1
|
Kolupaev YE, Taraban DA, Karpets YV, Kokorev AI, Yastreb TO, Blume YB, Yemets AI. Involvement of ROS and calcium ions in developing heat resistance and inducing antioxidant system of wheat seedlings under melatonin's effects. PROTOPLASMA 2024; 261:975-989. [PMID: 38622466 DOI: 10.1007/s00709-024-01952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The stress-protective effect of melatonin (N-acetyl-5-methoxytryptamine) on plant cells is mediated by key signaling mediators, in particular calcium ions and reactive oxygen species (ROS). However, the links between changes in calcium and redox homeostasis and the formation of adaptive responses of cultivated cereals (including wheat) to the action of high temperatures have not yet been studied. In the present study, we investigated the possible involvement of ROS and calcium ions as signaling mediators in developing heat resistance in wheat (Triticum aestivum L.) seedlings and activating their antioxidant system. Treatment of 3-day-old etiolated seedlings with melatonin solutions at concentrations 0.01-10 µM increased their survival after exposure to 45 °C for 10 min. The most significant stress-protective effect was exerted by melatonin treatment at 1 µM concentration. Under the influence of melatonin, a transient enhancement of superoxide anion radical (O2•-) generation and an increase in hydrogen peroxide content were observed in roots, with a maximum at 1 h. Four hours after treatment with melatonin, the activity of catalase and guaiacol peroxidase increased in roots, while the activity of superoxide dismutase did not change significantly. After exposure to 45 °C, the activity of catalase and guaiacol peroxidase was higher in the roots of melatonin-treated wheat seedlings, and the indices of ROS generation, content of the lipid peroxidation product malonic dialdehyde, and cell membrane damage were lower than in control seedlings. Melatonin-induced changes in root ROS generation and antioxidant enzyme activities were eliminated by pretreatment with the hydrogen peroxide scavenger dimethylthiourea (DMTU), NADPH oxidase inhibitor imidazole, and calcium antagonists (the extracellular calcium chelator EGTA and phospholipase C inhibitor neomycin). Treatment with DMTU, imidazole, EGTA, and neomycin also abolished the melatonin-induced increase in survival of wheat seedlings after heat stress. The role of calcium ions and ROS, generated with the participation of NADPH oxidase, as signaling mediators in the melatonin-induced antioxidant system and heat stress resistance of wheat seedlings have been demonstrated.
Collapse
Affiliation(s)
- Yuriy E Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
- State Biotechnological University, Kharkiv, Ukraine
- Poltava State Agrarian University, Poltava, Ukraine
| | | | | | - Alexander I Kokorev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Tetiana O Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine.
- Crop Research Institute, Prague, Czech Republic.
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Yan C, Feng B, Zhao Z, Zhang Y, Yin K, Liu Y, Zhang X, Liu J, Li J, Zhao R, Zhao N, Zhou X, Chen S. Populus euphratica R2R3-MYB transcription factor RAX2 binds ANN1 promoter to increase cadmium enrichment in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112082. [PMID: 38583807 DOI: 10.1016/j.plantsci.2024.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 μM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.
Collapse
Affiliation(s)
- Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Feng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yi Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Liu QQ, Xia JQ, Wu J, Han Y, Zhang GQ, Zhao PX, Xiang CB. Root-derived long-distance signals trigger ABA synthesis and enhance drought resistance in Arabidopsis. J Genet Genomics 2024; 51:749-761. [PMID: 38554784 DOI: 10.1016/j.jgg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Vascular plants have evolved intricate long-distance signaling mechanisms to cope with environmental stress, with reactive oxygen species (ROS) emerging as pivotal systemic signals in plant stress responses. However, the exact role of ROS as root-to-shoot signals in the drought response has not been determined. In this study, we reveal that compared with wild-type plants, ferric reductase defective 3 (frd3) mutants exhibit enhanced drought resistance concomitant with elevated NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) transcript levels and abscisic acid (ABA) contents in leaves as well as increased hydrogen peroxide (H2O2) levels in roots and leaves. Grafting experiments distinctly illustrate that drought resistance can be conferred by the frd3 rootstock regardless of the scion genotype, indicating that long-distance signals originating from frd3 roots promote an increase in ABA levels in leaves. Intriguingly, the drought resistance conferred by the frd3 mutant rootstock is weakened by the CAT2-overexpressing scion, suggesting that H2O2 may be involved in long-distance signaling. Moreover, the results of comparative transcriptome and proteome analyses support the drought resistance phenotype of the frd3 mutant. Taken together, our findings substantiate the notion that frd3 root-derived long-distance signals trigger ABA synthesis in leaves and enhance drought resistance, providing new evidence for root-to-shoot long-distance signaling in the drought response of plants.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Yi Han
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Gui-Quan Zhang
- College of Agronomy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ping-Xia Zhao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui 230027, China.
| |
Collapse
|
4
|
Khan WA, Penrose B, Yun P, Zhou M, Shabala S. Exogenous zinc application mitigates negative effects of salinity on barley ( Hordeum vulgare) growth by improving root ionic homeostasis. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23266. [PMID: 38753957 DOI: 10.1071/fp23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.
Collapse
Affiliation(s)
- Waleed Amjad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Ping Yun
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Hao X, Wang S, Fu Y, Liu Y, Shen H, Jiang L, McLamore ES, Shen Y. The WRKY46-MYC2 module plays a critical role in E-2-hexenal-induced anti-herbivore responses by promoting flavonoid accumulation. PLANT COMMUNICATIONS 2024; 5:100734. [PMID: 37859344 PMCID: PMC10873895 DOI: 10.1016/j.xplc.2023.100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Volatile organic compounds (VOCs) play key roles in plant-plant communication, especially in response to pest attack. E-2-hexenal is an important component of VOCs, but it is unclear whether it can induce endogenous plant resistance to insects. Here, we show that E-2-hexenal activates early signaling events in Arabidopsis (Arabidopsis thaliana) mesophyll cells, including an H2O2 burst at the plasma membrane, the directed flow of calcium ions, and an increase in cytosolic calcium concentration. Treatment of wild-type Arabidopsis plants with E-2-hexenal increases their resistance when challenged with the diamondback moth Plutella xylostella L., and this phenomenon is largely lost in the wrky46 mutant. Mechanistically, E-2-hexenal induces the expression of WRKY46 and MYC2, and the physical interaction of their encoded proteins was verified by yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays. The WRKY46-MYC2 complex directly binds to the promoter of RBOHD to promote its expression, as demonstrated by luciferase reporter, yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays. This module also positively regulates the expression of E-2-hexenal-induced naringenin biosynthesis genes (TT4 and CHIL) and the accumulation of total flavonoids, thereby modulating plant tolerance to insects. Together, our results highlight an important role for the WRKY46-MYC2 module in the E-2-hexenal-induced defense response of Arabidopsis, providing new insights into the mechanisms by which VOCs trigger plant defense responses.
Collapse
Affiliation(s)
- Xin Hao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuyao Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yu Fu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yahui Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Shen
- University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Libo Jiang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA
| | - Yingbai Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
7
|
Martins TS, Da-Silva CJ, Shabala S, Striker GG, Carvalho IR, de Oliveira ACB, do Amarante L. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance. PLANTA 2023; 259:24. [PMID: 38108902 DOI: 10.1007/s00425-023-04275-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION Saline and wet environments stress most plants, reducing growth and yield. Halophytes adapt with ion regulation, energy maintenance, and antioxidants. Understanding these mechanisms aids in breeding resilient crops for climate change. Waterlogging and salinity are two abiotic stresses that have a major negative impact on crop growth and yield. These conditions cause osmotic, ionic, and oxidative stress, as well as energy deprivation, thus impairing plant growth and development. Although few crop species can tolerate the combination of salinity and waterlogging, halophytes are plant species that exhibit high tolerance to these conditions due to their morphological, anatomical, and metabolic adaptations. In this review, we discuss the main mechanisms employed by plants exposed to saline waterlogging, intending to understand the mechanistic basis of their ion homeostasis. We summarize the knowledge of transporters and channels involved in ion accumulation and exclusion, and how they are modulated to prevent cytosolic toxicity. In addition, we discuss how reactive oxygen species production and cell signaling enhance ion transport and aerenchyma formation, and how plants exposed to saline waterlogging can control oxidative stress. We also address the morphological and anatomical modifications that plants undergo in response to combined stress, including aerenchyma formation, root porosity, and other traits that help to mitigate stress. Furthermore, we discuss the peculiarities of halophyte plants and their features that can be leveraged to improve crop yields in areas prone to saline waterlogging. This review provides valuable insights into the mechanisms of plant adaptation to saline waterlogging thus paving the path for future research on crop breeding and management strategies.
Collapse
Affiliation(s)
- Tamires S Martins
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Cristiane J Da-Silva
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil.
- Department of Horticultural Science, NC State University, Raleigh, USA.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Perth, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, Australia
| | - Ivan R Carvalho
- Departamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, Brazil
| | | | - Luciano do Amarante
- Departamento de Botânica, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| |
Collapse
|
8
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
9
|
Koselski M, Hoernstein SNW, Wasko P, Reski R, Trebacz K. Long-Distance Electrical and Calcium Signals Evoked by Hydrogen Peroxide in Physcomitrella. PLANT & CELL PHYSIOLOGY 2023; 64:880-892. [PMID: 37233615 PMCID: PMC10434737 DOI: 10.1093/pcp/pcad051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 05/27/2023]
Abstract
Electrical and calcium signals in plants are some of the basic carriers of information that are transmitted over a long distance. Together with reactive oxygen species (ROS) waves, electrical and calcium signals can participate in cell-to-cell signaling, conveying information about different stimuli, e.g. abiotic stress, pathogen infection or mechanical injury. There is no information on the ability of ROS to evoke systemic electrical or calcium signals in the model moss Physcomitrella nor on the relationships between these responses. Here, we show that the external application of hydrogen peroxide (H2O2) evokes electrical signals in the form of long-distance changes in the membrane potential, which transmit through the plant instantly after stimulation. The responses were calcium-dependent since their generation was inhibited by lanthanum, a calcium channel inhibitor (2 mM), and EDTA, a calcium chelator (0.5 mM). The electrical signals were partially dependent on glutamate receptor (GLR) ion channels since knocking-out the GLR genes only slightly reduced the amplitude of the responses. The basal part of the gametophyte, which is rich in protonema cells, was the most sensitive to H2O2. The measurements carried out on the protonema expressing fluorescent calcium biosensor GCaMP3 proved that calcium signals propagated slowly (>5 µm/s) and showed a decrement. We also demonstrate upregulation of a stress-related gene that appears in a distant section of the moss 8 min after the H2O2 treatment. The results help understand the importance of both types of signals in the transmission of information about the appearance of ROS in the plant cell apoplast.
Collapse
Affiliation(s)
- Mateusz Koselski
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Sebastian N. W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
| | - Piotr Wasko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, Freiburg 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestrasse 18, Freiburg 79104, Germany
| | - Kazimierz Trebacz
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| |
Collapse
|
10
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
11
|
Zhou H, Wang Y, Zhang Y, Xie Y, Nadeem H, Tang C. Flagellin C decreases the expression of the Gossypium hirsutum cation/proton exchanger 3 gene to promote calcium ion, hydrogen peroxide, and nitric oxide and synergistically regulate the resistance of cotton to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2022; 13:969506. [PMID: 36212377 PMCID: PMC9532700 DOI: 10.3389/fpls.2022.969506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
To date, no ideal effective method for controlling Verticillium wilt in upland cotton (Gossypium hirsutum) has been defined. The purpose of this study was to determine the effects and mechanism through which flagellin C (FLiC) regulates the Gossypium hirsutum cation/proton exchanger 3 gene (GhCAX3), induces plant immunity, and increases resistance to Verticillium wilt. The FLiC gene was cloned from an endophytic bacterium (Pseudomonas) isolated from roots of the upland cotton cultivar Zhongmiansuo 41. The biocontrol effects of FLiC purified in vitro on resistant and susceptible upland cotton cultivars were 47.50 and 32.42%, respectively. FLiC induced a hypersensitive response (HR) in leaves of tobacco and immune responses in upland cotton. Transcriptome data showed that treatment with FLiC significantly enriched the calcium antiporter activity-associated disease-resistant metabolic pathway in seedlings. Moreover, FLiC downregulated GhCAX3 expression to increase intracellular calcium ion (Ca2+) content and stimulate increases in the intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) contents. The coordinated regulation of Ca2+, H2O2, and NO enhanced cotton resistance to Verticillium wilt. Furthermore, transgenic Arabidopsis plants overexpressing FLiC showed significantly improved resistance to Verticillium wilt. FLiC may be used as a resistance gene and a regulator to improve resistance to Verticillium dahliae (VD) in upland cotton.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hasan Nadeem
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
13
|
Huchzermeyer B, Menghani E, Khardia P, Shilu A. Metabolic Pathway of Natural Antioxidants, Antioxidant Enzymes and ROS Providence. Antioxidants (Basel) 2022; 11:761. [PMID: 35453446 PMCID: PMC9025363 DOI: 10.3390/antiox11040761] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Based on the origin, we can classify different types of stress. Environmental factors, such as high light intensity, adverse temperature, drought, or soil salinity, are summarized as abiotic stresses and discriminated from biotic stresses that are exerted by pathogens and herbivores, for instance. It was an unexpected observation that overproduction of reactive oxygen species (ROS) is a common response to all kinds of stress investigated so far. With respect to applied aspects in agriculture and crop breeding, this observation allows using ROS production as a measure to rank the stress perception of individual plants. ROS are important messengers in cell signaling, but exceeding a concentration threshold causes damage. This requires fine-tuning of ROS production and degradation rates. In general, there are two options to control cellular ROS levels, (I) ROS scavenging at the expense of antioxidant consumption and (II) enzyme-controlled degradation of ROS. As antioxidants are limited in quantity, the first strategy only allows temporarily buffering of a certain cellular ROS level. This way, it prevents spells of eventually damaging ROS concentrations. In this review, we focus on the second strategy. We discuss how enzyme-controlled degradation of ROS integrates into plant metabolism. Enzyme activities can be continuously operative. Cellular homeostasis can be achieved by regulation of respective gene expression and subsequent regulation of the enzyme activities. A better understanding of this interplay allows for identifying traits for stress tolerance breeding of crops. As a side effect, the result also may be used to identify cultivation methods modifying crop metabolism, thus resulting in special crop quality.
Collapse
Affiliation(s)
- Bernhard Huchzermeyer
- Institute of Botany, Leibniz Universitaet Hannover, Herrenhaeuser Str. 2, 30419 Hannover, Germany;
- Association of German Engineers (VDI), BV Hannover, AK Biotechnology, Hanomag Str. 12, 30449 Hannover, Germany
| | - Ekta Menghani
- Department of Biotechnology, JECRC University, Jaipur 303905, India; (P.K.); (A.S.)
| | - Pooja Khardia
- Department of Biotechnology, JECRC University, Jaipur 303905, India; (P.K.); (A.S.)
| | - Ayushi Shilu
- Department of Biotechnology, JECRC University, Jaipur 303905, India; (P.K.); (A.S.)
| |
Collapse
|
14
|
Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Baloch FS, Mansoor S. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sheikh Shanawaz Bashir
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard University, New Delhi, India
| | - Anjuman Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sofi Javed Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Owais Ali Wani
- Department of Soil Science, FoA, Wadura, Sopore, Sher-e-Kashmir University of Agricultural Sciences & Technology Shalimar Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sheikh Zahid Nabi
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Niyaz A. Dar
- ARSSSS Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar Kashmir, Srinagar, Jammu and Kashmir, India
| | - Faheem Shehzad Baloch
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| |
Collapse
|
15
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
16
|
Ahmed HAI, Shabala L, Shabala S. Tissue-specificity of ROS-induced K + and Ca 2+ fluxes in succulent stems of the perennial halophyte Sarcocornia quinqueflora in the context of salinity stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1022-1031. [PMID: 34274889 DOI: 10.1016/j.plaphy.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The ability of halophytes to thrive under saline conditions implies efficient ROS detoxification and signalling. In this work, the causal relationship between key membrane transport processes involved in maintaining plant ionic homeostasis and oxidative stress tolerance was investigated in a succulent perennial halophyte Sarcocornia quinqueflora. The flux responses to oxidative stresses induced by either hydroxyl radicals (OH•) or hydrogen peroxide (H2O2) were governed largely by (1) the type of ROS applied; (2) the tissue-specific origin and function (parenchymatic or chlorenchymatic); and (3) the tissue location in respect to the suberized endodermal barrier. The latter implied significant differences in responses between outer (water storage-WS; palisade tissue-Pa) and inner (internal photosynthetic layer-IP; stele parenchyma-SP) stem tissues. The ability of the cell to retain K+ under OH• stress varied between different tissues and was ranked in the following descending order: WS>Pa>IP>SP. OH• always led to Ca2+ influx in all stem tissues, while treatment with H2O2 induced tissue-specific Ca2+ "signatures". The inner/outer K+ ratio was the highest (~2.6) under the optimum NaCl dosage (200 mM) in comparison to non-saline (~0.4) and severe (800 mM; ~0.7) conditions, implying that a higher K+ concentration in the inner tissues is important for optimum growth. The overall results demonstrate a clear link between plant anatomical structure and ability of its tissues to maintain ionic homeostasis, via modulating their ROS sensitivity.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; Department of Botany, Faculty of Science, Port Said University, Port Said, 42526, Egypt.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| |
Collapse
|
17
|
Wang Y, Dai X, Xu G, Dai Z, Chen P, Zhang T, Zhang H. The Ca 2+-CaM Signaling Pathway Mediates Potassium Uptake by Regulating Reactive Oxygen Species Homeostasis in Tobacco Roots Under Low-K + Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:658609. [PMID: 34163499 PMCID: PMC8216240 DOI: 10.3389/fpls.2021.658609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
Potassium (K+) deficiency severely threatens crop growth and productivity. Calcium (Ca2+) signaling and its sensors play a central role in the response to low-K+ stress. Calmodulin (CaM) is an important Ca2+ sensor. However, the mechanism by which Ca2+ signaling and CaM mediate the response of roots to low-K+ stress remains unclear. In this study, we found that the K+ concentration significantly decreased in both shoots and roots treated with Ca2+ channel blockers, a Ca2+ chelator, and CaM antagonists. Under low-K+ stress, reactive oxygen species (ROS) accumulated, and the activity of antioxidant enzymes, NAD kinase (NADK), and NADP phosphatase (NADPase) decreased. This indicates that antioxidant enzymes, NADK, and NADPase might be downstream target proteins in the Ca2+-CaM signaling pathway, which facilitates K+ uptake in plant roots by mediating ROS homeostasis under low-K+ stress. Moreover, the expression of NtCNGC3, NtCNGC10, K+ channel genes, and transporter genes was significantly downregulated in blocker-treated, chelator-treated, and antagonist-treated plant roots in the low K+ treatment, suggesting that the Ca2+-CaM signaling pathway may mediate K+ uptake by regulating the expression of these genes. Overall, this study shows that the Ca2+-CaM signaling pathway promotes K+ absorption by regulating ROS homeostasis and the expression of K+ uptake-related genes in plant roots under low-K+ stress.
Collapse
|
18
|
Bian L, Wang Y, Bai H, Li H, Zhang C, Chen J, Xu W. Melatonin-ROS signal module regulates plant lateral root development. PLANT SIGNALING & BEHAVIOR 2021; 16:1901447. [PMID: 33734026 PMCID: PMC8078526 DOI: 10.1080/15592324.2021.1901447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lateral root (LR) branches from primary root. LR is vital for plants acquiring water and nutrients from soil, especially under stress conditions. LR development involves the complicated signaling network, which has not yet been fully understood. Melatonin, a novel endogenous plant regulator, plays a role in the regulation of LR development. However, we still have limited knowledge about melatonin-modulated signaling during LR development. Our recent study identifies that reactive oxygen species (ROS) acts as downstream signaling of melatonin to facilitate LR development. The recently identified receptor of melatonin in plants controls a signaling module involving G protein, ROS, and Ca2+. Based on these findings, we propose a novel signaling network for LR development controlled by melatonin.
Collapse
Affiliation(s)
- Liping Bian
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yousheng Wang
- China Tobacco Jiangsu Industrial Co. LTD, Nanjing, China
| | - Hongwu Bai
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Li
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- CONTACT Jian Chen ; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing210014, China
| | - Weimin Xu
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Weimin Xu Central Laboratory, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
19
|
Zhang Y, Sa G, Zhang Y, Hou S, Wu X, Zhao N, Zhang Y, Deng S, Deng C, Deng J, Zhang H, Yao J, Zhang Y, Zhao R, Chen S. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124063. [PMID: 33092878 DOI: 10.1016/j.jhazmat.2020.124063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation offers a great potential for affordable remediation of heavy metal (HM)-polluted soil and water. Screening and identifying candidate genes related to HM uptake and transport is prerequisite for improvement of phytoremediation by genetic engineering. Using the cadmium (Cd)-hypersensitive Populus euphratica, an annexin encoding gene facilitating Cd enrichment was identified in this study. With a 12 h exposure to CdCl2 (50-100 μM), P. euphratica cells down-regulated transcripts of annexin1 (PeANN1). PeANN1 was homologue to Arabidopsis annexin1 (AtANN1) and localized mainly to the plasma membrane (PM) and cytosol. Compared with wild type and Atann1 mutant, PeANN1 overexpression in Arabidopsis resulted in a more pronounced decline in survival rate and root length after a long-term Cd stress (10 d, 50 μM), due to a higher cadmium accumulation in roots. PeANN1-transgenic roots exhibited enhanced influx conductance of Cd2+ under cadmium shock (30 min, 50 μM) and short-term stress (12 h, 50 μM). Noteworthy, the PeANN1-facilitated Cd2+ influx was significantly inhibited by a calcium-permeable channel (CaPC) inhibitor (GdCl3) but was promoted by 1 mM H2O2, indicating that Cd2+ entered root cells via radical-activated CaPCs in the PM. Therefore, PeANN1 can serve as a candidate gene for improvement of phytoremediation by genetic engineering.
Collapse
Affiliation(s)
- Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Siyuan Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Xia Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Clinical Assessment of Pediatric Patients with Differentiated Thyroid Carcinoma: A 30-Year Experience at a Single Institution. World J Surg 2021; 44:3383-3392. [PMID: 32440955 PMCID: PMC7458901 DOI: 10.1007/s00268-020-05598-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Thyroidectomy is the typical treatment for pediatric thyroid carcinoma; total thyroidectomy is commonly performed. We aimed to report our experience at a single tertiary institution and to evaluate the risk factors for recurrence, especially based on surgical extent, in pediatric patients with differentiated thyroid carcinoma (DTC). Methods A data of 94 pediatric patients who underwent thyroid surgery for DTC from January 1982 to December 2012 at Yonsei University Hospital (Seoul, Korea) were reviewed. The clinicopathologic features and surgical outcomes were retrospectively analyzed through complete chart reviews. Results The mean age was 16.6 ± 3.0 (range, 5–19) years. Fourteen patients had recurrence. Tumor size >2 cm (hazard ratio [HR], 14.241; p = 0.011) and positive lymph nodes (HR, 1.056; p = 0.039) were significant risk factors for disease-free survival (DFS) in multivariate analysis. In Kaplan–Meier analysis, a statistically significant difference was noted in the DFS according to tumor size 2 cm (p < 0.001). However, the DFS was not significantly different between the bilateral total thyroidectomy (BTT) and less than BTT groups (p = 0.215). Conclusions BTT remains the treatment of choice in pediatric patients with DTC. Lobectomy may be considered for patients with limited disease, including those with tumor size <2 cm, no suspicious lymph nodes, intrathyroidal lesion, and no multifocal disease.
Collapse
|
21
|
Shah AN, Tanveer M, Abbas A, Fahad S, Baloch MS, Ahmad MI, Saud S, Song Y. Targeting salt stress coping mechanisms for stress tolerance in Brassica: A research perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:53-64. [PMID: 33296846 DOI: 10.1016/j.plaphy.2020.11.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 05/02/2023]
Abstract
Brassica genus comprises numerous cultivated brassica species with various economic importance. Salt stress is an overwhelming problem causing serious losses in Brassica species (e.g. B. napus, B. rapa, B. oleracea, B. juncea) growth and grain yield production by inducing ionic and ROS toxicity. Given that a significant variation exists in salt tolerance level in Brassica genus, Brassica species exhibited numerous salt tolerance mechanisms which were either overlooked or given less importance to improve and understand innate salt stress tolerance mechanism in Brassica species. In this review, we tried to highlight the importance and recent findings relating to some overlooked and potential mechanisms such as role of neurotransmitters, and role of cytosolic Ca2+ and ROS as signaling elements to enhance salt stress tolerance. Studies revealed that salt tolerant brassica species retained more K+ in leaf mesophyll which confers overall salinity tolerance in salt tolerance brassica species. Neurotransmitter such as melatonin, dopamiane and eATP regulates K+ and Ca2+ permeable ion channels and plays a very crucial role in ionic homeostasis under salinity stress in brassica. At the end, the numerous possible salt stress agronomic strategies were also discussed to mitigate the severity of the salt stress in Brassica species.
Collapse
Affiliation(s)
- Adnan Noor Shah
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Mohammad Safdar Baloch
- Department of Agronomy, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | | | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Feng X, Liu W, Cao F, Wang Y, Zhang G, Chen ZH, Wu F. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6587-6600. [PMID: 32766860 DOI: 10.1093/jxb/eraa354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. PLANTS 2020; 9:plants9101251. [PMID: 32977553 PMCID: PMC7598256 DOI: 10.3390/plants9101251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023]
Abstract
Thalictrum maritimum is an endangered, endemic species in East Spain, growing in areas of relatively low salinity in littoral salt marshes. A regression of its populations and the number of individuals has been registered in the last decade. This study aimed at establishing the causes of this reduction using a multidisciplinary approach, including climatic, ecological, physiological and biochemical analyses. The climatic data indicated that there was a direct negative correlation between increased drought, especially during autumn, and the number of individuals censused in the area of study. The susceptibility of this species to water deficit was confirmed by the analysis of growth parameters upon a water deficit treatment applied under controlled greenhouse conditions, with the plants withstanding only 23 days of complete absence of irrigation. On the other hand, increased salinity does not seem to be a risk factor for this species, which behaves as a halophyte, tolerating in controlled treatments salinities much higher than those registered in its natural habitat. The most relevant mechanisms of salt tolerance in T. maritimum appear to be based on the control of ion transport, by (i) the active transport of toxic ions to the aerial parts of the plants at high external salinity—where they are presumably stored in the leaf vacuoles to avoid their deleterious effects in the cytosol, (ii) the maintenance of K+ concentrations in belowground and aboveground organs, despite the increase of Na+ levels, and (iii) the salt-induced accumulation of Ca2+, particularly in stems and leaves. This study provides useful information for the management of the conservation plans of this rare and endangered species.
Collapse
|
24
|
Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Sun Y, Rawat S, Tan W, Reyes A, Hernandez-Viezcas JA, Niu G, Li C, Gardea-Torresdey JL. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138387. [PMID: 32298898 DOI: 10.1016/j.scitotenv.2020.138387] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/04/2023]
Abstract
With the exponential growth of nanomaterial production in the last years, nano copper (Cu)-based compounds are gaining more consideration in agriculture since they can work as pesticides or fertilizers. Chinese scallions (Allium fistulosum), which are characterized by their high content of the antioxidant allicin, were the chosen plants for this study. Spectroscopic and microscopic techniques were used to evaluate the nutrient element, allicin content, and enzyme antioxidant properties of scallion plants. Plants were harvested after growing for 80 days at greenhouse conditions in soil amended with CuO particles [nano (nCuO) and bulk (bCuO)] and CuSO4 at 75-600 mg/kg]. Two-photon microscopy images demonstrated the particulate Cu uptake in nCuO and bCuO treated roots. In plants exposed to 150 mg/kg of the Cu-based compounds, root Cu content was higher in plants treated with nCuO compared with bCuO, CuSO4, and control (p ≤ 0.05). At 150 mg/kg, nCuO increased root Ca (86%), root Fe (71%), bulb Ca (74%), and bulb Mg (108%) content, compared with control (p ≤ 0.05). At the same concentration, bCuO reduced root Ca (67%) and root Mg (33%), compared with control (p ≤ 0.05). At all concentrations, nCuO and CuSO4 increased leaf allicin (56-187% and 42-90%, respectively), compared with control (p ≤ 0.05). The antioxidant enzymes were differentially affected by the Cu-based treatments. Overall, the data showed that nCuO enhances nutrient and allicin contents in scallion, which suggests they might be used as a nanofertilizer for onion production.
Collapse
Affiliation(s)
- Yi Wang
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Chaoyi Deng
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Keni Cota-Ruiz
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Jose R Peralta-Videa
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Youping Sun
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Swati Rawat
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Wenjuan Tan
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Andres Reyes
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jose A Hernandez-Viezcas
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA
| | - Genhua Niu
- Texas A&M Agrilife Research and Extension Centre at Dallas, 17360 Coit Road, TX 75252, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA; University of California Centre for Environmental Implications of Nanotechnology, The University of Texas at El Paso, 500 West University Avenue, El Paso TX-79968, USA.
| |
Collapse
|
25
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
26
|
Zarei M, Shabala S, Zeng F, Chen X, Zhang S, Azizi M, Rahemi M, Davarpanah S, Yu M, Shabala L. Comparing Kinetics of Xylem Ion Loading and Its Regulation in Halophytes and Glycophytes. PLANT & CELL PHYSIOLOGY 2020; 61:403-415. [PMID: 31693150 DOI: 10.1093/pcp/pcz205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/29/2019] [Indexed: 05/02/2023]
Abstract
Although control of xylem ion loading is essential to confer salinity stress tolerance, specific details behind this process remain elusive. In this work, we compared the kinetics of xylem Na+ and K+ loading between two halophytes (Atriplex lentiformis and quinoa) and two glycophyte (pea and beans) species, to understand the mechanistic basis of the above process. Halophyte plants had high initial amounts of Na+ in the leaf, even when grown in the absence of the salt stress. This was matched by 7-fold higher xylem sap Na+ concentration compared with glycophyte plants. Upon salinity exposure, the xylem sap Na+ concentration increased rapidly but transiently in halophytes, while in glycophytes this increase was much delayed. Electrophysiological experiments using the microelectrode ion flux measuring technique showed that glycophyte plants tend to re-absorb Na+ back into the stele, thus reducing xylem Na+ load at the early stages of salinity exposure. The halophyte plants, however, were capable to release Na+ even in the presence of high Na+ concentrations in the xylem. The presence of hydrogen peroxide (H2O2) [mimicking NaCl stress-induced reactive oxygen species (ROS) accumulation in the root] caused a massive Na+ and Ca2+ uptake into the root stele, while triggering a substantial K+ efflux from the cytosol into apoplast in glycophyte but not halophytes species. The peak in H2O2 production was achieved faster in halophytes (30 min vs 4 h) and was attributed to the increased transcript levels of RbohE. Pharmacological data suggested that non-selective cation channels are unlikely to play a major role in ROS-mediated xylem Na+ loading.
Collapse
Affiliation(s)
- Mahvash Zarei
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Fanrong Zeng
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Chen
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Majid Azizi
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rahemi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Sohrab Davarpanah
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
27
|
Rubio F, Nieves-Cordones M, Horie T, Shabala S. Doing 'business as usual' comes with a cost: evaluating energy cost of maintaining plant intracellular K + homeostasis under saline conditions. THE NEW PHYTOLOGIST 2020; 225:1097-1104. [PMID: 30993727 DOI: 10.1111/nph.15852] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/31/2019] [Indexed: 05/27/2023]
Abstract
Salinization of agricultural lands is a major threat to agriculture. Many different factors affect and determine plant salt tolerance. Nonetheless, there is a consensus on the relevance of maintaining an optimal cytosolic potassium : sodium ion (K+ : Na+ ) ratio for salinity tolerance in plants. This ratio depends on the operation of plasma membrane and tonoplast transporters. In the present review we focus on some aspects related to the energetic cost of maintaining that K+ : Na+ ratio. One of the factors that affect the cost of the first step of K+ acquisition - root K+ uptake through High Affinity K+ transporter and Arabidopsis K+ transport system 1 transport systems - is the value of the plasma membrane potential of root cells, a parameter that may differ amongst plant species. In addition to its role in nutrition, cytosolic K+ also is important for signalling, and K+ efflux through gated outward-rectifying K+ and nonselective cation channels can be regarded as a switch to redirect energy towards defence reactions. In maintaining cytosolic K+ , the great buffer capacity of the vacuole should be considered. The possible role of high-affinity K+ transporters (HKT)2s in mediating K+ uptake under saline conditions and the importance of cycling of K+ throughout the plant also are discussed.
Collapse
Affiliation(s)
- Francisco Rubio
- Plant Nutrition Department, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | | | - Tomoaki Horie
- Division of Applied Biology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano, 386-8567, Japan
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7005, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528041, China
| |
Collapse
|
28
|
Matthus E, Sun J, Wang L, Bhat MG, Mohammad-Sidik AB, Wilkins KA, Leblanc-Fournier N, Legué V, Moulia B, Stacey G, Davies JM. DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP. ANNALS OF BOTANY 2020; 124:1227-1242. [PMID: 31904093 PMCID: PMC6943698 DOI: 10.1093/aob/mcz135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Madhura G Bhat
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- For correspondence. E-mail
| |
Collapse
|
29
|
Benkő P, Jee S, Kaszler N, Fehér A, Gémes K. Polyamines treatment during pollen germination and pollen tube elongation in tobacco modulate reactive oxygen species and nitric oxide homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153085. [PMID: 31812029 DOI: 10.1016/j.jplph.2019.153085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Several signaling pathways have been shown to be involved in the regulation of pollen germination and pollen tube elongation. Among others, exogenously applied polyamines were found to strongly affect pollen maturation, pollen tube emergence and elongation. In this study, our aim was to investigate the regulatory relation among exogenous polyamines, and endogenous reactive oxygen species and nitric oxide under pollen germination and the apical growth of pollen tube in tobacco plants. We have found that the various polyamines differentially affected the metabolism of nitric oxide and reactive oxygen species during the processes of pollen germination in the grain and the lengthening pollen tube. It is hypothesized that their differential effects might be related to their distinct influence on the endogenous nitric oxide and reactive oxygen species levels.
Collapse
Affiliation(s)
- Péter Benkő
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary; Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary
| | - Shyam Jee
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary; Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary
| | - Nikolett Kaszler
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary; Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726, Szeged, Hungary; Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary
| | - Katalin Gémes
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 62. Temesvári krt, H-6726, Szeged, Hungary; Department of Plant Biology, University of Szeged, 52. Közép fasor, H-6726, Szeged, Hungary.
| |
Collapse
|
30
|
Chen J, Li H, Yang K, Wang Y, Yang L, Hu L, Liu R, Shi Z. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic Biol Med 2019; 143:534-544. [PMID: 31520769 DOI: 10.1016/j.freeradbiomed.2019.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Melatonin, a phytochemical, can regulate lateral root (LR) formation, but the downstream signaling of melatonin remains elusive. Here we investigated the roles of hydrogen peroxide (H2O2) and superoxide radical (O2•‾) in melatonin-promoted LR formation in tomato (Solanum lycopersicum) roots by using physiological, histochemical, bioinformatic, and biochemical approaches. The increase in endogenous melatonin level stimulated reactive oxygen species (ROS)-dependent development of lateral root primordia (LRP) and LR. Melatonin promoted LRP/LR formation and modulated the expression of cell cycle genes (SlCDKA1, SlCYCD3;1, and SlKRP2) by stimulating polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (Rboh)-dependent O2•‾ production, respectively. Screening of SlPAOs and SlRbohs gene family combined with gene expression analysis suggested that melatonin-promoted LR formation was correlated to the upregulation of SlPAO1, SlRboh3, and SlRboh4 in LR-emerging zone. Transient expression analysis confirmed that SlPAO1 was able to produce H2O2 while SlRboh3 and SlRboh4 were capable of producing O2•‾. Melatonin-ROS signaling cassette was also found in the regulation of LR formation in rice root and lateral hyphal branching in fungi. These results suggested that SlPAO1-H2O2 and SlRboh3/4-O2•‾ acted as downstream of melatonin to regulate the expression of cell cycle genes, resulting in LRP initiation and LR development. Such findings uncover one of the regulatory pathways for melatonin-regulated LR formation, which extends our knowledge for melatonin-regulated plant intrinsic physiology.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Hui Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kang Yang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yongzhu Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ruixian Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiqi Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
31
|
Vigani G, Costa A. Harnessing the new emerging imaging technologies to uncover the role of Ca 2+ signalling in plant nutrient homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2885-2901. [PMID: 31286524 DOI: 10.1111/pce.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/26/2023]
Abstract
Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10135, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| |
Collapse
|
32
|
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S. Root vacuolar Na + sequestration but not exclusion from uptake correlates with barley salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:55-67. [PMID: 31148333 DOI: 10.1111/tpj.14424] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/24/2023]
Abstract
Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.
Collapse
Affiliation(s)
- Honghong Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Nana Su
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Qi Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Tanveer Ul-Haq
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Juan Zhu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
33
|
Ma Y, Wang P, Gu Z, Tao Y, Shen C, Zhou Y, Han Y, Yang R. Ca 2+ involved in GABA signal transduction for phenolics accumulation in germinated hulless barley under NaCl stress. Food Chem X 2019; 2:100023. [PMID: 31432010 PMCID: PMC6694854 DOI: 10.1016/j.fochx.2019.100023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/16/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, in order to investigate the role of Ca2+ in GABA signal transduction involved in phenolics accumulation in barley seedlings under NaCl stress, the seedlings were treated with exogenous GABA and its synthesis inhibitor, 3-mercaplopropionic acid (3-MP), as well as Ca2+ channel blockers La3+, Ca2+ chelator EGTA, and Ca2+ release channel inhibitor 2-aminoethoxydiphenyl borate (2-APB). The results showed that GABA significantly enhanced phenolics, calcium and calmodulin content. It also induced Ca2+ influx in barley root tips cells, and altered the distribution of Ca2+, making calcium precipitates more uniform and intensive. While, 3-MP treatment led to opposite changes, which suggested that GABA was essential for calcium content increase. In addition, accumulation of phenolics was inhibited by LaCl3, EGTA and 2-APB treatments, and this inhibition could be alleviated partly by exogenous GABA. Taken together, Ca2+ was involved in GABA signal transduction for phenolics accumulation in barley seedlings under NaCl stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
34
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
35
|
Ijaz B, Formentin E, Ronci B, Locato V, Barizza E, Hyder MZ, Lo Schiavo F, Yasmin T. Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS One 2019; 14:e0213986. [PMID: 31039145 PMCID: PMC6490951 DOI: 10.1371/journal.pone.0213986] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Among cereal crops, salinity tolerance is rare and complex. Multiple genes control numerous pathways, which constitute plant's response to salinity. Cell cultures act as model system and are useful to investigate the salinity response which can possibly mimic a plant's response to stress. In the present study two indica rice varieties, KS-282 and Super Basmati which exhibited contrasting sodium chloride (NaCl) stress response were used to establish cell cultures. The cell cultures showed a contrasting response to salt stress at 100 mM NaCl. High level of intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) were observed in sensitive cell culture for prolonged period as compared to the tolerant cells in which an extracellular H2O2 burst along with controlled intracellular H2O2 and NO signal was seen. To evaluate the role of NO in inducing cell death under salt stress, cell death percentage (CDP) was measured after 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) pre-treatment. CDP was reduced significantly in both tolerant and sensitive cell cultures emphasizing NO's possible role in programmed cell death. Expression analysis of apoplastic NADPH oxidase, i.e. OsRbohA and recently characterised OSCA family members i.e. OsOSCA 1.2 and OsOSCA 3.1 was done. Intracellular H2O2/NO levels displayed an interplay between Ca2+ influx and ROS/RNS signal. Detoxifying enzyme (i.e. ascorbate peroxidase and catalase) activity was considerably higher in tolerant KS-282 while the activity of superoxide dismutase was significantly prominent in the sensitive cells triggering greater oxidative damage owing to the prolonged presence of intracellular H2O2. Salt stress and ROS responsive TFs i.e. OsSERF1 and OsDREB2A were expressed exclusively in the tolerant cells. Similarly, the expression of genes involved in maintaining high [K+]/[Na+] ratio was considerably higher and earlier in the tolerant variety. Overall, we suggest that a control over ROS production, and an increase in the expression of genes important for potassium homeostasis play a dynamic role in salinity tolerance in rice cell cultures.
Collapse
Affiliation(s)
- Bushra Ijaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Beatrice Ronci
- Department of Scienze biochimiche e della nutrizione, University Campus Bio-Medico Rome, Italy
| | - Vittoria Locato
- Department of Scienze biochimiche e della nutrizione, University Campus Bio-Medico Rome, Italy
| | | | | | | | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
36
|
Liu Y, Yu Y, Sun J, Cao Q, Tang Z, Liu M, Xu T, Ma D, Li Z, Sun J. Root-zone-specific sensitivity of K+-and Ca2+-permeable channels to H2O2 determines ion homeostasis in salinized diploid and hexaploid Ipomoea trifida. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1389-1405. [PMID: 30689932 PMCID: PMC6382330 DOI: 10.1093/jxb/ery461] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 05/13/2023]
Abstract
Polyploids generally possess superior K+/Na+ homeostasis under saline conditions compared with their diploid progenitors. In this study, we identified the physiological mechanisms involved in the ploidy-related mediation of K+/Na+ homeostasis in the roots of diploid (2x) and hexaploid (6x; autohexaploid) Ipomoea trifida, which is the closest relative of cultivated sweet potato. Results showed that 6x I. trifida retained more K+ and accumulated less Na+ in the root and leaf tissues under salt stress than 2x I. trifida. Compared with its 2x ancestor, 6x I. trifida efficiently prevents K+ efflux from the meristem root zone under salt stress through its plasma membrane (PM) K+-permeable channels, which have low sensitivity to H2O2. Moreover, 6x I. trifida efficiently excludes Na+ from the elongation and mature root zones under salt stress because of the high sensitivity of PM Ca2+-permeable channels to H2O2. Our results suggest the root-zone-specific sensitivity to H2O2 of PM K+- and Ca2+-permeable channels in the co-ordinated control of K+/Na+ homeostasis in salinized 2x and 6x I. trifida. This work provides new insights into the improved maintenance of K+/Na+ homeostasis of polyploids under salt stress.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jianying Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qinghe Cao
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zhonghou Tang
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Meiyan Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Daifu Ma
- Sweet Potato Research Institute (CAAS), Jiangsu Xuzhou Sweet Potato Research Institute, MOA Key Laboratory of Biology and Genetic Improvement of Sweet Potato, Xuzhou, Jiangsu, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
- Correspondence: or
| |
Collapse
|
37
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
38
|
Wang L, Stacey G, Leblanc-Fournier N, Legué V, Moulia B, Davies JM. Early Extracellular ATP Signaling in Arabidopsis Root Epidermis: A Multi-Conductance Process. FRONTIERS IN PLANT SCIENCE 2019; 10:1064. [PMID: 31552068 PMCID: PMC6737080 DOI: 10.3389/fpls.2019.01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.
Collapse
Affiliation(s)
- Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
39
|
Ma X, Zhang X, Yang L, Tang M, Wang K, Wang L, Bai L, Song C. Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:165-174. [PMID: 32172758 DOI: 10.1071/fp18219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/18/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) is a crucial factor that affects primary root tip growth in plants. Previous research suggests that reactive oxygen species (ROS), especially hydrogen peroxide, are important regulators of ABA signalling in root growth of Arabidopsis. PROLINE-RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4) plays an important role in ABA responses. Arabidopsis perk4 mutants display attenuated sensitivity to ABA, especially in primary root growth. To gain insights into the mechanism(s) of PERK4-associated ABA inhibition of root growth, in this study we investigated the involvement of ROS in this process. Normal ROS accumulation in the primary root in response to exogenous ABA treatment was not observed in perk4 mutants. PERK4 deficiency prohibits ABA-induced expression of RESPIRATORY BURST OXIDASE HOMOLOGUE (RBOH) genes, therefore the perk4-1 mutant showed decreased production of ROS in the root. The perk4-1/rbohc double mutant displayed the same phenotype as the perk4 and rbohc single mutants in response to exogenous ABA treatment. The results suggest that PERK4-stimulated ROS accumulation during ABA-regulated primary root growth may be mediated by RBOHC.
Collapse
Affiliation(s)
- Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xiaoran Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengmeng Tang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Kai Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, 85 Minglun Street, Kaifeng 475001, China
| |
Collapse
|
40
|
Cota-Ruiz K, Hernández-Viezcas JA, Varela-Ramírez A, Valdés C, Núñez-Gastélum JA, Martínez-Martínez A, Delgado-Rios M, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expression study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:703-712. [PMID: 30228067 DOI: 10.1016/j.envpol.2018.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Bulk Cu compounds such as Cu(OH)2 are extensively used as pesticides in agriculture. Recent investigations suggest that Cu-based nanomaterials can replace bulk materials reducing the environmental impacts of Cu. In this study, stress responses of alfalfa (Medicago sativa L.) seedlings to Cu(OH)2 nanoparticle or compounds were evaluated. Seeds were immersed in suspension/solutions of a Cu(OH)2 nanoform, bulk Cu(OH)2, CuSO4, and Cu(NO3)2 at 25 and 75 mg/L. Six days later, the germination, seedling growth, and the physiological and biochemical responses of sprouts were evaluated. All Cu treatments significantly reduced root elongation (average = 63%). The ionic compounds at 25 and 75 mg/L caused a reduction in all elements analyzed (Ca, K, Mg, P, Zn, and Mn), excepting for S, Fe and Mo. The bulk-Cu(OH)2 treatment reduced K (48%) and P (52%) at 75 mg/L, but increased Zn at 25 (18%) and 75 (21%) mg/L. The nano-Cu(OH)2 reduced K (46%) and P (48%) at 75 mg/L, and also P (37%) at 25 mg/L, compared with control. Confocal microscopy images showed that all Cu compounds, at 75 mg/L, significantly reduced nitric oxide, concurring with the reduction in root growth. Nano Cu(OH)2 at 25 mg/L upregulated the expression of the Cu/Zn superoxide dismutase gene (1.92-fold), while ionic treatments at 75 mg/L upregulated (∼10-fold) metallothionein (MT) transcripts. Results demonstrated that nano and bulk Cu(OH)2 compounds caused less physiological impairments in comparison to the ionic ones in alfalfa seedlings.
Collapse
Affiliation(s)
- Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; El Colegio de Chihuahua, Partido Díaz 4723 esquina con Anillo Envolvente del PRONAF, Ciudad Juárez, Chihuahua, 32310, Mexico
| | - José A Hernández-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Carolina Valdés
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - José A Núñez-Gastélum
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310, Mexico
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310, Mexico
| | - Marcos Delgado-Rios
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310, Mexico
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Environmental Science and Engineering Ph.D. program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; Environmental Science and Engineering Ph.D. program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
41
|
Wang X, Hao L, Zhu B, Jiang Z. Plant Calcium Signaling in Response to Potassium Deficiency. Int J Mol Sci 2018; 19:E3456. [PMID: 30400321 PMCID: PMC6275041 DOI: 10.3390/ijms19113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Potassium (K⁺) is an essential macronutrient of living cells and is the most abundant cation in the cytosol. K⁺ plays a role in several physiological processes that support plant growth and development. However, soil K⁺ availability is very low and variable, which leads to severe reductions in plant growth and yield. Various K⁺ shortage-activated signaling cascades exist. Among these, calcium signaling is the most important signaling system within plant cells. This review is focused on the possible roles of calcium signaling in plant responses to low-K⁺ stress. In plants, intracellular calcium levels are first altered in response to K⁺ deficiency, resulting in calcium signatures that exhibit temporal and spatial features. In addition, calcium channels located within the root epidermis and root hair zone can then be activated by hyperpolarization of plasma membrane (PM) in response to low-K⁺ stress. Afterward, calcium sensors, including calmodulin (CaM), CaM-like protein (CML), calcium-dependent protein kinase (CDPK), and calcineurin B-like protein (CBL), can act in the sensing of K⁺ deprivation. In particular, the important components regarding CBL/CBL-interacting protein kinase (CBL/CIPK) complexes-involved in plant responses to K⁺ deficiency are also discussed.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Biping Zhu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhonghao Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
42
|
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. THE NEW PHYTOLOGIST 2018; 220:49-69. [PMID: 29916203 DOI: 10.1111/nph.15266] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/21/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professora Popova Street, St Petersburg, 197376, Russia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Stanislav Isayenkov
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, 2a Osipovskogo Street, Kyiv, 04123, Ukraine
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colima, 28045, Mexico
| |
Collapse
|
43
|
Ahmadi H, Corso M, Weber M, Verbruggen N, Clemens S. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2018; 41:2435-2448. [PMID: 29879753 DOI: 10.1111/pce.13362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 05/11/2023]
Abstract
The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from Arabidopsis lyrata × A. halleri crosses revealed three quantitative trait loci for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca2+ /H+ antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1-silenced lines. Upon Cd2+ exposure, several-fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1-silenced plants. In accordance with the dependence of Cdtol2 on external Ca2+ concentration, this phenotype was exclusively observed in low Ca2+ conditions. The effects of external Ca2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd-elicited ROS production triggering further Ca2+ -dependent ROS accumulation.
Collapse
Affiliation(s)
- Hassan Ahmadi
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Massimiliano Corso
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Michael Weber
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Nathalie Verbruggen
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Stephan Clemens
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| |
Collapse
|
44
|
Zhang X, Shao J, Chen A, Shang C, Hu X, Luo S, Lei M, Peng L, Zeng Q. Effects of cadmium on calcium homeostasis in the white-rot fungus Phanerochaete chrysosporium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:95-101. [PMID: 29609109 DOI: 10.1016/j.ecoenv.2018.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Due to the widespread application of white-rot fungi for the treatment of pollutants, it's crucial to exploit the special effects of pollutants on the microbes. Here, we studied the effects of cadmium on calcium homeostasis in the most studied white-rot fungus Phanerochaete chrysosporium. The response of P. chrysosporium to cadmium stress is concentration-dependent. A high concentration of cadmium caused the release of calcium from P. chrysosporium, while a hormesis effect was observed at a lower cadmium concentration (10 μM), which resulted in a significant increase in calcium uptake and reversed the decrease in cell viability. Calcium (50 μM) promoted cell viability (127.2% of control), which reflects that calcium can protect P. chrysosporium from environmental stress. Real-time changes in the Ca2+ and Cd2+ fluxes of P. chrysosporium were quantified using the noninvasive microtest technique. Ca2+ influx decreased significantly under cadmium exposure, and the Ca2+ channel was involved in Ca2+ and Cd2+ influx. The cadmium and/or calcium uptake results coupled with the real-time Ca2+ and Cd2+ influxes microscale signatures can enhance our knowledge of the homeostasis of P. chrysosporium with respect to cadmium stress, which may provide useful information for improving the bioremediation process.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
45
|
Pottosin I, Zepeda-Jazo I. Powering the plasma membrane Ca2+-ROS self-amplifying loop. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3317-3320. [PMID: 29931349 PMCID: PMC6009657 DOI: 10.1093/jxb/ery179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Igor Pottosin
- Biomedical Center, University of Colima, Colima, Mexico
- School of Land and Food, University of Tasmania, Hobart Tas., Australia
| | - Isaac Zepeda-Jazo
- Food Genomics Department, University of La Ciénega Michoacán de Ocampo State, Sahuayo Mich, Mexico
| |
Collapse
|
46
|
Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. PHOTOSYNTHESIS RESEARCH 2018; 136:215-228. [PMID: 29086893 DOI: 10.1007/s11120-017-0460-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
47
|
Demidchik V. ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci 2018; 19:E1263. [PMID: 29690632 PMCID: PMC5979493 DOI: 10.3390/ijms19041263] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, School of Food Science and Engineering, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus.
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St. Petersburg, Russia.
| |
Collapse
|
48
|
Pottosin I, Zepeda-Jazo I, Bose J, Shabala S. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots. Int J Mol Sci 2018; 19:E897. [PMID: 29562632 PMCID: PMC5877758 DOI: 10.3390/ijms19030897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/21/2023] Open
Abstract
Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•)-induced activation of massive K⁺ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from -130 to -70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K⁺ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell's turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K⁺ signaling.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima; Av. 25 de julio 965, Villa de San Sebastian, Colima, Col. 28045, Mexico.
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.
| | - Isaac Zepeda-Jazo
- Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Av. Universidad 3000, Lomas de la Universidad, Sahuayo, Mich. 59103, Mexico.
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide SA 5064, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.
| |
Collapse
|
49
|
Wang H, Shabala L, Zhou M, Shabala S. Hydrogen Peroxide-Induced Root Ca 2+ and K⁺ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping. Int J Mol Sci 2018; 19:E702. [PMID: 29494514 PMCID: PMC5877563 DOI: 10.3390/ijms19030702] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops-barley (Hordeum vulgare) and wheat (Triticum aestivum)-was investigated by measuring the magnitude of ROS-induced net K⁺ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H₂O₂ treatment, a significant positive correlation was found for the magnitude of ROS-induced K⁺ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H₂O₂-induced net K⁺ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
50
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|