DM and CeD is that most GFD foods have a high glycemic index, while low glycemic index foods are recommended for T1DM. Interestingly, dietary therapy for CeD could improve the elevated HbA1c levels. Avoiding gluten added to a diabetic dietary regimen in T1DM patients might impose practical limitations and lead to important restrictions in the lifestyle of a young patient. Consequently, non-adherence to GFD in patients with T1DM and CeD is common. GFD in patients with T1DM and CeD seems to lower the incidence of micro- and macrovascular complications, but this requires further investigation. It seems that adherence to GFD in young patients with T1DM and CeD leads to regular growth and a stable body mass index without any negative effect on HbA1c or insulin requirements. Furthermore, the lipid profile and quality of life seem to have improved with the introduction of GFD.
Collapse
|
6
|
Kihl P, Krych L, Deng L, Hansen LH, Buschard K, Skov S, Nielsen DS, Kornerup Hansen A. Effect of gluten-free diet and antibiotics on murine gut microbiota and immune response to tetanus vaccination. PLoS One 2022; 17:e0266719. [PMID: 35417506 PMCID: PMC9007335 DOI: 10.1371/journal.pone.0266719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to compare the effect of a gluten-free diet and/or antibiotics on tetanus vaccine induced immunoglobulin G titers and immune cell levels in BALB/c mice. The gluten-free diet was associated with a reduced anti-tetanus IgG response, and it increased the relative abundance of the anti-inflammatory Bifidobacterium significantly in some of the mice. Antibiotics also led to gut microbiota changes and lower initial vaccine titer. After a second vaccination, neither gluten-free diet nor antibiotics reduced the titers. In the spleen, the gluten-free diet significantly increased regulatory T cell (Treg) fractions, CD4+ T cell activation, and tolerogenic dendritic cell fractions and activation, which extend the downregulating effect of the Treg. Therefore, the systemic effect of the gluten-free diet seems mainly tolerogenic. Antibiotics reduced the fractions of CD4+ T and B cells in the mesenteric lymph nodes. These results suggest that vaccine response in mice is under influence of their diet, the gut microbiota and the interplay between them. However, a gluten-free diet seems to work through mechanisms different from those induced by antibiotics. Therefore, diet should be considered when testing vaccines in mice and developing vaccines for humans.
Collapse
Affiliation(s)
- Pernille Kihl
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lars H. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Søren Skov
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Söderström H, Cervin M, Dereke J, Hillman M, Tiberg I, Norström F, Carlsson A. Does a gluten-free diet lead to better glycemic control in children with type 1 diabetes? Results from a feasibility study and recommendations for future trials. Contemp Clin Trials Commun 2022; 26:100893. [PMID: 35243123 PMCID: PMC8866053 DOI: 10.1016/j.conctc.2022.100893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hanna Söderström
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
- Corresponding author.
| | - Matti Cervin
- Department of Clinical Sciences, Child and Adolescent Psychiatry, Lund University, Lund, Sweden
| | - Jonatan Dereke
- Department of Clinical Sciences, Diabetes Research Laboratory, Lund University, Lund, Sweden
| | - Magnus Hillman
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Iren Tiberg
- Department of Health Sciences, Lund University, Lund, Sweden
| | - Fredrik Norström
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Annelie Carlsson
- Department of Clinical Sciences, Pediatrics, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021; 13:nu13041067. [PMID: 33806061 PMCID: PMC8064481 DOI: 10.3390/nu13041067] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays a pivotal role in the onset and course of inflammatory bowel disease (IBD). Patients are keen to know what to eat to reduce symptoms and flares, but dietary guidelines are lacking. To advice patients, an overview of the current evidence on food (group) level is needed. This narrative review studies the effects of food (groups) on the onset and course of IBD and if not available the effects in healthy subjects or animal and in vitro IBD models. Based on this evidence the Groningen anti-inflammatory diet (GrAID) was designed and compared on food (group) level to other existing IBD diets. Although on several foods conflicting results were found, this review provides patients a good overview. Based on this evidence, the GrAID consists of lean meat, eggs, fish, plain dairy (such as milk, yoghurt, kefir and hard cheeses), fruit, vegetables, legumes, wheat, coffee, tea and honey. Red meat, other dairy products and sugar should be limited. Canned and processed foods, alcohol and sweetened beverages should be avoided. This comprehensive review focuses on anti-inflammatory properties of foods providing IBD patients with the best evidence on which foods they should eat or avoid to reduce flares. This was used to design the GrAID.
Collapse
|
9
|
Aguilar EC, Navia-Pelaez JM, Fernandes-Braga W, Soares FLP, Dos Santos LC, Leonel AJ, Capettini LDSA, de Oliveira RP, de Faria AMC, Lemos VS, Alvarez-Leite JI. Gluten exacerbates atherosclerotic plaque formation in ApoE -/- mice with diet-induced obesity. Nutrition 2019; 75-76:110658. [PMID: 32305657 DOI: 10.1016/j.nut.2019.110658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Atherosclerosis is an underlying cause of cardiovascular disease, and obesity is one of the risk factors for atherogenesis. Although a gluten-free diet (GFD) has gained popularity as a strategy for weight loss, little is known about the effects of gluten on obesity. We have previously shown a negative effect of gluten on obesity in mice. However, its effects on atherogenesis are still unknown. Therefore, the aim of this study was to determine the effects of gluten on atherosclerosis progression during obesity. METHODS Atherosclerosis-susceptible ApoE knockout mice were subjected to an obesogenic GFD or a diet with 4.5% gluten (GD) for 10 wk. RESULTS Results from the study found that food intake and lipid profile were similar between the groups. However, GD promoted an increase in weight gain, adiposity, and plasma glucose. Pro-inflammatory factors such as tumor necrosis factor, interleukin-6, chemokine ligand-2, and matrix metalloproteinase-2 and -9 also were increased in the adipose tissue of gluten-fed mice. This inflammatory profile was associated with reduced phosphorylation of Akt, and consequently with the intensification of insulin resistance. The GD-enhanced vascular inflammation contributed to the worsening of atherosclerosis in the aorta and aortic root. Inflammatory cells, such as monocyte/macrophage and natural killer cells, and oxidative stress markers, such as superoxide and nitrotyrosine, were increased in atherosclerotic lesions of the GD group. Furthermore, the lesions presented higher necrotic core and lower collagen content, characterizing the less stable plaques. CONCLUSION The gluten-containing high-fat diet was associated with a more severe proatherogenic profile than the gluten-free high-fat diet owing to increased inflammatory and oxidative status at atherosclerotic lesions in obese mice.
Collapse
Affiliation(s)
- Edenil Costa Aguilar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | | | - Weslley Fernandes-Braga
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | - Alda Jusceline Leonel
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | - Virginia Soares Lemos
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Recent knowledge teaches us that food is one of the most important environmental factors affecting our health from disease prevention to cause. Food is one of the key players in the normal gut microenvironment, affecting microbial composition, function, gut barrier and host immunity. This review aims to summarize the current data on food components as regulators of intestinal inflammation, with particular focus on the inflammatory bowel diseases (IBDs). RECENT FINDINGS We summarize our current understanding on nutrition as possible cause and treatment for IBD and concentrate on several food components that have an anti-inflammatory role on the intestine (vitamin D, butyrate, resveratrol, curcumin). SUMMARY The proven efficacy of exclusive enteral nutrition to induce remission in children (and recently adults) with Crohn's disease has totally changed the clinical practice. Food components that have an anti-inflammatory role on the intestine (vitamin D, butyrate, resveratrol, curcumin) may now serve as an adjuvant to treatment. While our understanding has expanded in recent years, there remain many aspects of the interactions between nutrition and the gut that remain to be elucidated. Further focused research may lead to advances in understanding of disease pathogenesis and also result in new improved therapeutic interventions.
Collapse
Affiliation(s)
- Ron Shaoul
- Pediatric Gastroenterology & Nutrition Institute, Ruth Children's Hospital of Haifa, Rambam Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Andrew S Day
- Department of Paediatrics, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
11
|
Rasmussen NF, Rubin KH, Stougaard M, Tjønneland A, Stenager E, Lund Hetland M, Glintborg B, Bygum A, Andersen V. Impact of red meat, processed meat and fibre intake on risk of late-onset chronic inflammatory diseases: prospective cohort study on lifestyle factors using the Danish 'Diet, Cancer and Health' cohort (PROCID-DCH): protocol. BMJ Open 2019; 9:e024555. [PMID: 30928934 PMCID: PMC6475359 DOI: 10.1136/bmjopen-2018-024555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/08/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Chronic inflammatory diseases (CIDs) (Crohn's disease, ulcerative colitis, psoriasis, psoriatic arthritis, rheumatoid arthritis and multiple sclerosis) are diseases of the immune system that have some shared genetic and environmental predisposing factors, but still few studies have investigated the effects of lifestyle on disease risk of several CIDs. The primary aim of this prospective cohort study is to investigate the impact of fibre, red meat and processed meat on risk of late-onset CID, with the perspective that results of this study can contribute in supporting future diet recommendations for effective personalised prevention. METHODS AND ANALYSIS The study will use data from 57 053 persons from the prospective Danish cohort study 'Diet, Cancer and Health' together with National Health Registry data. The follow-up period is from December 1993 to December 2018. Questionnaire data on diet and lifestyle were collected at entry to the Diet, Cancer and Health study. The outcome CID is defined as having a diagnosis of one of the CIDs registered in the National Patient Registry or, for multiple sclerosis, in the Danish Multiple Sclerosis Registry during follow-up and being treated with a drug used for the specific disease. The major outcome of the analyses will be to detect variability in risk of late onset of any CID and, if power allows, disease risk of late onset of each CID diagnosis between persons with different fibre and red meat, and processed meat intake. The outcome will be adjusted for age, sex, body mass index, physical activity, energy, alcohol, fermented dairy products, education, smoking status, hormone replacement therapy and comorbidity. ETHICS AND DISSEMINATION The study is approved by the Danish Data Protection Agency (2012-58-0018). The core study is an open register-based cohort study. The study does not need approval from the Ethics committee or Institutional Review Board by Danish law. Study findings will be disseminated through peer-reviewed journals, patient associations and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT03456206; Post-results.
Collapse
Affiliation(s)
- Nathalie Fogh Rasmussen
- Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Katrine Hass Rubin
- OPEN - Odense Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark, and Odense University Hospital, Odense, Denmark
| | - Maria Stougaard
- OPEN - Odense Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark, and Odense University Hospital, Odense, Denmark
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen Ø, Denmark/Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egon Stenager
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- The Multiple Sclerosis Clinic of Southern Jutland (Sonderborg, Kolding, Esbjerg), Department of Neurology, Hospital of Southern Jutland, Sonderborg, Denmark
| | - Merete Lund Hetland
- DANBIO Registry/Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Bente Glintborg
- DANBIO Registry/Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Rheumatology, Gentofte Hospital, Hellerup, Hovedstaden, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, Odense Universitetshospital, Odense, Denmark
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Hospital of Southern Jutland, Aabenraa, Denmark
- institute og molecular medicine, Syddansk Universitet Det Sundhedsvidenskabelige Fakultet, Odense, Denmark
| |
Collapse
|
12
|
Levine A, Sigall Boneh R, Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 2018; 67:1726-1738. [PMID: 29777041 DOI: 10.1136/gutjnl-2017-315866] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Recent advances in basic and clinical science over the last 3 years have dramatically altered our appreciation of the role of diet in inflammatory bowel diseases (IBD). The marked increase in incidence of these diseases along with the important role of non-genetic susceptibility among patients with IBD has highlighted that these diseases have a strong environmental component. Progress in the field of microbiome and IBD has demonstrated that microbiome appears to play an important role in pathogenesis, and that diet may in turn impact the composition and functionality of the microbiome. Uncontrolled clinical studies have demonstrated that various dietary therapies such as exclusive enteral nutrition and newly developed exclusion diets might be potent tools for induction of remission at disease onset, for patients failing biologic therapy, as a treatment for disease complications and in reducing the need for surgery. We review these advances from bench to bedside, along with the need for better clinical trials to support these interventions.
Collapse
Affiliation(s)
- Arie Levine
- Pediatric Gastroenterology and Nutrition Unit, Edith Wolfson Medical Center, Holon, Israel.,Tel Aviv University, Tel Aviv, Israel
| | - Rotem Sigall Boneh
- Pediatric Gastroenterology and Nutrition Unit, Edith Wolfson Medical Center, Holon, Israel.,Tel Aviv University, Tel Aviv, Israel
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Kihl P, Krych L, Buschard K, Wesley JD, Kot W, Hansen AK, Nielsen DS, von Herrath MG. Oral insulin does not alter gut microbiota composition of NOD mice. Diabetes Metab Res Rev 2018; 34:e3010. [PMID: 29637693 DOI: 10.1002/dmrr.3010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Oral insulin as a preventive strategy and/or treatment of type 1 diabetes has been the target of much research. Producing oral insulins is a complex and challenging task, with numerous pitfalls, due to physiological, physical, and biochemical barriers. Our aim was to determine the impact of oral insulin on the delicate gut microbiota composition. METHODS Female nonobese diabetic mice were given oral porcine insulin 2 times a week from 5 weeks of age for 4 weeks, and then subsequently once a week for 21 weeks, or until euthanized. The mice were divided into groups on a gluten-reduced diet or a standard diet. Gut microbiota composition was analysed based on faecal samples, and the type 1 diabetes incidence of the mice was monitored. RESULTS We observed no influence of the oral porcine insulin on the gut microbiota composition of mice on a gluten-reduced or a standard diet at 9 weeks of age. Also, the administration of oral insulin did not influence the incidence of type 1 diabetes at 30 weeks of age. CONCLUSIONS Oral porcine insulin does not alter the gut microbiota composition of nonobese diabetic mice on either a gluten-reduced diet or standard diet. Also, the oral porcine insulin did not influence the incidence of type 1 diabetes in the groups.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/pathology
- Dysbiosis/immunology
- Dysbiosis/pathology
- Feces/microbiology
- Female
- Gastrointestinal Microbiome/drug effects
- Insulin, Regular, Pork/administration & dosage
- Insulin, Regular, Pork/adverse effects
- Mice
- Mice, Inbred NOD
- Swine
Collapse
Affiliation(s)
- Pernille Kihl
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Johnna D Wesley
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Aarhus, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Andersen V, Hansen AK, Heitmann BL. Potential Impact of Diet on Treatment Effect from Anti-TNF Drugs in Inflammatory Bowel Disease. Nutrients 2017; 9:E286. [PMID: 28294972 PMCID: PMC5372949 DOI: 10.3390/nu9030286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
We wanted to investigate the current knowledge on the impact of diet on anti-TNF response in inflammatory bowel diseases (IBD), to identify dietary factors that warrant further investigations in relation to anti-TNF treatment response, and, finally, to discuss potential strategies for such investigations. PubMed was searched using specified search terms. One small prospective study on diet and anti-TNF treatment in 56 patients with CD found similar remission rates after 56 weeks among 32 patients with good compliance that received concomitant enteral nutrition and 24 with poor compliance that had no dietary restrictions (78% versus 67%, p = 0.51). A meta-analysis of 295 patients found higher odds of achieving clinical remission and remaining in clinical remission among patients on combination therapy with specialised enteral nutrition and Infliximab (IFX) compared with IFX monotherapy (OR 2.73; 95% CI: 1.73-4.31, p < 0.01, OR 2.93; 95% CI: 1.66-5.17, p < 0.01, respectively). In conclusion, evidence-based knowledge on impact of diet on anti-TNF treatment response for clinical use is scarce. Here we propose a mechanism by which Western style diet high in meat and low in fibre may promote colonic inflammation and potentially impact treatment response to anti-TNF drugs. Further studies using hypothesis-driven and data-driven strategies in prospective observational, animal and interventional studies are warranted.
Collapse
Affiliation(s)
- Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Centre Sonderjylland, Hospital of Southern Jutland, Åbenrå 6200, Denmark.
- Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1871, Denmark.
| | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies, Parker Institute, Frederiksberg 2000, Denmark.
- Section for General Medicine, Department of Public Health, University of Copenhagen, Copenhagen 1353, Denmark.
- National Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark.
| |
Collapse
|
15
|
Svensson J, Sildorf SM, Pipper CB, Kyvsgaard JN, Bøjstrup J, Pociot FM, Mortensen HB, Buschard K. Potential beneficial effects of a gluten-free diet in newly diagnosed children with type 1 diabetes: a pilot study. SPRINGERPLUS 2016; 5:994. [PMID: 27398272 PMCID: PMC4936999 DOI: 10.1186/s40064-016-2641-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
AIM Gluten-free diet has shown promising effects in preventing type 1 diabetes (T1D) in animals as well as beneficial effects on the immune system. Gluten-free diet at diabetes onset may alter the natural course and outcome of autoimmune diseases such as T1D. METHODS In a 12-month study, 15 children newly diagnosed with T1D were instructed to follow a gluten-free diet. Questionnaires were used to evaluate adherence to the gluten-free diet. Partial remission (PR) was defined by insulin dose-adjusted A1c (IDAA1c) ≤9 or stimulated C-peptide (SCP) >300 pmol/L measured 90 min after a liquid mixed meal at the inclusion, six and 12 months after onset. The intervention group was compared with two previous cohorts. Linear mixed models were used to estimate differences between cohorts. RESULTS After 6 months, more children on a gluten-free diet tended to have SCP values above 300 pmol/L compared to the European cohort (p = 0.08). The adherence to a gluten-free diet decreased during the 12-month study period. After 1 year there was no difference in SCP levels or percentage in remission according to SCP (p > 0.1). Three times as many children were still in PR based on IDAA1c (p < 0.05). Twelve months after onset HbA1c were 21 % lower and IDAA1c >1 unit lower in the cohort on a gluten-free diet compared to the two previous cohorts (p < 0.001). CONCLUSION Gluten-free diet is feasible in highly motivated families and is associated with a significantly better outcome as assessed by HbA1c and IDAA1c. This finding needs confirmation in a randomized trial including screening for quality of life. (Clinicaltrials.gov number NCT02284815).
Collapse
Affiliation(s)
- Jannet Svensson
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Stine Møller Sildorf
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Christian B Pipper
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade, 1014 Copenhagen, Denmark
| | - Julie N Kyvsgaard
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Julie Bøjstrup
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Flemming M Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Children and Adolescents, Copenhagen University Hospital Herlev, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Richards JL, Yap YA, McLeod KH, Mackay CR, Mariño E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology 2016; 5:e82. [PMID: 27350881 PMCID: PMC4910123 DOI: 10.1038/cti.2016.29] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites-the short-chain fatty acids (SCFAs)-in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases and autoimmunity.
Collapse
Affiliation(s)
- James L Richards
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yu Anne Yap
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Keiran H McLeod
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Modulating the Gut Microbiota Improves Glucose Tolerance, Lipoprotein Profile and Atherosclerotic Plaque Development in ApoE-Deficient Mice. PLoS One 2016; 11:e0146439. [PMID: 26799618 PMCID: PMC4723129 DOI: 10.1371/journal.pone.0146439] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/17/2015] [Indexed: 12/15/2022] Open
Abstract
The importance of the gut microbiota (GM) in disease development has recently received increased attention, and numerous approaches have been made to better understand this important interplay. For example, metabolites derived from the GM have been shown to promote atherosclerosis, the underlying cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets were treated with ampicillin, a broad-spectrum antibiotic known to affect GM composition. Ampicillin-treatment had a marked and sustained effect on GM composition, as expected. Furthermore, although ampicillin-treated mice were slightly heavier than controls, ampicillin-treatment transiently improved glucose tolerance both in the absence or presence of gliadin, reduced plasma LDL and VLDL cholesterol levels, and reduced aortic atherosclerotic lesion area. These results demonstrate that a gluten-free diet does not seem to have beneficial effects on atherosclerosis or several CVD risk factors in this mouse model, but that sustained alteration of GM composition with a broad-spectrum antibiotic has beneficial effects on CVD risk factors and atherosclerosis. These findings support the concept that altering the microbiota might provide novel treatment strategies for CVD.
Collapse
|
18
|
Lerner A, Matthias T. Rheumatoid arthritis-celiac disease relationship: joints get that gut feeling. Autoimmun Rev 2015; 14:1038-1047. [PMID: 26190704 DOI: 10.1016/j.autrev.2015.07.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) and celiac disease (CD) belong to the autoimmune disease family. Despite being separate entities they share multiple aspects. Epidemiologically they share comparable incidence environmental influences, associated antibodies and a recent incidental surge. They differ in their HLA pre-dispositions and specific predictive and diagnostic biomarkers. At the clinical level, celiac disease exhibits extra-intestinal rheumatic manifestations and RA gastrointestinal ones. Small bowel pathology exists in rheumatic patients. A trend towards responsiveness to a gluten free diet has been observed, ameliorating celiac rheumatic manifestations, whereas dietary interventions for rheumatoid arthritis remain controversial. Pathophysiologically, both diseases are mediated by endogenous enzymes in the target organs. The infectious, dysbiotic and increased intestinal permeability theories, as drivers of the autoimmune cascade, apply to both diseases. Contrary to their specific HLA pre-disposition, the diseases share multiple non-HLA loci. Those genes are crucial for activation and regulation of adaptive and innate immunity. Recently, light was shed on the interaction between host genetics and microbiota composition in relation to CD and RA susceptibility, connecting bugs and us and autoimmunity. A better understanding of the above mentioned similarities in the gut-joint inter-relationship, may elucidate additional facets in the mosaic of autoimmunity, relating CD to RA.
Collapse
Affiliation(s)
- Aaron Lerner
- Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
19
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
20
|
Abstract
Coeliac disease is a treatable, gluten-induced disease that often occurs concurrently with other autoimmune diseases. In genetic studies since 2007, a partial genetic overlap between these diseases has been revealed and further insights into the pathophysiology of coeliac disease and autoimmunity have been gained. However, genetic screening is not sensitive and specific enough to accurately predict disease development. The current method to diagnose individuals with coeliac disease is serological testing for the presence of autoantibodies whilst the patient is on a regular, gluten-containing diet, followed by gastroduodenoscopy with duodenal biopsy. Serological test results can also predict the probability of coeliac disease development, even if asymptomatic. In patients with autoimmune diseases known to occur alongside coeliac disease (particularly type 1 diabetes mellitus or thyroid disorders), disease screening-and subsequent treatment if coeliac disease is detected-could have beneficial effects on progression or potential complications of both diseases, owing to the effectiveness of gluten-free dietary interventions in coeliac disease. However, whether diagnosis of coeliac disease and subsequent dietary treatment can prevent autoimmune diseases is debated. In this Review, the genetic and immunological features of coeliac disease, overlap with other autoimmune diseases and implications for current screening strategies will be discussed.
Collapse
|
21
|
Volta U, Caio G, De Giorgio R, Henriksen C, Skodje G, Lundin KE. Non-celiac gluten sensitivity: a work-in-progress entity in the spectrum of wheat-related disorders. Best Pract Res Clin Gastroenterol 2015; 29:477-91. [PMID: 26060112 DOI: 10.1016/j.bpg.2015.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Accepted: 04/26/2015] [Indexed: 02/07/2023]
Abstract
Non-celiac gluten sensitivity is an undefined syndrome with gastrointestinal and extra-intestinal manifestations triggered by gluten in patients without celiac disease and wheat allergy. The pathogenesis involves immune-mediated mechanisms requiring further research. Symptoms disappear in a few hours or days after gluten withdrawal and recur rapidly after gluten ingestion. Besides gluten, other wheat proteins as well as fermentable oligo-, di-, mono-saccharides and polyols (FODMAPs) may contribute to this syndrome. This syndrome occurs mainly in young women, being rare in children. Its prevalence ranges from 0.6% to 6%, based on primary or tertiary care center estimates. No biomarker is available, but half of patients tests positive for IgG anti-gliadin antibodies, which disappear quickly after gluten-free diet together with symptoms. Also, genetic markers are still undefined. Although currently limited to a research setting, double-blind, placebo-controlled, cross-over trial strategy is recommended to confirm the diagnosis. Treatment is based on dietary restriction with special care to nutrient intake.
Collapse
Affiliation(s)
- Umberto Volta
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Giacomo Caio
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Roberto De Giorgio
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | - Gry Skodje
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Knut E Lundin
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Centre for Immune Regulation, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord 2015; 16:55-65. [PMID: 25619480 PMCID: PMC4348024 DOI: 10.1007/s11154-015-9309-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.
Collapse
Affiliation(s)
- Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, USA
| | | | | |
Collapse
|
23
|
Intrauterine growth restriction and prematurity influence regulatory T cell development in newborns. J Pediatr Surg 2014; 49:727-32. [PMID: 24851757 DOI: 10.1016/j.jpedsurg.2014.02.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of this study was to determine the relationship of birth weight and gestational age with regulatory T cells (Tregs) in cord blood of human newborns. METHODS Cord blood mononuclear cells (CBMCs) of 210 newborns were analyzed using flow cytometry to identify Tregs (CD3(+), CD4(+), CD25(high), FoxP3(high)) and measure FoxP3 mean fluorescence intensity (MFI). Suppressive index (SI) was calculated as FoxP3 MFI per Treg. RESULTS Mode of delivery had no significant effect on Tregs at birth. Term babies with growth restriction had fewer Tregs than their appropriate weight counterparts but equivalent SI. Preterm babies had higher percentages of Tregs, but lower SI than term controls. SI steadily increased through gestation. CONCLUSIONS Intrauterine growth restriction is correlated with fewer circulating Tregs and prematurity with decreased functionality of Tregs compared to term appropriate weight infants. This may have implications in diseases such as necrotizing enterocolitis that disproportionately affect premature and lower birth weight infants.
Collapse
|
24
|
Patrick C, Wang GS, Lefebvre DE, Crookshank JA, Sonier B, Eberhard C, Mojibian M, Kennedy CR, Brooks SP, Kalmokoff ML, Maglio M, Troncone R, Poussier P, Scott FW. Promotion of autoimmune diabetes by cereal diet in the presence or absence of microbes associated with gut immune activation, regulatory imbalance, and altered cathelicidin antimicrobial Peptide. Diabetes 2013; 62:2036-47. [PMID: 23349499 PMCID: PMC3661603 DOI: 10.2337/db12-1243] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are exposed to millions of microbial and dietary antigens via the gastrointestinal tract, which likely play a key role in type 1 diabetes (T1D). We differentiated the effects of these two major environmental factors on gut immunity and T1D. Diabetes-prone BioBreeding (BBdp) rats were housed in specific pathogen-free (SPF) or germ-free (GF) conditions and weaned onto diabetes-promoting cereal diets or a protective low-antigen hydrolyzed casein (HC) diet, and T1D incidence was monitored. Fecal microbiota 16S rRNA genes, immune cell distribution, and gene expression in the jejunum were analyzed. T1D was highest in cereal-SPF (65%) and cereal-GF rats (53%) but inhibited and delayed in HC-fed counterparts. Nearly all HC-GF rats remained diabetes-free, whereas HC-fed SPF rats were less protected (7 vs. 29%). Bacterial communities differed in SPF rats fed cereal compared with HC. Cereal-SPF rats displayed increased gut CD3(+) and CD8α(+) lymphocytes, ratio of Ifng to Il4 mRNA, and Lck expression, indicating T-cell activation. The ratio of CD3(+) T cells expressing the Treg marker Foxp3(+) was highest in HC-GF and lowest in cereal-SPF rats. Resident CD163(+) M2 macrophages were increased in HC-protected rats. The cathelicidin antimicrobial peptide (Camp) gene was upregulated in the jejunum of HC diet-protected rats, and CAMP(+) cells colocalized with CD163. A cereal diet was a stronger promoter of T1D than gut microbes in association with impaired gut immune homeostasis.
Collapse
Affiliation(s)
- Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David E. Lefebvre
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Brigitte Sonier
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Majid Mojibian
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher R. Kennedy
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | | | - Martin L. Kalmokoff
- Atlantic Food and Horticulture Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada
| | - Mariantonia Maglio
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | | | - Fraser W. Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Corresponding author: Fraser W. Scott,
| |
Collapse
|
25
|
Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr Allergy Asthma Rep 2013; 12:511-9. [PMID: 22886439 DOI: 10.1007/s11882-012-0291-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Autoimmune disease has traditionally been thought to be due to the impact of environmental factors on genetically susceptible individuals causing immune dysregulation and loss of tolerance. However, recent literature has highlighted the importance of the microbiome, (a collective genome of microorganisms in a given niche) in immune homeostasis. Increasingly, it has been recognized that disruptions in the commensal microflora may lead to immune dysfunction and autoimmunity. This review summarizes recent studies investigating the interplay between the microbiome and immune-mediated organ-specific diseases. In particular, we review new findings on the role of the microbiome in inflammatory bowel disease, celiac disease, psoriasis, rheumatoid arthritis, type I diabetes, and multiple sclerosis.
Collapse
|
26
|
Soares FLP, de Oliveira Matoso R, Teixeira LG, Menezes Z, Pereira SS, Alves AC, Batista NV, de Faria AMC, Cara DC, Ferreira AVM, Alvarez-Leite JI. Gluten-free diet reduces adiposity, inflammation and insulin resistance associated with the induction of PPAR-alpha and PPAR-gamma expression. J Nutr Biochem 2012; 24:1105-11. [PMID: 23253599 DOI: 10.1016/j.jnutbio.2012.08.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/20/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
Gluten exclusion (protein complex present in many cereals) has been proposed as an option for the prevention of diseases other than coeliac disease. However, the effects of gluten-free diets on obesity and its mechanisms of action have not been studied. Thus, our objective was to assess whether gluten exclusion can prevent adipose tissue expansion and its consequences. C57BL/6 mice were fed a high-fat diet containing 4.5% gluten (Control) or no gluten (GF). Body weight and adiposity gains, leukocyte rolling and adhesion, macrophage infiltration and cytokine production in adipose tissue were assessed. Blood lipid profiles, glycaemia, insulin resistance and adipokines were measured. Expression of the PPAR-α and γ, lipoprotein lipase (LPL), hormone sensitive lipase (HSL), carnitine palmitoyl acyltransferase-1 (CPT-1), insulin receptor, GLUT-4 and adipokines were assessed in epidydimal fat. Gluten-free animals showed a reduction in body weight gain and adiposity, without changes in food intake or lipid excretion. These results were associated with up-regulation of PPAR-α, LPL, HSL and CPT-1, which are related to lipolysis and fatty acid oxidation. There was an improvement in glucose homeostasis and pro-inflammatory profile-related overexpression of PPAR-γ. Moreover, intravital microscopy showed a lower number of adhered cells in the adipose tissue microvasculature. The overexpression of PPAR-γ is related to the increase of adiponectin and GLUT-4. Our data support the beneficial effects of gluten-free diets in reducing adiposity gain, inflammation and insulin resistance. The data suggests that diet gluten exclusion should be tested as a new dietary approach to prevent the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Fabíola Lacerda Pires Soares
- Departamento de Alimentos, Faculdade de Farmácia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pang W, Vogensen FK, Nielsen DS, Hansen AK. Faecal and caecal microbiota profiles of mice do not cluster in the same way. Lab Anim 2012; 46:231-6. [PMID: 22723645 DOI: 10.1258/la.2012.011128] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polymerase chain reaction (PCR)-based denaturation gradient gel electrophoresis (DGGE) is currently being used for characterizing the composition of the gut microbiota (GM) of mice in order to better control the study variation arising from the GM. At present, faeces are commonly sampled from live animals, while caecum is most commonly sampled from terminated animals. However, there is no knowledge whether the composition at the one site is representative for the other. In this study C57BL/6 mice were observed from the age of four weeks until the age of 10 weeks. Faeces were sampled weekly. Caecum was sampled surgically under anaesthesia and with subsequent ampicillin treatment at the age of six weeks and again after euthanasia at the age of 10 weeks. Faecal and caecal microbiota profiles were determined using DGGE and subjected to subsequent cluster analysis. The mice subjected to surgical caecal sampling clustered separately for two weeks after termination of antibiotics after which they again clustered with the non-surgically sampled mice. Faecal and caecal profiles clustered separately at the age of six weeks, but not at the age of 10 weeks. There were no correlations between faecal or caecal profiles at six or 10 weeks of age, respectively. It is concluded that faecal and caecal microbiota profiles are not representative of each other in mice. Therefore, it is recommendable in studies to sample from several sites specifically decided in relation to the specific model of a study.
Collapse
Affiliation(s)
- Wanyong Pang
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Thorvaldsensvej 57, DK-1870 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
28
|
Impact of dietary gluten on regulatory T cells and Th17 cells in BALB/c mice. PLoS One 2012; 7:e33315. [PMID: 22428018 PMCID: PMC3302844 DOI: 10.1371/journal.pone.0033315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023] Open
Abstract
Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments.
Collapse
|
29
|
Issazadeh-Navikas S, Teimer R, Bockermann R. Influence of dietary components on regulatory T cells. Mol Med 2012; 18:95-110. [PMID: 22113499 DOI: 10.2119/molmed.2011.00311] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022] Open
Abstract
Common dietary components including vitamins A and D, omega-3 and probiotics are now widely accepted to be essential to protect against many diseases with an inflammatory nature. On the other hand, high-fat diets are documented to exert multiple deleterious effects, including fatty liver diseases. Here we discuss the effect of dietary components on regulatory T cell (Treg) homeostasis, a central element of the immune system to prevent chronic tissue inflammation. Accordingly, evidence on the impact of dietary components on diseases in which Tregs play an influential role will be discussed. We will review chronic tissue-specific autoimmune and inflammatory conditions such as inflammatory bowel disease, type 1 diabetes mellitus, multiple sclerosis, rheumatoid arthritis and allergies among chronic diseases where dietary factors could have a direct influence via modulation of Tregs homeostasis and functions.
Collapse
|
30
|
Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243:103-18. [DOI: 10.1111/j.1749-6632.2011.06340.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Bech-Nielsen GV, Hansen CHF, Hufeldt MR, Nielsen DS, Aasted B, Vogensen FK, Midtvedt T, Hansen AK. Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Res Vet Sci 2011; 92:501-8. [PMID: 21543097 DOI: 10.1016/j.rvsc.2011.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 02/06/2023]
Abstract
Inflammatory diseases such as type 2 diabetes (T2D) in humans and mice are under the influence of the composition of the gut microbiota (GM). It was previously demonstrated that treating Lep(ob) mice with antibiotics improved glucose tolerance. However, wild type C57BL/6J mice may also exhibit plasma glucose intolerance reminiscent of human T2D. We hypothesized that antibiotic treatment in C57BL/6 mice would have an impact on glucose tolerance without affecting weight and gut immunology. When compared to mice treated with erythromycin or the controls, treatment for five weeks with ampicillin improved glucose tolerance without significantly affecting the weight or the number of gut mucosal regulatory T cells, tolerogenic dendritic cells or T helper cells type 1. 16S rRNA gene based denaturing gradient gel electrophoresis profiles clearly clustered according to treatment and showed that antibiotic treatment reduced GM diversity. It is concluded that antibiotic treatment changes glucose metabolism as well as the composition of the GM in C57BL/6 mice, and that this does not seem to be correlated to weight development in the mice.
Collapse
Affiliation(s)
- Gunilla Veslemøy Bech-Nielsen
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Grønnegårdsvej 18, DK-1870 Frederiksberg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tsaprouni LG, Ito K, Powell JJ, Adcock IM, Punchard N. Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm (Lond) 2011; 8:1. [PMID: 21272292 PMCID: PMC3040698 DOI: 10.1186/1476-9255-8-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 01/27/2011] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD) to study the expression of acetylated histones (H) 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K) 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP) in dextran sulfate sodium (DSS)-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.
Collapse
Affiliation(s)
- Loukia G Tsaprouni
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Kazuhiro Ito
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Jonathan J Powell
- Gastroeintestinal Laboratory, Rayne Institute, St. Thomas Hospital, London, SE1 7EH, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Neville Punchard
- School of Health and Biosciences, University of East London, Stratford Campus, Romford Road, London, E15 4LZ, UK
| |
Collapse
|
33
|
Anton G, Peltecu G, Socolov D, Cornitescu F, Bleotu C, Sgarbura Z, Teleman S, Iliescu D, Botezatu A, Goia CD, Huica I, Anton AC. Type-specific human papillomavirus detection in cervical smears in Romania. APMIS 2010:1-19. [PMID: 21143521 PMCID: PMC3132448 DOI: 10.1111/j.1600-0463.2011.02765.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To study type 1 diabetes (T1D), excellent animal models exist, both spontaneously diabetic and virus-induced. Based on knowledge from these, this review focuses on the environmental factors leading to T1D, concentrated into four areas which are: (1) The thymus-dependent immune system: T1D is a T cell driven disease and the beta cells are destroyed in an inflammatory insulitis process. Autoimmunity is breakdown of self-tolerance and the balance between regulator T cells and aggressive effector T cells is disturbed. Inhibition of the T cells (by e.g. anti-CD3 antibody or cyclosporine) will stop the T1D process, even if initiated by virus. Theoretically, the risk from immunotherapy elicits a higher frequency of malignancy. (2) The activity of the beta cells: Resting beta cells display less antigenicity and are less sensitive to immune destruction. Beta-cell rest can be induced by giving insulin externally in metabolic doses or by administering potassium-channel openers. Both procedures prevent T1D in animal models, whereas no good human data exist due to the risk of hypoglycemia. (3) NKT cells: According to the hygiene hypothesis, stimulation of NKT cells by non-pathogen microbes gives rise to less T cell reaction and less autoimmunity. Glycolipids presented by CD1 molecules are central in this stimulation. (4) Importance of the intestine and gliadin intake: Gluten-free diet dramatically inhibits T1D in animal models, and epidemiological data are supportive of such an effect in humans. The mechanisms include less subclinical intestinal inflammation and permeability, and changed composition of bacterial flora, which can also be obtained by intake of probiotics. Gluten-free diet is difficult to implement, and short-term intake has no effect. Regarding the onset of the T1D disease process, slow-acting enterovirus and gliadin deposits are speculated to be etiological in genetically susceptible individuals, followed by the mentioned four pathogenetic factors acting in concert. Neutralization of any one of these factors is capable of stopping T1D development, as lessons are learned from the animal models.
Collapse
Affiliation(s)
- Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sonier B, Patrick C, Ajjikuttira P, Scott FW. Intestinal Immune Regulation as a Potential Diet-Modifiable Feature of Gut Inflammation and Autoimmunity. Int Rev Immunol 2009; 28:414-45. [DOI: 10.3109/08830180903208329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|