1
|
Rolo D, Sandoval-Ibáñez O, Thiele W, Schöttler MA, Gerlach I, Zoschke R, Schwartzmann J, Meyer EH, Bock R. CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1) is a photosystem I assembly factor in Arabidopsis. THE PLANT CELL 2024; 36:4179-4211. [PMID: 38382089 PMCID: PMC11449006 DOI: 10.1093/plcell/koae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024]
Abstract
Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of 18 protein subunits and nearly 200 co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in nonappressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 (PSA3). Together, our data support an important but nonessential role of CEPA1 in PSI assembly.
Collapse
Affiliation(s)
- David Rolo
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Omar Sandoval-Ibáñez
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joram Schwartzmann
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Etienne H Meyer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Pan Y, Jia Y, Liu W, Zhao Q, Pan W, Jia Y, Lv S, Liu X, Nie X. Transcriptome-wide m6A methylation profile reveals its potential role underlying drought response in wheat (Triticum aestivum L.). PLANTA 2024; 260:65. [PMID: 39073585 DOI: 10.1007/s00425-024-04491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.
Collapse
Affiliation(s)
- Yan Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenxin Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China
| | - Yongpeng Jia
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 743004, Henan, China
| | - Shuzuo Lv
- Luoyang Academy of Agricultural and Forestry Sciences, 471027, Luoyang, Henan, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Science, 261325, Weifang, Shandong, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Northwest, A&F University, Yangling, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Pioneering Innovation Center for Wheat Stress Tolerance Improvement, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Cannon AE, Horn PJ. The Molecular Frequency, Conservation and Role of Reactive Cysteines in Plant Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2024; 65:826-844. [PMID: 38113384 DOI: 10.1093/pcp/pcad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited. To help address these limitations, we have conducted a wide-ranging analysis by integrating published datasets encompassing PTM proteomics (comparing S-sulfenylation, persulfidation, S-nitrosylation and S-acylation), genomics and protein structures, with a specific focus on proteins involved in plant lipid metabolism. The prevalence and distribution of modified Cys residues across all analyzed proteins is diverse and multifaceted. Nevertheless, by combining an evaluation of sequence conservation across 100+ plant genomes with AlphaFold-generated protein structures and physicochemical predictions, we have unveiled structural propensities associated with Cys modifications. Furthermore, we have identified discernible patterns in lipid biochemical pathways enriched with Cys PTMs, notably involving beta-oxidation, jasmonic acid biosynthesis, fatty acid biosynthesis and wax biosynthesis. These collective findings provide valuable insights for future investigations targeting the mechanistic foundations of Cys modifications and the regulation of modified proteins in lipid metabolism and other metabolic pathways.
Collapse
Affiliation(s)
- Ashley E Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
4
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Hernández ML, Jiménez-López J, Cejudo FJ, Pérez-Ruiz JM. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. PLANT PHYSIOLOGY 2024; 195:1521-1535. [PMID: 38386701 PMCID: PMC11142380 DOI: 10.1093/plphys/kiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role in balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and fatty acid desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.
Collapse
Affiliation(s)
- María Luisa Hernández
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Julia Jiménez-López
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis , Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
6
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
7
|
Stawoska I, Wesełucha-Birczyńska A, Golebiowska-Paluch G. Temperature-Caused Changes in Raman Pattern and Protein Profiles of Winter Triticale (x Triticosecale, Wittm.) Field-Grown Seedlings. Molecules 2024; 29:1933. [PMID: 38731424 PMCID: PMC11085197 DOI: 10.3390/molecules29091933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Climate change, which causes periods with relatively high temperatures in winter in Poland, can lead to a shortening or interruption of the cold hardening of crops. Previous research indicates that cold acclimation is of key importance in the process of acquiring cereal tolerance to stress factors. The objective of this work was to verify the hypothesis that both natural temperature fluctuations and the plant genotype influence the content of metabolites as well as proteins, including antioxidant enzymes and photosystem proteins. The research material involved four winter triticale genotypes, differing in their tolerance to stress under controlled conditions. The values of chlorophyll a fluorescence parameters and antioxidant activity were measured in their seedlings. Subsequently, the contribution of selected proteins was verified using specific antibodies. In parallel, the profiling of the contents of chlorophylls, carotenoids, phenolic compounds, and proteins was carried out by Raman spectroscopy. The obtained results indicate that a better PSII performance along with a higher photosystem II proteins content and thioredoxin reductase abundance were accompanied by a higher antioxidant activity in the field-grown triticale seedlings. The Raman studies showed that the cold hardening led to a variation in photosynthetic dyes and an increase in the phenolic to carotenoids ratio in all DH lines.
Collapse
Affiliation(s)
- Iwona Stawoska
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084 Kraków, Poland;
| | | | - Gabriela Golebiowska-Paluch
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
8
|
Farjallah A, Boubakri H, Barhoumi F, Brahmi R, Gandour M. Systematic analysis of Prx genes in the Brachypodium genus and their expression pattern under abiotic constraints. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:93-105. [PMID: 37991495 DOI: 10.1111/plb.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Peroxiredoxins (Prx) are ubiquitous peroxidases required for the removal of excess free radicals produced under stress conditions. Peroxiredoxin genes (Prx) in the Brachypodium genus were identified using bioinformatics tools and their expression profiles were determined under abiotic stress using RT-qPCR. The promoter regions of Prx genes contain several cis-acting elements related to stress response. In silico expression analysis showed that B. distachyon Prx genes (BdPrx) are tissue specific. RT-qPCR analysis revealed their differential expression when exposed to salt or PEG-induced dehydration stress. In addition, the upregulation of BdPrx genes was accompanied by accumulation of H2 O2 . Exogenous application of H2 O2 induced expression of almost all BdPrx genes. The identified molecular interaction network indicated that Prx proteins may contribute to abiotic stress tolerance by regulating key enzymes involved in lignin biosynthesis. Overall, our findings suggest the potential role of Prx genes in abiotic stress tolerance and lay the foundation for future functional analyses aiming to engineer genetically improved cereal lines.
Collapse
Affiliation(s)
- A Farjallah
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences and Technics of Sidi Bouzid, University of Kairouan, Kairouan, Tunisia
| | - H Boubakri
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - F Barhoumi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - R Brahmi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - M Gandour
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
- Faculty of Sciences and Technics of Sidi Bouzid, University of Kairouan, Kairouan, Tunisia
| |
Collapse
|
9
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Han SY, Kim WY, Kim JS, Hwang I. Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C 4 photosynthesis in Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2023; 14:1202521. [PMID: 37476170 PMCID: PMC10354284 DOI: 10.3389/fpls.2023.1202521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
11
|
Plastid Phosphatidylglycerol Homeostasis Is Required for Plant Growth and Metabolism in Arabidopsis thaliana. Metabolites 2023; 13:metabo13030318. [PMID: 36984758 PMCID: PMC10058643 DOI: 10.3390/metabo13030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
A unique feature of plastid phosphatidylglycerol (PG) is a trans-double bond specifically at the sn-2 position of 16C fatty acid (16:1t- PG), which is catalyzed by FATTY ACID DESATURASE 4 (FAD4). To offer additional insights about the in vivo roles of FAD4 and its product 16:1t-PG, FAD4 overexpression lines (OX-FAD4s) were generated in Arabidopsis thaliana Columbia ecotype. When grown under continuous light condition, the fad4-2 and OX-FAD4s plants exhibited higher growth rates compared to WT control. Total lipids were isolated from Col, fad4-2, and OX-FAD4_2 plants, and polar lipids quantified by lipidomic profiling. We found that disrupting FAD4 expression altered prokaryotic and eukaryotic PG content and composition. Prokaryotic and eukaryotic monogalactosyl diacylglycerol (MGDG) was up-regulated in OX-FAD4 plants but not in fad4-2 mutant. We propose that 16:1t-PG homeostasis in plastid envelope membranes may coordinate plant growth and stress response by restricting photoassimilate export from the chloroplast.
Collapse
|
12
|
Pan Y, Li Y, Liu Z, Zou J, Li Q. Computational genomics insights into cold acclimation in wheat. Front Genet 2022; 13:1015673. [PMID: 36338961 PMCID: PMC9632429 DOI: 10.3389/fgene.2022.1015673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Development of cold acclimation in crops involves transcriptomic reprograming, metabolic shift, and physiological changes. Cold responses in transcriptome and lipid metabolism has been examined in separate studies for various crops. In this study, integrated computational approaches was employed to investigate the transcriptomics and lipidomics data associated with cold acclimation and vernalization in four wheat genotypes of distinct cold tolerance. Differential expression was investigated between cold treated and control samples and between the winter-habit and spring-habit wheat genotypes. Collectively, 12,676 differentially expressed genes (DEGs) were identified. Principal component analysis of these DEGs indicated that the first, second, and third principal components (PC1, PC2, and PC3) explained the variance in cold treatment, vernalization and cold hardiness, respectively. Differential expression feature extraction (DEFE) analysis revealed that the winter-habit wheat genotype Norstar had high number of unique DEGs (1884 up and 672 down) and 63 winter-habit genes, which were clearly distinctive from the 64 spring-habit genes based on PC1, PC2 and PC3. Correlation analysis revealed 64 cold hardy genes and 39 anti-hardy genes. Cold acclimation encompasses a wide spectrum of biological processes and the involved genes work cohesively as revealed through network propagation and collective association strength of local subnetworks. Integration of transcriptomics and lipidomics data revealed that the winter-habit genes, such as COR413-TM1, CIPKs and MYB20, together with the phosphatidylglycerol lipids, PG(34:3) and PG(36:6), played a pivotal role in cold acclimation and coordinated cohesively associated subnetworks to confer cold tolerance.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
| | - Yifeng Li
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
- Department of Computer Science, Department of Biological Science, Brock University, St. Catharines, ON, Canada
| | - Ziying Liu
- Digital Technologies, National Research Council Canada, Ottawa, ON, Canada
| | - Jitao Zou
- Aquatic and Crop Research and Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Qiang Li
- Aquatic and Crop Research and Development, National Research Council Canada, Saskatoon, SK, Canada
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Reactive oxygen species in plants: an invincible fulcrum for biotic stress mitigation. Appl Microbiol Biotechnol 2022; 106:5945-5955. [PMID: 36063177 DOI: 10.1007/s00253-022-12138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Climate change-associated environmental vagaries have amplified the incidence of pests and pathogens on plants, thus imparting the increased quest for management strategies. Plants respond to stresses through intricate signaling networks that regulate diverse cellular mechanisms. Reactive oxygen species (ROS) are cardinal towards the maintenance of normal plant activities as well as improving stress management. Plants that exhibit a fine balance between ROS levels and its management apparently mitigate stresses better. There have been very many compendiums on signaling and management of ROS during several abiotic stresses. However, expansion of knowledge related to ROS induction and homeostasis during biotic stresses is pertinent. Hence, considering its importance, we provide insights in this review on how plants signal and manage ROS upon an oxidative burst during their interaction with pathogens and herbivores. Substantial degree of molecular changes and pivotal roles of ROS have been detected during phyto-pathogen/herbivore interactions, opening novel platforms to understand signaling/management of events under varied biotic stresses. It is interesting to know that, though plants react to biotic stresses through oxidative burst, receptors and elicitors involved in the signal transduction differ across stresses. The review provides explicit details about the specific signaling of ROS production in plants under pathogen and herbivore attack. Furthermore, we also provide an update about tackling the accumulated ROS under biotic stresses as another pivotal step. ROS signaling and homeostasis can be exploited as critical players and a fulcrum to tackle biotic stresses, thus paving the way for futuristic combinatorial stress management strategies. KEY POINTS: • The review is a comprehension of redox signaling and management in plants during herbivory and pathogen infection • Reactive oxygen species (ROS) is an important factor during normal plant activities as well as in their response to stresses. Diverse modes of ROS signaling and management have been observed during both biotic stresses independently • Exploration of plant biology in multi-stress resistant plants like the crop wild relatives could pave the way for combinatorial management of stress for a better tomorrow.
Collapse
|
14
|
Systematic monitoring of 2-Cys peroxiredoxin-derived redox signals unveiled its role in attenuating carbon assimilation rate. Proc Natl Acad Sci U S A 2022; 119:e2119719119. [PMID: 35648819 DOI: 10.1073/pnas.2119719119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SignificanceIdentifying the intrinsic factors that regulate leaf photosynthetic rate may pave the way toward developing new strategies to enhance carbon assimilation. While the dependence of photosynthesis on the reductive activation of the Calvin-Benson cycle enzymes is well established, the role of oxidative signals in counterbalancing the reductive activity is just beginning to be explored. By developing 2-Cys peroxiredoxin-based genetically encoded biosensors, we demonstrated the induction of photosynthetically derived oxidative signals under habitual light conditions, a phenomenon typically masked by the dominance of the reductive power. Moreover, we unraveled the simultaneous activation of reductive and oxidative signals during photosynthesis induction phase and showed that 2-Cys peroxiredoxin activity attenuates carbon assimilation rates, demonstrating the restrictions imposed on photosynthetic performance by oxidative signals.
Collapse
|
15
|
Gao Y, Thiele W, Saleh O, Scossa F, Arabi F, Zhang H, Sampathkumar A, Kühn K, Fernie A, Bock R, Schöttler MA, Zoschke R. Chloroplast translational regulation uncovers nonessential photosynthesis genes as key players in plant cold acclimation. THE PLANT CELL 2022; 34:2056-2079. [PMID: 35171295 PMCID: PMC9048916 DOI: 10.1093/plcell/koac056] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
Plants evolved efficient multifaceted acclimation strategies to cope with low temperatures. Chloroplasts respond to temperature stimuli and participate in temperature sensing and acclimation. However, very little is known about the involvement of chloroplast genes and their expression in plant chilling tolerance. Here we systematically investigated cold acclimation in tobacco seedlings over 2 days of exposure to low temperatures by examining responses in chloroplast genome copy number, transcript accumulation and translation, photosynthesis, cell physiology, and metabolism. Our time-resolved genome-wide investigation of chloroplast gene expression revealed substantial cold-induced translational regulation at both the initiation and elongation levels, in the virtual absence of changes at the transcript level. These cold-triggered dynamics in chloroplast translation are widely distinct from previously described high light-induced effects. Analysis of the gene set responding significantly to the cold stimulus suggested nonessential plastid-encoded subunits of photosynthetic protein complexes as novel players in plant cold acclimation. Functional characterization of one of these cold-responsive chloroplast genes by reverse genetics demonstrated that the encoded protein, the small cytochrome b6f complex subunit PetL, crucially contributes to photosynthetic cold acclimation. Together, our results uncover an important, previously underappreciated role of chloroplast translational regulation in plant cold acclimation.
Collapse
Affiliation(s)
- Yang Gao
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Omar Saleh
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics (CREA-GB), Rome, 00178, Italy
| | - Fayezeh Arabi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Hongmou Zhang
- Institute of Optical Sensor Systems, German Aerospace Center (DLR), Berlin, 12489, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
16
|
Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis. Free Radic Biol Med 2021; 176:366-377. [PMID: 34619326 DOI: 10.1016/j.freeradbiomed.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Oxidation and reduction of protein cysteinyl thiols serve as molecular switches, which is considered the most central mechanism for redox regulation of biological processes, altering protein structure, biochemical activity, subcellular localization, and binding affinity. Redox proteomics allows global identification of redox-modified cysteine (Cys) sites and quantification of their reversible oxidation/reduction responses, serving as a hypothesis-generating platform to stimulate redox biology mechanistic research. Here, we developed Simultaneous Protein Expression and Redox (SPEAR) analysis, a new redox-proteomics approach based on differential labeling of reversibly oxidized and reduced cysteines with light and heavy isotopic forms of commercially available isotopically-labeled N-ethylmaleimide (NEM). The presented method does not require enrichment for labeled peptides, thus enabling simultaneous quantification of Cys reversible oxidation state and protein abundance. Using SPEAR, we were able to quantify the in-vivo reversible oxidation state of thousands of cysteines across the Arabidopsis proteome under steady-state and oxidative stress conditions. Functional assignment of the identified redox-sensitive proteins demonstrated the widespread effect of oxidative conditions on various cellular functions and highlighted the enrichment of chloroplastic proteins. SPEAR provides a simple, straightforward, and cost-effective means of studying redox proteome dynamics. The presented data provide a global quantitative view of the reversible oxidation of well-known redox-regulated active sites and many novel redox-sensitive sites whose role in plant acclimation to stress conditions remains to be further explored.
Collapse
Affiliation(s)
- Shani Doron
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Gabashvili
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel.
| |
Collapse
|
17
|
Xu Z, Zhang R, Yang M, Law YS, Sun F, Hon NL, Ngai SM, Lim BL. A Balance between the Activities of Chloroplasts and Mitochondria Is Crucial for Optimal Plant Growth. Antioxidants (Basel) 2021; 10:935. [PMID: 34207819 PMCID: PMC8228383 DOI: 10.3390/antiox10060935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023] Open
Abstract
Energy metabolism in plant cells requires a balance between the activities of chloroplasts and mitochondria, as they are the producers and consumers of carbohydrates and reducing equivalents, respectively. Recently, we showed that the overexpression of Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2), a phosphatase dually anchored on the outer membranes of chloroplasts and mitochondria, can boost the plant growth and seed yield of Arabidopsis thaliana by coordinating the activities of both organelles. However, when AtPAP2 is solely overexpressed in chloroplasts, the growth-promoting effects are less optimal, indicating that active mitochondria are required for dissipating excess reducing equivalents from chloroplasts to maintain the optimal growth of plants. It is even more detrimental to plant productivity when AtPAP2 is solely overexpressed in mitochondria. Although these lines contain high level of adenosine triphosphate (ATP), they exhibit low leaf sucrose, low seed yield, and early senescence. These transgenic lines can be useful tools for studying how hyperactive chloroplasts or mitochondria affect the physiology of their counterparts and how they modify cellular metabolism and plant physiology.
Collapse
Affiliation(s)
- Zhou Xu
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Renshan Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Meijing Yang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Yee-Song Law
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Feng Sun
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
| | - Ngai Lung Hon
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (N.L.H.); (S.M.N.)
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (N.L.H.); (S.M.N.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (Z.X.); (R.Z.); (M.Y.); (Y.-S.L.); (F.S.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
18
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
19
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
20
|
Bashyal BM, Parmar P, Zaidi NW, Aggarwal R. Molecular Programming of Drought-Challenged Trichoderma harzianum-Bioprimed Rice ( Oryza sativa L.). Front Microbiol 2021; 12:655165. [PMID: 33927706 PMCID: PMC8076752 DOI: 10.3389/fmicb.2021.655165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering various plant metabolic pathways related to antioxidative defense, secondary metabolites, and hormonal upregulation. In the present study, transcriptomic analysis of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress was carried out in comparison with drought-stressed samples using next-generation sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382 (15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787 (70%) were commonly expressed. Furthermore, comparative analysis of upregulated and downregulated genes under stressed conditions showed that 1,053 genes (42%) were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated drought-stressed rice plants. The genes exclusively expressed in T. harzianum-treated drought-stressed plants were mostly photosynthetic and antioxidative such as plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins, proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most enriched pathways were metabolic (38%) followed by pathways involved in the synthesis of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and glutathione metabolism (3%). Some of the genes were selected for validation using real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to establish host-T. harzianum interaction, transcriptome analysis of Trichoderma was also carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested that the annotated genes are functionally related to carbohydrate binding module, glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated, playing an important role in establishing the mycelia colonization of rice roots and its growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress in rice cultivars by a multitude of molecular programming.
Collapse
Affiliation(s)
- Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pooja Parmar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
21
|
Kuběnová L, Takáč T, Šamaj J, Ovečka M. Single Amino Acid Exchange in ACTIN2 Confers Increased Tolerance to Oxidative Stress in Arabidopsis der1-3 Mutant. Int J Mol Sci 2021; 22:ijms22041879. [PMID: 33668638 PMCID: PMC7918201 DOI: 10.3390/ijms22041879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Single-point mutation in the ACTIN2 gene of the der1-3 mutant revealed that ACTIN2 is an essential actin isovariant required for root hair tip growth, and leads to shorter, thinner and more randomly oriented actin filaments in comparison to the wild-type C24 genotype. The actin cytoskeleton has been linked to plant defense against oxidative stress, but it is not clear how altered structural organization and dynamics of actin filaments may help plants to cope with oxidative stress. In this study, we characterized root growth, plant biomass, actin organization and antioxidant activity of the der1-3 mutant under oxidative stress induced by paraquat and H2O2. Under these conditions, plant growth was better in the der1-3 mutant, while the actin cytoskeleton in the der1-3 carrying pro35S::GFP:FABD2 construct showed a lower bundling rate and higher dynamicity. Biochemical analyses documented a lower degree of lipid peroxidation, and an elevated capacity to decompose superoxide and hydrogen peroxide. These results support the view that the der1-3 mutant is more resistant to oxidative stress. We propose that alterations in the actin cytoskeleton, increased sensitivity of ACTIN to reducing agent dithiothreitol (DTT), along with the increased capacity to decompose reactive oxygen species encourage the enhanced tolerance of this mutant against oxidative stress.
Collapse
|
22
|
Dreyer A, Treffon P, Basiry D, Jozefowicz AM, Matros A, Mock HP, Dietz KJ. Function and Regulation of Chloroplast Peroxiredoxin IIE. Antioxidants (Basel) 2021; 10:antiox10020152. [PMID: 33494157 PMCID: PMC7909837 DOI: 10.3390/antiox10020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Peroxiredoxins (PRX) are thiol peroxidases that are highly conserved throughout all biological kingdoms. Increasing evidence suggests that their high reactivity toward peroxides has a function not only in antioxidant defense but in particular in redox regulation of the cell. Peroxiredoxin IIE (PRX-IIE) is one of three PRX types found in plastids and has previously been linked to pathogen defense and protection from protein nitration. However, its posttranslational regulation and its function in the chloroplast protein network remained to be explored. Using recombinant protein, it was shown that the peroxidatic Cys121 is subjected to multiple posttranslational modifications, namely disulfide formation, S-nitrosation, S-glutathionylation, and hyperoxidation. Slightly oxidized glutathione fostered S-glutathionylation and inhibited activity in vitro. Immobilized recombinant PRX-IIE allowed trapping and subsequent identification of interaction partners by mass spectrometry. Interaction with the 14-3-3 υ protein was confirmed in vitro and was shown to be stimulated under oxidizing conditions. Interactions did not depend on phosphorylation as revealed by testing phospho-mimicry variants of PRX-IIE. Based on these data it is proposed that 14-3-3υ guides PRX‑IIE to certain target proteins, possibly for redox regulation. These findings together with the other identified potential interaction partners of type II PRXs localized to plastids, mitochondria, and cytosol provide a new perspective on the redox regulatory network of the cell.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Patrick Treffon
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Daniel Basiry
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
| | - Anna Maria Jozefowicz
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Andrea Matros
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Hans-Peter Mock
- Applied Biochemistry Group, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany; (A.M.J.); (A.M.); (H.-P.M.)
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (P.T.); (D.B.)
- Correspondence: ; Tel.: +49-521-106-5589
| |
Collapse
|
23
|
Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ 2021; 9:e10685. [PMID: 33552724 PMCID: PMC7819121 DOI: 10.7717/peerj.10685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxin (PRX) is a ubiquitous thioredoxin-dependent peroxidase that can eliminate excessive free radicals produced by stress and protect cells from oxidative damage. PRXs are also involved in reactive oxygen species (ROS)- and redox-dependent signaling by performing redox interactions with other proteins and modify their redox status. At present, PRX family identification, evolution and regulation research has been conducted in some plants; however, systematic research about this family is lacking in cotton. In this study, a total of 44 PRXs were identified in the cotton genome. Phylogenetic and conserved active site analyses showed that the PRXs were divided into six subfamilies according to the conserved site (PxxxTxxC…S…W/F) and conserved cysteinyl residues positions. Segmental duplication and polyploid events were the main methods for PRX family expansion, and the PRXs of diploid G. arboreum were the donors of PRXs in the D subgenomes of allotetraploid G. hirsutum and G. barbadense during the evolution of the PRX family. qRT-PCR analysis confirmed that cis-acting elements play important roles in regulating the expression of PRXs. Alternative splicing events occurred in GhPRX14-D that can increased the complexity of transcripts in G. hirsutum. Subcellular localization showed that most PRX members were located in chloroplasts, the cytoplasmic membrane and the nucleus. Our results provide systematic support for a better understanding of PRXs in cotton and a starting point for further studies of the specific functions of PRXs in cotton.
Collapse
Affiliation(s)
- Yulong Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Renhui Wei
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Aiying Liu
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Senmiao Fan
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - JinCan Che
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Zhen Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Youlu Yuan
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.,Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Anyang, China
| |
Collapse
|
24
|
Raviv B, Khadka J, Swetha B, Singiri JR, Grandhi R, Shapira E, Novoplansky N, Gutterman Y, Galis I, Sternberg M, Grafi G. Extreme drought alters progeny dispersal unit properties of winter wild oat (Avena sterilis L.). PLANTA 2020; 252:77. [PMID: 33033936 DOI: 10.1007/s00425-020-03491-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
The dead husk is a vital component of the dispersal unit whose biochemical properties can be modified following exposure to drought. This might affect seed performance and fate, soil properties and consequently plant biodiversity. We investigated the effects of extreme drought on the dispersal unit (DU) properties of winter wild oat (Avena sterilis L.) in the Mediterranean ecosystems focusing on a commonly ignored component of the DU, namely the dead floral bracts (husk). DUs were collected from a climate change experimental research station in the Judean Hills, Israel, simulating extreme drought and from two additional sites differing in the rainfall amounts. Our results showed that drought conditions significantly affected A. sterilis reproductive traits displaying reduced DUs and caryopses weights. The husk contributes profoundly to seed performance showing that germination from the intact DUs or the intact florets 1 was higher, faster and more homogenous compared to naked caryopses; no effect of drought on germination properties was observed. The husk stored hundreds of proteins that retain enzymatic activity and multiple metabolites including phytohormones. Changes in rainfall amounts affected the composition and levels of proteins and other metabolites accumulated in the husk, with a notable effect on abscisic acid (ABA). The husk of both control and drought plants released upon hydration substances that selectively inhibited other species seed germination as well as substances that promoted microbial growth. Our data showed that the dead husk represents a functional component of the DU that have been evolved to nurture the embryo and to ensure its success in its unique habitat. Furthermore, drought conditions can modify husk biochemical properties, which in turn might affect seed performance and fate, soil microbiota and soil fertility and consequently plant species diversity.
Collapse
Affiliation(s)
- Buzi Raviv
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Bupur Swetha
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Jeevan R Singiri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Rohith Grandhi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Eliyahu Shapira
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Yitzchak Gutterman
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Marcelo Sternberg
- School of Plant Sciences and Food Security, Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben Gurion, Israel.
| |
Collapse
|
25
|
Moreno JC, Mi J, Agrawal S, Kössler S, Turečková V, Tarkowská D, Thiele W, Al-Babili S, Bock R, Schöttler MA. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1967-1984. [PMID: 32623777 DOI: 10.1111/tpj.14909] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 05/11/2023]
Abstract
Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene β-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.
Collapse
Affiliation(s)
- Juan C Moreno
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianing Mi
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Shreya Agrawal
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Stella Kössler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Veronika Turečková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Wolfram Thiele
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ralph Bock
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Mark Aurel Schöttler
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|
26
|
Dreyer A, Schackmann A, Kriznik A, Chibani K, Wesemann C, Vogelsang L, Beyer A, Dietz KJ. Thiol Redox Regulation of Plant β-Carbonic Anhydrase. Biomolecules 2020; 10:E1125. [PMID: 32751472 PMCID: PMC7463553 DOI: 10.3390/biom10081125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
β-carbonic anhydrases (βCA) accelerate the equilibrium formation between CO2 and carbonate. Two plant βCA isoforms are targeted to the chloroplast and represent abundant proteins in the range of >1% of chloroplast protein. While their function in gas exchange and photosynthesis is well-characterized in carbon concentrating mechanisms of cyanobacteria and plants with C4-photosynthesis, their function in plants with C3-photosynthesis is less clear. The presence of conserved and surface-exposed cysteinyl residues in the βCA-structure urged to the question whether βCA is subject to redox regulation. Activity measurements revealed reductive activation of βCA1, whereas oxidized βCA1 was inactive. Mutation of cysteinyl residues decreased βCA1 activity, in particular C280S, C167S, C230S, and C257S. High concentrations of dithiothreitol or low amounts of reduced thioredoxins (TRXs) activated oxidized βCA1. TRX-y1 and TRX-y2 most efficiently activated βCA1, followed by TRX-f1 and f2 and NADPH-dependent TRX reductase C (NTRC). High light irradiation did not enhance βCA activity in wildtype Arabidopsis, but surprisingly in βca1 knockout plants, indicating light-dependent regulation. The results assign a role of βCA within the thiol redox regulatory network of the chloroplast.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Alexander Schackmann
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Alexandre Kriznik
- CNRS, INSERM, IBSLor, Biophysics and Structural Biology, Université de Lorraine, F-5400 Nancy, France;
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Corinna Wesemann
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany;
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| |
Collapse
|
27
|
Telman W, Liebthal M, Dietz KJ. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. PHOTOSYNTHESIS RESEARCH 2020; 145:31-41. [PMID: 31768716 DOI: 10.1007/s11120-019-00691-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The chloroplast contains three types of peroxiredoxins (PRXs). Recently, 2-CysPRX was associated with thioredoxin (TRX) oxidation-dependent redox regulation. Here, this analysis was expanded to include PRXQ and PRXIIE. Oxidized PRXQ was able to inactivate NADPH malate dehydrogenase and fructose-1,6-bisphosphatase most efficiently in the presence of TRX-m1 and TRX-m4. The inactivation ability of TRXs did not entirely match their reductive activation efficiency. PRXIIE was unable to function as TRX oxidase in enzyme regulation. This conclusion was further supported by the observation that PRXQ adopts the oxidized form by about 50% in leaves, supporting a possible function as a TRX oxidase similar to 2-CysPRX. Results on the oxidation state of photosystem I (P700), plastocyanin, and ferredoxin in intact leaves indicate that each type of PRX has distinct regulatory functions, and that both 2-CysPRX and PRXQ conditionally assist in adjusting the redox state of target proteins for proper activity.
Collapse
Affiliation(s)
- Wilena Telman
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, University Str. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
28
|
Regulatory thiol oxidation in chloroplast metabolism, oxidative stress response and environmental signaling in plants. Biochem J 2020; 477:1865-1878. [DOI: 10.1042/bcj20190124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
Abstract
The antagonism between thiol oxidation and reduction enables efficient control of protein function and is used as central mechanism in cellular regulation. The best-studied mechanism is the dithiol-disulfide transition in the Calvin Benson Cycle in photosynthesis, including mixed disulfide formation by glutathionylation. The adjustment of the proper thiol redox state is a fundamental property of all cellular compartments. The glutathione redox potential of the cytosol, stroma, matrix and nucleoplasm usually ranges between −300 and −320 mV. Thiol reduction proceeds by short electron transfer cascades consisting of redox input elements and redox transmitters such as thioredoxins. Thiol oxidation ultimately is linked to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Enhanced ROS production under stress shifts the redox network to more positive redox potentials. ROS do not react randomly but primarily with few specific redox sensors in the cell. The most commonly encountered reaction within the redox regulatory network however is the disulfide swapping. The thiol oxidation dynamics also involves transnitrosylation. This review compiles present knowledge on this network and its central role in sensing environmental cues with focus on chloroplast metabolism.
Collapse
|
29
|
Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C. PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1 Δ3trans FATTY ACID DESATURASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:718-729. [PMID: 31856363 DOI: 10.1111/tpj.14657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t. The FAD4-PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co-production of PRXQ with FAD4 was required to produce Δ3-desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site-directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Montgomery D Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Tessa R Clark
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
30
|
Cerveau D, Henri P, Blanchard L, Rey P. Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5003-5016. [PMID: 31128069 DOI: 10.1093/jxb/erz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Plant 2-Cys peroxiredoxins (2-CysPRXs) are abundant plastidial thiol-peroxidases involved in key signaling processes such as photosynthesis deactivation at night. Their functions rely on the redox status of their two cysteines and on the enzyme quaternary structure, knowledge of which remains poor in plant cells. Using ex vivo and biochemical approaches, we thoroughly characterized the 2-CysPRX dimer/monomer distribution, hyperoxidation level, and thiol content in Arabidopsis, barley, and potato in relation to the light cycle. Our data reveal that the enzyme hyperoxidization level and its distribution as a dimer and monomer vary through the light cycle in a species-dependent manner. A differential susceptibility to hyperoxidation was observed for the two Arabidopsis 2-CysPRX isoforms and among the proteins of the three species, and was associated to sequence variation in hyperoxidation resistance motifs. Alkylation experiments indicate that only a minor fraction of the 2-CysPRX pool carries one free thiol in the three species, and that this content does not change during the light period. We conclude that most plastidial 2-CysPRX forms are oxidized and propose that there is a species-dependent variability in their functions since dimer and hyperoxidized forms fulfill distinct roles regarding direct oxidation of partners and signal transmission.
Collapse
Affiliation(s)
- Delphine Cerveau
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Patricia Henri
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Laurence Blanchard
- Aix Marseille Univ., CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| |
Collapse
|
31
|
Ameztoy K, Baslam M, Sánchez-López ÁM, Muñoz FJ, Bahaji A, Almagro G, García-Gómez P, Baroja-Fernández E, De Diego N, Humplík JF, Ugena L, Spíchal L, Doležal K, Kaneko K, Mitsui T, Cejudo FJ, Pozueta-Romero J. Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:2627-2644. [PMID: 31222760 DOI: 10.1111/pce.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 05/22/2023]
Abstract
Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.
Collapse
Affiliation(s)
- Kinia Ameztoy
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Pablo García-Gómez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Jan F Humplík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Kentaro Kaneko
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Seville, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas/Gobierno de Navarra, Avenida Pamplona 123, Mutilva, Navarra, 31192, Spain
| |
Collapse
|
32
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
33
|
Dreyer A, Dietz KJ. Reactive Oxygen Species and the Redox-Regulatory Network in Cold Stress Acclimation. Antioxidants (Basel) 2018; 7:E169. [PMID: 30469375 PMCID: PMC6262571 DOI: 10.3390/antiox7110169] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Cold temperatures restrict plant growth, geographical extension of plant species, and agricultural practices. This review deals with cold stress above freezing temperatures often defined as chilling stress. It focuses on the redox regulatory network of the cell under cold temperature conditions. Reactive oxygen species (ROS) function as the final electron sink in this network which consists of redox input elements, transmitters, targets, and sensors. Following an introduction to the critical network components which include nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductases, thioredoxins, and peroxiredoxins, typical laboratory experiments for cold stress investigations will be described. Short term transcriptome and metabolome analyses allow for dissecting the early responses of network components and complement the vast data sets dealing with changes in the antioxidant system and ROS. This review gives examples of how such information may be integrated to advance our knowledge on the response and function of the redox regulatory network in cold stress acclimation. It will be exemplarily shown that targeting the redox network might be beneficial and supportive to improve cold stress acclimation and plant yield in cold climate.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany.
| |
Collapse
|
34
|
Ojeda V, Pérez-Ruiz JM, Cejudo FJ. 2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark. MOLECULAR PLANT 2018; 11:1377-1388. [PMID: 30292682 DOI: 10.1016/j.molp.2018.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 05/29/2023]
Abstract
Most redox-regulated chloroplast enzymes are reduced during the day and oxidized during the night. While the reduction mechanism of light-dependent enzymes is well known, the mechanism mediating their oxidation in the dark remains unknown. The thiol-dependent peroxidases, 2-Cys peroxiredoxins (Prxs), play a key role in light-dependent reduction of chloroplast enzymes. Prxs transfer reducing equivalents of thiols to hydrogen peroxide, suggesting the participation of these peroxidases in enzyme oxidation in the dark. Here, we have addressed this issue by analyzing the redox state of well-known redox-regulated chloroplast enzymes in response to darkness in Arabidopsis thaliana mutants deficient in chloroplast-localized Prxs (2-Cys Prxs A and B, Prx IIE, and Prx Q). Mutant plants lacking 2-Cys Prxs A and B, and plants overexpressing NADPH-dependent thioredoxin (Trx) reductase C showed delayed oxidation of chloroplast enzymes in the dark. In contrast, the deficiencies of Prx IIE or Prx Q exerted no effect. In vitro assays allowed the reconstitution of the pathway of reducing equivalents from reduced fructose 1,6-bisphosphatase to hydrogen peroxide mediated by Trxs and 2-Cys Prxs. Taken together, these results suggest that 2-Cys Prxs participate in the short-term oxidation of chloroplast enzymes in the dark.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
35
|
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE. The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants. FRONTIERS IN PLANT SCIENCE 2018; 9:1331. [PMID: 30333839 PMCID: PMC6175978 DOI: 10.3389/fpls.2018.01331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (XPT) represents the fourth functional member of the phosphate translocator (PT) family residing in the plastid inner envelope membrane. In contrast to the other three members, little is known on the physiological role of the XPT. Based on its major transport substrates (i.e., pentose phosphates) the XPT has been proposed to act as a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway (OPPP). As the XPT is also capable of transporting triose phosphates, it might as well support the triose phosphate PT (TPT) in exporting photoassimilates from the chloroplast in the light ('day path of carbon') and hence in supplying the whole plant with carbohydrates. Two independent knockout mutant alleles of the XPT (xpt-1 and xpt-2) lacked any specific phenotype, suggesting that the XPT function is redundant. However, double mutants generated from crossings of xpt-1 to different mutant alleles of the TPT (tpt-1 and tpt-2) were severely retarded in size, exhibited a high chlorophyll fluorescence phenotype, and impaired photosynthetic electron transport rates. In the double mutant the export of triose phosphates from the chloroplasts is completely blocked. Hence, precursors for sucrose biosynthesis derive entirely from starch turnover ('night path of carbon'), which was accompanied by a marked accumulation of maltose as a starch breakdown product. Moreover, pentose phosphates produced by the extraplastidial branch of the OPPP also accumulated in the double mutants. Thus, an active XPT indeed retrieves excessive pentose phosphates from the extra-plastidial space and makes them available to the plastids. Further metabolic profiling revealed that phosphorylated intermediates remained largely unaffected, whereas fumarate and glycine contents were diminished in the double mutants. The assessment of C/N-ratios suggested co-limitations of C- and N-metabolism as possible cause for growth retardation of the double mutants. Feeding of sucrose partially rescued the growth and photosynthesis phenotypes of the double mutants. Immunoblots of thylakoid proteins, spectroscopic determinations of photosynthesis complexes, and chlorophyll a fluorescence emission spectra at 77 Kelvin could only partially explain constrains in photosynthesis observed in the double mutants. The data are discussed together with aspects of the OPPP and central carbon metabolism.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | | | | | - Stephan Krueger
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Peter Dörmann
- Molecular Biotechnology and Biochemistry, Universität Bonn, Bonn, Germany
| | | | - Ulf-Ingo Flügge
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Rangsrikitphoti P, Durnford DG. Transcriptome Profiling of Bigelowiella natans in Response to Light Stress. J Eukaryot Microbiol 2018; 66:316-333. [PMID: 30055063 DOI: 10.1111/jeu.12672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/17/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
Bigelowiella natans is a marine chlorarachniophyte whose plastid was acquired secondarily via endosymbiosis with a green alga. During plastid evolution, the photosynthetic endosymbiont would have integrated with the host metabolic pathways. This would require the evolution and coordination of strategies to cope with changes in light intensity that includes changes in the expression of both endosymbiont and host-derived genes. To investigate the transcriptional response to light intensity in chlorarachniophytes, we conducted an RNA-seq experiment to identify differentially expressed genes following a 4-h shift to high or very-low light. A shift to high light altered the expression of over 2,000 genes, many involved with photosynthesis, PSII assembly, primary metabolism, and reactive-oxygen scavenging. These changes are an attempt to optimize photosynthesis and increase energy sinks for excess reductant, while minimizing photooxidative stress. A transfer to very-low light resulted in a lower photosynthetic performance and metabolic alteration, reflecting an energy-limited state. Genes located on the nucleomorph, the vestigial nucleus in the plastid, had few changes in expression in either light treatment, indicating this organelle has relinquished most transcriptional control to the nucleus. Overall, during plastid origin, both host and transferred endosymbiont genes evolved a harmonized transcriptional network to respond to a classic photosynthetic stress.
Collapse
Affiliation(s)
| | - Dion G Durnford
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
37
|
Suppression of External NADPH Dehydrogenase-NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism. Int J Mol Sci 2018; 19:ijms19051412. [PMID: 29747392 PMCID: PMC5983774 DOI: 10.3390/ijms19051412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.
Collapse
|
38
|
Fichman Y, Koncz Z, Reznik N, Miller G, Szabados L, Kramer K, Nakagami H, Fromm H, Koncz C, Zilberstein A. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:278-291. [PMID: 29576081 DOI: 10.1016/j.plantsci.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Noam Reznik
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - László Szabados
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Katharina Kramer
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hillel Fromm
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Aviah Zilberstein
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.
| |
Collapse
|
39
|
Lee ES, Kang CH, Park JH, Lee SY. Physiological Significance of Plant Peroxiredoxins and the Structure-Related and Multifunctional Biochemistry of Peroxiredoxin 1. Antioxid Redox Signal 2018; 28:625-639. [PMID: 29113450 DOI: 10.1089/ars.2017.7400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Sessile plants respond to oxidative stress caused by internal and external stimuli by producing diverse forms of enzymatic and nonenzymatic antioxidant molecules. Peroxiredoxins (Prxs) in plants, including the Prx1, Prx5, Prx6, and PrxQ isoforms, constitute a family of antioxidant enzymes and play important functions in cells. Each Prx localizes to a specific subcellular compartment and has a distinct function in the control of plant growth, development, cellular metabolism, and various aspects of defense signaling. Recent Advances: Prx1, a typical Prx in plant chloroplasts, has redox-dependent multiple functions. It acts as a hydrogen peroxide (H2O2)-catalyzing peroxidase, a molecular chaperone, and a biological circadian marker. Prx1 undergoes a functional switching from a peroxidase to a molecular chaperone in response to oxidative stress, concomitant with the structural changes from a low-molecular-weight species to high-molecular-weight complexes mediated by the post-translational modification of its active site Cys residues. The redox status of the protein oscillates diurnally between hyperoxidation and reduction, showing a circadian rhythmic output. These dynamic structural and functional transformations mediate the effect of plant Prx1 on protecting plants from a myriad of harsh environmental stresses. CRITICAL ISSUES The multifunctional diversity of plant Prxs and their roles in cellular defense signaling depends on their specific interaction partners, which remain largely unidentified. Therefore, the identification of Prx-interacting proteins is necessary to clarify their physiological significance. FUTURE DIRECTIONS Since the functional specificity of the four plant Prx isoforms remains unclear, future studies should focus on investigating the physiological importance of each Prx isotype. Antioxid. Redox Signal. 28, 625-639.
Collapse
Affiliation(s)
- Eun Seon Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program) and PMBBRC, Gyeongsang National University , Jinju, Korea
| |
Collapse
|
40
|
Guo Y, Wang Z, Guan X, Hu Z, Zhang Z, Zheng J, Lu Y. Proteomic analysis of Potentilla fruticosa L. leaves by iTRAQ reveals responses to heat stress. PLoS One 2017; 12:e0182917. [PMID: 28829780 PMCID: PMC5568749 DOI: 10.1371/journal.pone.0182917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/26/2017] [Indexed: 11/19/2022] Open
Abstract
High temperature is an important environmental factor that affects plant growth and crop yield. Potentilla fruticosa L. has a developed root system and characteristics of resistance to several stresses (e.g., high temperature, cold, drought) that are shared by native shrubs in the north and west of China. To investigate thermotolerance mechanisms in P. fruticosa, 3-year-old plants were subjected to a high temperature of 42°C for 1, 2, and 3 days respectively before analysis. Then, we studied changes in cell ultrastructure using electron microscopy and investigated physiological changes in the leaves of P. fruticosa. Additionally, we used isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study proteomic changes in P. fruticosa leaves after 3 d of 42°C heat stress. we found that the cell membrane and structure of chloroplasts, especially the thylakoids in P. fruticosa leaves, was destroyed by a high temperature stress, which might affect the photosynthesis in this species. We identified 35 up-regulated and 23 down-regulated proteins after the heat treatment. Gene Ontology (GO) analysis indicated that these 58 differentially abundant proteins were involved mainly in protein synthesis, protein folding and degradation, abiotic stress defense, photosynthesis, RNA process, signal transduction, and other functions. The 58 proteins fell into different categories based on their subcellular localization mainly in the chloroplast envelope, cytoplasm, nucleus, cytosol, chloroplast, mitochondrion and cell membrane. Five proteins were selected for analysis at the mRNA level; this analysis showed that gene transcription levels were not completely consistent with protein abundance. These results provide valuable information for Potentilla thermotolerance breeding.
Collapse
Affiliation(s)
- Yingtian Guo
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xuelian Guan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Ze Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yizeng Lu
- Shandong Forest Germplasm Resources Center, Jinan City, Shandong Province, China
| |
Collapse
|
41
|
Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Deng M, Cao Y. Quantitative proteome-level analysis of paulownia witches' broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 2017; 5:e3495. [PMID: 28690927 PMCID: PMC5497676 DOI: 10.7717/peerj.3495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Paulownia witches' broom (PaWB) disease caused by phytoplasma is a fatal disease that leads to considerable economic losses. Although there are a few reports describing studies of PaWB pathogenesis, the molecular mechanisms underlying phytoplasma pathogenicity in Paulownia trees remain uncharacterized. In this study, after building a transcriptome database containing 67,177 sequences, we used isobaric tags for relative and absolute quantification (iTRAQ) to quantify and analyze the proteome-level changes among healthy P. fortunei (PF), PaWB-infected P. fortunei (PFI), and PaWB-infected P. fortunei treated with 20 mg L-1 or 60 mg L-1 methyl methane sulfonate (MMS) (PFI-20 and PFI-60, respectively). A total of 2,358 proteins were identified. We investigated the proteins profiles in PF vs. PFI (infected process) and PFI-20 vs. PFI-60 (recovered process), and further found that many of the MMS-response proteins mapped to "photosynthesis" and "ribosome" pathways. Based on our comparison scheme, 36 PaWB-related proteins were revealed. Among them, 32 proteins were classified into three functional groups: (1) carbohydrate and energy metabolism, (2) protein synthesis and degradation, and (3) stress resistance. We then investigated the PaWB-related proteins involved in the infected and recovered processes, and discovered that carbohydrate and energy metabolism was inhibited, and protein synthesis and degradation decreased, as the plant responded to PaWB. Our observations may be useful for characterizing the proteome-level changes that occur at different stages of PaWB disease. The data generated in this study may serve as a valuable resource for elucidating the pathogenesis of PaWB disease during phytoplasma infection and recovery stages.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | | | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
42
|
Tailor V, Ballal A. Novel molecular insights into the function and the antioxidative stress response of a Peroxiredoxin Q protein from cyanobacteria. Free Radic Biol Med 2017; 106:278-287. [PMID: 28159708 DOI: 10.1016/j.freeradbiomed.2017.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
The Peroxiredoxin Q (PrxQ) proteins are thiol-based peroxidases that are important for maintaining redox homeostasis in several organisms. Activity of PrxQs is mediated by two cysteines, peroxidatic (Cp) and resolving (Cr), in association with a reducing partner. A PrxQ, Alr3183, from the cyanobacterium, Anabaena PCC 7120, was characterized in this study. Alr3183, which required thioredoxin A (TrxA) for peroxidase activity, was an intramolecular disulfide bond-containing monomeric protein. However, Alr3183 lacking Cp (Alr3183C46S) or Cr (Alr3183C51S) formed intermolecular disulfide linkages and was dimeric. Alr3183C46S was completely inactive, while Alr3183C51S required higher concentration of TrxA for peroxidase activity. Surface plasmon resonance analysis showed that unlike Alr3183 or Alr3183C46S, Alr3183C51S bound rather poorly to TrxA. Also, compared to the oxidized protein, the DTT-treated (reduced) Alr3183 displayed decreased interaction with TrxA. In vivo, Alr3183 was found to be induced in response to γ-radiation. On exposure to H2O2, Anabaena strain over-expressing Alr3183 showed reduced formation of ROS, intact photosynthetic pigments and consequently better survival than the wild-type, whereas overproduction of Alr3183C46S did not provide any protection. Significantly, this study (1) reveals the importance of Cr for interaction with thioredoxins and (2) demonstrates that over-expression of PrxQs can protect cyanobacteria from oxidative stresses.
Collapse
Affiliation(s)
- Vijay Tailor
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
43
|
Król A, Weidner S. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:114-126. [PMID: 28178572 DOI: 10.1016/j.jplph.2016.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/21/2023]
Abstract
The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought.
Collapse
Affiliation(s)
- Angelika Król
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland.
| | - Stanisław Weidner
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland
| |
Collapse
|
44
|
Schöttler MA, Thiele W, Belkius K, Bergner SV, Flügel C, Wittenberg G, Agrawal S, Stegemann S, Ruf S, Bock R. The plastid-encoded PsaI subunit stabilizes photosystem I during leaf senescence in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1137-1155. [PMID: 28180288 PMCID: PMC5429015 DOI: 10.1093/jxb/erx009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PsaI is the only subunit of PSI whose precise physiological function has not yet been elucidated in higher plants. While PsaI is involved in PSI trimerization in cyanobacteria, trimerization was lost during the evolution of the eukaryotic PSI, and the entire PsaI side of PSI underwent major structural remodelling to allow for binding of light harvesting complex II antenna proteins during state transitions. Here, we have generated a tobacco (Nicotiana tabacum) knockout mutant of the plastid-encoded psaI gene. We show that PsaI is not required for the redox reactions of PSI. Neither plastocyanin oxidation nor the processes at the PSI acceptor side are impaired in the mutant, and both linear and cyclic electron flux rates are unaltered. The PSI antenna cross section is unaffected, state transitions function normally, and binding of other PSI subunits to the reaction centre is not compromised. Under a wide range of growth conditions, the mutants are phenotypically and physiologically indistinguishable from wild-type tobacco. However, in response to high-light and chilling stress, and especially during leaf senescence, PSI content is reduced in the mutants, indicating that the I-subunit plays a role in stabilizing PSI complexes.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karolina Belkius
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sonja Verena Bergner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Flügel
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Gal Wittenberg
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sandra Stegemann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Dong HP, Dong YL, Cui L, Balamurugan S, Gao J, Lu SH, Jiang T. High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. BMC Genomics 2016; 17:994. [PMID: 27919227 PMCID: PMC5139114 DOI: 10.1186/s12864-016-3335-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 11/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background Diatoms are able to acclimate to frequent and large light fluctuations in the surface ocean waters. However, the molecular mechanisms underlying these acclimation responses of diaotms remain elusive. Results In this study, we investigated the mechanism of high light protection in marine diatom Thalassiosira pseudonana using comparative proteomics in combination with biochemical analyses. Cells treated under high light (800 μmol photons m−2s−1) for 10 h were subjected to proteomic analysis. We observed that 143 proteins were differentially expressed under high light treatment. Light-harvesting complex proteins, ROS scavenging systems, photorespiration, lipid metabolism and some specific proteins might be involved in light protection and acclimation of diatoms. Non-photochemical quenching (NPQ) and relative electron transport rate could respond rapidly to varying light intensities. High-light treatment also resulted in increased diadinoxanthin + diatoxanthin content, decreased Fv/Fm, increased triacylglycerol and altered fatty acid composition. Under HL stress, levels of C14:0 and C16:0 increased while C20:5ω3 decreased. Conclusions We demonstrate that T. pseudonana has efficient photoprotective mechanisms to deal with HL stress. De novo synthesis of Ddx/Dtx and lipid accumulation contribute to utilization of the excess energy. Our data will provide new clues for in-depth study of photoprotective mechanisms in diatoms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3335-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Po Dong
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.,School of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yue-Lei Dong
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Lei Cui
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Srinivasan Balamurugan
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Jian Gao
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Song-Hui Lu
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China.
| | - Tao Jiang
- Research Center for Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Reyes AM, Vazquez DS, Zeida A, Hugo M, Piñeyro MD, De Armas MI, Estrin D, Radi R, Santos J, Trujillo M. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radic Biol Med 2016; 101:249-260. [PMID: 27751911 DOI: 10.1016/j.freeradbiomed.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3×106vs 6×103M-1s-1, respectively), while the rate constant of peroxynitrite reduction was (0.6-1.4) ×106M-1s-1 at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5×106 and 1×106M-1s-1, respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra.
Collapse
Affiliation(s)
- Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Diego S Vazquez
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Hugo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - M Dolores Piñeyro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad de Biología Molecular-Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Javier Santos
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
47
|
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P. Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:30-41. [PMID: 27717466 DOI: 10.1016/j.plantsci.2016.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Henrik U Stotz
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Yohann Couté
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France.
| |
Collapse
|
48
|
Chen B, Wang Y. Proteomic and Physiological Studies Provide Insight into Photosynthetic Response of Rice (Oryza sativa L.) Seedlings to Microgravity. Photochem Photobiol 2016; 92:561-70. [PMID: 27096703 DOI: 10.1111/php.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/30/2016] [Indexed: 11/27/2022]
Abstract
The mechanisms whereby how photosynthesis is regulated and maintained under conditions of microgravity remain incompletely understood. Herein, we took a combination of proteomic and physiological approaches to examine the response of rice (Oryza sativa L.) seedlings to spaceflight conditions. Our results show that both PSI fluorescence emission peak and P700 absorbance amplitude are severely decreased in spaceflight seedlings under microgravity. This is consistent with an observed significant reduction in PSI efficiency (ϕI ). To further analyze global changes of protein profiles under microgravity, isobaric tags for relative and absolute quantization (iTRAQ) labeling technology were deployed. Four hundred fifty-four differentially expressed proteins were identified by comparison of spaceflight and ground control. Of proteins relevant to photosynthesis, 34 were downregulated and 4 were upregulated. The significantly downregulated ones are essential components of PSI, NDH and the Cytb6 f complex. This downregulation of PSI proteins and/or protein structure changes may cause the overall reduction in PSI activity. Intriguingly, although abundance of some PSII proteins was altered under microgravity, no significant changes in PSII activity were detected. Taken together, our results suggest that PSI, rather than PSII being usually much more sensitive to environmental stresses, is more susceptible to spaceflight conditions in rice seedlings.
Collapse
Affiliation(s)
- Boya Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural of Sciences, Changchun, China.,Changchun Normal University, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural of Sciences, Changchun, China
| |
Collapse
|
49
|
Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. PLANT, CELL & ENVIRONMENT 2016; 39:103-19. [PMID: 26138759 DOI: 10.1111/pce.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 05/10/2023]
Abstract
Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Djelloul Ouahrani
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Mohamed Amine Marok
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- Université de Khemis Miliana, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Ain Defla, Khemis Miliana, 44225, Algérie
| | - Laurence Blanchard
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- CEA, DSV, IBEB, Laboratoire de Bioénergétique Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | - Pascal Rey
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
50
|
Dietz KJ. Thiol-Based Peroxidases and Ascorbate Peroxidases: Why Plants Rely on Multiple Peroxidase Systems in the Photosynthesizing Chloroplast? Mol Cells 2016; 39:20-5. [PMID: 26810073 PMCID: PMC4749869 DOI: 10.14348/molcells.2016.2324] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022] Open
Abstract
Photosynthesis is a highly robust process allowing for rapid adjustment to changing environmental conditions. The efficient acclimation depends on balanced redox metabolism and control of reactive oxygen species release which triggers signaling cascades and potentially detrimental oxidation reactions. Thiol peroxidases of the peroxiredoxin and glutathione peroxidase type, and ascorbate peroxidases are the main peroxide detoxifying enzymes of the chloroplast. They use different electron donors and are linked to distinct redox networks. In addition, the peroxiredoxins serve functions in redox regulation and retrograde signaling. The complexity of plastid peroxidases is discussed in context of suborganellar localization, substrate preference, metabolic coupling, protein abundance, activity regulation, interactions, signaling functions, and the conditional requirement for high antioxidant capacity. Thus the review provides an opinion on the advantage of linking detoxification of peroxides to different enzymatic systems and implementing mechanisms for their inactivation to enforce signal propagation within and from the chloroplast.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501 Bielefeld,
Germany
| |
Collapse
|