1
|
Ranner JL, Stabl G, Piller A, Paries M, Sharma S, Zeng T, Spaccasassi A, Stark TD, Gutjahr C, Dawid C. Untargeted metabolomics reveals novel metabolites in Lotus japonicus roots during arbuscular mycorrhiza symbiosis. THE NEW PHYTOLOGIST 2025; 246:1256-1275. [PMID: 40095637 PMCID: PMC11982791 DOI: 10.1111/nph.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Arbuscular mycorrhiza (AM) improves mineral nutrient supply, stress tolerance, and growth of host plants through re-programing of plant physiology. We investigated the effect of AM on the root secondary metabolome of the model legume Lotus japonicus using untargeted metabolomics. Acetonitrile extracts of AM and control roots were analysed using ultra-high-performance liquid chromatography-electrospray ionization-ion mobility-time-of-flight-mass spectrometry (UPLC-ESI-IM-ToF-MS). We characterized AM-regulated metabolites using co-chromatography with authentic standards or isolation and structure identification from L. japonicus roots using preparative high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Arbuscular mycorrhiza triggered major changes in the root metabolome, with most features representing unknown compounds. We identified three novel polyphenols: 5,7-dihydroxy-4'-methoxycoumaronochromone (lotuschromone), 4-hydroxy-2-(2'-hydroxy-4'-methoxyphenyl)-6-methoxybenzofuran-3-carbaldehyde (lotusaldehyde), and 7-hydroxy-3,9-dimethoxypterocarp-6a-ene (lotuscarpene). Further AM-enhanced secondary metabolites included the previously known lupinalbin A and B, ayamenin D, biochanin A, vestitol, acacetin, coumestrol, and betulinic acid. Lupinalbin A, biochanin A, ayamenin D, liquiritigenin, isoliquiritigenin, lotuscarpene, medicarpin, daidzein, genistein, and 2'-hydroxygenistein inhibited Rhizophagus irregularis spore germination upon direct application. Our results show that AM enhances the production of polyphenols in L. japonicus roots and highlights a treasure trove of numerous unknown plant secondary metabolites awaiting structural identification and functional characterization.
Collapse
Affiliation(s)
- Josef L. Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Georg Stabl
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Andrea Piller
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Michael Paries
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
| | - Sapna Sharma
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Tian Zeng
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
- TUM CREATE1 CREATE Way, #10‐02 CREATE TowerSingapore138602Singapore
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life SciencesTechnical University of Munich (TUM)Emil‐Ramann‐Str. 485354FreisingGermany
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
- TUM CREATE1 CREATE Way, #10‐02 CREATE TowerSingapore138602Singapore
- Functional Phytometabolomics, TUM School of Life SciencesTechnical University of Munich (TUM)Lise‐Meitner‐Str. 3485354FreisingGermany
| |
Collapse
|
2
|
Albornos L, Iriondo P, Rodríguez-Marcos S, Farelo P, Sobrino-Mengual G, Muñoz-Centeno LM, Martín I, Dopico B. A Comprehensive Analysis of Short Specific Tissue (SST) Proteins, a New Group of Proteins from PF10950 That May Give Rise to Cyclopeptide Alkaloids. PLANTS (BASEL, SWITZERLAND) 2025; 14:1117. [PMID: 40219186 PMCID: PMC11991032 DOI: 10.3390/plants14071117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Proteins of the PF10950 family feature the DUF2775 domain of unknown function. The most studied are specific tissue (ST) proteins with tandem repeats, which are putative precursors of cyclopeptide alkaloids. Here, we study uncharacterised short ST (SST) proteins with the DUFF2775 domain by analysing 194 sequences from 120 species of 39 taxonomic families in silico. SST proteins have a signal peptide and their size and several other characteristics depend on their individual taxonomic family. Sequence analyses revealed that SST proteins contain two well-conserved regions, one resembling the ST repeat, which could constitute the core of cyclopeptide alkaloids. We studied the unique SST1 gene of Arabidopsis thaliana, which is adjacent to and co-expressed with a gene encoding a protein with a BURP domain, associated with cyclopeptide production. The empirical analysis indicated that the SST1 promoter is mainly activated in the roots, where most of the transcripts accumulate, and that the SST1 protein accumulates in the root vascular cambium. At the cellular level, SST fused to GFP appears in vesicles that co-localise with the endoplasmic reticulum and the vacuole. Thus, SSTs are a new type of PF10950 protein found in core eudicots with two conserved regions that could be involved in root biology.
Collapse
Affiliation(s)
- Lucía Albornos
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus Villamayor-Parque Científico, 37185 Villamayor, Spain
| | - Paula Iriondo
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus Villamayor-Parque Científico, 37185 Villamayor, Spain
| | - Silvia Rodríguez-Marcos
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
| | - Patricia Farelo
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
| | - Guillermo Sobrino-Mengual
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
| | - Luz María Muñoz-Centeno
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
| | - Ignacio Martín
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus Villamayor-Parque Científico, 37185 Villamayor, Spain
| | - Berta Dopico
- Department of Botany and Plant Physiology, University of Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (P.I.); (S.R.-M.); (P.F.); (G.S.-M.); (L.M.M.-C.); (I.M.)
- Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus Villamayor-Parque Científico, 37185 Villamayor, Spain
| |
Collapse
|
3
|
Shahabi I, Goltapeh EM, Amirmijani A, Pedram M, Atighi MR. Funneliformis mosseae potentiates defense mechanisms of citrus rootstocks against citrus nematode, Tylenchulus semipenetrans. TREE PHYSIOLOGY 2024; 44:tpae097. [PMID: 39096511 DOI: 10.1093/treephys/tpae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Using integrated pest management without relying on chemical pesticides is one of the most attractive approaches to controlling plant pathogens. Among them, using resistant cultivars or rootstocks against diseases in combination with beneficial microorganisms has attracted special attention. The citrus nematode is one of the major constraints of citrus cultivation worldwide. We showed that the mycorrhizal arbuscular fungus, Funneliformis mosseae, increased growth parameters including shoot and root length and biomass of two main rootstocks of citrus, sour orange and Volkamer lemon, in noninfected and infected plants with citrus nematode. It decreased the infection rate by citrus nematode in both rootstocks compared with nonmycorrhizal plants. The rate of decrease in nematode infection was highest when plants were pre-inoculated with F. mosseae and was lowest when nematode was inoculated before F. mosseae. However, when nematode was inoculated before the fungus, the fungus was still able to mitigate the negative effect of infection by nematode compared with plants inoculated with nematode only. This suggests that the timing of inoculation plays a crucial role in the effectiveness of F. mosseae in reducing nematode infection. Moreover, monitoring of the expression of two genes, phenylalanine ammonia-lyase and β-1,3-glucanase, which are involved in systemic-acquired resistance (SAR) showed that although they were significantly upregulated in mycorrhizal plants compared with nonmycorrhizal plants, they showed the highest expression when plants were pretreated with fungus before nematode inoculation, thus, indicating that plants were primed. In summary, F. mosseae primes the defense-related genes involved in SAR, increasing plant defensive capacity and boosting growth parameters in citrus rootstock. This has important implications for the agricultural industry.
Collapse
Affiliation(s)
- Iman Shahabi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Ebrahim Mohammadi Goltapeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Amirreza Amirmijani
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft PO Box 7867161167, Iran
| | - Majid Pedram
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| | - Mohammad Reza Atighi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran
| |
Collapse
|
4
|
Fiorilli V, Martínez-Medina A, Pozo MJ, Lanfranco L. Plant Immunity Modulation in Arbuscular Mycorrhizal Symbiosis and Its Impact on Pathogens and Pests. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:127-156. [PMID: 39251211 DOI: 10.1146/annurev-phyto-121423-042014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.
Collapse
Affiliation(s)
- V Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| | - A Martínez-Medina
- Department of Plant-Microbe Interactions, Institute of Natural Resources and Agrobiology of Salamanca, CSIC, Salamanca, Spain
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain;
| | - L Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy;
| |
Collapse
|
5
|
Pujasatria GC, Miura C, Yamaguchi K, Shigenobu S, Kaminaka H. Colonization by orchid mycorrhizal fungi primes induced systemic resistance against necrotrophic pathogen. FRONTIERS IN PLANT SCIENCE 2024; 15:1447050. [PMID: 39145195 PMCID: PMC11322130 DOI: 10.3389/fpls.2024.1447050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Orchids and arbuscular mycorrhiza (AM) plants evolved independently and have different structures and fungal partners, but they both facilitate nutrient uptake. Orchid mycorrhiza (OM) supports orchid seed germination, but unlike AM, its role in disease resistance of mature plants is largely unknown. Here, we examined whether OM induces systemic disease resistance against a necrotrophic pathogen in a similar fashion to AM. We investigated the priming effect of mycorrhizal fungi inoculation on resistance of a terrestrial orchid, Bletilla striata, to soft rot caused by Dickeya fangzhongdai. We found that root colonization by a compatible OM fungus primed B. striata seedlings and induced systemic resistance against the infection. Transcriptome analysis showed that priming was mediated by the downregulation of jasmonate and ethylene pathways and that these pathways are upregulated once infection occurs. Comparison with the reported transcriptome of AM fungus-colonized rice leaves revealed similar mechanisms in B. striata and in rice. These findings highlight a novel aspect of commonality between OM and AM plants in terms of induced systemic resistance.
Collapse
Affiliation(s)
| | - Chihiro Miura
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology Core Research Facilities, Okazaki, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
6
|
Durney C, Boussageon R, El-Mjiyad N, Wipf D, Courty PE. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees. MYCORRHIZA 2024; 34:341-350. [PMID: 38801470 DOI: 10.1007/s00572-024-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Walnut trees are cultivated and exploited worldwide for commercial timber and nut production. They are heterografted plants, with the rootstock selected to grow in different soil types and conditions and to provide the best anchorage, vigor, and resistance or tolerance to soil borne pests and diseases. However, no individual rootstock is tolerant of all factors that impact walnut production. In Europe, Juglans regia is mainly used as a rootstock. Like most terrestrial plants, walnut trees form arbuscular mycorrhizal symbioses, improving water and nutrient uptake and providing additional ecosystem services. Effects of arbuscular mycorrhizal symbiosis on root gene regulation, however, has never been assessed. We analyzed the response of one rootstock of J. regia to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198. Plant growth as well as the nitrogen and phosphorus concentrations in roots and shoots were significantly increased in mycorrhizal plants versus non-colonized plants. In addition, we have shown that 1,549 genes were differentially expressed, with 832 and 717 genes up- and down-regulated, respectively. The analysis also revealed that some rootstock genes involved in plant nutrition through the mycorrhizal pathway, are regulated similarly as in other mycorrhizal woody species: Vitis vinifera and Populus trichocarpa. In addition, an enrichment analysis performed on GO and KEGG pathways revealed some regulation specific to J. regia (i.e., the juglone pathway). This analysis reinforces the role of arbuscular mycorrhizal symbiosis on root gene regulation and on the need to finely study the effects of diverse arbuscular mycorrhizal fungi on root gene regulation, but also of the scion on the functioning of an arbuscular mycorrhizal fungus in heterografted plants such as walnut tree.
Collapse
Affiliation(s)
- Célien Durney
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Raphael Boussageon
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Noureddine El-Mjiyad
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Daniel Wipf
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie INRAE, Institut Agro, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
7
|
Cook C, Huskey D, Mazzola M, Somera T. Effect of Rootstock Genotype and Arbuscular Mycorrhizal Fungal (AMF) Species on Early Colonization of Apple. PLANTS (BASEL, SWITZERLAND) 2024; 13:1388. [PMID: 38794458 PMCID: PMC11125189 DOI: 10.3390/plants13101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
The effect of plant cultivar on the degree of mycorrhization and the benefits mediated by arbuscular mycorrhizal fungi (AMF) have been documented in many crops. In apple, a wide variety of rootstocks are commercially available; however, it is not clear whether some rootstock genotypes are more susceptible to mycorrhization than others and/or whether AMF species identity influences rootstock compatibility. This study addresses these questions by directly testing the ability/efficacy of four different AMF species (Rhizophagus irregularis, Septoglomus deserticola, Claroideoglomus claroideum or Claroideoglomus etunicatum) to colonize a variety of commercially available Geneva apple rootstock genotypes (G.11, G.41, G.210, G.969, and G.890). Briefly, micropropagated plantlets were inoculated with individual species of AMF or were not inoculated. The effects of the rootstock genotype/AMF interaction on mycorrhization, plant growth, and/or leaf nutrient concentrations were assessed. We found that both rootstock genotype and the identity of the AMF are significant sources of variation affecting the percentage of colonization. However, these factors largely operate independently in terms of the extent of root colonization. Among the AMF tested, C. etunicatum and R. irregularis represented the most compatible fungal partners, regardless of apple rootstock genotype. Among the rootstocks tested, semi-dwarfing rootstocks appeared to have an advantage over dwarfing rootstocks in regard to establishing and maintaining associations with AMF. Nutrient uptake and plant growth outcomes were also influenced in a rootstock genotype/AMF species-specific manner. Our findings suggest that matching host genetics with compatible AMF species has the potential to enhance agricultural practices in nursery and orchard systems.
Collapse
Affiliation(s)
- Chris Cook
- Tree Fruit Research and Extension Center, Washington State University, 1100 N Western Ave, Wenatchee, WA 98801, USA;
| | - David Huskey
- United States Department of Agriculture-Agricultural Research Service Tree Fruit Research Lab, 1104 N Western Ave, Wenatchee, WA 98801, USA
| | - Mark Mazzola
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa;
| | - Tracey Somera
- United States Department of Agriculture-Agricultural Research Service Tree Fruit Research Lab, 1104 N Western Ave, Wenatchee, WA 98801, USA
| |
Collapse
|
8
|
El-Maghraby FM, Shaker EM, Elbagory M, Omara AED, Khalifa TH. The Synergistic Impact of Arbuscular Mycorrhizal Fungi and Compost Tea to Enhance Bacterial Community and Improve Crop Productivity under Saline-Sodic Condition. PLANTS (BASEL, SWITZERLAND) 2024; 13:629. [PMID: 38475475 DOI: 10.3390/plants13050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Soil salinity has a negative impact on the biochemical properties of soil and on plant growth, particularly in arid and semi-arid regions. Using arbuscular mycorrhizal fungi (Glomus versiform) and foliar spray from compost tea as alleviating treatments, this study aimed to investigate the effects of alleviating salt stress on the growth and development of maize and wheat grown on a saline-sodic soil during the period of 2022/2023. Six treatments were used in the completely randomized factorial design experiment. The treatments included Arbuscular mycorrhizal fungus (AMF0, AMF1) and varied concentrations of compost tea (CT0, CT50, and CT100). AMF colonization, the bacterial community and endosphere in the rhizosphere, respiration rate, growth parameters, and the productivity were all evaluated. The application of AMF and CT, either separately or in combination, effectively mitigated the detrimental effects caused by soil salinity. The combination of AMF and CT proved to be highly efficient in improving the infection rate of AMF, the bacterial community in the rhizosphere and endosphere, growth parameters, and grain yield of maize and wheat. Therefore, it can be proposed that the inoculation of mycorrhizal fungi with compost tea in saline soils is an important strategy for enhancing salt tolerance in maize and wheat plants through improving microbial activity, the infection rate of AMF, and overall maize and wheat productivity.
Collapse
Affiliation(s)
- Fatma M El-Maghraby
- Soil Microbiology Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt
| | - Eman M Shaker
- Soil Improvement and Conservation Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt
| | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail 61321, Assir, Saudi Arabia
| | - Alaa El-Dein Omara
- Soil Microbiology Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt
| | - Tamer H Khalifa
- Soil Improvement and Conservation Research Department, Soils, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza 12112, Egypt
| |
Collapse
|
9
|
Sportes A, Hériché M, Mounier A, Durney C, van Tuinen D, Trouvelot S, Wipf D, Courty PE. Comparative RNA sequencing-based transcriptome profiling of ten grapevine rootstocks: shared and specific sets of genes respond to mycorrhizal symbiosis. MYCORRHIZA 2023; 33:369-385. [PMID: 37561219 DOI: 10.1007/s00572-023-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023]
Abstract
Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.
Collapse
Affiliation(s)
- Antoine Sportes
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Hériché
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Célien Durney
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Diederik van Tuinen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Sophie Trouvelot
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Pierre Emmanuel Courty
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
10
|
Guigard L, Jobert L, Busset N, Moulin L, Czernic P. Symbiotic compatibility between rice cultivars and arbuscular mycorrhizal fungi genotypes affects rice growth and mycorrhiza-induced resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1278990. [PMID: 37941658 PMCID: PMC10628536 DOI: 10.3389/fpls.2023.1278990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) belong to the Glomeromycota clade and can form root symbioses with 80% of Angiosperms, including crops species such as wheat, maize and rice. By increasing nutrient availability, uptake and soil anchoring of plants, AMF can improve plant's growth and tolerance to abiotic stresses. AMF can also reduce symptoms and pathogen load on infected plants, both locally and systemically, through a phenomenon called mycorrhiza induced resistance (MIR). There is scarce information on rice mycorrhization, despite the high potential of this symbiosis in a context of sustainable water management in rice production systems. Methods We studied the symbiotic compatibility (global mycorrhization & arbuscules intensity) and MIR phenotypes between six rice cultivars from two subspecies (indica: IR64 & Phka Rumduol; japonica: Nipponbare, Kitaake, Azucena & Zhonghua 11) and three AMF genotypes (Funneliformis mosseae FR140 (FM), Rhizophagus irregularis DAOM197198 (RIR) & R. intraradices FR121 (RIN)). The impact of mycorrhization on rice growth and defence response to Xanthomonas oryzae pv oryzae (Xoo) infection was recorded via both phenotypic indexes and rice marker gene expression studies. Results All three AMF genotypes colonise the roots of all rice varieties, with clear differences in efficiency depending on the combination under study (from 27% to 84% for Phka Rumduol-RIN and Nipponbare-RIR combinations, respectively). Mycorrhization significantly (α=0.05) induced negative to beneficial effects on rice growth (impact on dry weight ranging from -21% to 227% on Azucena-FM and Kitaake-RIN combinations, respectively), and neutral to beneficial effects on the extent of Xoo symptoms on leaves (except for Azucena-RIN combination which showed a 68% increase of chlorosis). R. irregularis DAOM197198 was the most compatible AMF partner of rice, with high root colonisation intensity (84% of Nipponbare's roots hyphal colonisation), beneficial effects on rice growth (dry weight +28% (IR64) to +178% (Kitaake)) and decrease of Xoo-induced symptoms (-6% (Nipponbare) to -27% (IR64)). Transcriptomic analyses by RT-qPCR on leaves of two rice cultivars contrasting in their association with AMF show two different patterns of response on several physiological marker genes. Discussion Overall, the symbiotic compatibility between rice cultivars and AMF demonstrates adequate colonization, effectively restricting the nutrient starvation response and mitigating symptoms of phytopathogenic infection.
Collapse
Affiliation(s)
| | | | | | | | - Pierre Czernic
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
11
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
12
|
Gomez SK, Maurya AK, Irvin L, Kelly MP, Schoenherr AP, Huguet-Tapia JC, Bombarely A. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2023; 52:667-680. [PMID: 37467039 DOI: 10.1093/ee/nvad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.
Collapse
Affiliation(s)
- Susana K Gomez
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Abhinav K Maurya
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Apex Bait Technologies, Inc., Santa Clara, CA 95054, USA
| | - Lani Irvin
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Michael P Kelly
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Andrew P Schoenherr
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, 46022 Valencia, Spain
| |
Collapse
|
13
|
Yu H, Bai F, Ji C, Fan Z, Luo J, Ouyang B, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z. Plant lysin motif extracellular proteins are required for arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2023; 120:e2301884120. [PMID: 37368927 PMCID: PMC10318984 DOI: 10.1073/pnas.2301884120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.
Collapse
Affiliation(s)
- Huimin Yu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Fuxi Bai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan430064, China
| | - Chuanya Ji
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Zhengyan Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Jinying Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD20850
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research6708 PB, Wageningen, the Netherlands
| | - Erik Limpens
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research6708 PB, Wageningen, the Netherlands
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
14
|
Yu TY, Gao TY, Li WJ, Cui DL. "Single-pole dual-control" competing mode in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1149522. [PMID: 37457334 PMCID: PMC10348426 DOI: 10.3389/fpls.2023.1149522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Plant development and pattern formation depend on diffusible signals and location cues. These developmental signals and cues activate intracellular downstream components through cell surface receptors that direct cells to adopt specific fates for optimal function and establish biological fitness. There may be a single-pole dual-control competing mode in controlling plant development and microbial infection. In plant development, paracrine signaling molecules compete with autocrine signaling molecules to bind receptors or receptor complexes, turn on antagonistic molecular mechanisms, and precisely regulate developmental processes. In the process of microbial infection, two different signaling molecules, competing receptors or receptor complexes, form their respective signaling complexes, trigger opposite signaling pathways, establish symbiosis or immunity, and achieve biological adaptation. We reviewed several "single-pole dual-control" competing modes, focusing on analyzing the competitive commonality and characterization of "single-pole dual-control" molecular mechanisms. We suggest it might be an economical protective mechanism for plants' sequentially and iteratively programmed developmental events. This mechanism may also be a paradigm for reducing internal friction in the struggle and coexistence with microbes. It provides extraordinary insights into molecular recognition, cell-to-cell communication, and protein-protein interactions. A detailed understanding of the "single-pole dual-control" competing mode will contribute to the discovery of more receptors or antagonistic peptides, and lay the foundation for food, biofuel production, and crop improvement.
Collapse
|
15
|
Sarmiento-López LG, López-Espinoza MY, Juárez-Verdayes MA, López-Meyer M. Genome-wide characterization of the xyloglucan endotransglucosylase/hydrolase gene family in Solanum lycopersicum L. and gene expression analysis in response to arbuscular mycorrhizal symbiosis. PeerJ 2023; 11:e15257. [PMID: 37159836 PMCID: PMC10163873 DOI: 10.7717/peerj.15257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a glycoside hydrolase protein family involved in the biosynthesis of xyloglucans, with essential roles in the regulation of plant cell wall extensibility. By taking advantage of the whole genome sequence in Solanum lycopersicum, 37 SlXTHs were identified in the present work. SlXTHs were classified into four subfamilies (ancestral, I/II, III-A, III-B) when aligned to XTHs of other plant species. Gene structure and conserved motifs showed similar compositions in each subfamily. Segmental duplication was the primary mechanism accounting for the expansion of SlXTH genes. In silico expression analysis showed that SlXTH genes exhibited differential expression in several tissues. GO analysis and 3D protein structure indicated that all 37 SlXTHs participate in cell wall biogenesis and xyloglucan metabolism. Promoter analysis revealed that some SlXTHs have MeJA- and stress-responsive elements. qRT-PCR expression analysis of nine SlXTHs in leaves and roots of mycorrhizal colonized vs. non-colonized plants showed that eight of these genes were differentially expressed in leaves and four in roots, suggesting that SlXTHs might play roles in plant defense induced by arbuscular mycorrhiza. Our results provide valuable insight into the function of XTHs in S. lycopersicum, in addition to the response of plants to mycorrhizal colonization.
Collapse
Affiliation(s)
- Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Maury Yanitze López-Espinoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Marco Adán Juárez-Verdayes
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| |
Collapse
|
16
|
Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5275449. [PMID: 36619307 PMCID: PMC9815931 DOI: 10.1155/2022/5275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.
Collapse
|
17
|
Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, Krajinski F, Martínez-Medina A. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. PLANT, CELL & ENVIRONMENT 2022; 45:3412-3428. [PMID: 35982608 DOI: 10.1111/pce.14421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.
Collapse
Affiliation(s)
- Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Petra Hoffmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franziska Krajinski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, General and Applied Botany, Universität Leipzig, Leipzig, Germany
| | - Ainhoa Martínez-Medina
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Moelcular Interaction Ecology, Friedrich-Schiller-University Jena, Jena, Germany
- Plant-Microorganism Interactions Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
18
|
Characterization of lncRNAs in mycorrhizal tomato and elucidation of the role of lncRNA69908 in disease resistance. Biochem Biophys Res Commun 2022; 634:203-210. [DOI: 10.1016/j.bbrc.2022.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
|
19
|
Cook K, Taylor DL. High diversity and low specificity of fungi associated with seedless epiphytic plants. Biotropica 2022. [DOI: 10.1111/btp.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kel Cook
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - D. Lee Taylor
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
20
|
Loo WT, Chua KO, Mazumdar P, Cheng A, Osman N, Harikrishna JA. Arbuscular Mycorrhizal Symbiosis: A Strategy for Mitigating the Impacts of Climate Change on Tropical Legume Crops. PLANTS (BASEL, SWITZERLAND) 2022; 11:2875. [PMID: 36365329 PMCID: PMC9657156 DOI: 10.3390/plants11212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Climate change is likely to have severe impacts on food security in the topics as these regions of the world have both the highest human populations and narrower climatic niches, which reduce the diversity of suitable crops. Legume crops are of particular importance to food security, supplying dietary protein for humans both directly and in their use for feed and forage. Other than the rhizobia associated with legumes, soil microbes, in particular arbuscular mycorrhizal fungi (AMF), can mitigate the effects of biotic and abiotic stresses, offering an important complementary measure to protect crop yields. This review presents current knowledge on AMF, highlights their beneficial role, and explores the potential for application of AMF in mitigating abiotic and biotic challenges for tropical legumes. Due to the relatively little study on tropical legume species compared to their temperate growing counterparts, much further research is needed to determine how similar AMF-plant interactions are in tropical legumes, which AMF species are optimal for agricultural deployment and especially to identify anaerobic AMF species that could be used to mitigate flood stress in tropical legume crop farming. These opportunities for research also require international cooperation and support, to realize the promise of tropical legume crops to contribute to future food security.
Collapse
Affiliation(s)
- Wan Teng Loo
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Ooi Chua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Acga Cheng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
21
|
Sillo F, Brunetti C, Marroni F, Vita F, Dos Santos Nascimento LB, Vizzini A, Mello A, Balestrini R. Systemic effects of Tuber melanosporum inoculation in two Corylus avellana genotypes. TREE PHYSIOLOGY 2022; 42:1463-1480. [PMID: 35137225 DOI: 10.1093/treephys/tpac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Roots of the European hazelnut (Corylus avellana L.), i.e., one of the most economically important nut species, form symbiosis with ectomycorrhizal (ECM) fungi, including truffles. Although physical interactions only occur in roots, the presence of mycorrhizal fungi can lead to metabolic changes at a systemic level, i.e., in leaves. However, how root colonization by ECM fungi modifies these processes in the host plant has so far not been widely studied. This work aimed to investigate the response in two C. avellana genotypes, focusing on leaves from plants inoculated with the black truffle Tuber melanosporum Vittad. Transcriptomic profiles of leaves of colonized plants were compared with those of non-colonized plants, as well as sugar and polyphenolic content. Results suggested that T. melanosporum has the potential to support plants in stressed conditions, leading to the systemic regulation of several genes involved in signaling and defense responses. Although further confirmation is needed, our results open new perspectives for future research aimed to highlight novel aspects in ECM symbiosis.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| | - Cecilia Brunetti
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019 Firenze, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Alfredo Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Antonietta Mello
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Viale Mattioli 25, 10125 Torino, Italy
| | - Raffaella Balestrini
- National Research Council - Institute for Sustainable Plant Protection (CNR-IPSP), Strada della Cacce 73, 10135 Torino, Italy
| |
Collapse
|
22
|
Cope KR, Kafle A, Yakha JK, Pfeffer PE, Strahan GD, Garcia K, Subramanian S, Bücking H. Physiological and transcriptomic response of Medicago truncatula to colonization by high- or low-benefit arbuscular mycorrhizal fungi. MYCORRHIZA 2022; 32:281-303. [PMID: 35511363 DOI: 10.1007/s00572-022-01077-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.
Collapse
Affiliation(s)
- Kevin R Cope
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Arjun Kafle
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jaya K Yakha
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Philip E Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary D Strahan
- Agricultural Research Service, Eastern Regional Research Center, USDA, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Senthil Subramanian
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, 57007, USA.
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
23
|
Weng W, Yan J, Zhou M, Yao X, Gao A, Ma C, Cheng J, Ruan J. Roles of Arbuscular mycorrhizal Fungi as a Biocontrol Agent in the Control of Plant Diseases. Microorganisms 2022; 10:microorganisms10071266. [PMID: 35888985 PMCID: PMC9317293 DOI: 10.3390/microorganisms10071266] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Arbuscularmycorrhizal fungi (AMF) are a class of beneficial microorganisms that are widely distributed in soil ecosystems and can form symbionts with 80% of terrestrial higher plants, and improve the nutritional status of plants. The use of AMF as a biocontrol method to antagonize soil-borne pathogens has received increasing interest from phytopathologists and ecologists. In this paper, the mechanisms of resistance to diseases induced by AMF and the application of AMF to plant fungal, bacterial, and nematode diseases have been summarized. This study aimed to enhance the potential use of AMF as a biological control method to prevent plant diseases in the future. Root morphological alteration characteristics were explained, including the influence of AMF on root structure, function, and the regulation of AMF via secondary metabolites. AMF can improve the rhizosphere environment by influencing the physical and chemical proprieties of soil, enhancing the growth of other beneficial microorganisms, and by competing with pathogenic microorganisms. Two microorganism types may compete for the same invasive sites in root systems and regulate nutrition distribution. AMF can induce the host plant to form defense systems, including improving phytohormone concentrations, inducing signal substrate production, gene expression regulation, and enhancing protein production.
Collapse
Affiliation(s)
- Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, Schools of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Aning Gao
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang 550025, China; (W.W.); (X.Y.); (A.G.); (C.M.); (J.C.)
- Correspondence: ; Tel./Fax: +86-8510-8830-5238
| |
Collapse
|
24
|
Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. BIOLOGY 2022; 11:biology11060854. [PMID: 35741375 PMCID: PMC9219611 DOI: 10.3390/biology11060854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal symbiosis is an association that provides nutritional benefits to plants. Importantly, it induces a physiological state allowing plants to respond to a subsequent pathogen attack in a more rapid and intense manner. Consequently, mycorrhiza-colonized plants become less susceptible to root and shoot pathogens. This study aimed to identify some of the molecular players and potential mechanisms related to the onset of defense priming by mycorrhiza colonization, as well as miRNAs that may act as regulators of priming genes. The upregulation of cellulose synthases, pectinesterase inhibitors, and xyloglucan endotransglucosylase/hydrolase, as well as the downregulation of a pectinesterase, suggest that the modification and reinforcement of the cell wall may prime the leaves of mycorrhizal plants to react faster and stronger to subsequent pathogen attack. This was confirmed by the findings of miR164a-3p, miR164a-5p, miR171e-5p, and miR397, which target genes and are also related to the biosynthesis or modification of cell wall components. Our findings support the hypothesis that the reinforcement or remodeling of the cell wall and cuticle could participate in the priming mechanism triggered by mycorrhiza colonization, by strengthening the first physical barriers upstream of the pathogen encounter.
Collapse
|
25
|
Debray R, Socolar Y, Kaulbach G, Guzman A, Hernandez CA, Curley R, Dhond A, Bowles T, Koskella B. Water stress and disruption of mycorrhizas induce parallel shifts in phyllosphere microbiome composition. THE NEW PHYTOLOGIST 2022; 234:2018-2031. [PMID: 34668201 DOI: 10.1111/nph.17817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Water and nutrient acquisition are key drivers of plant health and ecosystem function. These factors impact plant physiology directly as well as indirectly through soil- and root-associated microbial responses, but how they in turn affect aboveground plant-microbe interactions are not known. Through experimental manipulations in the field and growth chamber, we examine the interacting effects of water stress, soil fertility, and arbuscular mycorrhizal fungi on bacterial and fungal communities of the tomato (Solanum lycopersicum) phyllosphere. Both water stress and mycorrhizal disruption reduced leaf bacterial richness, homogenized bacterial community composition among plants, and reduced the relative abundance of dominant fungal taxa. We observed striking parallelism in the individual microbial taxa in the phyllosphere affected by irrigation and mycorrhizal associations. Our results show that soil conditions and belowground interactions can shape aboveground microbial communities, with important potential implications for plant health and sustainable agriculture.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Yvonne Socolar
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Griffin Kaulbach
- Department of Environmental Studies, Haverford College, Haverford, PA, 19041, USA
| | - Aidee Guzman
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Catherine A Hernandez
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Rose Curley
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Alexander Dhond
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Timothy Bowles
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
26
|
Tamayo E, Figueira-Galán D, Manck-Götzenberger J, Requena N. Overexpression of the Potato Monosaccharide Transporter StSWEET7a Promotes Root Colonization by Symbiotic and Pathogenic Fungi by Increasing Root Sink Strength. FRONTIERS IN PLANT SCIENCE 2022; 13:837231. [PMID: 35401641 PMCID: PMC8987980 DOI: 10.3389/fpls.2022.837231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Root colonization by filamentous fungi modifies sugar partitioning in plants by increasing the sink strength. As a result, a transcriptional reprogramming of sugar transporters takes place. Here we have further advanced in the characterization of the potato SWEET sugar transporters and their regulation in response to the colonization by symbiotic and pathogenic fungi. We previously showed that root colonization by the AM fungus Rhizophagus irregularis induces a major transcriptional reprogramming of the 35 potato SWEETs, with 12 genes induced and 10 repressed. In contrast, here we show that during the early colonization phase, the necrotrophic fungus Fusarium solani only induces one SWEET transporter, StSWEET7a, while represses most of the others (25). StSWEET7a was also induced during root colonization by the hemi-biotrophic fungus Fusarium oxysporum f. sp. tuberosi. StSWEET7a which belongs to the clade II of SWEET transporters localized to the plasma membrane and transports glucose, fructose and mannose. Overexpression of StSWEET7a in potato roots increased the strength of this sink as evidenced by an increase in the expression of the cell wall-bound invertase. Concomitantly, plants expressing StSWEET7a were faster colonized by R. irregularis and by F. oxysporum f. sp. tuberosi. The increase in sink strength induced by ectopic expression of StSWEET7a in roots could be abolished by shoot excision which reverted also the increased colonization levels by the symbiotic fungus. Altogether, these results suggest that AM fungi and Fusarium spp. might induce StSWEET7a to increase the sink strength and thus this gene might represent a common susceptibility target for root colonizing fungi.
Collapse
|
27
|
Fujita M, Kusajima M, Fukagawa M, Okumura Y, Nakajima M, Akiyama K, Asami T, Yoneyama K, Kato H, Nakashita H. Response of tomatoes primed by mycorrhizal colonization to virulent and avirulent bacterial pathogens. Sci Rep 2022; 12:4686. [PMID: 35304874 PMCID: PMC8933586 DOI: 10.1038/s41598-022-08395-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/06/2022] [Indexed: 11/30/2022] Open
Abstract
Most plants interact with arbuscular mycorrhizal fungi, which enhance disease resistance in the host plant. Because the effects of resistance against bacterial pathogens are poorly understood, we investigated the effects of mycorrhizal colonization on virulent and avirulent pathogens using phytopathological and molecular biology techniques. Tomato plants colonized by Gigaspora margarita acquired resistance not only against the fungal pathogen, Botrytis cinerea, but also against a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000 (Pst). In G. margarita-colonized tomato, salicylic acid (SA)- and jasmonic acid (JA)-related defense genes were expressed more rapidly and strongly compared to those in the control plants when challenged by Pst, indicating that the plant immunity system was primed by mycorrhizal colonization. Gene expression analysis indicated that primed tomato plants responded to the avirulent pathogen, Pseudomonas syringae pv. oryzae, more rapidly and strongly compared to the control plant, where the effect on the JA-mediated signals was stronger than in the case with Pst. We found that the resistance induced by mycorrhizal colonization was effective against both fungal and bacterial pathogens including virulent and avirulent pathogens. Moreover, the activation of both SA- and JA-mediated signaling pathways can be enhanced in the primed plant by mycorrhizal colonization.
Collapse
Affiliation(s)
- Moeka Fujita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Miyuki Kusajima
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan.,Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatomo Fukagawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Yasuko Okumura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | | | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Hisaharu Kato
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan
| | - Hideo Nakashita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Japan.
| |
Collapse
|
28
|
Tominaga T, Yao L, Saito H, Kaminaka H. Conserved and Diverse Transcriptional Reprogramming Triggered by the Establishment of Symbioses in Tomato Roots Forming Arum-Type and Paris-Type Arbuscular Mycorrhizae. PLANTS 2022; 11:plants11060747. [PMID: 35336627 PMCID: PMC8953936 DOI: 10.3390/plants11060747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi allocate mineral nutrients to their host plants, and the hosts supply carbohydrates and lipids to the fungal symbionts in return. The morphotypes of intraradical hyphae are primarily determined on the plant side into Arum- and Paris-type AMs. As an exception, Solanum lycopersicum (tomato) forms both types of AMs depending on the fungal species. Previously, we have shown the existence of diverse regulatory mechanisms in Arum- and Paris-type AM symbioses in response to gibberellin (GA) among different host species. However, due to the design of the study, it remained possible that the use of different plant species influenced the results. Here, we used tomato plants to compare the transcriptional responses during Arum- and Paris-type AM symbioses in a single plant species. The tomato plants inoculated with Rhizophagus irregularis or Gigaspora margarita exhibited Arum- and Paris-type AMs, respectively, and demonstrated similar colonization rates and shoot biomass. Comparative transcriptomics showed shared expression patterns of AM-related genes in tomato roots upon each fungal infection. On the contrary, the defense response and GA biosynthetic process was transcriptionally upregulated during Paris-type AM symbiosis. Thus, both shared and different transcriptional reprogramming function in establishing Arum- and Paris-type AM symbioses in tomato plants.
Collapse
Affiliation(s)
- Takaya Tominaga
- The United Graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan;
| | - Luxi Yao
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (L.Y.); (H.S.)
| | - Hikaru Saito
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (L.Y.); (H.S.)
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (L.Y.); (H.S.)
- Correspondence: ; Tel.: +81-857-31-5378
| |
Collapse
|
29
|
Phytohormone Profile of Medicago in Response to Mycorrhizal Fungi, Aphids, and Gibberellic Acid. PLANTS 2022; 11:plants11060720. [PMID: 35336602 PMCID: PMC8951282 DOI: 10.3390/plants11060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Although gibberellic acid (GA) is widely used in agriculture, it is unclear whether exogenous GA makes aphid-infested, mycorrhizal plants more susceptible to herbivory. This study investigates the role of GA in modulating defenses in barrel medic plants (Medicago truncatula) that are infested with pea aphids (Acyrthosiphon pisum) and colonized by the beneficial symbiont Rhizophagus intraradices. Mock- and R. intraradices-inoculated potted plants were grown in a topsoil: sand mix for 42 days and were treated with GA or solvent. Subsequently, plants were exposed to herbivory or no aphid herbivory for 36 h and 7 days. Afterwards, plant growth parameters, aphid fitness, and foliar phytohormone concentrations were measured. The results revealed that GA regulates plant defenses during arbuscular mycorrhizal (AM) fungus–plant–aphid interactions as aphids that fed for 7 days on mycorrhizal, GA-untreated plants weighed more than those that fed on mycorrhizal, GA-treated plants. No major differences were detected in phytohormone levels at 36 h. Overall, mycorrhizal plants showed more shoot biomass compared to non-mycorrhizal controls. The arbuscule density and fungal biomass of R. intraradices were not altered by exogenous GA and aphid herbivory based on molecular markers. This study indicates that exogenous GA may help reduce aphid fitness when feeding on mycorrhizal plants.
Collapse
|
30
|
Kafle A, Frank HER, Rose BD, Garcia K. Split down the middle: studying arbuscular mycorrhizal and ectomycorrhizal symbioses using split-root assays. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1288-1300. [PMID: 34791191 DOI: 10.1093/jxb/erab489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hannah E R Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Dai H, Zhang X, Zhao B, Shi J, Zhang C, Wang G, Yu N, Wang E. Colonization of Mutualistic Mycorrhizal and Parasitic Blast Fungi Requires OsRAM2-Regulated Fatty Acid Biosynthesis in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:178-186. [PMID: 34941378 DOI: 10.1094/mpmi-11-21-0270-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutual association with the majority of land plants, including most angiosperms of the dicotyledon and monocotyledon lineages. The symbiosis is based upon bidirectional nutrient exchange between the host and symbiont that occurs between inner cortical cells of the root and branched AM hyphae called arbuscules that develop within these cells. Lipid transport and its regulation during the symbiosis have been intensively investigated in dicotyledon plants, especially legumes. Here, we characterize OsRAM2 and OsRAM2L, homologs of Medicago truncatula RAM2, and found that plants defective in OsRAM2 were unable to be colonized by AM fungi and showed impaired colonization by Magnaporthe oryzae. The induction of OsRAM2 and OsRAM2L is dependent on OsRAM1 and the common symbiosis signaling pathway pathway genes CCaMK and CYCLOPS, while overexpression of OsRAM1 results in increased expression of OsRAM2 and OsRAM2L. Collectively, our data show that the function and regulation of OsRAM2 is conserved in monocot and dicot plants and reveals that, similar to mutualistic fungi, pathogenic fungi have recruited RAM2-mediated fatty acid biosynthesis to facilitate invasion.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Boyu Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jincai Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
32
|
Endophytic Bacteria Pseudomonas aeruginosa PM389 Subsists Host’s (Triticum aestivum) Immune Response for Gaining Entry Inside the Host. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to compare the defense response of the host plant towards endophytic bacteria Pseudomonas aeruginosa PM389 and pathogenic bacteria Erwinia carotovora and to correlate the level of defense enzymes vis-a-vis bacterial colonization in the host. Wheat seedlings were treated with 107-108 cells ml-1 endophytic and pathogenic bacteria in the separate experimental set-up, and the level of plant defense enzyme was measured at various time intervals. Comparatively reduced level of most defense enzymes was produced in endophytic bacteria treated plants. While the endophytic bacterial population was almost constant after 24 HAI (hour after inoculation), the population of pathogenic bacteria kept fluctuating during the study period from 24 HAI. Unlike pathogenic bacteria, we observed attenuated defense response in challenged host plants towards endophytic bacteria, which helps endophytes establish inside plant. This study would be useful for understanding the mechanism of colonization and strategies of endophytes to fight against the host defense response.
Collapse
|
33
|
Dong F, Wang Y, Tang M. Effects of Laccaria bicolor on Gene Expression of Populus trichocarpa Root under Poplar Canker Stress. J Fungi (Basel) 2021; 7:jof7121024. [PMID: 34947006 PMCID: PMC8703858 DOI: 10.3390/jof7121024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022] Open
Abstract
Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor-P. trichocarpa-B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes' expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.
Collapse
Affiliation(s)
- Fengxin Dong
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
| | - Yihan Wang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (F.D.); (Y.W.)
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-1370-922-9152
| |
Collapse
|
34
|
Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. PLANTS 2021; 10:plants10112506. [PMID: 34834870 PMCID: PMC8617643 DOI: 10.3390/plants10112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
The present study is aimed at disclosing metabolic profile alterations in the leaves of the Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A highly effective AM symbiosis was established in the period from the stooling to the shoot branching initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves. Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical analyses made it possible to identify the clustering of various groups of 320 metabolites and thus demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM not only accelerates the transition between plant developmental stages but delays biochemical “maturation” mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized plants. Several methods of statistical modeling proved that, at least with respect to determining the metabolic status of host-plant leaves, stages of phenological development have priority over calendar age.
Collapse
|
35
|
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology 2021; 102:e03495. [PMID: 34309021 DOI: 10.1002/ecy.3495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
Mycorrhizal mutualisms are nearly ubiquitous across plant communities. Yet, it is still unknown whether facilitation among plants arises primarily from these mycorrhizal networks or from physical and ecological attributes of plants themselves. Here, we tested the relative contributions of mycorrhizae and plants to both positive and negative biotic interactions to determine whether plant-soil feedbacks with mycorrhizae neutralize competition and enemies within multitrophic forest community networks. We used Bayesian hierarchical generalized linear modeling to examine mycorrhizal-guild-specific and mortality-cause-specific woody plant survival compiled from a spatially and temporally explicit data set comprising 101,096 woody plants from three mixed-conifer forests across western North America. We found positive plant-soil feedbacks for large-diameter trees: species-rich woody plant communities indirectly promoted large tree survival when connected via mycorrhizal networks. Shared mycorrhizae primarily counterbalanced apparent competition mediated by tree enemies (e.g., bark beetles, soil pathogens) rather than diffuse competition between plants. We did not find the same survival benefits for small trees or shrubs. Our findings suggest that lower large-diameter tree mortality susceptibility in species-rich temperate forests resulted from greater access to shared mycorrhizal networks. The interrelated importance of aboveground and belowground biodiversity to large tree survival may be critical for counteracting increasing pathogen, bark beetle, and density threats.
Collapse
Affiliation(s)
- Sara J Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
36
|
Zhang H, Ren W, Zheng Y, Li Y, Zhu M, Tang M. Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Medicago truncatula Root and Deliver Extra Pb to Colonized Root Segment. Microorganisms 2021; 9:microorganisms9061203. [PMID: 34199397 PMCID: PMC8229133 DOI: 10.3390/microorganisms9061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts. However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely reported. In this study, AM fungus (Rhizophagus irregularis) colonized and non-colonized roots of Medicago truncatula were separated by a split-root system, and their differences in responding to Pb application were compared. The shoot biomass accumulation and transpiration were increased after R. irregularis inoculation, whereas the biomass of both colonized and non-colonized roots was decreased. Lead application in the non-colonized root compartment increased the R. irregularis colonization rate and up-regulated the relative expressions of MtPT4 and MtBCP1 in the colonized root compartments. Rhizophagus irregularis inoculation increased Pb uptake in both colonized and non-colonized roots, and R. irregularis transferred Pb to the colonized root segment. The Pb transferred through the colonized root segment had low mobility and might be sequestrated and compartmented in the root by R. irregularis. The Pb uptake of roots might follow water flow, which is facilitated by MtPIP2. The quantification of Pb transfer via the mycorrhizal pathway and the involvement of MtPIP2 deserve further study.
Collapse
Affiliation(s)
- Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Wei Ren
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Yaru Zheng
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Yanpeng Li
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Manzhe Zhu
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling 712100, China; (H.Z.); (W.R.); (Y.Z.); (Y.L.); (M.Z.)
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-137-092-291-52
| |
Collapse
|
37
|
Discriminating symbiosis and immunity signals by receptor competition in rice. Proc Natl Acad Sci U S A 2021; 118:2023738118. [PMID: 33853950 DOI: 10.1073/pnas.2023738118] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants encounter various microbes in nature and must respond appropriately to symbiotic or pathogenic ones. In rice, the receptor-like kinase OsCERK1 is involved in recognizing both symbiotic and immune signals. However, how these opposing signals are discerned via OsCERK1 remains unknown. Here, we found that receptor competition enables the discrimination of symbiosis and immunity signals in rice. On the one hand, the symbiotic receptor OsMYR1 and its short-length chitooligosaccharide ligand inhibit complex formation between OsCERK1 and OsCEBiP and suppress OsCERK1 phosphorylating the downstream substrate OsGEF1, which reduces the sensitivity of rice to microbe-associated molecular patterns. Indeed, OsMYR1 overexpression lines are more susceptible to the fungal pathogen Magnaporthe oryzae, whereas Osmyr1 mutants show higher resistance. On the other hand, OsCEBiP can bind OsCERK1 and thus block OsMYR1-OsCERK1 heteromer formation. Consistently, the Oscebip mutant displayed a higher rate of mycorrhizal colonization at early stages of infection. Our results indicate that OsMYR1 and OsCEBiP receptors compete for OsCERK1 to determine the outcome of symbiosis and immunity signals.
Collapse
|
38
|
Al-Amri SM. Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi J Biol Sci 2021; 28:3901-3908. [PMID: 34220246 PMCID: PMC8241702 DOI: 10.1016/j.sjbs.2021.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 11/05/2022] Open
Abstract
This study was planned to enhance the growth and productivity of common bean plants (Phaseolus vulgaris L.) grown under different water stress level by using different microorganisms as bio-fertilizer agents. Water stress is a international problem that effects on morphological, functional and chemical processes of plants occasioning in altering growth, yield and water relations of economic plants like common bean plants. The interaction effect between water stress (WW as recommended irrigation after 6 days, WS1 after 12 days and WS2 after 18 days) and inoculation with different microorganisms [AMF (Glomus mosseae) and endophytic bacteria, (Bacillus amyloliquefaciens)] used alone or in mixed was examined on the development and productivity of common bean plants. Mutual application of AMF and endophytic bacteria significantly increased the average values of most of growth, water relations (photosynthetic rate, transpiration rate and stomatal conductance) and yield parameters of common bean plants grown at WS1 and WS2 comparing with non-colonized plants. In this connection, colonization with AMF and endophytic bacteria with WS1 are the greater pods number, pod length, pods weight, 100 seeds weight, Yield by ton /Fed and water-use efficiency (WUE) by ton/ m3 than other treatments. Common bean yielded seeds had significantly increased nutrients content (nitrogen, potassium, phosphorus, magnesium and calcium), vitamin B1, Folic acid, crude protein and crude fibers at AMF + endophytic bacteria under second water stress (WS1) when compared to other treatments.
Collapse
Affiliation(s)
- Salem M Al-Amri
- Department of Biological Sciences, College of Science and Humanities, Shaqra University, Saudi Arabia
| |
Collapse
|
39
|
Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D. VAPYRIN attenuates defence by repressing PR gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. THE NEW PHYTOLOGIST 2021; 229:3481-3496. [PMID: 33231304 PMCID: PMC7986166 DOI: 10.1111/nph.17109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 05/08/2023]
Abstract
The intimate association of host and fungus in arbuscular mycorrhizal (AM) symbiosis can potentially trigger induction of host defence mechanisms against the fungus, implying that successful symbiosis requires suppression of defence. We addressed this phenomenon by using AM-defective vapyrin (vpy) mutants in Petunia hybrida, including a new allele (vpy-3) with a transposon insertion close to the ATG start codon. We explore whether abortion of fungal infection in vpy mutants is associated with the induction of defence markers, such as cell wall alterations, accumulation of reactive oxygen species (ROS), defence hormones and induction of pathogenesis-related (PR) genes. We show that vpy mutants exhibit a strong resistance against intracellular colonization, which is associated with the generation of cell wall appositions (papillae) with lignin impregnation at fungal entry sites, while no accumulation of defence hormones, ROS or callose was observed. Systematic analysis of PR gene expression revealed that several PR genes are induced in mycorrhizal roots of the wild-type, and even more in vpy plants. Some PR genes are induced exclusively in vpy mutants. Our results suggest that VPY is involved in avoiding or suppressing the induction of a cellular defence syndrome that involves localized lignin deposition and PR gene induction.
Collapse
Affiliation(s)
- Min Chen
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | | | - Laure Bapaume
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Geoffrey Darbon
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtel2000Switzerland
| | | | - Didier Reinhardt
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
40
|
Albornos L, Casado-Del-Castillo V, Martín I, Díaz-Mínguez JM, Labrador E, Dopico B. Specific tissue proteins 1 and 6 are involved in root biology during normal development and under symbiotic and pathogenic interactions in Medicago truncatula. PLANTA 2021; 253:7. [PMID: 33387090 DOI: 10.1007/s00425-020-03538-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
ST1 and ST6 are possibly involved in primary and lateral root and symbiotic nodule development, but only ST6 participates in the interaction with hemibiotrophic fungi. Specific tissue (ST) proteins have been shown to be involved in several processes related to plant nutritional status, development, and responses to biotic agents. In particular, ST1 and ST6 are mainly expressed in roots throughout plant development. Here, we analyze where and how the expression of the genes encoding both proteins are modulated in the legume model plant Medicago truncatula in response to the plant developmental program, nodulation induced by a beneficial nitrogen-fixing bacterium (Sinorhizobium meliloti) and the defense response triggered by a pathogenic hemibiotrophic fungus (Fusarium oxysporum). Gene expression results show that ST1 and ST6 participate in the vasculature development of both primary and lateral roots, although only ST6 is related to meristem activity. ST1 and ST6 clearly display different roles in the biotic interactions analyzed, where ST1 is activated in response to a N2-fixing bacterium and ST6 is up-regulated after inoculation with F. oxysporum. The role of ST1 and ST6 in the nodulation process may be related to nodule organogenesis rather than to the establishment of the interaction itself, and an increase in ST6 correlates with the activation of the salicylic acid signaling pathway during the infection and colonization processes. These results further support the role of ST6 in response to hemibiotrophic fungi. This research contributes to the understanding of the complex network that controls root biology and strengthens the idea that ST proteins are involved in several processes such as primary and lateral root development, nodule organogenesis, and the plant-microbe interaction.
Collapse
Affiliation(s)
- Lucía Albornos
- Departamento de Botánica y Fisiología Vegetal, Universidad de Salamanca, C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Virginia Casado-Del-Castillo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Edificio departamental, 37007, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Ignacio Martín
- Departamento de Botánica y Fisiología Vegetal, Universidad de Salamanca, C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - José M Díaz-Mínguez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Edificio departamental, 37007, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Emilia Labrador
- Departamento de Botánica y Fisiología Vegetal, Universidad de Salamanca, C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain
| | - Berta Dopico
- Departamento de Botánica y Fisiología Vegetal, Universidad de Salamanca, C/ Licenciado Méndez Nieto s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Campus de Villamayor, C/ Río Duero 12, Villamayor, 37185, Salamanca, Spain.
| |
Collapse
|
41
|
Marquez N, Giachero ML, Declerck S, Ducasse DA. Macrophomina phaseolina : General Characteristics of Pathogenicity and Methods of Control. FRONTIERS IN PLANT SCIENCE 2021; 12:634397. [PMID: 33968098 PMCID: PMC8100579 DOI: 10.3389/fpls.2021.634397] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
Macrophomina phaseolina is a generalist soil-borne fungus present all over the world. It cause diseases such as stem and root rot, charcoal rot and seedling blight. Under high temperatures and low soil moisture, this fungus can cause substantial yield losses in crops such as soybean, sorghum and groundnut. The wide host range and high persistence of M. phaseolina in soil as microsclerotia make disease control challenging. Therefore, understanding the basis of the pathogenicity mechanisms as well as its interactions with host plants is crucial for controlling the pathogen. In this work, we aim to describe the general characteristics and pathogenicity mechanisms of M. phaseolina, as well as the hosts defense response. We also review the current methods and most promising forecoming ones to reach a responsible control of the pathogen, with minimal impacts to the environment and natural resources.
Collapse
Affiliation(s)
- Nathalie Marquez
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
- *Correspondence: Nathalie Marquez,
| | - María L. Giachero
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Córdoba, Argentina
| | - Stéphane Declerck
- Earth and Life Institute, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Daniel A. Ducasse
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| |
Collapse
|
42
|
Differential Response of Mycorrhizal Plants to Tomato bushy stunt virus and Tomato mosaic virus Infection. Microorganisms 2020; 8:microorganisms8122038. [PMID: 33352781 PMCID: PMC7766492 DOI: 10.3390/microorganisms8122038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.
Collapse
|
43
|
Sun YH, Gu CX, Li GZ, Han AH, Hao L. Arbuscular mycorrhizal fungus-mediated amelioration of NO 2-induced phytotoxicity in tomato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111350. [PMID: 32961487 DOI: 10.1016/j.ecoenv.2020.111350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric nitrogen dioxide (NO2) negatively affects plant (crop) growth and development, as well the yield and quality in some regions or environments. Arbuscular mycorrhizal fungus (AMF)-mediated amelioration of NO2-induced plant damage has been reported, but the underlying mechanisms remained unclear. This study explored the beneficial effect of AMF symbiosis on tomato plant responses to NO2 at physiology, biochemistry, and gene expression, with an emphasis on nitrate metabolism, antioxidative defense, and photosynthetic performance. Pot-grown plants were used in the experiments, which were performed in laboratory from February to November 2019. NO2 fumigation with a dose of 10 ± 1 ppm was carried out after 50 d of plant growth, and data were collected following 8 h of fumigation. NO2 fumigation (+NO2) and AMF inoculation (+AMF), alone and especially in combination (NO2 + AMF), increased the gene expression of nitrate- and nitrite reductase, and their enzymatic activity in leaves, such as by 61%, 27%, and 126% for the activity of nitrate reductase, and by 95%, 37%, and 188% for nitrite reductase, respectively, in +NO2, +AMF, and AMF + NO2 plants relative the control (-NO2, -AMF) levels. Following NO2 exposure, +AMF leaves displayed stronger activities of superoxide dismutase, peroxidase and catalase, and higher content of glutathione and ratio of its reduced form to oxidized form, as compared with -AMF ones. Correspondingly, lesser oxidative damage was detected in +AMF than in -AMF plants, as indicated by the contents of H2O2 and malondialdehyde, electrolyte leakage, also by in situ visualization for the formation of H2O2, superoxide anion, and dead cells. The increased antioxidative capacity in +AMF plants was correlated with enhanced expression of antioxidation-related genes. Exposure to NO2 substantially impaired photosynthetic processes in both + AMF and -AMF plants, but an obvious mitigation was observed in the former than in the latter. For example, the total chlorophyll, net photosynthetic rate, stomatal conductance, and ribulose-1,5-bisphosphate carboxylase activity were 18%, 27%, 26%, and 40% higher, respectively, in +AMF than in -AMF plants under NO2 stress. The differential photosynthetic performance was also revealed by chlorophyll fluorescence imaging. We analyzed the expression patterns of some genes related to photosynthesis and carbon metabolisms, and found that all of them exclusively presented a higher expression level in +AMF plants relative to -AMF ones under NO2 stress. Taken together, this study provided evidence that AMF symbiosis played a positively regulatory role in host plant responses to NO2, probably by increasing leaf nitrate metabolism and antioxidative defense, and maintaining the photosynthetic efficiency to some extent, wherein the transcription regulation might be a main target.
Collapse
Affiliation(s)
- Yue-Hang Sun
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Chun-Xiu Gu
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Guang-Zhe Li
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Ai-Hong Han
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China.
| | - Lin Hao
- College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| |
Collapse
|
44
|
Vishwanathan K, Zienkiewicz K, Liu Y, Janz D, Feussner I, Polle A, Haney CH. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. THE NEW PHYTOLOGIST 2020; 228:728-740. [PMID: 32473606 DOI: 10.1111/nph.16715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/22/2020] [Indexed: 05/19/2023]
Abstract
Below-ground microbes can induce systemic resistance against foliar pests and pathogens on diverse plant hosts. The prevalence of induced systemic resistance (ISR) among plant-microbe-pest systems raises the question of host specificity in microbial induction of ISR. To test whether ISR is limited by plant host range, we tested the ISR-inducing ectomycorrhizal fungus Laccaria bicolor on the nonmycorrhizal plant Arabidopsis thaliana. We used the cabbage looper Trichoplusia ni and bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto) as readouts for ISR on Arabidopsis. We found that root inoculation with L. bicolor triggered ISR against T. ni and induced systemic susceptibility (ISS) against the bacterial pathogen Pto. We found that L. bicolor-triggered ISR against T. ni was dependent on jasmonic acid signaling and salicylic acid biosynthesis and signaling. Heat-killed L. bicolor and chitin were sufficient to trigger ISR against T. ni and ISS against Pto. The chitin receptor CERK1 was necessary for L. bicolor-mediated effects on systemic immunity. Collectively our findings suggest that some ISR responses might not require intimate symbiotic association, but rather might be the result of root perception of conserved microbial signals.
Collapse
Affiliation(s)
- Kishore Vishwanathan
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Dennis Janz
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Buesgen-Institute and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Cara H Haney
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
45
|
Kadam SB, Pable AA, Barvkar VT. Mycorrhiza induced resistance (MIR): a defence developed through synergistic engagement of phytohormones, metabolites and rhizosphere. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:880-890. [PMID: 32586416 DOI: 10.1071/fp20035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Plants get phosphorus, water and other soil nutrients at the cost of sugar through mycorrhizal symbiotic association. A common mycorrhizal network (CMN) - a dense network of mycorrhizal hyphae - provides a passage for exchange of chemicals and signals between the plants sharing CMN. Mycorrhisation impact plants at hormonal, physiological and metabolic level and successful symbiosis also regulates ecology of the plant rhizosphere. Apart from nutritional benefits, mycorrhisation provides an induced resistance to the plants known as mycorrhiza induced resistance (MIR). MIR is effective against soil as well as foliar pathogens and pest insects. In this review, molecular mechanisms underlying MIR such as role of phytohormones, their cross talk and priming effect are discussed. Evidence of MIR against economically important pathogens and pest insects in different plants is summarised. Mycorrhiza induces many plant secondary metabolites, many of which have a role in plant defence. Involvement of these secondary metabolites in mycorrhisation and their putative role in MIR are further reviewed. Controversies about MIR are also briefly discussed in order to provide insights on the scope for research about MIR. We have further extended our review with an open ended discussion about the possibilities for transgenerational MIR.
Collapse
Affiliation(s)
- Swapnil B Kadam
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune-411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India; and Corresponding authors. ;
| |
Collapse
|
46
|
Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, San Segundo B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. RICE (NEW YORK, N.Y.) 2020; 13:42. [PMID: 32572623 PMCID: PMC7310045 DOI: 10.1186/s12284-020-00402-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form symbiotic associations with roots in most land plants. AM symbiosis provides benefits to host plants by improving nutrition and fitness. AM symbiosis has also been associated with increased resistance to pathogen infection in several plant species. In rice, the effects of AM symbiosis is less studied, probably because rice is mostly cultivated in wetland areas, and plants in such ecosystems have traditionally been considered as non-mycorrhizal. In this study, we investigated the effect of AM inoculation on performance of elite rice cultivars (Oryza sativa, japonica subspecies) under greenhouse and field conditions, focusing on growth, resistance to the rice blast fungus Magnaporthe oryzae and productivity. RESULTS The response to inoculation with either Funneliformis mosseae or Rhizophagus irregularis was evaluated in a panel of 12 rice cultivars. Root colonization was confirmed in all rice varieties. Under controlled greenhouse conditions, R. irregularis showed higher levels of root colonization than F. mosseae. Compared to non-inoculated plants, the AM-inoculated plants had higher Pi content in leaves. Varietal differences were observed in the growth response of rice cultivars to inoculation with an AM fungus, which were also dependent on the identity of the fungus. Thus, positive, negligible, and negative responses to AM inoculation were observed among rice varieties. Inoculation with F. mosseae or R. irregularis also conferred protection to the rice blast fungus, but the level of mycorrhiza-induced blast resistance varied among host genotypes. Rice seedlings (Loto and Gines varieties) were pre-inoculated with R. irregularis, transplanted into flooded fields, and grown until maturity. A significant increase in grain yield was observed in mycorrhizal plants compared with non-mycorrhizal plants, which was related to an increase in the number of panicles. CONCLUSION Results here presented support that rice plants benefit from the AM symbiosis while illustrating the potential of using AM fungi to improve productivity and blast resistance in cultivated rice. Differences observed in the mycorrhizal responsiveness among the different rice cultivars in terms of growth promotion and blast resistance indicate that evaluation of benefits received by the AM symbiosis needs to be carefully evaluated on a case-by-case basis for efficient exploitation of AM fungi in rice cultivation.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Héctor Martín-Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Marta Olivé
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Eva Pla
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Mar Catala-Forner
- IRTA Institute of Agrifood Research and Technology, Field crops, Amposta, Spain
| | - Maite Martínez-Eixarch
- IRTA Institute of Agrifood Research and Technology, Marine and Continental Waters, Sant Carles de la Ràpita, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
47
|
Bouffaud ML, Herrmann S, Tarkka MT, Bönn M, Feldhahn L, Buscot F. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics 2020; 21:399. [PMID: 32532205 PMCID: PMC7291512 DOI: 10.1186/s12864-020-06806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.
Collapse
Affiliation(s)
- Marie-Lara Bouffaud
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Sylvie Herrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany.
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Markus Bönn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - Lasse Feldhahn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120, Halle/Saale, Germany
| |
Collapse
|
48
|
Olalde-Portugal V, Cabrera-Ponce JL, Gastelum-Arellanez A, Guerrero-Rangel A, Winkler R, Valdés-Rodríguez S. Proteomic analysis and interactions network in leaves of mycorrhizal and nonmycorrhizal sorghum plants under water deficit. PeerJ 2020; 8:e8991. [PMID: 32351787 PMCID: PMC7183753 DOI: 10.7717/peerj.8991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/26/2020] [Indexed: 11/21/2022] Open
Abstract
For understanding the water deficit stress mechanism in sorghum, we conducted a physiological and proteomic analysis in the leaves of Sorghum bicolor L. Moench (a drought tolerant crop model) of non-colonized and colonized plants with a consortium of arbuscular mycorrhizal fungi. Physiological results indicate that mycorrhizal fungi association enhances growth and photosynthesis in plants, under normal and water deficit conditions. 2D-electrophoresis profiles revealed 51 differentially accumulated proteins in response to water deficit, of which HPLC/MS successfully identified 49. Bioinformatics analysis of protein–protein interactions revealed the participation of different metabolic pathways in nonmycorrhizal compared to mycorrhizal sorghum plants under water deficit. In noninoculated plants, the altered proteins are related to protein synthesis and folding (50S ribosomal protein L1, 30S ribosomal protein S10, Nascent polypeptide-associated complex subunit alpha), coupled with multiple signal transduction pathways, guanine nucleotide-binding beta subunit (Rack1) and peptidyl-prolyl-cis-trans isomerase (ROC4). In contrast, in mycorrhizal plants, proteins related to energy metabolism (ATP synthase-24kDa, ATP synthase β), carbon metabolism (malate dehydrogenase, triosephosphate isomerase, sucrose-phosphatase), oxidative phosphorylation (mitochondrial-processing peptidase) and sulfur metabolism (thiosulfate/3-mercaptopyruvate sulfurtransferase) were found. Our results provide a set of proteins of different metabolic pathways involved in water deficit produced by sorghum plants alone or associated with a consortium of arbuscular mycorrhizal fungi isolated from the tropical rain forest Los Tuxtlas Veracruz, México.
Collapse
Affiliation(s)
- Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Argel Gastelum-Arellanez
- Área de Medio Ambiente y Biotecnología, Cátedra CONACYT. Centro de Innovación Aplicada en Tecnologías Competitivas A.C. (CIATEC AC), León, Guanajuato, México
| | - Armando Guerrero-Rangel
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| | - Silvia Valdés-Rodríguez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
49
|
Garzo E, Rizzo E, Fereres A, Gomez SK. High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). INSECT SCIENCE 2020; 27:99-112. [PMID: 30039604 PMCID: PMC7379733 DOI: 10.1111/1744-7917.12631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
This study sheds light on a poorly understood area in insect-plant-microbe interactions, focusing on aphid probing and feeding behavior on plants with varying levels of arbuscular mycorrhizal (AM) fungus root colonization. It investigates a commonly occurring interaction of three species: pea aphid Acyrthosiphon pisum, barrel medic Medicago truncatula, and the AM fungus Rhizophagus irregularis, examining whether aphid-feeding behavior changes when insects feed on plants at different levels of AM fungus colonization (42% and 84% root length colonized). Aphid probing and feeding behavior was monitored throughout 8 h of recording using the electrical penetration graph (EPG) technique, also, foliar nutrient content and plant growth were measured. Summarizing, aphids took longer to reach their 1st sustained phloem ingestion on the 84% AM plants than on the 42% AM plants or on controls. Less aphids showed phloem ingestion on the 84% AM plants relative to the 42% AM plants. Shoots of the 84% AM plants had higher percent carbon (43.7%) relative to controls (40.5%), and the 84% AM plants had reduced percent nitrogen (5.3%) relative to the 42% AM plants (6%). In conclusion, EPG and foliar nutrient data support the hypothesis that modifications in plant anatomy (e.g., thicker leaves), and poor food quality (reduced nitrogen) in the 84% AM plants contribute to reduced aphid success in locating phloem and ultimately to differences in phloem sap ingestion. This work suggests that M. truncatula plants benefit from AM symbiosis not only because of increased nutrient uptake but also because of reduced susceptibility to aphids.
Collapse
Affiliation(s)
- Elisa Garzo
- Instituto de Ciencias Agrarias—Consejo Superior de Investigaciones Científicas (ICA‐CSIC)MadridSpain
| | - Eric Rizzo
- School of Biological SciencesUniversity of Northern ColoradoGreeleyColoradoUSA
| | - Alberto Fereres
- Instituto de Ciencias Agrarias—Consejo Superior de Investigaciones Científicas (ICA‐CSIC)MadridSpain
| | - S. Karen Gomez
- School of Biological SciencesUniversity of Northern ColoradoGreeleyColoradoUSA
| |
Collapse
|
50
|
Rizzo E, Sherman T, Manosalva P, Gomez SK. Assessment of Local and Systemic Changes in Plant Gene Expression and Aphid Responses during Potato Interactions with Arbuscular Mycorrhizal Fungi and Potato Aphids. PLANTS (BASEL, SWITZERLAND) 2020; 9:E82. [PMID: 31936508 PMCID: PMC7020417 DOI: 10.3390/plants9010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/04/2020] [Indexed: 12/03/2022]
Abstract
This research examined aphid and plant responses to distinct levels (none, low, and high) of arbuscular mycorrhizal (AM) fungal root colonization by studying the association between potato aphids (Macrosiphum euphorbiae), potatoes (Solanum tuberosum), and AM fungi (Rhizophagus intraradices). It extends knowledge on gene expression changes, assessed by RT-qPCR, of ten defense-related genes at two time-points post-herbivory (24 h and 10 days), focusing on aphid-infested local leaves, non-infested systemic leaves, and roots. The results showed that aphid fitness was not altered by AM symbiosis. At 24 h, ETHYLENE RECEPTOR 1 gene expression was repressed in roots of aphid-infested non-mycorrhizal plants and aphid-infested plants with a high level of AM fungal root colonization, but not on aphid-infested plants with a low level of AM fungal root colonization. At 10 days, ALLENE OXIDE CYCLASE and POTATO TYPE I PROTEASE INHIBITOR were upregulated exclusively in local leaves of aphid-infested plants with a low level of AM fungal root colonization. In addition, local and systemic changes in plant gene expression appeared to be regulated exclusively by AM status and aphid herbivory. In summary, the gene expression data provide insights on mycorrhizal potato responses to aphid herbivory and serve as a starting point for future studies using this system.
Collapse
Affiliation(s)
- Eric Rizzo
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| | - Tyler Sherman
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| | - Patricia Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - S. Karen Gomez
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639, USA; (E.R.); (T.S.)
| |
Collapse
|