1
|
Rey P, Henri P, Alric J, Blanchard L, Viola S. Participation of the stress-responsive CDSP32 thioredoxin in the modulation of chloroplast ATP-synthase activity in Solanum tuberosum. PLANT, CELL & ENVIRONMENT 2024; 47:5372-5390. [PMID: 39189948 DOI: 10.1111/pce.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Plant thioredoxins (TRXs) are involved in numerous metabolic and signalling pathways, such as light-dependent regulation of photosynthesis. The atypical TRX CDSP32, chloroplastic drought-induced stress protein of 32 kDa, includes two TRX-fold domains and participates in responses to oxidative stress as an electron donor to other thiol reductases. Here, we further characterised potato lines modified for CDSP32 expression to clarify the physiological roles of the TRX. Upon high salt treatments, modified lines displayed changes in the abundance and redox status of CDSP32 antioxidant partners, and exhibited sensitivity to combined saline-alkaline stress. In non-stressed plants overexpressing CDSP32, a lower abundance of photosystem II subunits and ATP-synthase γ subunit was noticed. The CDSP32 co-suppressed line showed altered chlorophyll a fluorescence induction and impaired regulation of the transthylakoid membrane potential during dark/light and light/dark transitions. These data, in agreement with the previously reported interaction between CDSP32 and ATP-synthase γ subunit, suggest that CDSP32 affects the redox regulation of ATP-synthase activity. Consistently, modelling of protein complex 3-D structure indicates that CDSP32 could constitute a suitable partner of ATP-synthase γ subunit. We discuss the roles of the TRX in the regulation of both photosynthetic activity and enzymatic antioxidant network in relation with environmental conditions.
Collapse
Affiliation(s)
- Pascal Rey
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Patricia Henri
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Jean Alric
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| | - Laurence Blanchard
- Aix Marseille University, CEA, CNRS, BIAM, Molecular and Environmental Microbiology (MEM) Team, Saint Paul, France
| | - Stefania Viola
- Aix Marseille University, CEA, CNRS, BIAM, Photosynthesis & Environment (P&E) Team, Saint Paul, France
| |
Collapse
|
2
|
Huang J, De Veirman L, Van Breusegem F. Cysteine thiol sulfinic acid in plant stress signaling. PLANT, CELL & ENVIRONMENT 2024; 47:2766-2779. [PMID: 38251793 DOI: 10.1111/pce.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lindsy De Veirman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Cosse M, Rehders T, Eirich J, Finkemeier I, Selinski J. Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase. PHYSIOLOGIA PLANTARUM 2024; 176:e14340. [PMID: 38741259 DOI: 10.1111/ppl.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.
Collapse
Affiliation(s)
- Maike Cosse
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Tanja Rehders
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
4
|
Caspy I, Fadeeva M, Mazor Y, Nelson N. Structure of Dunaliella photosystem II reveals conformational flexibility of stacked and unstacked supercomplexes. eLife 2023; 12:e81150. [PMID: 36799903 PMCID: PMC9949808 DOI: 10.7554/elife.81150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Photosystem II (PSII) generates an oxidant whose redox potential is high enough to enable water oxidation , a substrate so abundant that it assures a practically unlimited electron source for life on earth . Our knowledge on the mechanism of water photooxidation was greatly advanced by high-resolution structures of prokaryotic PSII . Here, we show high-resolution cryogenic electron microscopy (cryo-EM) structures of eukaryotic PSII from the green alga Dunaliella salina at two distinct conformations. The conformers are also present in stacked PSII, exhibiting flexibility that may be relevant to the grana formation in chloroplasts of the green lineage. CP29, one of PSII associated light-harvesting antennae, plays a major role in distinguishing the two conformations of the supercomplex. We also show that the stacked PSII dimer, a form suggested to support the organisation of thylakoid membranes , can appear in many different orientations providing a flexible stacking mechanism for the arrangement of grana stacks in thylakoids. Our findings provide a structural basis for the heterogenous nature of the eukaryotic PSII on multiple levels.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Maria Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- Biodesign Center for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|
5
|
Kolupaev YE, Yemets AI, Yastreb TO, Blume YB. The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1128439. [PMID: 36824204 PMCID: PMC9941552 DOI: 10.3389/fpls.2023.1128439] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nitric oxide and hydrogen sulfide, as important signaling molecules (gasotransmitters), are involved in many functions of plant organism, including adaptation to stress factors of various natures. As redox-active molecules, NO and H2S are involved in redox regulation of functional activity of many proteins. They are also involved in maintaining cell redox homeostasis due to their ability to interact directly and indirectly (functionally) with ROS, thiols, and other molecules. The review considers the involvement of nitric oxide and hydrogen sulfide in plant responses to low and high temperatures. Particular attention is paid to the role of gasotransmitters interaction with other signaling mediators (in particular, with Ca2+ ions and ROS) in the formation of adaptive responses to extreme temperatures. Pathways of stress-induced enhancement of NO and H2S synthesis in plants are considered. Mechanisms of the NO and H2S effect on the activity of some proteins of the signaling system, as well as on the state of antioxidant and osmoprotective systems during adaptation to stress temperatures, were analyzed. Possibilities of practical use of nitric oxide and hydrogen sulfide donors as inductors of plant adaptive responses are discussed.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla I. Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav B. Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
6
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
7
|
Reactive oxygen species in plants: an invincible fulcrum for biotic stress mitigation. Appl Microbiol Biotechnol 2022; 106:5945-5955. [PMID: 36063177 DOI: 10.1007/s00253-022-12138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Climate change-associated environmental vagaries have amplified the incidence of pests and pathogens on plants, thus imparting the increased quest for management strategies. Plants respond to stresses through intricate signaling networks that regulate diverse cellular mechanisms. Reactive oxygen species (ROS) are cardinal towards the maintenance of normal plant activities as well as improving stress management. Plants that exhibit a fine balance between ROS levels and its management apparently mitigate stresses better. There have been very many compendiums on signaling and management of ROS during several abiotic stresses. However, expansion of knowledge related to ROS induction and homeostasis during biotic stresses is pertinent. Hence, considering its importance, we provide insights in this review on how plants signal and manage ROS upon an oxidative burst during their interaction with pathogens and herbivores. Substantial degree of molecular changes and pivotal roles of ROS have been detected during phyto-pathogen/herbivore interactions, opening novel platforms to understand signaling/management of events under varied biotic stresses. It is interesting to know that, though plants react to biotic stresses through oxidative burst, receptors and elicitors involved in the signal transduction differ across stresses. The review provides explicit details about the specific signaling of ROS production in plants under pathogen and herbivore attack. Furthermore, we also provide an update about tackling the accumulated ROS under biotic stresses as another pivotal step. ROS signaling and homeostasis can be exploited as critical players and a fulcrum to tackle biotic stresses, thus paving the way for futuristic combinatorial stress management strategies. KEY POINTS: • The review is a comprehension of redox signaling and management in plants during herbivory and pathogen infection • Reactive oxygen species (ROS) is an important factor during normal plant activities as well as in their response to stresses. Diverse modes of ROS signaling and management have been observed during both biotic stresses independently • Exploration of plant biology in multi-stress resistant plants like the crop wild relatives could pave the way for combinatorial management of stress for a better tomorrow.
Collapse
|
8
|
Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants (Basel) 2022; 11:antiox11071411. [PMID: 35883902 PMCID: PMC9311986 DOI: 10.3390/antiox11071411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).
Collapse
|
9
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
10
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
11
|
Montillet JL, Rondet D, Brugière S, Henri P, Rumeau D, Reichheld JP, Couté Y, Leonhardt N, Rey P. Plastidial and cytosolic thiol reductases participate in the control of stomatal functioning. PLANT, CELL & ENVIRONMENT 2021; 44:1417-1435. [PMID: 33537988 DOI: 10.1111/pce.14013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Stomatal movements via the control of gas exchanges determine plant growth in relation to environmental stimuli through a complex signalling network involving reactive oxygen species that lead to post-translational modifications of Cys and Met residues, and alter protein activity and/or conformation. Thiol-reductases (TRs), which include thioredoxins, glutaredoxins (GRXs) and peroxiredoxins (PRXs), participate in signalling pathways through the control of Cys redox status in client proteins. Their involvement in stomatal functioning remains poorly characterized. By performing a mass spectrometry-based proteomic analysis, we show that numerous thiol reductases, like PRXs, are highly abundant in guard cells. When investigating various Arabidopsis mutants impaired in the expression of TR genes, no change in stomatal density and index was noticed. In optimal growth conditions, a line deficient in cytosolic NADPH-thioredoxin reductases displayed higher stomatal conductance and lower leaf temperature evaluated by thermal infrared imaging. In contrast, lines deficient in plastidial 2-CysPRXs or type-II GRXs exhibited compared to WT reduced conductance and warmer leaves in optimal conditions, and enhanced stomatal closure in epidermal peels treated with abscisic acid or hydrogen peroxide. Altogether, these data strongly support the contribution of thiol redox switches within the signalling network regulating guard cell movements and stomatal functioning.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Damien Rondet
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
- Laboratoire Nixe, Sophia-Antipolis, Valbonne, France
| | - Sabine Brugière
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Patricia Henri
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Dominique Rumeau
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, Perpignan, France
| | - Yohann Couté
- Laboratoire EDyP, University of Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Nathalie Leonhardt
- SAVE Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Plant Protective Proteins Team, Aix Marseille University, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
12
|
Mukherjee S. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? PLANT SIGNALING & BEHAVIOR 2021; 16:1831792. [PMID: 33300450 PMCID: PMC7781837 DOI: 10.1080/15592324.2020.1831792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant resilience to oxidative stress possibly operates through the restoration of intracellular redox milieu and the activity of various posttranslationally modified proteins. Among various modes of redox regulation operative in plants cys oxPTMs are brought about by the activity of reactive oxygen species (ROS), reactive nitrogen species (RNS), and hydrogen peroxide. Cysteine oxPTMs are capable of transducing ROS-mediated long-distance hormone signaling (ABA, JA, SA) in plants. S-sulphenylation is an intermediary modification en route to other oxidative states of cysteine. In silico analysis have revealed evolutionary conservation of certain S-sulphenylated proteins across human and plants. Further analysis of protein sulphenylation in plants should be extended to the functional follow-up studies followed by site-specific characterization and case-by-case validation of protein activity. The repertoire of physiological methods (fluorescent conjugates (dimedone) and yeast AP-1 (YAP1)-based genetic probes) in the recent past has been successful in the detection of sulphenylated proteins and other cysteine-based modifications in plants. In view of a better understanding of the sulfur-based redoxome it is necessary to update our timely progress on the methodological advancements for the detection of cysteine-based oxPTM. This substantiative information can extend our investigations on plant-environment interaction thus improving crop manipulation strategies. The simulation-based computational approach has emerged as a new method to determine the directive mechanism of cysteine oxidation in plants. Thus, sulfenome analysis in various plant systems might reflect as a pinnacle of plant redox biology in the future.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West, Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College, University of Kalyani, West, Bengal742213, India
| |
Collapse
|
13
|
Jedelská T, Luhová L, Petřivalský M. Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1426. [PMID: 33114295 PMCID: PMC7690881 DOI: 10.3390/plants9111426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023]
Abstract
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
Collapse
Affiliation(s)
| | | | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic; (T.J.); (L.L.)
| |
Collapse
|
14
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
15
|
The crystal structure of sulfiredoxin from Arabidopsis thaliana revealed a more robust antioxidant mechanism in plants. Biochem Biophys Res Commun 2019; 520:347-352. [PMID: 31604522 DOI: 10.1016/j.bbrc.2019.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022]
Abstract
Typical 2-cysteine peroxiredoxins (2-Cys Prxs) are critical peroxidase sensors and could be deactivated by the hyperoxidation under oxidative stress. In plants, 2-Cys Prxs present at a high level in chloroplasts and are repaired by Sulfiredoxin. Whereas many studies have explored the mechanism of Sulfiredoxin from Homo sapiens (HsSrx), the molecular mechanism of Sulfiredoxin in plants with unique photosynthesis remains unclear. Here we report the crystal structure of Sulfiredoxin from Arabidopsis thaliana (AtSrx), which displayed a typical ParB/Srx fold with an ATP bound at a conservative nucleotide binding motif GCHR. Both the ADP binding pocket and the putative AtSrx-AtPrxA interaction surface of AtSrx are more positively charged comparing to HsSrx, suggesting a robust mechanism of AtSrx. These features illustrate the unique mechanisms of AtSrx, which are vital for figure out the strategies of plants to cope with oxidation stress.
Collapse
|
16
|
Cerveau D, Henri P, Blanchard L, Rey P. Variability in the redox status of plant 2-Cys peroxiredoxins in relation to species and light cycle. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5003-5016. [PMID: 31128069 DOI: 10.1093/jxb/erz252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Plant 2-Cys peroxiredoxins (2-CysPRXs) are abundant plastidial thiol-peroxidases involved in key signaling processes such as photosynthesis deactivation at night. Their functions rely on the redox status of their two cysteines and on the enzyme quaternary structure, knowledge of which remains poor in plant cells. Using ex vivo and biochemical approaches, we thoroughly characterized the 2-CysPRX dimer/monomer distribution, hyperoxidation level, and thiol content in Arabidopsis, barley, and potato in relation to the light cycle. Our data reveal that the enzyme hyperoxidization level and its distribution as a dimer and monomer vary through the light cycle in a species-dependent manner. A differential susceptibility to hyperoxidation was observed for the two Arabidopsis 2-CysPRX isoforms and among the proteins of the three species, and was associated to sequence variation in hyperoxidation resistance motifs. Alkylation experiments indicate that only a minor fraction of the 2-CysPRX pool carries one free thiol in the three species, and that this content does not change during the light period. We conclude that most plastidial 2-CysPRX forms are oxidized and propose that there is a species-dependent variability in their functions since dimer and hyperoxidized forms fulfill distinct roles regarding direct oxidation of partners and signal transmission.
Collapse
Affiliation(s)
- Delphine Cerveau
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Patricia Henri
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| | - Laurence Blanchard
- Aix Marseille Univ., CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, France
| | - Pascal Rey
- Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, Saint Paul-Lez-Durance, France
| |
Collapse
|
17
|
Balsera M, Buchanan BB. Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic Biol Med 2019; 140:28-35. [PMID: 30862542 DOI: 10.1016/j.freeradbiomed.2019.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Thioredoxins (Trxs) are low-molecular-weight proteins that participate in the reduction of target enzymes. Trxs contain a redox-active disulfide bond, in the form of a WCGPC amino acid sequence motif, that enables them to perform dithiol-disulfide exchange reactions with oxidized protein substrates. Widely distributed across the three domains of life, Trxs form an evolutionarily conserved family of ancient origin. Thioredoxin reductases (TRs) are enzymes that reduce Trxs. According to their evolutionary history, TRs have diverged, thereby leading to the emergence of variants of the enzyme that in combination with different types of Trxs meet the needs of the cell. In addition to participating in the regulation of metabolism and defense against oxidative stress, Trxs respond to environmental signals-an ability that developed early in evolution. Redox regulation of proteins targeted by Trx is accomplished with a pair of redox-active cysteines located in strategic positions on the polypeptide chain to enable reversible oxidative changes that result in structural and functional modifications target proteins. In this review, we present a general overview of the thioredoxin system and describe recent structural studies on the diversity of its components.
Collapse
Affiliation(s)
- Monica Balsera
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain.
| | - Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, Berkeley, 94720 CA, USA.
| |
Collapse
|
18
|
Larosa V, Remacle C. Insights into the respiratory chain and oxidative stress. Biosci Rep 2018; 38:BSR20171492. [PMID: 30201689 PMCID: PMC6167499 DOI: 10.1042/bsr20171492] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive reduced oxygen molecules that result from aerobic metabolism. The common forms are the superoxide anion (O2∙-) and hydrogen peroxide (H2O2) and their derived forms, hydroxyl radical (HO∙) and hydroperoxyl radical (HOO∙). Their production sites in mitochondria are reviewed. Even though being highly toxic products, ROS seem important in transducing information from dysfunctional mitochondria. Evidences of signal transduction mediated by ROS in mitochondrial deficiency contexts are then presented in different organisms such as yeast, mammals or photosynthetic organisms.
Collapse
Affiliation(s)
- Véronique Larosa
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, UR InBios/Phytosystems, Chemin de la Vallée, 4, University of Liège, Liège 4000, Belgium
| |
Collapse
|
19
|
Huang J, Willems P, Van Breusegem F, Messens J. Pathways crossing mammalian and plant sulfenomic landscapes. Free Radic Biol Med 2018; 122:193-201. [PMID: 29476921 DOI: 10.1016/j.freeradbiomed.2018.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) and especially hydrogen peroxide, are potent signaling molecules that activate cellular defense responses. Hydrogen peroxide can provoke reversible and irreversible oxidative posttranslational modifications on cysteine residues of proteins that act in diverse signaling circuits. The initial oxidation product of cysteine, sulfenic acid, has emerged as a biologically relevant posttranslational modification, because it is the primary sulfur oxygen modification that precedes divergent series of additional adaptations. In this review, we focus on the functional consequences of sulfenylation for both mammalian and plant proteins. Furthermore, we created compendia of sulfenylated proteins in human and plants based on mass spectrometry experiments, thereby defining the current plant and human sulfenomes. To assess the evolutionary conservation of sulfenylation, the sulfenomes of human and plants were compared based on protein homology. In total, 185 human sulfenylated proteins showed homology to sulfenylated plant proteins and the conserved sulfenylation targets participated in specific biological pathways and metabolic processes. Comprehensive functional studies of sulfenylation remains a future challenge, with multiple candidates suggested by mass spectrometry awaiting scrutinization.
Collapse
Affiliation(s)
- Jingjing Huang
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
20
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
21
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
22
|
Rey P, Becuwe N, Tourrette S, Rouhier N. Involvement of Arabidopsis glutaredoxin S14 in the maintenance of chlorophyll content. PLANT, CELL & ENVIRONMENT 2017; 40:2319-2332. [PMID: 28741719 DOI: 10.1111/pce.13036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/12/2017] [Indexed: 05/15/2023]
Abstract
Plant class-II glutaredoxins (GRXs) are oxidoreductases carrying a CGFS active site signature and are able to bind iron-sulfur clusters in vitro. In order to explore the physiological functions of the 2 plastidial class-II isoforms, GRXS14 and GRXS16, we generated knockdown and overexpression Arabidopsis thaliana lines and characterized their phenotypes using physiological and biochemical approaches. Plants deficient in one GRX did not display any growth defect, whereas the growth of plants lacking both was slowed. Plants overexpressing GRXS14 exhibited reduced chlorophyll content in control, high-light, and high-salt conditions. However, when exposed to prolonged darkness, plants lacking GRXS14 showed accelerated chlorophyll loss compared to wild-type and overexpression lines. We observed that the GRXS14 abundance and the proportion of reduced form were modified in wild type upon darkness and high salt. The dark treatment also resulted in decreased abundance of proteins involved in the maturation of iron-sulfur proteins. We propose that the phenotype of GRXS14-modified lines results from its participation in the control of chlorophyll content in relation with light and osmotic conditions, possibly through a dual action in regulating the redox status of biosynthetic enzymes and contributing to the biogenesis of iron-sulfur clusters, which are essential cofactors in chlorophyll metabolism.
Collapse
Affiliation(s)
- Pascal Rey
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Noëlle Becuwe
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Sébastien Tourrette
- CEA, DRF, BIAM, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, F-54500, Vandoeuvre-lès-Nancy, France
- INRA, Interactions Arbres-Microorganismes, UMR1136, F-54280, Champenoux, France
| |
Collapse
|
23
|
Tombuloglu H, Tombuloglu G, Sakcali MS, Turkan A, Hakeem KR, Alharby HF, Fahd S, Abdul WM. Proteomic analysis of naturally occurring boron tolerant plant Gypsophila sphaerocephala L. in response to high boron concentration. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:212-217. [PMID: 28732263 DOI: 10.1016/j.jplph.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Gypsophila sphaerocephala is a naturally Boron (B) tolerant species that can grow around the B mining areas in Turkey, where the B concentration in soil reaches a lethal dose for plants (up to ∼8900mgkg-1 (∼140mM). While its interesting survival capacity in extremely B containing soils, any molecular research has been conducted to understand its high tolerance mechanism yet. In the present study, we have performed a proteomic analysis of this plant to understand its high tolerance towards B-stress. Seedlings of G. sphaerocephala were collected from B mining area and were adapted to greenhouse conditions. An excessive level of Boric acid (3mM)was applied to the plantlets for 24h. Total proteins were precipitated by using TCA/Acetone method. 2D-PAGE (two-dimensional polyacrylamide gel electrophoresis) analysis of the proteins was carried out. Out of 121 protein spots, 14 were differentially expressed between the control and B-exposed G. sphaerocephala roots. The peptide profile of each protein was determined by MALDI-TOF mass spectrometer after in-gel trypsin digestion. The identified proteins are involved in different mechanisms in the cell such as in antioxidant mechanism, energy metabolism, protein degradation, lipid biosynthesis and signaling pathways, indicating that G. sphaerocephala has multiple cooperating mechanisms to protect itself from high B levels. Overall, this study sheds light on to the possible regulatory switches (gene/s) controlling the B-tolerance proteins and their possible roles in plant's defense mechanism.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Institute for Research and Medical Consultations (IRMC), University of Dammam, Saudi Arabia
| | - Guzin Tombuloglu
- Institute for Research and Medical Consultations (IRMC), University of Dammam, Saudi Arabia
| | - Mehmet Serdal Sakcali
- Department of Biology, Faculty of Science, Suleyman Demirel University, Isparta, Turkey
| | - Ali Turkan
- Department of Chemistry, Faculty of Science, Gebze Institute of Technology, Gebze, Kocaeli, Turkey
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shah Fahd
- Crop Physiology and Production Center (CPPC), College of Plant Science and Technology Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Waseem Mohammed Abdul
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1025-1038. [PMID: 28184497 PMCID: PMC5441863 DOI: 10.1093/jxb/erx012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Aingeru Calderón
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Francisca Sevilla
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Ana Jiménez
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| |
Collapse
|
25
|
Cerveau D, Kraut A, Stotz HU, Mueller MJ, Couté Y, Rey P. Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:30-41. [PMID: 27717466 DOI: 10.1016/j.plantsci.2016.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Henrik U Stotz
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaticeutical Biology, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Yohann Couté
- Univ. Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, Grenoble, U1038, F-38000, France; CEA, BIG-BGE, Grenoble, F-38000, France; INSERM, U1038, Grenoble, F-38000, France
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France; CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France; Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France.
| |
Collapse
|
26
|
Cerveau D, Ouahrani D, Marok MA, Blanchard L, Rey P. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status. PLANT, CELL & ENVIRONMENT 2016; 39:103-19. [PMID: 26138759 DOI: 10.1111/pce.12596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 05/10/2023]
Abstract
Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed.
Collapse
Affiliation(s)
- Delphine Cerveau
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Djelloul Ouahrani
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Mohamed Amine Marok
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- Université de Khemis Miliana, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Ain Defla, Khemis Miliana, 44225, Algérie
| | - Laurence Blanchard
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
- CEA, DSV, IBEB, Laboratoire de Bioénergétique Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | - Pascal Rey
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265, Biologie Végétale and Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
27
|
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1427. [PMID: 27713755 PMCID: PMC5032792 DOI: 10.3389/fpls.2016.01427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 05/04/2023]
Abstract
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein-protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication.
Collapse
Affiliation(s)
- Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Roberto Ferrari
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
- *Correspondence: Paolo Pesaresi
| |
Collapse
|
28
|
Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F. Redox Strategies for Crop Improvement. Antioxid Redox Signal 2015; 23:1186-205. [PMID: 26062101 DOI: 10.1089/ars.2014.6033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Recently, the agro-biotech industry has been driven by overcoming the limitations imposed by fluctuating environmental stress conditions on crop productivity. A common theme among (a)biotic stresses is the perturbation of the redox homeostasis. RECENT ADVANCES As a strategy to engineer stress-tolerant crops, many approaches have been centered on restricting the negative impact of reactive oxygen species (ROS) accumulation. CRITICAL ISSUES In this study, we discuss the scientific background of the existing redox-based strategies to improve crop performance and quality. In this respect, a special focus goes to summarizing the current patent landscape because this aspect is very often ignored, despite constituting the forefront of applied research. FUTURE DIRECTIONS The current increased understanding of ROS acting as signaling molecules has opened new avenues to exploit redox biology for crop improvement required for sustainable food security.
Collapse
Affiliation(s)
- Pavel Kerchev
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| | - Barbara De Smet
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Cezary Waszczak
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Joris Messens
- 3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Frank Van Breusegem
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| |
Collapse
|
29
|
Jiang H, Wu L, Chen J, Mishra M, Chawsheen HA, Zhu H, Wei Q. Sulfiredoxin Promotes Colorectal Cancer Cell Invasion and Metastasis through a Novel Mechanism of Enhancing EGFR Signaling. Mol Cancer Res 2015; 13:1554-66. [PMID: 26290602 DOI: 10.1158/1541-7786.mcr-15-0240] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023]
Abstract
UNLABELLED Sulfiredoxin (SRXN1/Srx) is a multifunction enzyme with a primary antioxidant role of reducing the overoxidized inactive form of peroxiredoxins (Prxs). The function and mechanisms of Srx in cancer development are not well understood. Here, Srx is preferentially expressed in human colorectal cancer cells but not in normal colon epithelial cells. Loss-of-function studies demonstrate that knockdown of Srx in poorly differentiated colorectal cancer cells not only leads to the inhibition of colony formation and cell invasion in vitro, but also reduces tumor xenograft growth and represses metastasis to distal organs in a mouse orthotopic implantation model. Notably, exactly opposite effects were observed in gain-of-function experiments when Srx was ectopically expressed in well-differentiated colorectal cancer cells. Mechanistically, expression of Srx enhances the activation of MAPK signaling through increasing the C-terminal tyrosine phosphorylation levels of EGFR. This function of Srx is mediated through its inhibition of EGFR acetylation at K1037, a novel posttranslational modification of EGFR in human colorectal cancer cells identified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI/MS-MS) proteomic analysis. Furthermore, abolishment of K1037 acetylation in human colorectal cancer cells by site-specific mutagenesis leads to sustained activation of EGFR-MAPK signaling. Combined, these data reveal that Srx promotes colorectal cancer cell invasion and metastasis through a novel mechanism of enhancing EGFR signaling. IMPLICATIONS Sulfiredoxin is a critical oncogenic protein that can be used as a molecular target to develop therapeutics for patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky. The Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Lisha Wu
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky. The Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jing Chen
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Murli Mishra
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky. The Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hedy A Chawsheen
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky. The Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Haining Zhu
- Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky. The Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky.
| |
Collapse
|
30
|
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2923-34. [PMID: 25750423 DOI: 10.1093/jxb/erv084] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how plants sense ROS and transduce these stimuli into downstream biological responses is still a major challenge. ROS can provoke reversible and irreversible modifications to proteins that act in diverse signalling pathways. These oxidative post-translational modifications (Ox-PTMs) lead to oxidative damage and/or trigger structural alterations in these target proteins. Characterization of the effect of individual Ox-PTMs on individual proteins is the key to a better understanding of how cells interpret the oxidative signals that arise from developmental cues and stress conditions. This review focuses on ROS-mediated Ox-PTMs on cysteine (Cys) residues. The Cys side chain, with its high nucleophilic capacity, appears to be the principle target of ROS. Ox-PTMs on Cys residues participate in various signalling cascades initiated by plant stress hormones. We review the mechanistic aspects and functional consequences of Cys Ox-PTMs on specific target proteins in view of stress signalling events.
Collapse
Affiliation(s)
- Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium * Present address: Division of Plant Biology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
31
|
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J. Cysteines under ROS attack in plants: a proteomics view. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2935-44. [PMID: 25750420 DOI: 10.1093/jxb/erv044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction.
Collapse
Affiliation(s)
- Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Puerto-Galán L, Pérez-Ruiz JM, Guinea M, Cejudo FJ. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2957-66. [PMID: 25560178 PMCID: PMC4423512 DOI: 10.1093/jxb/eru512] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydrogen peroxide is a harmful by-product of photosynthesis, which also has important signalling activity. Therefore, the level of hydrogen peroxide needs to be tightly controlled. Chloroplasts harbour different antioxidant systems including enzymes such as the 2-Cys peroxiredoxins (2-Cys Prxs). Under oxidizing conditions, 2-Cys Prxs are susceptible to inactivation by overoxidation of their peroxidatic cysteine, which is enzymatically reverted by sulfiredoxin (Srx). In chloroplasts, the redox status of 2-Cys Prxs is highly dependent on NADPH-thioredoxin reductase C (NTRC) and Srx; however, the relationship of these activities in determining the level of 2-Cys Prx overoxidation is unknown. Here we have addressed this question by a combination of genetic and biochemical approaches. An Arabidopsis thaliana double knockout mutant lacking NTRC and Srx shows a phenotype similar to the ntrc mutant, while the srx mutant resembles wild-type plants. The deficiency of NTRC causes reduced overoxidation of 2-Cys Prxs, whereas the deficiency of Srx has the opposite effect. Moreover, in vitro analyses show that the disulfide bond linking the resolving and peroxidatic cysteines protects the latter from overoxidation, thus explaining the dominant role of NTRC on the level of 2-Cys Prx overoxidation in vivo. The overoxidation of chloroplast 2-Cys Prxs shows no circadian oscillation, in agreement with the fact that neither the NTRC nor the SRX genes show circadian regulation of expression. Additionally, the low level of 2-Cys Prx overoxidation in the ntrc mutant is light dependent, suggesting that the redox status of 2-Cys Prxs in chloroplasts depends on light rather than the circadian clock.
Collapse
Affiliation(s)
- Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | - Juan M Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | - Manuel Guinea
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| |
Collapse
|
33
|
Sevilla F, Camejo D, Ortiz-Espín A, Calderón A, Lázaro JJ, Jiménez A. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2945-55. [PMID: 25873657 DOI: 10.1093/jxb/erv146] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, the presence of thioredoxin (Trx), peroxiredoxin (Prx), and sulfiredoxin (Srx) has been reported as a component of a redox system involved in the control of dithiol-disulfide exchanges of target proteins, which modulate redox signalling during development and stress adaptation. Plant thiols, and specifically redox state and regulation of thiol groups of cysteinyl residues in proteins and transcription factors, are emerging as key components in the plant response to almost all stress conditions. They function in both redox sensing and signal transduction pathways. Scarce information exists on the transcriptional regulation of genes encoding Trx/Prx and on the transcriptional and post-transcriptional control exercised by these proteins on their putative targets. As another point of control, post-translational regulation of the proteins, such as S-nitrosylation and S-oxidation, is of increasing interest for its effect on protein structure and function. Special attention is given to the involvement of the Trx/Prx/Srx system and its redox state in plant signalling under stress, more specifically under abiotic stress conditions, as an important cue that influences plant yield and growth. This review focuses on the regulation of Trx and Prx through cysteine S-oxidation and/or S-nitrosylation, which affects their functionality. Some examples of redox regulation of transcription factors and Trx- and Prx-related genes are also presented.
Collapse
Affiliation(s)
- F Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - D Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - A Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - J J Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ, CSIC, 18007 Granada, Spain
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
34
|
Balsera M, Uberegui E, Schürmann P, Buchanan BB. Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 2014; 21:1327-55. [PMID: 24483204 DOI: 10.1089/ars.2013.5817] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. RECENT ADVANCES Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. CRITICAL ISSUES The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. FUTURE DIRECTIONS The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.
Collapse
Affiliation(s)
- Monica Balsera
- 1 Instituto de Recursos Naturales y Agrobiología de Salamanca , Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
35
|
Spoel SH, van Ooijen G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 2014; 20:3024-39. [PMID: 23941583 PMCID: PMC4038994 DOI: 10.1089/ars.2013.5530] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/13/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. RECENT ADVANCES Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. CRITICAL ISSUES Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. FUTURE DIRECTIONS Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Collapse
Affiliation(s)
- Steven H. Spoel
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerben van Ooijen
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- SythSys, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Reisman SA, Lee CYI, Meyer CJ, Proksch JW, Sonis ST, Ward KW. Topical Application of the Synthetic Triterpenoid RTA 408 Protects Mice from Radiation-Induced Dermatitis. Radiat Res 2014; 181:512-20. [DOI: 10.1667/rr13578.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Keith W. Ward
- Reata Pharmaceuticals, Inc., Irving, Texas 75063; and
| |
Collapse
|
37
|
Weits DA, Giuntoli B, Kosmacz M, Parlanti S, Hubberten HM, Riegler H, Hoefgen R, Perata P, van Dongen JT, Licausi F. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat Commun 2014; 5:3425. [PMID: 24599061 PMCID: PMC3959200 DOI: 10.1038/ncomms4425] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023] Open
Abstract
In plant and animal cells, amino-terminal cysteine oxidation controls selective proteolysis via an oxygen-dependent branch of the N-end rule pathway. It remains unknown how the N-terminal cysteine is specifically oxidized. Here we identify plant cysteine oxidase (PCO) enzymes that oxidize the penultimate cysteine of ERF-VII transcription factors by using oxygen as a co-substrate, thereby controlling the lifetime of these proteins. Consequently, ERF-VII proteins are stabilized under hypoxia and activate the molecular response to low oxygen while the expression of anaerobic genes is repressed in air. Members of the PCO family are themselves targets of ERF-VII transcription factors, generating a feedback loop that adapts the stress response according to the extent of the hypoxic condition. Our results reveal that PCOs act as sensor proteins for oxygen in plants and provide an example of how proactive regulation of the N-end rule pathway balances stress response to optimal growth and development in plants.
Collapse
Affiliation(s)
- Daan A Weits
- 1] Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56124, Italy [2] Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56124, Italy
| | - Monika Kosmacz
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sandro Parlanti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56124, Italy
| | | | - Heike Riegler
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Joost T van Dongen
- 1] Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany [2] Institute of Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa 56124, Italy
| |
Collapse
|
38
|
Wu L, Jiang H, Chawsheen HA, Mishra M, Young MR, Gerard M, Toledano MB, Colburn NH, Wei Q. Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis. Carcinogenesis 2014; 35:1177-84. [PMID: 24503444 DOI: 10.1093/carcin/bgu035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sulfiredoxin (Srx), the exclusive enzyme that reduces the hyperoxidized inactive form of peroxiredoxins (Prxs), has been found highly expressed in several types of human skin cancer. To determine whether Srx contributed to skin tumorigenesis in vivo, Srx null mice were generated on an FVB background. Mouse skin tumorigenesis was induced by a 7,12-dimethylbenz[α]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) protocol. We found that the number, volume and size of papillomas in Srx(-/-) mice were significantly fewer compared with either wild-type (Wt) or heterozygous (Het) siblings. Histopathological analysis revealed more apoptotic cells in tumors from Srx(-/-) mice. Mechanistic studies in cell culture revealed that Srx was stimulated by TPA in a redox-independent manner. This effect was mediated transcriptionally through the activation of mitogen-activated protein kinase and Jun-N-terminal kinase. We also demonstrated that Srx was capable of reducing hyperoxidized Prxs to facilitate cell survival under oxidative stress conditions. These findings suggested that loss of Srx protected mice, at least partially, from DMBA/TPA-induced skin tumorigenesis. Therefore, Srx has an oncogenic role in skin tumorigenesis and targeting Srx may provide novel strategies for skin cancer prevention or treatment.
Collapse
Affiliation(s)
- Lisha Wu
- Graduate Center for Toxicology and
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marok MA, Tarrago L, Ksas B, Henri P, Abrous-Belbachir O, Havaux M, Rey P. A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:633-45. [PMID: 23541087 DOI: 10.1016/j.jplph.2012.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/13/2012] [Accepted: 12/18/2012] [Indexed: 05/21/2023]
Abstract
Barley displays a great genetic diversity, constituting a valuable source to delineate the responses of contrasted genotypes to environmental constraints. Here, we investigated the level of oxidative stress and the participation of antioxidant systems in two barley genotypes: Express, a variety known to be sensitive to drought, and Saïda, an Algerian landrace selected for its tolerance to water deficit. Soil-grown 15-day-old plants were subjected to water deficit for 8 days and then rewatered. We observed that upon water stress Express exhibits compared to Saïda accelerated wilting and a higher level of oxidative stress evaluated by HPLC measurements of lipid peroxidation and by imaging techniques. In parallel, Express plants also display lower levels of catalase and superoxide dismutase activity. No great difference was observed regarding peroxiredoxins and methionine sulfoxide reductases, enzymes detoxifying peroxides and repairing oxidized proteins, respectively. In contrast, upon water stress and recovery, much higher contents and oxidation ratios of glutathione and ascorbate were measured in Express compared to Saïda. Express also shows during water deficit greater increases in the pools of lipophilic antioxidants like xantophyll carotenoids and α-tocopherol. Altogether, these data show that the differential behavior of the two genotypes involves distinct responses regarding antioxidant mechanisms. Indeed, the drought sensitivity of Express compared with Saïda is associated with oxidative damage and a lower enzymatic ROS-scavenging capacity, but in parallel with a much stronger enhancement of most mechanisms involving low-molecular weight antioxidant compounds.
Collapse
Affiliation(s)
- Mohamed Amine Marok
- CEA, DSV, IBEB, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Laugier E, Tarrago L, Courteille A, Innocenti G, Eymery F, Rumeau D, Issakidis-Bourguet E, Rey P. Involvement of thioredoxin y2 in the preservation of leaf methionine sulfoxide reductase capacity and growth under high light. PLANT, CELL & ENVIRONMENT 2013; 36:670-82. [PMID: 22943306 DOI: 10.1111/pce.12005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Methionine (Met) in proteins can be oxidized to two diastereoisomers of methionine sulfoxide, Met-S-O and Met-R-O, which are reduced back to Met by two types of methionine sulfoxide reductases (MSRs), A and B, respectively. MSRs are generally supplied with reducing power by thioredoxins. Plants are characterized by a large number of thioredoxin isoforms, but those providing electrons to MSRs in vivo are not known. Three MSR isoforms, MSRA4, MSRB1 and MSRB2, are present in Arabidopsis thaliana chloroplasts. Under conditions of high light and long photoperiod, plants knockdown for each plastidial MSR type or for both display reduced growth. In contrast, overexpression of plastidial MSRBs is not associated with beneficial effects in terms of growth under high light. To identify the physiological reductants for plastidial MSRs, we analyzed a series of mutants deficient for thioredoxins f, m, x or y. We show that mutant lines lacking both thioredoxins y1 and y2 or only thioredoxin y2 specifically display a significantly reduced leaf MSR capacity (-25%) and growth characteristics under high light, related to those of plants lacking plastidial MSRs. We propose that thioredoxin y2 plays a physiological function in protein repair mechanisms as an electron donor to plastidial MSRs in photosynthetic organs.
Collapse
Affiliation(s)
- Edith Laugier
- CEA, DSV, IBEB, Lab Ecophysiol Molecul Plantes, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. FRONTIERS IN PLANT SCIENCE 2013; 4:450. [PMID: 24282406 PMCID: PMC3824636 DOI: 10.3389/fpls.2013.00450] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 05/17/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis and shown, particularly in animal cells, to play additional roles in several unrelated non-metabolic processes such as control of gene expression and apoptosis. This functional versatility is regulated, in part at least, by redox post-translational modifications that alter GAPDH catalytic activity and influence the subcellular localization of the enzyme. In spite of the well established moonlighting (multifunctional) properties of animal GAPDH, little is known about non-metabolic roles of GAPDH in plants. Plant cells contain several GAPDH isoforms with different catalytic and regulatory properties, located both in the cytoplasm and in plastids, and participating in glycolysis and the Calvin-Benson cycle. A general feature of all GAPDH proteins is the presence of an acidic catalytic cysteine in the active site that is overly sensitive to oxidative modifications, including glutathionylation and S-nitrosylation. In Arabidopsis, oxidatively modified cytoplasmic GAPDH has been successfully used as a tool to investigate the role of reduced glutathione, thioredoxins and glutaredoxins in the control of different types of redox post-translational modifications. Oxidative modifications inhibit GAPDH activity, but might enable additional functions in plant cells. Mounting evidence support the concept that plant cytoplasmic GAPDH may fulfill alternative, non-metabolic functions that are triggered by redox post-translational modifications of the protein under stress conditions. The aim of this review is to detail the molecular mechanisms underlying the redox regulation of plant cytoplasmic GAPDH in the light of its crystal structure, and to provide a brief inventory of the well known redox-dependent multi-facetted properties of animal GAPDH, together with the emerging roles of oxidatively modified GAPDH in stress signaling pathways in plants.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
- *Correspondence: Mirko Zaffagnini and Paolo Trost, Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy e-mail: ;
| | - Simona Fermani
- Department of Chemistry “G. Ciamician”, University of BolognaBologna, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanoMilano, Italy
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Université Pierre et Marie CurieParis, France
| | - Paolo Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
- *Correspondence: Mirko Zaffagnini and Paolo Trost, Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy e-mail: ;
| |
Collapse
|
42
|
Lindahl M, Cejudo FJ. Comparative Analysis of Cyanobacterial and Plant Peroxiredoxins and Their Electron Donors. Methods Enzymol 2013; 527:257-73. [DOI: 10.1016/b978-0-12-405882-8.00014-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Rey P, Sanz-Barrio R, Innocenti G, Ksas B, Courteille A, Rumeau D, Issakidis-Bourguet E, Farran I. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants. FRONTIERS IN PLANT SCIENCE 2013; 4:390. [PMID: 24137166 PMCID: PMC3797462 DOI: 10.3389/fpls.2013.00390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/12/2013] [Indexed: 05/07/2023]
Abstract
Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.
Collapse
Affiliation(s)
- Pascal Rey
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
- *Correspondence: Pascal Rey, Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique, Bâtiment 158, SBVME, CEA-Cadarache, 13108 Saint-Paul-Lez-Durance Cedex, France e-mail:
| | - Ruth Sanz-Barrio
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| | - Gilles Innocenti
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Brigitte Ksas
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Agathe Courteille
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Dominique Rumeau
- Laboratoire d’Ecophysiologie Moléculaire des Plantes, Institut de Biologie Environnementale et Biotechnologie, Direction des Sciences du Vivant, Commissariat à l’Energie AtomiqueSaint-Paul-lez-Durance, France
- UMR 7265 Service de Biologie Végétale et de Microbiologie Environnementales, Centre National de la Recherche ScientifiqueSaint-Paul-lez-Durance, France
- Aix-Marseille Université Saint-Paul-lez-Durance, France
| | - Emmanuelle Issakidis-Bourguet
- UMR 8618 Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Université Paris-SudOrsay, France
| | - Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-Consejo Superior de Investigaciones CientíficasPamplona, Spain
| |
Collapse
|
44
|
Puerto-Galán L, Pérez-Ruiz JM, Ferrández J, Cano B, Naranjo B, Nájera VA, González M, Lindahl AM, Cejudo FJ. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide. FRONTIERS IN PLANT SCIENCE 2013; 4:310. [PMID: 23967002 PMCID: PMC3746178 DOI: 10.3389/fpls.2013.00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 05/20/2023]
Abstract
Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs), thiol-based peroxidases able to reduce hydrogen and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.
Collapse
Affiliation(s)
- Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Juan M. Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Julia Ferrández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Beatriz Cano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Belén Naranjo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Victoria A. Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
| | - Anna M. Lindahl
- Consejo Superior de Investigaciones CientíficasSevilla, Spain
| | - Francisco J. Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de SevillaSevilla, Spain
- *Correspondence: Francisco J. Cejudo, Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain e-mail:
| |
Collapse
|
45
|
Bouchenak F, Henri P, Benrebiha FZ, Rey P. Differential responses to salinity of two Atriplex halimus populations in relation to organic solutes and antioxidant systems involving thiol reductases. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1445-53. [PMID: 22840322 DOI: 10.1016/j.jplph.2012.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/22/2012] [Accepted: 06/22/2012] [Indexed: 05/08/2023]
Abstract
Atriplex halimus L. is a xero-halophyte species widespread in the Mediterranean basin. The tolerance to water stress and high salinity of two Atriplex populations from semi-arid (Djelfa) and arid saline (Laghouat) Algerian regions has been investigated in relation with organic solutes and antioxidant systems. Whereas no noticeable difference was observed between the two populations under water stress resulting from withholding watering or PEG treatment, Laghouat plants display significantly higher fresh and dry weights than Djelfa plants when exposed to high salinity. At 300mM NaCl, Laghouat plants exhibit higher concentrations in Na(+), proline and quaternary ammonium compounds, and a higher catalase activity than Djelfa plants. We then analysed the involvement of recently characterized plastidial thiol reductases, peroxiredoxins (Prxs) and methionine sulphoxide reductases (MSRs), key enzymes scavenging organic peroxides and repairing oxidized proteins, respectively. Upon salt treatment (300mM NaCl), we observed higher amounts of PrxQ and over-oxidized 2-Cys Prx in Laghouat than in Djelfa. An increased abundance of plastidial MSRA and a higher total MSR activity were also noticed in Laghouat plants treated with 300mM NaCl compared to Djelfa ones. We propose that mechanisms based on organic solutes and antioxidant enzymes like catalases, peroxiredoxins and MSRs party underlie the better tolerance of the Laghouat population to high salt.
Collapse
Affiliation(s)
- Fatima Bouchenak
- Laboratoire de Physiologie Végétale, Département d'Agronomie, Faculté Agro-vétérinaire, Université Saad Dahlab, Route de Soumaa, BP 270, 09000 Blida, Algeria
| | | | | | | |
Collapse
|
46
|
Gruhlke MCH, Slusarenko AJ. The biology of reactive sulfur species (RSS). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 59:98-107. [PMID: 22541352 DOI: 10.1016/j.plaphy.2012.03.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/31/2012] [Indexed: 05/22/2023]
Abstract
Sulfur is an essential and quantitatively important element for living organisms. Plants contain on average approximately 1 g S kg⁻¹ dry weight (for comparison plants contain approximately 15 g N kg⁻¹ dry weight). Sulfur is a constituent of many organic molecules, for example amino acids such as cysteine and methionine and the small tripeptide glutathione, but sulfur is also essential in the form of Fe-S clusters for the activity of many enzymes, particularly those involved in redox reactions. Sulfur chemistry is therefore important. In particular, sulfur in the form of thiol groups is central to manifold aspects of metabolism. Because thiol groups are oxidized and reduced easily and reversibly, the redox control of cellular metabolism has become an increasing focus of research. In the same way that oxygen and nitrogen have reactive species (ROS and RNS), sulfur too can form reactive molecular species (RSS), for example when a -SH group is oxidized. Indeed, several redox reactions occur via RSS intermediates. Several naturally occurring S-containing molecules are themselves RSS and because they are physiologically active they make up part of the intrinsic plant defence repertoire against herbivore and pathogen attack. Furthermore, RSS can also be used as redox-active pharmacological tools to study cell metabolism. The aim of this review is to familiarize the general reader with some of the chemical concepts, terminology and biology of selected RSS.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology (BioIII), RWTH Aachen University, D-52056 Aachen, Germany
| | | |
Collapse
|
47
|
Chi YH, Kim SY, Jung IJ, Shin MR, Jung YJ, Park JH, Lee ES, Maibam P, Kim KS, Park JH, Kim MJ, Hwang GY, Lee SY. Dual functions of Arabidopsis sulfiredoxin: Acting as a redox-dependent sulfinic acid reductase and as a redox-independent nuclease enzyme. FEBS Lett 2012; 586:3493-9. [DOI: 10.1016/j.febslet.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
48
|
Cejudo FJ, Ferrández J, Cano B, Puerto-Galán L, Guinea M. The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling. FEBS Lett 2012; 586:2974-80. [PMID: 22796111 DOI: 10.1016/j.febslet.2012.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022]
Abstract
Protein disulphide-dithiol interchange is a universal mechanism of redox regulation in which thioredoxins (Trxs) play an essential role. In heterotrophic organisms, and non-photosynthetic plant organs, NADPH provides the required reducing power in a reaction catalysed by NADPH-dependent thioredoxin reductase (NTR). It has been considered that chloroplasts constitute an exception because reducing equivalents for redox regulation in this organelle is provided by ferredoxin (Fd) reduced by the photosynthetic electron transport chain, not by NADPH. This view was modified by the discovery of a chloroplast-localised NTR, denoted NTRC, a bimodular enzyme formed by NTR and Trx domains with high affinity for NADPH. In this review, we will summarize the present knowledge of the biochemical properties of NTRC and discuss the implications of this enzyme on plastid redox regulation in plants.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
49
|
Hancock JT, Neill SJ, Wilson ID. Nitric oxide and ABA in the control of plant function. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:119-24. [PMID: 21893252 DOI: 10.1016/j.plantsci.2011.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) and nitric oxide (NO) are both extremely important signalling molecules employed by plants to control many aspects of physiology. ABA has been extensively studied in the mechanisms which control stomatal movement as well as in seed dormancy and germination and plant development. The addition of either ABA or NO to plant cells is known to instigate the actions of many signal transduction components. Both may have an influence on the phosphorylation of proteins in cells mediated by effects on protein kinases and phosphatases, as well as recruiting a wide range of other signal transduction molecules to mediate the final effects. Both ABA and NO may also lead to the regulation of gene expression. However, it is becoming more apparent that NO may be acting downstream of ABA, with such action being mediated by reactive oxygen species such as hydrogen peroxide in some cases. However not all ABA responses require the action of NO. Here, examples of where ABA and NO have been put together into the same signal transduction pathways are discussed.
Collapse
Affiliation(s)
- J T Hancock
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | | | | |
Collapse
|
50
|
Bhatt I, Tripathi B. Plant peroxiredoxins: Catalytic mechanisms, functional significance and future perspectives. Biotechnol Adv 2011; 29:850-9. [DOI: 10.1016/j.biotechadv.2011.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/24/2011] [Accepted: 07/02/2011] [Indexed: 01/01/2023]
|