1
|
De Micco V, Aronne G, Caplin N, Carnero-Diaz E, Herranz R, Horemans N, Legué V, Medina FJ, Pereda-Loth V, Schiefloe M, De Francesco S, Izzo LG, Le Disquet I, Kittang Jost AI. Perspectives for plant biology in space and analogue environments. NPJ Microgravity 2023; 9:67. [PMID: 37604914 PMCID: PMC10442387 DOI: 10.1038/s41526-023-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Nicol Caplin
- SciSpacE Team, Directorate of Human and Robotic Exploration Programmes, European Space Agency (ESA), Noordwijk, Netherlands
| | - Eugénie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Boeretang 200, 2400, Mol, Belgium
| | - Valérie Legué
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Mona Schiefloe
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Ann- Iren Kittang Jost
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| |
Collapse
|
2
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life (Basel) 2022; 12:life12101484. [PMID: 36294919 PMCID: PMC9605285 DOI: 10.3390/life12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013–2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus–organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.
Collapse
|
4
|
Wang Y, Sun Z, Wang L, Chen L, Ma L, Lv J, Qiao K, Fan S, Ma Q. GhBOP1 as a Key Factor of Ribosomal Biogenesis: Development of Wrinkled Leaves in Upland Cotton. Int J Mol Sci 2022; 23:ijms23179942. [PMID: 36077339 PMCID: PMC9456263 DOI: 10.3390/ijms23179942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Block of proliferation 1 (BOP1) is a key protein that helps in the maturation of ribosomes and promotes the progression of the cell cycle. However, its role in the leaf morphogenesis of cotton remains unknown. Herein, we report and study the function of GhBOP1 isolated from Gossypium hirsutum. The sequence alignment revealed that BOP1 protein was highly conserved among different species. The yeast two-hybrid experiments, bimolecular fluorescence complementation, and luciferase complementation techniques revealed that GhBOP1 interact with GhPES and GhWDR12. Subcellular localization experiments revealed that GhBOP1, GhPES and GhWDR12 were localized at the nucleolus. Suppression of GhBOP1 transcripts resulted in the uneven bending of leaf margins and the presence of young wrinkled leaves by virus-induced gene silencing assay. Abnormal palisade arrangements and the presence of large upper epidermal cells were observed in the paraffin sections of the wrinkled leaves. Meanwhile, a jasmonic acid-related gene, GhOPR3, expression was increased. In addition, a negative effect was exerted on the cell cycle and the downregulation of the auxin-related genes was also observed. These results suggest that GhBOP1 plays a critical role in the development of wrinkled cotton leaves, and the process is potentially modulated through phytohormone signaling.
Collapse
Affiliation(s)
- Yanwen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Zhimao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
| | - Long Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lingling Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Lina Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Jiaoyan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Hainan Yazhou Bay Seed Lab, Sanya 572000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, China
- Correspondence: (S.F.); (Q.M.)
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455099, China
- Correspondence: (S.F.); (Q.M.)
| |
Collapse
|
5
|
Abstract
Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.
Collapse
Affiliation(s)
- Padikara Kutty Satheeshkumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Physiology and proteomic analysis reveals root, stem and leaf responses to potassium deficiency stress in alligator weed. Sci Rep 2019; 9:17366. [PMID: 31758026 PMCID: PMC6874644 DOI: 10.1038/s41598-019-53916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Alligator weed is reported to have a strong ability to adapt to potassium deficiency stress. Proteomic changes in response to this stress are largely unknown in alligator weed seedlings. In this study, we performed physiological and comparative proteomics of alligator weed seedlings between normal growth (CK) and potassium deficiency (LK) stress using 2-DE techniques, including root, stem and leaf tissues. Seedling height, soluble sugar content, PGK activity and H2O2 contents were significantly altered after 15 d of LK treatment. A total of 206 differentially expressed proteins (DEPs) were identified. There were 72 DEPs in the root, 79 in the stem, and 55 in the leaves. The proteomic results were verified using western blot and qRT-PCR assays. The most represented KEGG pathway was "Carbohydrate and energy metabolism" in the three samples. The "Protein degradation" pathway only existed in the stem and root, and the "Cell cycle" pathway only existed in the root. Protein-protein interaction analysis demonstrated that the interacting proteins detected were the most common in the stem, with 18 proteins. Our study highlights protein changes in alligator weed seedling under LK stress and provides new information on the comprehensive analysis of the protein network in plant potassium nutrition.
Collapse
|
7
|
Kushwaha NK, Mansi, Sahu PP, Prasad M, Chakrabroty S. Chilli leaf curl virus infection downregulates the expression of the genes encoding chloroplast proteins and stress-related proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1185-1196. [PMID: 31564781 PMCID: PMC6745583 DOI: 10.1007/s12298-019-00693-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 05/05/2023]
Abstract
Virus infection alters the expression of several host genes involved in various cellular and biological processes in plants. Most of the studies performed till now have mainly focused on genes which are up-regulated and later projected them as probable stress tolerant/susceptible genes. Nevertheless, genes which are down-regulated during plant-virus interaction could also play a critical role on disease development as well as in combating the virus infection. Hence, to identify such down-regulated genes and pathway, we performed reverse suppression subtractive hybridization in Capsicum annuum var. Punjab Lal following Chilli leaf curl virus (ChiLCV) infection. The screening and further processing suggested that majority of the genes (approximately 35% ESTs) showed homology with the genes encoding chloroplast proteins and 16% genes involved in the biotic and abiotic stress response. Additionally, we identified several genes, functionally known to be involved in metabolic processes, protein synthesis and degradation, ribosomal proteins, energy production, DNA replication and transcription, and transporters. We also found 3% transcripts which did not show homology with any known genes. The redundancy analysis revealed the maximum percentage of chlorophyll a-b binding protein (15/96) and auxin-binding proteins (13/96). We developed a protein interactome network to characterise the relationships between proteins and pathway involved during the ChiLCV infection. We identified that the most of the interaction occurs either among the chloroplast proteins (Arabidopsis proteins interactive map) or biotic and abiotic stress responsive proteins (Solanum lycopersicum interactome). Taken together, our study provides the first transcriptome and protein interactome of the down-regulated genes during C. annuum-ChiLCV interaction. These resources could be exploited in deciphering the steps involved in the process of virus infection.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mansi
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Supriya Chakrabroty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
8
|
Chang E, Deng N, Zhang J, Liu J, Chen L, Zhao X, Abbas M, Jiang Z, Shi S. Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3019-3029. [PMID: 29490456 DOI: 10.1021/acs.jafc.7b05001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Nan Deng
- Institute of Ecology , Hunan Academy of Forestry , Changsha , Hunan 410004 , China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Lanzhen Chen
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , China
- Risk Assessment Laboratory for Bee Products , Quality and Safety of Ministry of Agriculture , Beijing 100093 , China
| | - Xiulian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - M Abbas
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology , Beijing Forestry University , Beijing 100083 , China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry , Chinese Academy of Forestry , No. 1 Dongxiaofu, Xiangshan Road , Haidian, Beijing 100091 , China
| |
Collapse
|
9
|
Paponov IA, Dindas J, Król E, Friz T, Budnyk V, Teale W, Paponov M, Hedrich R, Palme K. Auxin-Induced Plasma Membrane Depolarization Is Regulated by Auxin Transport and Not by AUXIN BINDING PROTEIN1. FRONTIERS IN PLANT SCIENCE 2018; 9:1953. [PMID: 30705682 PMCID: PMC6344447 DOI: 10.3389/fpls.2018.01953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/14/2018] [Indexed: 05/20/2023]
Abstract
Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.
Collapse
Affiliation(s)
- Ivan A. Paponov
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Norwegian Institute of Bioeconomy Research, Klepp, Norway
- *Correspondence: Ivan A. Paponov,
| | - Julian Dindas
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Elżbieta Król
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Tatyana Friz
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Vadym Budnyk
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Centre of Biological Systems Analysis and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - William Teale
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martina Paponov
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
- Klaus Palme,
| |
Collapse
|
10
|
Krysan PJ, Colcombet J. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. FRONTIERS IN PLANT SCIENCE 2018; 9:1674. [PMID: 30538711 PMCID: PMC6277691 DOI: 10.3389/fpls.2018.01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known about cellular mechanisms for achieving signaling specificity. Then we will explore what is currently known about the subcellular localization of MAPK proteins in resting conditions and after pathway activation. Finally, we will discuss a number of new experimental methods that have not been widely deployed in plants that have the potential to provide a deeper understanding of the spatial and temporal dynamics of MAPK signaling.
Collapse
Affiliation(s)
- Patrick J. Krysan
- Horticulture Department, University of Wisconsin–Madison, Madison, WI, United States
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- *Correspondence: Jean Colcombet,
| |
Collapse
|
11
|
BEN MAHMOUD K, JEDIDI E, DELPORTE F, MUHOVSKI Y, JEMMALI A, DRUART P. Molecular investigations of the somatic embryogenesis recalcitrancein the cherry (Prunus cerasus L.) rootstock CAB 6P. Turk J Biol 2017. [DOI: 10.3906/biy-1604-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
Ahn CS, Cho HK, Lee DH, Sim HJ, Kim SG, Pai HS. Functional characterization of the ribosome biogenesis factors PES, BOP1, and WDR12 (PeBoW), and mechanisms of defective cell growth and proliferation caused by PeBoW deficiency in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5217-32. [PMID: 27440937 PMCID: PMC5014167 DOI: 10.1093/jxb/erw288] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nucleolar protein pescadillo (PES) controls biogenesis of the 60S ribosomal subunit through functional interactions with Block of Proliferation 1 (BOP1) and WD Repeat Domain 12 (WDR12) in plants. In this study, we determined protein characteristics and in planta functions of BOP1 and WDR12, and characterized defects in plant cell growth and proliferation caused by a deficiency of PeBoW (PES-BOP1-WDR12) proteins. Dexamethasone-inducible RNAi of BOP1 and WDR12 caused developmental arrest and premature senescence in Arabidopsis, similar to the phenotype of PES RNAi. Both the N-terminal domain and WD40 repeats of BOP1 and WDR12 were critical for specific associations with 60S/80S ribosomes. In response to nucleolar stress or DNA damage, PeBoW proteins moved from the nucleolus to the nucleoplasm. Kinematic analyses of leaf growth revealed that depletion of PeBoW proteins led to dramatically suppressed cell proliferation, cell expansion, and epidermal pavement cell differentiation. A deficiency in PeBoW proteins resulted in reduced cyclin-dependent kinase Type A activity, causing reduced phosphorylation of histone H1 and retinoblastoma-related (RBR) protein. PeBoW silencing caused rapid transcriptional modulation of cell-cycle genes, including reduction of E2Fa and Cyclin D family genes, and induction of several KRP genes, accompanied by down-regulation of auxin-related genes and up-regulation of jasmonic acid-related genes. Taken together, these results suggest that the PeBoW proteins involved in ribosome biogenesis play a critical role in plant cell growth and survival, and their depletion leads to inhibition of cell-cycle progression, possibly modulated by phytohormone signaling.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hui Kyung Cho
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 305-811, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
13
|
Michalko J, Glanc M, Perrot-Rechenmann C, Friml J. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Res 2016; 5:86. [PMID: 26925228 PMCID: PMC4748827 DOI: 10.12688/f1000research.7654.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Science and Technology Austria, Klosterneuberg, Austria
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | - Matouš Glanc
- Institute of Science and Technology Austria, Klosterneuberg, Austria
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | | | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuberg, Austria
| |
Collapse
|
14
|
Michalko J, Dravecká M, Bollenbach T, Friml J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res 2015; 4:1104. [PMID: 26629335 PMCID: PMC4642851 DOI: 10.12688/f1000research.7143.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 11/20/2022] Open
Abstract
The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA insertional knock-out alleles ( abp1-1 and abp1-1s) and the wild type-like phenotypes of other recently described loss-of-function alleles ( abp1-c1 and abp1-TD1) questions the biological importance of ABP1 and relevance of the previous genetic studies. Here we show that there is no hidden copy of the ABP1 gene in the Arabidopsis genome but the embryo-lethal phenotypes of abp1-1 and abp1-1s alleles are very similar to the knock-out phenotypes of the neighboring gene, BELAYA SMERT ( BSM). Furthermore, the allelic complementation test between bsm and abp1 alleles shows that the embryo-lethality in the abp1-1 and abp1-1s alleles is caused by the off-target disruption of the BSM locus by the T-DNA insertions. This clarifies the controversy of different phenotypes among published abp1 knock-out alleles and asks for reflections on the developmental role of ABP1.
Collapse
Affiliation(s)
- Jaroslav Michalko
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria ; Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, 95007, Slovakia
| | - Marta Dravecká
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Tobias Bollenbach
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| |
Collapse
|
15
|
Feng M, Kim JY. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1. Mol Cells 2015; 38:829-35. [PMID: 26467289 PMCID: PMC4625063 DOI: 10.14348/molcells.2015.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 02/04/2023] Open
Abstract
It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.
Collapse
Affiliation(s)
- Mingxiao Feng
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21plus program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
16
|
Grones P, Chen X, Simon S, Kaufmann WA, De Rycke R, Nodzyński T, Zažímalová E, Friml J. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5055-65. [PMID: 25922490 DOI: 10.1093/jxb/erv177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.
Collapse
Affiliation(s)
- Peter Grones
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Xu Chen
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Sibu Simon
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB) and Department of Plant Biotechnology and Bioinformatics, Ghent University, BE-9052 Gent, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Riet De Rycke
- VIB Department for Molecular Biomedical Research, VIB, 9052 Gent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Masaryk University, CEITEC MU, CZ-625 00 Brno, Czech Republic
| | - Eva Zažímalová
- Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, 165 02 Prague, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana. MOLECULAR PLANT 2015; 8:1175-87. [PMID: 25795554 DOI: 10.1016/j.molp.2015.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Stéphanie Robert
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Jiří Friml
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
18
|
Enders TA, Oh S, Yang Z, Montgomery BL, Strader LC. Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes. THE PLANT CELL 2015; 27:1820-6. [PMID: 26106149 PMCID: PMC4531353 DOI: 10.1105/tpc.15.00214] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/18/2015] [Accepted: 06/04/2015] [Indexed: 05/19/2023]
Abstract
Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product.
Collapse
Affiliation(s)
- Tara A Enders
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Sookyung Oh
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
19
|
Chandler JW, Werr W. Cytokinin-auxin crosstalk in cell type specification. TRENDS IN PLANT SCIENCE 2015; 20:291-300. [PMID: 25805047 DOI: 10.1016/j.tplants.2015.02.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 05/24/2023]
Abstract
Auxin and cytokinin affect cell fate specification transcriptionally and non-transcriptionally, and their roles have been characterised in several founder cell specification and activation contexts. Similarly to auxin, local cytokinin synthesis and response gradients are instructive, and the roles of ARABIDOPSIS RESPONSE REGULATOR 7/15 (ARR7/15) and the negative cytokinin response regulator ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, as well as auxin signalling via MONOPTEROS/BODENLOS, are functionally conserved across different developmental processes. Auxin and cytokinin crosstalk is tissue- and context-specific, and may be synergistic in the shoot apical meristem (SAM) but antagonistic in the root. We review recent advances in understanding the interactions between auxin and cytokinin in pivotal developmental processes, and show that feedback complexity and the multistep nature of specification processes argue against a single morphogenetic signal.
Collapse
Affiliation(s)
- John William Chandler
- Institute of Developmental Biology, Cologne Biocenter, Zülpicher Strasse 47b, 50674 Cologne, Germany.
| | - Wolfgang Werr
- Institute of Developmental Biology, Cologne Biocenter, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
20
|
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci U S A 2015; 112:2275-80. [PMID: 25646447 PMCID: PMC4343106 DOI: 10.1073/pnas.1500365112] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Auxin binding protein 1 (ABP1) has been studied for decades. It has been suggested that ABP1 functions as an auxin receptor and has an essential role in many developmental processes. Here we present our unexpected findings that ABP1 is neither required for auxin signaling nor necessary for plant development under normal growth conditions. We used our ribozyme-based CRISPR technology to generate an Arabidopsis abp1 mutant that contains a 5-bp deletion in the first exon of ABP1, which resulted in a frameshift and introduction of early stop codons. We also identified a T-DNA insertion abp1 allele that harbors a T-DNA insertion located 27 bp downstream of the ATG start codon in the first exon. We show that the two new abp1 mutants are null alleles. Surprisingly, our new abp1 mutant plants do not display any obvious developmental defects. In fact, the mutant plants are indistinguishable from wild-type plants at every developmental stage analyzed. Furthermore, the abp1 plants are not resistant to exogenous auxin. At the molecular level, we find that the induction of known auxin-regulated genes is similar in both wild-type and abp1 plants in response to auxin treatments. We conclude that ABP1 is not a key component in auxin signaling or Arabidopsis development.
Collapse
Affiliation(s)
- Yangbin Gao
- Section of Cell and Developmental Biology and
| | - Yi Zhang
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Da Zhang
- Section of Cell and Developmental Biology and College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology and
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0116; and
| | - Yunde Zhao
- Section of Cell and Developmental Biology and
| |
Collapse
|
21
|
Lin D, Ren H, Fu Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:31-9. [PMID: 25168157 DOI: 10.1111/jipb.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/27/2014] [Indexed: 05/08/2023]
Abstract
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.
Collapse
Affiliation(s)
- Deshu Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | |
Collapse
|
22
|
Dai X, Zhang Y, Zhang D, Chen J, Gao X, Estelle M, Zhao Y. Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. NATURE PLANTS 2015; 1:15183. [PMID: 27057346 PMCID: PMC4821195 DOI: 10.1038/nplants.2015.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/21/2015] [Indexed: 05/22/2023]
Abstract
Decades of research have suggested that AUXIN BINDING PROTEIN 1 (ABP1) is an essential membrane-associated auxin receptor, but recent findings directly contradict this view. Here we show that embryonic lethality observed in abp1-1, which has been a cornerstone of ABP1 studies, is caused by the deletion of the neighbouring BELAYA SMERT (BSM) gene, not by disruption of ABP1. On the basis of our results, we conclude that ABP1 is not essential for Arabidopsis development.
Collapse
Affiliation(s)
- Xinhua Dai
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
| | - Yi Zhang
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
| | - Da Zhang
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jilin Chen
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- College of Life Sciences, Xiamen University, Xiang An Nan Road, Xiamen 361102, Fujian Province, China
| | - Xiuhua Gao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichan Road, Beijing 100101, China
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA
- Correspondence and requests for materials should be addressed to Y. Zhao.
| |
Collapse
|
23
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
24
|
Zábrady M, Hrdinová V, Müller B, Conrad U, Hejátko J, Janda L. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies. PLoS One 2014; 9:e109875. [PMID: 25299686 PMCID: PMC4192540 DOI: 10.1371/journal.pone.0109875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.
Collapse
Affiliation(s)
- Matej Zábrady
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vendula Hrdinová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Bruno Müller
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Udo Conrad
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jan Hejátko
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lubomír Janda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
25
|
Bedetti CS, Modolo LV, Isaias RMDS. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae). BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2014.02.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Grandits M, Oostenbrink C. Molecular dynamics simulations of the auxin-binding protein 1 in complex with indole-3-acetic acid and naphthalen-1-acetic acid. Proteins 2014; 82:2744-55. [PMID: 25043515 DOI: 10.1002/prot.24639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 11/08/2022]
Abstract
Auxin-binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole-3-acetic acid (IAA) and the synthetic analog naphthalen-1-acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C-terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C-terminal helix. Conformational changes at the C-terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor.
Collapse
Affiliation(s)
- Melanie Grandits
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | | |
Collapse
|
27
|
Habets MEJ, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. THE NEW PHYTOLOGIST 2014; 203:362-377. [PMID: 24863651 DOI: 10.1111/nph.12831] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/01/2014] [Indexed: 05/21/2023]
Abstract
Plants master the art of coping with environmental challenges in two ways: on the one hand, through their extensive defense systems, and on the other, by their developmental plasticity. The plant hormone auxin plays an important role in a plant's adaptations to its surroundings, as it specifies organ orientation and positioning by regulating cell growth and division in response to internal and external signals. Important in auxin action is the family of PIN-FORMED (PIN) auxin transport proteins that generate auxin maxima and minima by driving polar cell-to-cell transport of auxin through their asymmetric subcellular distribution. Here, we review how regulatory proteins, the cytoskeleton, and membrane trafficking affect PIN expression and localization. Transcriptional regulation of PIN genes alters protein abundance, provides tissue-specific expression, and enables feedback based on auxin concentrations and crosstalk with other hormones. Post-transcriptional modification, for example by PIN phosphorylation or ubiquitination, provides regulation through protein trafficking and degradation, changing the direction and quantity of the auxin flow. Several plant hormones affect PIN abundance, resulting in another means of crosstalk between auxin and these hormones. In conclusion, PIN proteins are instrumental in directing plant developmental responses to environmental and endogenous signals.
Collapse
Affiliation(s)
- Myckel E J Habets
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Remko Offringa
- Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| |
Collapse
|
28
|
Paque S, Mouille G, Grandont L, Alabadí D, Gaertner C, Goyallon A, Muller P, Primard-Brisset C, Sormani R, Blázquez MA, Perrot-Rechenmann C. AUXIN BINDING PROTEIN1 links cell wall remodeling, auxin signaling, and cell expansion in arabidopsis. THE PLANT CELL 2014; 26:280-95. [PMID: 24424095 PMCID: PMC3963575 DOI: 10.1105/tpc.113.120048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall-related genes, especially cell wall remodeling genes, mainly via an SCF(TIR/AFB)-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion.
Collapse
Affiliation(s)
- Sébastien Paque
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Laurie Grandont
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Arnaud Goyallon
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Philippe Muller
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Catherine Primard-Brisset
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
| | - Rodnay Sormani
- Institut Jean-Pierre Bourgin, Saclay Plant Sciences, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Planta, Consejo Superior de Investigaciones Científicas, Universitat Politécnica de Valencia, 46022 Valencia, Spain
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, UPR2355, CNRS, Saclay Plant Sciences, 91198 Gif sur Yvette Cedex, France
- Address correspondence to
| |
Collapse
|
29
|
Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun 2013; 4:2496. [DOI: 10.1038/ncomms3496] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/23/2013] [Indexed: 01/30/2023] Open
|
30
|
Atif RM, Boulisset F, Conreux C, Thompson R, Ochatt SJ. In vitro auxin treatment promotes cell division and delays endoreduplication in developing seeds of the model legume species Medicago truncatula. PHYSIOLOGIA PLANTARUM 2013; 148:549-559. [PMID: 23163902 DOI: 10.1111/j.1399-3054.2012.01719.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
The role of auxins in the morphogenesis of immature seeds of Medicago truncatula was studied, focusing on the transition from the embryo cell division phase to seed maturation. We analyzed seed development in vitro, by flow cytometry, and through the determination of the kinetics of seed fresh weight and size. Thus, seeds were harvested at 8, 10 and 12 days after pollination and cultured in vitro on a medium either without auxin or supplemented with indole-3-butyric acid (IBA) or naphthalene acetic acid (NAA) at 1 mg l(-1). All parameters studied were determined every 2 days from the start of in vitro culture. The results showed that both auxins increased the weight and size of seeds with NAA having a stronger effect than IBA. We further demonstrated that the auxin treatments modulate the transition between mitotic cycles and endocycles in M. truncatula developing seed by favoring sustained cell divisions while simultaneously prolonging endoreduplication, which is known to be the cytogenetical imprint of the transition from the cell division phase to the storage protein accumulation phase during seed development.
Collapse
Affiliation(s)
- Rana M Atif
- INRA CR de Dijon, UMR1347 Agroécologie, BP 86510, F-21065, Dijon Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Čovanová M, Sauer M, Rychtář J, Friml J, Petrášek J, Zažímalová E. Overexpression of the auxin binding protein1 modulates PIN-dependent auxin transport in tobacco cells. PLoS One 2013; 8:e70050. [PMID: 23894588 PMCID: PMC3720949 DOI: 10.1371/journal.pone.0070050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/18/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive. METHODOLOGY/PRINCIPAL FINDINGS Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations. CONCLUSIONS/SIGNIFICANCE The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.
Collapse
Affiliation(s)
- Milada Čovanová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, Prague, Czech Republic, Czech Republic
| | - Michael Sauer
- Department of Plant Systems Biology, VIB (Vlaams Instituut voor Biotechnologie), Ghent, Belgium
- Departamento Genetica Molecular de Plantas, Centro Nacional de Biotecnología, CSIC (Consejo Superior de Investigaciones Cientificas), Madrid, Spain
| | - Jan Rychtář
- Department of Mathematics and Statistics, the University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- Department of Functional Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic, Czech Republic
| | - Jan Petrášek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, Prague, Czech Republic, Czech Republic
| | - Eva Zažímalová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Academy of Sciences of the Czech Republic, Prague, Czech Republic, Czech Republic
| |
Collapse
|
32
|
Abstract
Auxin is a plant hormone involved in an extraordinarily broad variety of biological mechanisms. These range from basic cellular processes, such as endocytosis, cell polarity, and cell cycle control over localized responses such as cell elongation and differential growth, to macroscopic phenomena such as embryogenesis, tissue patterning, and de novo formation of organs. Even though the history of auxin research reaches back more than a hundred years, we are still far from a comprehensive understanding of how auxin governs such a wide range of responses. Some answers to this question may lie in the auxin molecule itself. Naturally occurring auxin-like substances have been found and they may play roles in specific developmental and cellular processes. The molecular mode of auxin action can be further explored by the utilization of synthetic auxin-like molecules. A second area is the perception of auxin, where we know of three seemingly independent receptors and signalling systems, some better understood than others, but each of them probably involved in distinct physiological processes. Lastly, auxin is actively modified, metabolized, and intracellularly compartmentalized, which can have a great impact on its availability and activity. In this review, we will give an overview of these rather recent and emerging areas of auxin research and try to formulate some of the open questions. Without doubt, the manifold facets of auxin biology will not cease to amaze us for a long time to come.
Collapse
Affiliation(s)
- Michael Sauer
- Centro Nacional de Biotecnología-CNB-CSIC, Darwin 3, 28049 Madrid, Spain
| | | | | |
Collapse
|
33
|
Ben Mahmoud K, Delporte F, Muhovski Y, Elloumi N, Jemmali A, Druart P. Expression of PiABP19, Picdc2 and PiSERK3 during induction of somatic embryogenesis in leaflets of Prunus incisa (Thunb.). Mol Biol Rep 2012; 40:1569-77. [PMID: 23086274 DOI: 10.1007/s11033-012-2205-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022]
Abstract
Somatic embryogenesis is a useful tool of plant breeding. In this context, a procedure for inducing somatic embryogenesis in Prunus incisa leaf explants had been previously developed. The original in vitro protocol relies on picloram treatments and exposure to darkness as inductive conditions, the best frequency of embryogenesis being obtained on the second leaf (F(2)) exposed to 4 μM picloram during 30 days. The morphological and biochemical changes observed during somatic embryogenesis occur in response to alterations in gene expression regulation patterns. A molecular study was conducted in order to provide deeper insight into the fundamental biological factors involved in the induction of this process using a gene candidate strategy and semi-quantitative reverse transcription polymerase chain reaction analysis. So far, no sequence data related to somatic embryogenesis has been available in cherry. In the present study, we cloned and sequenced cDNA fragments of putative genes encoding auxin-binding protein, cell cycle regulator and somatic embryogenesis receptor kinase. Time-course differential transcript accumulations were observed for all investigated genes in leaves or derived callus tissues during the observation period (first month of culture). Their possible involvement in the sequential steps of the embryogenic pathway (dedifferentiation, cell proliferation, differentiation through somatic embryogenesis) is presented and discussed.
Collapse
Affiliation(s)
- Kaouther Ben Mahmoud
- National Agronomic Institute of Tunisia, Cité El Mahrajène, 1082, Tunis, Tunisia.
| | | | | | | | | | | |
Collapse
|
34
|
El-Sharkawy I, Sherif S, Mahboob A, Abubaker K, Bouzayen M, Jayasankar S. Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening. PLANT CELL REPORTS 2012; 31:1911-1921. [PMID: 22739723 DOI: 10.1007/s00299-012-1304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Patterns of cell division, cell differentiation and cell elongation in epidermis and cortex of Arabidopsis pedicels in the wild type and in erecta. PLoS One 2012; 7:e46262. [PMID: 23050000 PMCID: PMC3457992 DOI: 10.1371/journal.pone.0046262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Plant organ shape and size are established during growth by a predictable, controlled sequence of cell proliferation, differentiation, and elongation. To understand the regulation and coordination of these processes, we studied the temporal behavior of epidermal and cortex cells in Arabidopsis pedicels and used computational modeling to analyze cell behavior in tissues. Pedicels offer multiple advantages for such a study, as their growth is determinate, mostly one dimensional, and epidermis differentiation is uniform along the proximodistal axis. Three developmental stages were distinguished during pedicel growth: a proliferative stage, a stomata differentiation stage, and a cell elongation stage. Throughout the first two stages pedicel growth is exponential, while during the final stage growth becomes linear and depends on flower fertilization. During the first stage, the average cell cycle duration in the cortex and during symmetric divisions of epidermal cells was constant and cells divided at a fairly specific size. We also examined the mutant of ERECTA, a gene with strong influence on pedicel growth. We demonstrate that during the first two stages of pedicel development ERECTA is important for the rate of cell growth along the proximodistal axis and for cell cycle duration in epidermis and cortex. The second function of ERECTA is to prolong the proliferative phase and inhibit premature cell differentiation in the epidermis. Comparison of epidermis development in the wild type and erecta suggests that differentiation is a synchronized event in which the stomata differentiation and the transition of pavement cells from proliferation to expansion are intimately connected.
Collapse
|
36
|
Bortesi L, Rademacher T, Schiermeyer A, Schuster F, Pezzotti M, Schillberg S. Development of an optimized tetracycline-inducible expression system to increase the accumulation of interleukin-10 in tobacco BY-2 suspension cells. BMC Biotechnol 2012; 12:40. [PMID: 22784336 PMCID: PMC3410776 DOI: 10.1186/1472-6750-12-40] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Plant cell suspension cultures can be used for the production of valuable pharmaceutical and industrial proteins. When the recombinant protein is secreted into the culture medium, restricting expression to a defined growth phase can improve both the quality and quantity of the recovered product by minimizing proteolytic activity. Temporal restriction is also useful for recombinant proteins whose constitutive expression affects cell growth and viability, such as viral interleukin-10 (vIL-10). RESULTS We have developed a novel, tetracycline-inducible system suitable for tobacco BY-2 suspension cells which increases the yields of vIL-10. The new system is based on a binary vector that is easier to handle than conventional vectors, contains an enhanced inducible promoter and 5'-UTR to improve yields, and incorporates a constitutively-expressed visible marker gene to allow the rapid and straightforward selection of the most promising transformed clones. Stable transformation of BY-2 cells with this vector, without extensive optimization of the induction conditions, led to a 3.5 fold increase in vIL-10 levels compared to constitutive expression in the same host. CONCLUSIONS We have developed an effective and straightforward molecular farming platform technology that improves both the quality and the quantity of recombinant proteins produced in plant cells, particularly those whose constitutive expression has a negative impact on plant growth and development. Although we tested the platform using vIL-10 produced in BY-2 cells, it can be applied to other host/product combinations and is also useful for basic research requiring strictly controlled transgene expression.
Collapse
Affiliation(s)
- Luisa Bortesi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Present address: Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| | - Flora Schuster
- Present address: Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074, Aachen, Germany
| |
Collapse
|
37
|
Finet C, Jaillais Y. Auxology: when auxin meets plant evo-devo. Dev Biol 2012; 369:19-31. [PMID: 22687750 DOI: 10.1016/j.ydbio.2012.05.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/09/2012] [Accepted: 05/31/2012] [Indexed: 11/27/2022]
Abstract
Auxin is implicated throughout plant growth and development. Although the effects of this plant hormone have been recognized for more than a century, it is only in the past two decades that light has been shed on the molecular mechanisms that regulate auxin homeostasis, signaling, transport, crosstalk with other hormonal pathways as well as its roles in plant development. These discoveries established a molecular framework to study the role of auxin in land plant evolution. Here, we review recent advances in auxin biology and their implications in both micro- and macro-evolution of plant morphology. By analogy to the term 'hoxology', which refers to the critical role of HOX genes in metazoan evolution, we propose to introduce the term 'auxology' to take into account the crucial role of auxin in plant evo-devo.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
38
|
Hayashi KI. The interaction and integration of auxin signaling components. PLANT & CELL PHYSIOLOGY 2012; 53:965-75. [PMID: 22433459 DOI: 10.1093/pcp/pcs035] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the Aux/IAA repressors and the auxin response factor (ARF) transcription factors. The specificity of the auxin-regulated gene expression profile is defined by several factors, such as the expression of these regulatory proteins, their post-transcriptional regulation, their stability and the affinity between these regulatory proteins. Auxin-binding protein 1 (ABP1) is a candidate protein for an auxin receptor that is implicated in non-transcriptional auxin signaling. ABP1 also affects TIR1/AFB-mediated auxin-responsive gene expression, implying that both the ABP1 and TIR1/AFB signaling machineries coordinately control auxin-mediated physiological events. Systematic approaches using the comprehensive mapping of the expression and interaction of signaling modules and computational modeling would be valuable for integrating our knowledge of auxin signals and responses.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005 Japan.
| |
Collapse
|
39
|
Chen D, Deng Y, Zhao J. Distribution and change patterns of free IAA, ABP 1 and PM H⁺-ATPase during ovary and ovule development of Nicotiana tabacum L. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:127-36. [PMID: 22070974 DOI: 10.1016/j.jplph.2011.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 05/25/2023]
Abstract
Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
40
|
Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC PLANT BIOLOGY 2012; 12:7. [PMID: 22243694 PMCID: PMC3398290 DOI: 10.1186/1471-2229-12-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. RESULTS High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. CONCLUSIONS The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.
Collapse
Affiliation(s)
- Fanny Devoghalaere
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - Thomas Doucen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Baptiste Guitton
- PFR, Private Bag 11600, Palmerston North 4442, New Zealand
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue Agropolis - TA-A-108/03, 34398 Montpellier Cedex 01, France
| | - Jeannette Keeling
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wendy Payne
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Toby John Ling
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania 7001, Australia
| | - John James Ross
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania 7001, Australia
| | - Ian Charles Hallett
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - Kularajathevan Gunaseelan
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
| | - GA Dayatilake
- PFR, Private Bag 1401, Havelock North 4157, New Zealand
| | - Robert Diak
- PFR, Old Mill Road, RD3, Motueka 7198, New Zealand
| | - Ken C Breen
- PFR, Private Bag 1401, Havelock North 4157, New Zealand
| | | | - Evelyne Costes
- INRA, UMR AGAP, Equipe Architecture et Fonctionnement des Espèces Fruitières, Avenue Agropolis - TA-A-108/03, 34398 Montpellier Cedex 01, France
| | - David Chagné
- PFR, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Robert James Schaffer
- The New Zealand Institute for Plant & Food Research Limited (PFR), Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Karine Myriam David
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
41
|
He D, Han C, Yang P. Gene expression profile changes in germinating rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:835-44. [PMID: 21910826 DOI: 10.1111/j.1744-7909.2011.01074.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge about the mechanism of seed germination, two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition. Thirty-nine differentially expressed proteins were identified, including 19 down-regulated and 20 up-regulated proteins. Storage proteins and some seed development- and desiccation-associated proteins were down regulated. The changed patterns of these proteins indicated extensive mobilization of seed reserves. By contrast, catabolism-associated proteins were up regulated upon imbibition. Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or up-regulated proteins were also down or up regulated at mRNA level. The expression of these genes was largely consistent at mRNA and protein levels. In providing additional information concerning gene regulation in early plant life, this study will facilitate understanding of the molecular mechanisms of seed germination.
Collapse
Affiliation(s)
- Dongli He
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, ChinaGraduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, ChinaGraduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, ChinaGraduate University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Abstract
AUXIN BINDING PROTEIN 1 (ABP1) has long been proposed as an auxin receptor to regulate cell expansion. The embryo lethality of ABP1-null mutants demonstrates its fundamental role in plant development, but also hinders investigation of its involvement in post-embryonic processes and its mode of action. By taking advantage of weak alleles and inducible systems, several recent studies have revealed a role for ABP1 in organ development, cell polarization, and shape formation. In addition to its role in the regulation of auxin-induced gene expression, ABP1 has now been shown to modulate non-transcriptional auxin responses. ABP1 is required for activating two antagonizing ROP GTPase signaling pathways involved in cytoskeletal reorganization and cell shape formation, and participates in the regulation of clathrin-mediated endocytosis to subsequently affect PIN protein distribution. These exciting discoveries provide indisputable evidence for the auxin-induced signaling pathways that are downstream of ABP1 function, and suggest intriguing mechanisms for ABP1-mediated polar cell expansion and spatial coordination in response to auxin.
Collapse
|
43
|
Scherer GFE. AUXIN-BINDING-PROTEIN1, the second auxin receptor: what is the significance of a two-receptor concept in plant signal transduction? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3339-57. [PMID: 21733909 DOI: 10.1093/jxb/err033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Since we are living in the 'age of transcription', awareness of aspects other than transcription in auxin signal transduction seems to have faded. One purpose of this review is to recall these other aspects. The focus will also be on the time scales of auxin responses and their potential or known dependence on either AUXIN BINDING PROTEIN 1 (ABP1) or on TRANSPORT-INHIBITOR-RESISTANT1 (TIR1) as a receptor. Furthermore, both direct and indirect evidence for the function of ABP1 as a receptor will be reviewed. Finally, the potential functions of a two-receptor system for auxin and similarities to other two-receptor signalling systems in plants will be discussed. It is suggested that such a functional arrangement is a property of plants which strengthens tissue autonomy and overcomes the lack of nerves or blood circulation which are responsible for rapid signal transport in animals.
Collapse
Affiliation(s)
- Günther F E Scherer
- Leibniz-Universität Hannover, Institute for Ornamental Plants and Wood Science, Section Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| |
Collapse
|
44
|
Dudits D, Abrahám E, Miskolczi P, Ayaydin F, Bilgin M, Horváth GV. Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway. ANNALS OF BOTANY 2011; 107:1193-202. [PMID: 21441245 PMCID: PMC3091804 DOI: 10.1093/aob/mcr038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/06/2010] [Accepted: 01/07/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND During the life cycle of plants, both embryogenic and post-embryogenic growth are essentially based on cell division and cell expansion that are under the control of inherited developmental programmes modified by hormonal and environmental stimuli. Considering either stimulation or inhibition of plant growth, the key role of plant hormones in the modification of cell division activities or in the initiation of differentiation is well supported by experimental data. At the same time there is only limited insight into the molecular events that provide linkage between the regulation of cell-cycle progression and hormonal and developmental control. Studies indicate that there are several alternative ways by which hormonal signalling networks can influence cell division parameters and establish functional links between regulatory pathways of cell-cycle progression and genes and protein complexes involved in organ development. SCOPE An overview is given here of key components in plant cell division control as acceptors of hormonal and developmental signals during organ formation and growth. Selected examples are presented to highlight the potential role of Ca(2+)-signalling, the complex actions of auxin and cytokinins, regulation by transcription factors and alteration of retinoblastoma-related proteins by phosphorylation. CONCLUSIONS Auxins and abscisic acid can directly influence expression of cyclin, cyclin-dependent kinase (CDK) genes and activities of CDK complexes. D-type cyclins are primary targets for cytokinins and over-expression of CyclinD3;1 can enhance auxin responses in roots. A set of auxin-activated genes (AXR1-ARGOS-ANT) controls cell number and organ size through modification of CyclinD3;1 gene expression. The SHORT ROOT (SHR) and SCARECROW (SCR) transcriptional factors determine root patterning by activation of the CYCD6;1 gene. Over-expression of the EBP1 gene (plant homologue of the ErbB-3 epidermal growth factor receptor-binding protein) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca(2+)-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca(2+)-binding subunit.
Collapse
Affiliation(s)
- Dénes Dudits
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Giordani T, Buti M, Natali L, Pugliesi C, Cattonaro F, Morgante M, Cavallini A. An analysis of sequence variability in eight genes putatively involved in drought response in sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1039-1049. [PMID: 21184050 DOI: 10.1007/s00122-010-1509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
With the aim to study variability in genes involved in ecological adaptations, we have analysed sequence polymorphisms of eight unique genes putatively involved in drought response by isolation and analysis of allelic sequences in eight inbred lines of sunflower of different origin and phenotypic characters and showing different drought response in terms of leaf relative water content (RWC). First, gene sequences were amplified by PCR on genomic DNA from a highly inbred line and their products were directly sequenced. In the absence of single nucleotide polymorphisms, the gene was considered as unique. Then, the same PCR reaction was performed on genomic DNAs of eight inbred lines to isolate allelic variants to be compared. The eight selected genes encode a dehydrin, a heat shock protein, a non-specific lipid transfer protein, a z-carotene desaturase, a drought-responsive-element-binding protein, a NAC-domain transcription regulator, an auxin-binding protein, and an ABA responsive-C5 protein. Nucleotide diversity per synonymous and non-synonymous sites was calculated for each gene sequence. The π (a)/π (s) ratio range was usually very low, indicating strong purifying selection, though with locus-to-locus differences. As far as non-coding regions, the intron showed a larger variability than the other regions only in the case of the dehydrin gene. In the other genes tested, in which one or more introns occur, variability in the introns was similar or even lower than in the other regions. On the contrary, 3'-UTRs were usually more variable than the coding regions. Linkage disequilibrium in the selected genes decayed on average within 1,000 bp, with large variation among genes. A pairwise comparison between genetic distances calculated on the eight genes and the difference in RWC showed a significant correlation in the first phases of drought stress. The results are discussed in relation to the function of analysed genes, i.e. involved in gene regulation and signal transduction, or encoding enzymes and defence proteins.
Collapse
Affiliation(s)
- T Giordani
- Department of Crop Plant Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Effendi Y, Rietz S, Fischer U, Scherer GFE. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:282-94. [PMID: 21223392 DOI: 10.1111/j.1365-313x.2010.04420.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
AUXIN-BINDING PROTEIN 1 (ABP1) is not easily accessible for molecular studies because the homozygous T-DNA insertion mutant is embryo-lethal. We found that the heterozygous abp1/ABP1 insertion mutant has defects in auxin physiology-related responses: higher root slanting angles, longer hypocotyls, agravitropic roots and hypocotyls, aphototropic hypocotyls, and decreased apical dominance. Heterozygous plants flowered earlier than wild-type plants under short-day conditions. The length of the main root, the lateral root density and the hypocotyl length were little altered in the mutant in response to auxin. Compared to wild-type plants, transcription of early auxin-regulated genes (IAA2, IAA11, IAA13, IAA14, IAA19, IAA20, SAUR9, SAUR15, SAUR23, GH3.5 and ABP1) was less strongly up-regulated in the mutant by 0.1, 1 and 10 μm IAA. Surprisingly, ABP1 was itself an early auxin-up-regulated gene. IAA uptake into the mutant seedlings during auxin treatments was indistinguishable from wild-type. Basipetal auxin transport in young roots was slower in the mutant, indicating a PIN2/EIR1 defect, while acropetal transport was indistinguishable from wild-type. In the eir1 background, three of the early auxin-regulated genes tested (IAA2, IAA13 and ABP1) were more strongly induced by 1 μm IAA in comparison to wild-type, but eight of them were less up-regulated in comparison to wild-type. Similar but not identical disturbances in regulation of early auxin-regulated genes indicate tight functional linkage of ABP1 and auxin transport regulation. We hypothesize that ABP1 is involved in the regulation of polar auxin transport, and thus affects local auxin concentration and early auxin gene regulation. In turn, ABP1 itself is under the transcriptional control of auxin.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Straße 2, D-30419 Hannover, Germany
| | | | | | | |
Collapse
|
47
|
Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 2010; 143:99-110. [PMID: 20887895 DOI: 10.1016/j.cell.2010.09.003] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/02/2010] [Accepted: 07/30/2010] [Indexed: 01/19/2023]
Abstract
Auxin is a multifunctional hormone essential for plant development and pattern formation. A nuclear auxin-signaling system controlling auxin-induced gene expression is well established, but cytoplasmic auxin signaling, as in its coordination of cell polarization, is unexplored. We found a cytoplasmic auxin-signaling mechanism that modulates the interdigitated growth of Arabidopsis leaf epidermal pavement cells (PCs), which develop interdigitated lobes and indentations to form a puzzle-piece shape in a two-dimensional plane. PC interdigitation is compromised in leaves deficient in either auxin biosynthesis or its export mediated by PINFORMED 1 localized at the lobe tip. Auxin coordinately activates two Rho GTPases, ROP2 and ROP6, which promote the formation of complementary lobes and indentations, respectively. Activation of these ROPs by auxin occurs within 30 s and depends on AUXIN-BINDING PROTEIN 1. These findings reveal Rho GTPase-based auxin-signaling mechanisms, which modulate the spatial coordination of cell expansion across a field of cells.
Collapse
Affiliation(s)
- Tongda Xu
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. TRENDS IN PLANT SCIENCE 2010; 15:436-446. [PMID: 20605513 DOI: 10.1016/j.tplants.2010.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 05/26/2023]
Abstract
In this review, we examine the role of AUXIN BINDING PROTEIN 1 (ABP1) in mediating growth and developmental responses. ABP1 is involved in a broad range of cellular responses to auxin, acting either as the main regulator of the response, such as seen for entry into cell division or, as a fine-tuning device as for the regulation of expression of early auxin response genes. Phylogenetic analysis has revealed that ABP1 is an ancient protein that was already present in various algae and has acquired a motif of retention in the endoplasmic reticulum only recently. An evaluation of the evidence for ABP1 function according to its cellular localization supports the plasma membrane as a starting point for ABP1-mediated auxin signaling.
Collapse
Affiliation(s)
- Alexandre Tromas
- Institut des Sciences du Végétal, CNRS UPR2355, University of Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | |
Collapse
|
49
|
Duby G, Degand H, Faber AM, Boutry M. The proteome complement of Nicotiana tabacum Bright-Yellow-2 culture cells. Proteomics 2010; 10:2545-50. [PMID: 20405476 DOI: 10.1002/pmic.200900527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 04/08/2010] [Indexed: 12/16/2023]
Abstract
The Nicotiana tabacum Bright-Yellow-2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2-DE and MALDI TOF-TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins.
Collapse
Affiliation(s)
- Geoffrey Duby
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
50
|
Chen D, Ren Y, Deng Y, Zhao J. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1853-67. [PMID: 20348352 PMCID: PMC2852673 DOI: 10.1093/jxb/erq056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/06/2010] [Accepted: 02/18/2010] [Indexed: 05/22/2023]
Abstract
Auxin is an important plant growth regulator, and plays a key role in apical-basal axis formation and embryo differentiation, but the mechanism remains unclear. The level of indole-3-acetic acid (IAA) during zygote and embryo development of Nicotiana tabacum L. is investigated here using the techniques of GC-SIM-MS analysis, immunolocalization, and the GUS activity assay of DR5::GUS transgenic plants. The distribution of ABP1 and PM H(+)-ATPase was also detected by immunolocalization, and this is the first time that integral information has been obtained about their distribution in the zygote and in embryo development. The results showed an increase in IAA content in ovules and the polar distribution of IAA, ABP1, and PM H(+)-ATPase in the zygote and embryo, specifically in the top and basal parts of the embryo proper (EP) during proembryo development. For information about the regulation mechanism of auxin, an auxin transport inhibitor TIBA (2,3,5-triiodobenzoic acid) and exogenous IAA were, respectively, added to the medium for the culture of ovules at the zygote and early proembryo stages. Treatment with a suitable IAA concentration promoted zygote division and embryo differentiation, while TIBA treatment obviously suppressed these processes and caused the formation of abnormal embryos. The distribution patterns of IAA, ABP1, and PM H(+)-ATPase were also disturbed in the abnormal embryos. These results indicate that the polar distribution and transport of IAA begins at the zygote stage, and affects zygote division and embryo differentiation in tobacco. Moreover, ABP1 and PM H(+)-ATPase may play roles in zygote and embryo development and may also be involved in IAA signalling transduction.
Collapse
Affiliation(s)
| | | | | | - Jie Zhao
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|