1
|
Boussardon C, Carrie C, Keech O. Comparing plastid proteomes points towards a higher plastidial redox turnover in vascular tissues than in mesophyll cells. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad133. [PMID: 37026385 PMCID: PMC10400147 DOI: 10.1093/jxb/erad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 06/19/2023]
Abstract
Plastids are complex organelles that vary in size and function depending on the cell type. Accordingly, they can be referred to as amyloplasts, chloroplasts, chromoplasts, etioplasts, proplasts to only cite a few denominations. Over the past decades, methods based on density gradients and differential centrifugations have been extensively used for the purification of plastids. However, these methods need large amounts of starting material, and hardly provide a tissue-specific resolution. Here, we applied our IPTACT (Isolation of Plastids TAgged in specific Cell Types) method, which involves the biotinylation of plastids in vivo using one-shot transgenic lines expressing the TOC64 gene coupled with a biotin ligase receptor particle and the BirA biotin ligase, to isolate plastids from mesophyll and companion cells of Arabidopsis thaliana using tissue specific pCAB3 and pSUC2 promoters, respectively. Subsequently, a proteome profiling was performed, and allowed the identification of 1672 proteins, among which 1342 were predicted plastidial, and 705 were fully confirmed according to SUBA5. Interestingly, although 92% of plastidial proteins were equally distributed between the two tissues, we observed an accumulation of proteins associated with jasmonic acid biosynthesis, plastoglobuli (e.g. NDC1, VTE1, PGL34, ABC1K1) and cyclic electron flow in plastids originating from vascular tissues. Besides demonstrating the technical feasibility of isolating plastids in a tissue-specific manner, our work provides strong evidence that plastids from vascular tissue have a higher redox turnover to ensure optimal functioning, notably under high solute strength as encountered in vascular cells.
Collapse
Affiliation(s)
- Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| | - Chris Carrie
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland,1142, New Zealand
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
2
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
3
|
Kim DB, Na C, Hwang I, Lee DW. Understanding protein translocation across chloroplast membranes: Translocons and motor proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:408-416. [PMID: 36223071 DOI: 10.1111/jipb.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Subcellular organelles in eukaryotes are surrounded by lipid membranes. In an endomembrane system, vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles. However, organellar proteins for chloroplasts, mitochondria, the nucleus, and peroxisomes that are translated in the cytosol are directly imported into their target organelles. Chloroplasts are a plant-specific organelle with outer and inner envelope membranes, a dual-membrane structure that is similar to mitochondria. Interior chloroplast proteins translated by cytosolic ribosomes are thus translocated through TOC and TIC complexes (translocons in the outer and inner envelope of chloroplasts, respectively), with stromal ATPase motor proteins playing a critical role in pulling pre-proteins through these import channels. Over the last three decades, the identity and function of TOC/TIC components and stromal motor proteins have been actively investigated, which has shed light on the action mechanisms at a molecular level. However, there remains some disagreement over the exact composition of TIC complexes and genuine stromal motor proteins. In this review, we discuss recent findings on the mechanisms by which proteins are translocated through TOC/TIC complexes and discuss future prospects for this field of research.
Collapse
Affiliation(s)
- Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Changhee Na
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
4
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Chloroplast Protein Tic55 Involved in Dark-Induced Senescence through AtbHLH/AtWRKY-ANAC003 Controlling Pathway of Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13020308. [PMID: 35205352 PMCID: PMC8872272 DOI: 10.3390/genes13020308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
The chloroplast comprises the outer and inner membranes that are composed of the translocon protein complexes Toc and Tic (translocon at the outer/inner envelope membrane of chloroplasts), respectively. Tic55, a chloroplast Tic protein member, was shown to be not vital for functional protein import in Arabidopsis from previous studies. Instead, Tic55 was revealed to be a dark-induced senescence-related protein in our earlier study. To explore whether Tic55 elicits other biological functions, a tic55-II knockout mutant (SALK_086048) was characterized under different stress treatments. Abiotic stress conditions, such as cold, heat, and high osmotic pressure, did not cause visible effects on tic55-II mutant plant, when compared to the wild type (WT). In contrast, senescence was induced in the individually darkened leaves (IDLs), resulting in the differential expression of the senescence-related genes PEROXISOME DEFECTIVE 1 (PED1), BLUE COPPER-BINDING PROTEIN (BCB), SENESCENCE 1 (SEN1), and RUBISCO SMALL SUBUNIT GENE 2B (RBCS2B). The absence of Tic55 in tic55-II knockout mutant inhibited expression of the senescence-related genes PED1, BCB, and SEN1 at different stages of dark adaptation, while causing stimulation of RBCS2B gene expression at an early stage of dark response. Finally, yeast one-hybrid assays located the ANAC003 promoter region with cis-acting elements are responsible for binding to the different AtbHLH proteins, thereby causing the transactivation of an HIS3 reporter gene. ANAC003 was shown previously as a senescence-related protein and its activation would lead to expression of senescence-associated genes (SAGs), resulting in plant senescence. Thus, we propose a hypothetical model in which three signaling pathways may be involved in controlling the expression of ANAC003, followed by expression of SAGs that in turn leads to leaf senescence in Arabidopsis by this study and previous data.
Collapse
|
6
|
Pérez-Alonso MM, Ortiz-García P, Moya-Cuevas J, Lehmann T, Sánchez-Parra B, Björk RG, Karim S, Amirjani MR, Aronsson H, Wilkinson MD, Pollmann S. Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:459-475. [PMID: 33068437 PMCID: PMC7853601 DOI: 10.1093/jxb/eraa485] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 05/13/2023]
Abstract
The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - José Moya-Cuevas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Thomas Lehmann
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Current address: Max-Planck-Institute for Chemistry, Mainz, Germany
| | - Robert G Björk
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Sazzad Karim
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad R Amirjani
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Current address: Department of Biology, Arak University, Arak, Iran
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Correspondence:
| |
Collapse
|
7
|
Guo HM, Li HC, Zhou SR, Xue HW, Miao XX. Deficiency of mitochondrial outer membrane protein 64 confers rice resistance to both piercing-sucking and chewing insects in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1967-1982. [PMID: 32542992 DOI: 10.1111/jipb.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The brown planthopper (BPH) and striped stem borer (SSB) are the most devastating insect pests in rice (Oryza sativa) producing areas. Screening for endogenous resistant genes is the most practical strategy for rice insect-resistance breeding. Forty-five mutants showing high resistance against BPH were identified in a rice T-DNA insertion population (11,000 putative homozygous lines) after 4 years of large-scale field BPH-resistance phenotype screening. Detailed analysis showed that deficiency of rice mitochondrial outer membrane protein 64 (OM64) gene resulted in increased resistance to BPH. Mitochondrial outer membrane protein 64 protein is located in the outer mitochondrial membrane by subcellular localization and its deficiency constitutively activated hydrogen peroxide (H2 O2 ) signaling, which stimulated antibiosis and tolerance to BPH. The om64 mutant also showed enhanced resistance to SSB, a chewing insect, which was due to promotion of Jasmonic acid biosynthesis and related responses. Importantly, om64 plants presented no significant changes in rice yield-related characters. This study confirmed OM64 as a negative regulator of rice herbivore resistance through regulating H2 O2 production. Mitochondrial outer membrane protein 64 is a potentially efficient candidate to improve BPH and SSB resistance through gene deletion. Why the om64 mutant was resistant to both piercing-sucking and chewing insects via a gene deficiency in mitochondria is discussed.
Collapse
Affiliation(s)
- Hui-Min Guo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Chao Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xue-Xia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
8
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
9
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
10
|
Structural and Functional Heat Stress Responses of Chloroplasts of Arabidopsis thaliana. Genes (Basel) 2020; 11:genes11060650. [PMID: 32545654 PMCID: PMC7349189 DOI: 10.3390/genes11060650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Temperature elevations constitute a major threat to plant performance. In recent years, much was learned about the general molecular mode of heat stress reaction of plants. The current research focuses on the integration of the knowledge into more global networks, including the reactions of cellular compartments. For instance, chloroplast function is central for plant growth and survival, and the performance of chloroplasts is tightly linked to the general status of the cell and vice versa. We examined the changes in photosynthesis, chloroplast morphology and proteomic composition posed in Arabidopsis thaliana chloroplasts after a single or repetitive heat stress treatment over a period of two weeks. We observed that the acclimation is potent in the case of repetitive application of heat stress, while a single stress results in lasting alterations. Moreover, the physiological capacity and its adjustment are dependent on the efficiency of the protein translocation process as judged from the analysis of mutants of the two receptor units of the chloroplast translocon, TOC64, and TOC33. In response to repetitive heat stress, plants without TOC33 accumulate Hsp70 proteins and plants without TOC64 have a higher content of proteins involved in thylakoid structure determination when compared to wild-type plants.
Collapse
|
11
|
Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochem Soc Trans 2020; 48:71-82. [PMID: 31922184 PMCID: PMC7054747 DOI: 10.1042/bst20190274] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Chloroplasts are photosynthetic plant organelles descended from a bacterial ancestor. The vast majority of chloroplast proteins are synthesized in the cytosol and then imported into the chloroplast post-translationally. Translocation complexes exist in the organelle's outer and inner envelope membranes (termed TOC and TIC, respectively) to facilitate protein import. These systems recognize chloroplast precursor proteins and mediate their import in an energy-dependent manner. However, many unanswered questions remain regarding mechanistic details of the import process and the participation and functions of individual components; for example, the cytosolic events that mediate protein delivery to chloroplasts, the composition of the TIC apparatus, and the nature of the protein import motor all require resolution. The flux of proteins through TOC and TIC varies greatly throughout development and in response to specific environmental cues. The import process is, therefore, tightly regulated, and it has emerged that the ubiquitin-proteasome system (UPS) plays a key role in this regard, acting at several different steps in the process. The UPS is involved in: the selective degradation of transcription factors that co-ordinate the expression of chloroplast precursor proteins; the removal of unimported chloroplast precursor proteins in the cytosol; the inhibition of chloroplast biogenesis pre-germination; and the reconfiguration of the TOC apparatus in response to developmental and environmental signals in a process termed chloroplast-associated protein degradation. In this review, we highlight recent advances in our understanding of protein import into chloroplasts and how this process is regulated by the UPS.
Collapse
|
12
|
Nickel C, Horneff R, Heermann R, Neumann B, Jung K, Soll J, Schwenkert S. Phosphorylation of the outer membrane mitochondrial protein OM64 influences protein import into mitochondria. Mitochondrion 2019; 44:93-102. [DOI: 10.1016/j.mito.2018.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
|
13
|
Tenorio-Berrío R, Pérez-Alonso MM, Vicente-Carbajosa J, Martín-Torres L, Dreyer I, Pollmann S. Identification of Two Auxin-Regulated Potassium Transporters Involved in Seed Maturation. Int J Mol Sci 2018; 19:E2132. [PMID: 30037141 PMCID: PMC6073294 DOI: 10.3390/ijms19072132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The seed is the most important plant reproductive unit responsible for the evolutionary success of flowering plants. Aside from its essential function in the sexual reproduction of plants, the seed also represents the most economically important agricultural product worldwide, providing energy, nutrients, and raw materials for human nutrition, livestock feed, and countless manufactured goods. Hence, improvements in seed quality or size are highly valuable, due to their economic potential in agriculture. Recently, the importance of indolic compounds in regulating these traits has been reported for Arabidopsis thaliana. The transcriptional and physiological mechanisms involved, however, remain largely undisclosed. Potassium transporters have been suggested as possible mediators of embryo cell size, controlling turgor pressure during seed maturation. In addition, it has been demonstrated that the expression of K⁺ transporters is effectively regulated by auxin. Here, we provide evidence for the identification of two Arabidopsis K⁺ transporters, HAK/KT12 (At1g60160) and KUP4 (At4g23640), that are likely to be implicated in determining seed size during seed maturation and, at the same time, show a differential regulation by indole-3-acetic acid and indole-3-acetamide.
Collapse
Affiliation(s)
- Rubén Tenorio-Berrío
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Leticia Martín-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile.
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|
14
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28174581 DOI: 10.3389/fpls.2017.00036.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für Pflanzenphysiologie Ruhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany; Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| |
Collapse
|
15
|
Lehmann T, Janowitz T, Sánchez-Parra B, Alonso MMP, Trompetter I, Piotrowski M, Pollmann S. Arabidopsis NITRILASE 1 Contributes to the Regulation of Root Growth and Development through Modulation of Auxin Biosynthesis in Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:36. [PMID: 28174581 PMCID: PMC5258727 DOI: 10.3389/fpls.2017.00036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Nitrilases consist of a group of enzymes that catalyze the hydrolysis of organic cyanides. They are found ubiquitously distributed in the plant kingdom. Plant nitrilases are mainly involved in the detoxification of ß-cyanoalanine, a side-product of ethylene biosynthesis. In the model plant Arabidopsis thaliana a second group of Brassicaceae-specific nitrilases (NIT1-3) has been found. This so-called NIT1-subfamily has been associated with the conversion of indole-3-acetonitrile (IAN) into the major plant growth hormone, indole-3-acetic acid (IAA). However, apart of reported functions in defense responses to pathogens and in responses to sulfur depletion, conclusive insight into the general physiological function of the NIT-subfamily nitrilases remains elusive. In this report, we test both the contribution of the indole-3-acetaldoxime (IAOx) pathway to general auxin biosynthesis and the influence of altered nitrilase expression on plant development. Apart of a comprehensive transcriptomics approach to explore the role of the IAOx route in auxin formation, we took a genetic approach to disclose the function of NITRILASE 1 (NIT1) of A. thaliana. We show that NIT1 over-expression (NIT1ox) results in seedlings with shorter primary roots, and an increased number of lateral roots. In addition, NIT1ox plants exhibit drastic changes of both free IAA and IAN levels, which are suggested to be the reason for the observed phenotype. On the other hand, NIT2RNAi knockdown lines, capable of suppressing the expression of all members of the NIT1-subfamily, were generated and characterized to substantiate the above-mentioned findings. Our results demonstrate for the first time that Arabidopsis NIT1 has profound effects on root morphogenesis in early seedling development.
Collapse
Affiliation(s)
- Thomas Lehmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Tim Janowitz
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Marta-Marina Pérez Alonso
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
| | - Inga Trompetter
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
| | - Stephan Pollmann
- Lehrstuhl für PflanzenphysiologieRuhr-Universität Bochum, Bochum, Germany
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Pozuelo de Alarcón, Spain
- *Correspondence: Stephan Pollmann
| |
Collapse
|
16
|
|
17
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
18
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
19
|
Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. PLANTA 2016; 243:733-47. [PMID: 26669598 DOI: 10.1007/s00425-015-2440-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.
Collapse
Affiliation(s)
- Tihana Bionda
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lucia E Gross
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Thomas Becker
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Biochemistry and Molecular Biology, ZBMZ, and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Dimitrios G Papasotiriou
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Matthias S Leisegang
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Michael Karas
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Molecular Cell Biology of Plants, Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Buchmann Institut for Molecular Life Sciences, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
20
|
Bohne AV, Schwenkert S, Grimm B, Nickelsen J. Roles of Tetratricopeptide Repeat Proteins in Biogenesis of the Photosynthetic Apparatus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:187-227. [PMID: 27017009 DOI: 10.1016/bs.ircmb.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biosynthesis of the photosynthetic apparatus is a complex operation, which includes the concerted synthesis and assembly of lipids, pigments and metal cofactors, and dozens of proteins. Research conducted in recent years has shown that these processes, as well as the stabilization and repair of this molecular machinery, are facilitated by transiently acting regulatory proteins, many of which belong to the superfamily of helical repeat proteins. Here, we focus on one of its families in photoautotrophic model organisms, the tetratricopeptide repeat (TPR) proteins, which participate in almost all of these steps and are crucial for biogenesis of the thylakoid membrane.
Collapse
Affiliation(s)
- A-V Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - S Schwenkert
- Botany, Ludwig-Maximilians-University, Munich, Germany
| | - B Grimm
- Institute of Biology/Plant Physiology, Humboldt University, Berlin, Germany
| | - J Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
21
|
Ling Q, Jarvis P. Regulation of Chloroplast Protein Import by the Ubiquitin E3 Ligase SP1 Is Important for Stress Tolerance in Plants. Curr Biol 2015; 25:2527-34. [PMID: 26387714 PMCID: PMC4598742 DOI: 10.1016/j.cub.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/15/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022]
Abstract
Chloroplasts are the organelles responsible for photosynthesis in plants [1, 2]. The chloroplast proteome comprises ∼3,000 different proteins, including components of the photosynthetic apparatus, which are highly abundant. Most chloroplast proteins are nucleus-encoded and imported following synthesis in the cytosol. Such import is mediated by multiprotein complexes in the envelope membranes that surround each organelle [3, 4]. The translocon at the outer envelope membrane of chloroplasts (TOC) mediates client protein recognition and early stages of import. The TOC apparatus is regulated by the ubiquitin-proteasome system (UPS) in a process controlled by the envelope-localized ubiquitin E3 ligase SUPPRESSOR OF PPI1 LOCUS1 (SP1) [5, 6]. Previous work showed that SP1-mediated regulation of chloroplast protein import contributes to the organellar proteome changes that occur during plant development (e.g., during de-etiolation). Here, we reveal a critical role for SP1 in plant responses to abiotic stress, which is a major and increasing cause of agricultural yield losses globally [7]. Arabidopsis plants lacking SP1 are hypersensitive to salt, osmotic, and oxidative stresses, whereas plants overexpressing SP1 are considerably more stress tolerant than wild-type. We present evidence that SP1 acts to deplete the TOC apparatus under stress conditions to limit the import of photosynthetic apparatus components, which may attenuate photosynthetic activity and reduce the potential for reactive oxygen species production and photo-oxidative damage. Our results indicate that chloroplast protein import is responsive to environmental cues, enabling dynamic regulation of the organellar proteome, and suggest new approaches for improving stress tolerance in crops. Levels of the chloroplast E3 ligase SP1 influence plant abiotic stress tolerance Effects of SP1 on stress tolerance are linked to reactive oxygen species levels SP1 acts to deplete the chloroplast protein import (TOC) machinery under stress TOC depletion by SP1 is linked to reduced plastid import of photosynthesis proteins
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
22
|
Ling Q, Jarvis P. Functions of plastid protein import and the ubiquitin-proteasome system in plastid development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:939-48. [PMID: 25762164 DOI: 10.1016/j.bbabio.2015.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 02/05/2023]
Abstract
Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit ripening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed dedicated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes. Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the specific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize recent advances in our understanding of protein import regulation, particularly in relation to control by the ubiquitin-proteasome system (UPS), and how such regulation changes plastid development. The diversity of plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differentiation and interconversion. The controllable turnover of TOC components by the UPS influences the developmental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms by which plastid protein import is controlled is critical to the development of breakthrough approaches to increase the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid development. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
23
|
Tillmann B, Röth S, Bublak D, Sommer M, Stelzer EHK, Scharf KD, Schleiff E. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato. MOLECULAR PLANT 2015; 8:228-41. [PMID: 25619681 DOI: 10.1016/j.molp.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 09/22/2014] [Accepted: 10/03/2014] [Indexed: 05/09/2023]
Abstract
Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response.
Collapse
Affiliation(s)
- Bodo Tillmann
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Sascha Röth
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Ernst H K Stelzer
- Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany; Institute of Cell Biology, Goethe-Universität, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Molecular Cell Biology of Plants, Goethe-University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Cluster of Excellence 'Macromolecular Complexes', Goethe-University, 60438 Frankfurt am Main, Germany; Center of Membrane Proteomics, Goethe University, Max-von-Laue Street 9, 60438 Frankfurt am Main, Germany; Buchman Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Street 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
25
|
Paila YD, Richardson LGL, Schnell DJ. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 2014; 427:1038-1060. [PMID: 25174336 DOI: 10.1016/j.jmb.2014.08.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 01/04/2023]
Abstract
The translocons at the outer (TOC) and the inner (TIC) envelope membranes of chloroplasts mediate the targeting and import of several thousand nucleus-encoded preproteins that are required for organelle biogenesis and homeostasis. The cytosolic events in preprotein targeting remain largely unknown, although cytoplasmic chaperones have been proposed to facilitate delivery to the TOC complex. Preprotein recognition is mediated by the TOC GTPase receptors Toc159 and Toc34. The receptors constitute a GTP-regulated switch, which initiates membrane translocation via Toc75, a member of the Omp85 (outer membrane protein 85)/TpsB (two-partner secretion system B) family of bacterial, plastid and mitochondrial β-barrel outer membrane proteins. The TOC receptor systems have diversified to recognize distinct sets of preproteins, thereby maximizing the efficiency of targeting in response to changes in gene expression during developmental and physiological events that impact organelle function. The TOC complex interacts with the TIC translocon to allow simultaneous translocation of preproteins across the envelope. Both the two inner membrane complexes, the Tic110 and 1 MDa complexes, have been implicated as constituents of the TIC translocon, and it remains to be determined how they interact to form the TIC channel and assemble the import-associated chaperone network in the stroma that drives import across the envelope membranes. This review will focus on recent developments in our understanding of the mechanisms and diversity of the TOC-TIC systems. Our goal is to incorporate these recent studies with previous work and present updated or revised models for the function of TOC-TIC in protein import.
Collapse
Affiliation(s)
- Yamuna D Paila
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Lynn G L Richardson
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| | - Danny J Schnell
- Department of Biochemistry and Molecular Biology, Life Sciences Laboratories Room N431, 240 Thatcher Rd, University of Massachusetts, Amherst MA 01003-9364, USA
| |
Collapse
|
26
|
Sánchez-Parra B, Frerigmann H, Alonso MMP, Loba VC, Jost R, Hentrich M, Pollmann S. Characterization of Four Bifunctional Plant IAM/PAM-Amidohydrolases Capable of Contributing to Auxin Biosynthesis. PLANTS 2014; 3:324-47. [PMID: 27135507 PMCID: PMC4844348 DOI: 10.3390/plants3030324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023]
Abstract
Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.
Collapse
Affiliation(s)
- Beatriz Sánchez-Parra
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Henning Frerigmann
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Marta-Marina Pérez Alonso
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Víctor Carrasco Loba
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| | - Ricarda Jost
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Mathias Hentrich
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Stephan Pollmann
- Center for Plant Biotechnology and Genomics (U.P.M.-I.N.I.A.), Technical University Madrid, Montegancedo Campus, Crta. M-40, km 38, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
27
|
Martínez-Fernández I, Sanchís S, Marini N, Balanzá V, Ballester P, Navarrete-Gómez M, Oliveira AC, Colombo L, Ferrándiz C. The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. FRONTIERS IN PLANT SCIENCE 2014; 5:210. [PMID: 24904608 PMCID: PMC4033193 DOI: 10.3389/fpls.2014.00210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/29/2014] [Indexed: 05/18/2023]
Abstract
The four NGATHA genes (NGA) form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style, and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants, and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium. We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin transport. Finally, protein accumulation in pistils of several ARFs was differentially affected by nga mutations or NGA overexpression, suggesting that these accumulation patterns depend not only on auxin distribution but could be also regulated by transcriptional networks involving NGA factors.
Collapse
Affiliation(s)
- Irene Martínez-Fernández
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Sofía Sanchís
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Naciele Marini
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- Department of Plant Sciences, Faculdade de Agronomia Eliseu Maciel, Plant Genomics and Breeding Center, Universidade Federal de PelotasPelotas, Brasil
| | - Vicente Balanzá
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- Dipartimento di Biologia, Universita degli Studi di MilanoMilano, Italia
| | - Patricia Ballester
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Marisa Navarrete-Gómez
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
| | - Antonio C. Oliveira
- Department of Plant Sciences, Faculdade de Agronomia Eliseu Maciel, Plant Genomics and Breeding Center, Universidade Federal de PelotasPelotas, Brasil
| | - Lucia Colombo
- Dipartimento di Biologia, Universita degli Studi di MilanoMilano, Italia
| | - Cristina Ferrándiz
- Consejo Superior de Investigaciones Científicas - Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)Valencia, Spain
- *Correspondence: Cristina Ferrándiz, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Campus de la UPV- Ciudad Politécnica de la Innovación edif 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain e-mail:
| |
Collapse
|
28
|
Kasmati AR, Töpel M, Khan NZ, Patel R, Ling Q, Karim S, Aronsson H, Jarvis P. Evolutionary, molecular and genetic analyses of Tic22 homologues in Arabidopsis thaliana chloroplasts. PLoS One 2013; 8:e63863. [PMID: 23675512 PMCID: PMC3652856 DOI: 10.1371/journal.pone.0063863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The Tic22 protein was previously identified in pea as a putative component of the chloroplast protein import apparatus. It is a peripheral protein of the inner envelope membrane, residing in the intermembrane space. In Arabidopsis, there are two Tic22 homologues, termed atTic22-III and atTic22-IV, both of which are predicted to localize in chloroplasts. These two proteins defined clades that are conserved in all land plants, which appear to have evolved at a similar rates since their separation >400 million years ago, suggesting functional conservation. The atTIC22-IV gene was expressed several-fold more highly than atTIC22-III, but the genes exhibited similar expression profiles and were expressed throughout development. Knockout mutants lacking atTic22-IV were visibly normal, whereas those lacking atTic22-III exhibited moderate chlorosis. Double mutants lacking both isoforms were more strongly chlorotic, particularly during early development, but were viable and fertile. Double-mutant chloroplasts were small and under-developed relative to those in wild type, and displayed inefficient import of precursor proteins. The data indicate that the two Tic22 isoforms act redundantly in chloroplast protein import, and that their function is non-essential but nonetheless required for normal chloroplast biogenesis, particularly during early plant development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Mats Töpel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Nadir Zaman Khan
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Ramesh Patel
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Qihua Ling
- University of Leicester, Department of Biology, Leicester, United Kingdom
| | - Sazzad Karim
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Henrik Aronsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden
| | - Paul Jarvis
- University of Leicester, Department of Biology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Rudolf M, Machettira AB, Groß LE, Weber KL, Bolte K, Bionda T, Sommer MS, Maier UG, Weber APM, Schleiff E, Tripp J. In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts. MOLECULAR PLANT 2013. [PMID: 23204504 DOI: 10.1093/mp/sss114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely atTic22-III and atTic22-IV. We investigated the function of Tic22 in vivo by analyzing T-DNA insertion lines of the corresponding genes. While the T-DNA insertion in the individual genes caused only slight defects, a double mutant of both isoforms showed retarded growth, a pale phenotype under high-light conditions, a reduced import rate, and a reduction in the photosynthetic performance of the plants. The latter is supported by changes in the metabolite content of mutant plants when compared to wild-type. Thus, our results support the notion that Tic22 is directly involved in chloroplast preprotein import and might point to a particular importance of Tic22 in chloroplast biogenesis at times of high import rates.
Collapse
Affiliation(s)
- Mareike Rudolf
- Department of Biosciences, Molecular Cell Biology of Plants, Center of Membrane Proteomics and Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue Str 9, D-60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sommer M, Rudolf M, Tillmann B, Tripp J, Sommer MS, Schleiff E. Toc33 and Toc64-III cooperate in precursor protein import into the chloroplasts of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:970-83. [PMID: 23131143 DOI: 10.1111/pce.12030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/31/2012] [Indexed: 05/08/2023]
Abstract
The import of cytosolically synthesized precursor proteins into chloroplasts by the translocon at the outer envelope membrane of chloroplasts (TOC) is crucial for organelle function. The recognition of precursor proteins at the chloroplast surface precedes translocation and involves the membrane-inserted receptor subunits Toc34 and Toc159. A third receptor, Toc64, was discussed to recognize cytosolic complexes guiding precursor proteins to the membrane surface, but this function remains debated. We analysed Arabidopsis thaliana plants carrying a T-DNA insertion in the gene encoding the Toc64 homolog Toc64-III. We observed a light intensity-dependent growth phenotype, which is distinct from the phenotype of ppi1, the previously described mutant of the TOC34 homolog TOC33. Furthermore, chloroplast import of the model precursor proteins pOE33 and pSSU into chloroplasts is reduced in protoplasts isolated from plants with impaired Toc64-III function. This suggests that Toc64-III modulates the translocation efficiency in vivo. A ppi1 and toc64-III double mutant shows a significant increase in the transcript levels of HSP90 and TOC75-III, the latter coding for the pore-forming TOC component. Remarkably, the protein level of Toc75-III is significantly reduced, suggesting that Toc64-III and Toc33 cooperate in the insertion or stabilization of Toc75-III. Accordingly, the results presented support Toc64 as an import-relevant component of the TOC complex.
Collapse
Affiliation(s)
- Manuel Sommer
- Center of Membrane Proteomics, Cluster of Excellence Macromolecular Complexes Frankfurt, Department of Biosciences, Molecular Cell Biology of Plants, Johann-Wolfgang-Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Schweiger R, Müller NC, Schmitt MJ, Soll J, Schwenkert S. AtTPR7 is a chaperone-docking protein of the Sec translocon in Arabidopsis. J Cell Sci 2012; 125:5196-207. [PMID: 22899711 DOI: 10.1242/jcs.111054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chaperone-assisted sorting of post-translationally imported proteins is a general mechanism among all eukaryotic organisms. Interaction of some preproteins with the organellar membranes is mediated by chaperones, which are recognised by membrane-bound tetratricopeptide repeat (TPR) domain containing proteins. We have characterised AtTPR7 as an endoplasmic reticulum protein in plants and propose a potential function for AtTPR7 in post-translational protein import. Our data demonstrate that AtTPR7 interacts with the heat shock proteins HSP90 and HSP70 via a cytosol-exposed TPR domain. We further show by in vitro and in vivo experiments that AtTPR7 is associated with the Arabidopsis Sec63 homologue, AtERdj2. Interestingly, AtTPR7 can functionally complement a Δsec71 yeast mutant that is impaired in post-translational protein transport. These data strongly suggest that AtTPR7 not only has a role in chaperone binding but also in post-translational protein import into the endoplasmic reticulum, pointing to a general mechanism of chaperone-mediated post-translational sorting between the endoplasmic reticulum, mitochondria and chloroplasts in plant cells.
Collapse
Affiliation(s)
- Regina Schweiger
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
32
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
33
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
34
|
Cytosolic events involved in chloroplast protein targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:245-52. [PMID: 22450030 DOI: 10.1016/j.bbamcr.2012.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 12/12/2022]
Abstract
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
35
|
Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga. EUKARYOTIC CELL 2012; 11:324-33. [PMID: 22267775 DOI: 10.1128/ec.05264-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most plastid proteins are encoded by their nuclear genomes and need to be targeted across multiple envelope membranes. In vascular plants, the translocons at the outer and inner envelope membranes of chloroplasts (TOC and TIC, respectively) facilitate transport across the two plastid membranes. In contrast, several algal groups harbor more complex plastids, the so-called secondary plastids, which are surrounded by three or four membranes, but the plastid protein import machinery (in particular, how proteins cross the membrane corresponding to the secondary endosymbiont plasma membrane) remains unexplored in many of these algae. To reconstruct the putative protein import machinery of a secondary plastid, we used the chlorarachniophyte alga Bigelowiella natans, whose plastid is bounded by four membranes and still possesses a relict nucleus of a green algal endosymbiont (the nucleomorph) in the intermembrane space. We identified nine homologs of plant-like TOC/TIC components in the recently sequenced B. natans nuclear genome, adding to the two that remain in the nucleomorph genome (B. natans TOC75 [BnTOC75] and BnTIC20). All of these proteins were predicted to be localized to the plastid and might function in the inner two membranes. We also show that the homologs of a protein, Der1, that is known to mediate transport across the second membrane in the several lineages with secondary plastids of red algal origin is not associated with plastid protein targeting in B. natans. How plastid proteins cross this membrane remains a mystery, but it is clear that the protein transport machinery of chlorarachniophyte plastids differs from that of red algal secondary plastids.
Collapse
|
36
|
Kriechbaumer V, von Löffelholz O, Abell BM. Chaperone receptors: guiding proteins to intracellular compartments. PROTOPLASMA 2012; 249:21-30. [PMID: 21461941 DOI: 10.1007/s00709-011-0270-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519-530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529-535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41-50, 2003; Qbadou et al., EMBO J 25:1836-1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.
Collapse
|
37
|
Kriechbaumer V, Abell BM. Chloroplast envelope protein targeting fidelity is independent of cytosolic components in dual organelle assays. FRONTIERS IN PLANT SCIENCE 2012; 3:148. [PMID: 22783268 PMCID: PMC3384937 DOI: 10.3389/fpls.2012.00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/14/2012] [Indexed: 05/22/2023]
Abstract
The general mechanisms of intracellular protein targeting are well established, and depend on a targeting sequence in the protein, which is recognized by a targeting factor. Once a membrane protein is delivered to the correct organelle its targeting sequence can be recognized by receptors and a translocase, leading to membrane insertion. However, the relative contribution of each step for generating fidelity and efficiency of the overall process has not been systematically addressed. Here, we use tail-anchored (TA) membrane proteins in cell-free competitive targeting assays to chloroplasts to show that targeting can occur efficiently and with high fidelity in the absence of all cytosolic components, suggesting that chloroplast envelope protein targeting is primarily dependent on events at the outer envelope. Efficiency of targeting was increased by the addition of complete cytosol, and by Hsp70 or Hsp90, depending on the protein, but none of these cytosolic components influenced the fidelity of targeting. Our results suggest that the main role of targeting factors in chloroplast localization is to increase targeting efficiency by maintaining recognition competency at the outer envelope.
Collapse
Affiliation(s)
| | - Ben M. Abell
- *Correspondence: Ben M. Abell, Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK. e-mail:
| |
Collapse
|
38
|
Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. MOLECULAR PLANT 2011; 4:1133-45. [PMID: 21596689 DOI: 10.1093/mp/ssr037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Preproteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
Collapse
Affiliation(s)
- Christine Fellerer
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
39
|
Huang W, Ling Q, Bédard J, Lilley K, Jarvis P. In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. PLANT PHYSIOLOGY 2011; 157:147-59. [PMID: 21757633 PMCID: PMC3165866 DOI: 10.1104/pp.111.181891] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 05/12/2023]
Abstract
Two different, essential Omp85 (Outer membrane protein, 85 kD)-related proteins exist in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts: Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD), encoded by atTOC75-III; and OEP80 (Outer Envelope Protein, 80 kD), encoded by AtOEP80/atTOC75-V. The atToc75-III protein is closely related to the originally identified pea (Pisum sativum) Toc75 protein, and it forms a preprotein translocation channel during chloroplast import; the AtOEP80 protein is considerably more divergent from pea Toc75, and its role is unknown. As knockout mutations for atTOC75-III and AtOEP80 are embryo lethal, we employed a dexamethasone-inducible RNA interference strategy (using the pOpOff2 vector) to conduct in vivo studies on the roles of these two proteins in older, postembryonic plants. We conducted comparative studies on plants silenced for atToc75-III (atToc75-III↓) or AtOEP80 (AtOEP80↓), as well as additional studies on a stable, atToc75-III missense allele (toc75-III-3/modifier of altered response to gravity1), and our results indicated that both proteins are important for chloroplast biogenesis at postembryonic stages of development. Moreover, both are important for photosynthetic and nonphotosynthetic development, albeit to different degrees: atToc75-III↓ phenotypes were considerably more severe than those of AtOEP80↓. Qualitative similarity between the atToc75-III↓ and AtOEP80↓ phenotypes may be linked to deficiencies in atToc75-III and other TOC proteins in AtOEP80↓ plants. Detailed analysis of atToc75-III↓ plants, by electron microscopy, immunoblotting, quantitative proteomics, and protein import assays, indicated that these plants are defective in relation to the biogenesis of both photosynthetic and nonphotosynthetic plastids and preproteins, confirming the earlier hypothesis that atToc75-III functions promiscuously in different substrate-specific import pathways.
Collapse
Affiliation(s)
| | | | | | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom (W.H., Q.L., J.B., P.J.); Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom (K.L.)
| |
Collapse
|
40
|
vonLoeffelholz O, Kriechbaumer V, Ewan RA, Jonczyk R, Lehmann S, Young JC, Abell BM. OEP61 is a chaperone receptor at the plastid outer envelope. Biochem J 2011; 438:143-53. [PMID: 21612577 PMCID: PMC5026492 DOI: 10.1042/bj20110448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.
Collapse
Affiliation(s)
| | - Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Richard A. Ewan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Rafal Jonczyk
- Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Susann Lehmann
- Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal H3G 0B1, Canada
| | - Ben M. Abell
- Biomedical Research Centre, Sheffield Hallam University, Sheffield S1 1WB, U.K
| |
Collapse
|
41
|
Kasmati AR, Töpel M, Patel R, Murtaza G, Jarvis P. Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:877-89. [PMID: 21395885 DOI: 10.1111/j.1365-313x.2011.04551.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Tic20 protein was identified in pea (Pisum sativum) as a component of the chloroplast protein import apparatus. In Arabidopsis, there are four Tic20 homologues, termed atTic20-I, atTic20-IV, atTic20-II and atTic20-V, all with predicted topological similarity to the pea protein (psTic20). Analysis of Tic20 sequences from many species indicated that they are phylogenetically unrelated to mitochondrial Tim17-22-23 proteins, and that they form two evolutionarily conserved subgroups [characterized by psTic20/atTic20-I/IV (Group 1) and atTic20-II/V (Group 2)]. Like psTic20, all four Arabidopsis proteins have a predicted transit peptide consistent with targeting to the inner envelope. Envelope localization of each one was confirmed by analysis of YFP fusions. RT-PCR and microarray data revealed that the four genes are expressed throughout development. To assess the functional significance of the genes, T-DNA mutants were identified. Homozygous tic20-I plants had an albino phenotype that correlated with abnormal chloroplast development and reduced levels of chloroplast proteins. However, knockouts for the other three genes were indistinguishable from the wild type. To test for redundancy, double and triple mutants were studied; apart from those involving tic20-I, none was distinguishable from the wild type. The tic20-I tic20-II and tic20-I tic20-V double mutants were albino, like the corresponding tic20-I parent. In contrast, tic20-I tic20-IV double homozygotes could not be identified, due to gametophytic and embryonic lethality. Redundancy between atTic20-I and atTic20-IV was confirmed by complementation analysis. Thus, atTic20-I and atTic20-IV are the major functional Tic20 isoforms in Arabidopsis, with partially overlapping roles. While the Group 2 proteins have been conserved over approximately 1.2 billion (1.2 × 10(9) ) years, they are not essential for normal development.
Collapse
Affiliation(s)
- Ali Reza Kasmati
- Department of Biology, University of Leicester, University Road, Leicester LE17RH, UK
| | | | | | | | | |
Collapse
|
42
|
Breuers FKH, Bräutigam A, Weber APM. The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm. FRONTIERS IN PLANT SCIENCE 2011; 2:97. [PMID: 22629266 PMCID: PMC3355566 DOI: 10.3389/fpls.2011.00097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/29/2011] [Indexed: 05/09/2023]
Abstract
Plastids are the defining organelles of all photosynthetic eukaryotes. They are the site of photosynthesis and of a large number of other essential metabolic pathways, such as fatty acid and amino acid biosyntheses, sulfur and nitrogen assimilation, and aromatic and terpenoid compound production, to mention only a few examples. The metabolism of plastids is heavily intertwined and connected with that of the surrounding cytosol, thus causing massive traffic of metabolic precursors, intermediates, and products. Two layers of biological membranes that are called the inner (IE) and the outer (OE) plastid envelope membranes bound the plastids of Archaeplastida. While the IE is generally accepted as the osmo-regulatory barrier between cytosol and stroma, the OE was considered to represent an unspecific molecular sieve, permeable for molecules of up to 10 kDa. However, after the discovery of small substrate specific pores in the OE, this view has come under scrutiny. In addition to controlling metabolic fluxes between plastid and cytosol, the OE is also crucial for protein import into the chloroplast. It contains the receptors and translocation channel of the TOC complex that is required for the canonical post-translational import of nuclear-encoded, plastid-targeted proteins. Further, the OE is a metabolically active compartment of the chloroplast, being involved in, e.g., fatty acid metabolism and membrane lipid production. Also, recent findings hint on the OE as a defense platform against several biotic and abiotic stress conditions, such as cold acclimation, freezing tolerance, and phosphate deprivation. Moreover, dynamic non-covalent interactions between the OE and the endomembrane system are thought to play important roles in lipid and non-canonical protein trafficking between plastid and endoplasmic reticulum. While proteomics and bioinformatics has provided us with comprehensive but still incomplete information on proteins localized in the plastid IE, the stroma, and the thylakoids, our knowledge of the protein composition of the plastid OE is far from complete. In this article, we report on the recent progress in discovering novel OE proteins to draw a conclusive picture of the OE. A "parts list" of the plastid OE will be presented, using data generated by proteomics of plastids isolated from various plant sources.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
43
|
Aronsson H, Jarvis RP. Rapid isolation of Arabidopsis chloroplasts and their use for in vitro protein import assays. Methods Mol Biol 2011; 774:281-305. [PMID: 21822845 DOI: 10.1007/978-1-61779-234-2_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In vitro chloroplast protein import assays have been performed since the late 1970s, initially with plant species (e.g., pea and spinach) that readily provide an abundant source of starting material and also, subsequently, a good yield of chloroplasts for import assays. However, the sequencing of the Arabidopsis genome paved the way for an additional model system that is more amenable to genetic analysis, as a complement to the more biochemically orientated models such as pea and spinach. A prerequisite for this change was an efficient and reliable protocol for the isolation of chloroplasts for use in protein import assays, enabling biochemical approaches to be combined with the genetic potential of the plant. The method described here was developed as a rapid and low-cost procedure that can be accessed by everyone due to its simplicity. Despite its rapidity and simplicity, the method yields highly pure chloroplasts, and in addition works well with mutant plants that exhibit pale or chlorotic phenotypes. The protocol is also optimized for work with material from young plants (10-14 days old), when protein import is believed to be at its peak, and so plant growth can be conducted in vitro on Murashige and Skoog medium. The isolation method has been used not only for protein import assays, but also for proteomic analysis and further subfractionation studies.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | | |
Collapse
|
44
|
Hyman S, Jarvis RP. Studying Arabidopsis chloroplast structural organisation using transmission electron microscopy. Methods Mol Biol 2011; 774:113-32. [PMID: 21822836 DOI: 10.1007/978-1-61779-234-2_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chloroplasts, as well as other, non-photosynthetic types of plastid, are characteristic structures within plant cells. They are relatively large organelles (typically 1-5 μm in diameter), and so can readily be analysed by electron microscopy. Chloroplast structure is remarkably complex, comprising at least six distinct sub-organellar compartments, and is sensitive to developmental changes, environmental effects, and genetic lesions. Transmission electron microscopy (TEM), therefore, represents a powerful technique for monitoring the effects of various changing parameters or treatments on the development and differentiation of these important organelles. We describe a method for the analysis of Arabidopsis plant material by TEM, primarily for the assessment of plastid ultrastructure.
Collapse
Affiliation(s)
- Stefan Hyman
- Core Biotechnology Services Electron Microscopy Laboratory, University of Leicester, Leicester, UK.
| | | |
Collapse
|
45
|
Schleiff E, Becker T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 2010; 12:48-59. [DOI: 10.1038/nrm3027] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Abstract
Malaria, which is caused by species of the parasite genus Plasmodium, remains a major global health problem. A vestigial plastid homologous with the chloroplasts of plants and algae was discovered in malaria and related parasites from the phylum Apicomplexa and has radically changed our view of the evolutionary origins of these disease-causing protists. We now recognize that this large group of parasites had a photosynthetic ancestry and were converted into parasitism early in the evolution of animals. Apicomplexans have probably been parasitizing the animal kingdom for more than 500 million years. The relic plastid persists in most apicomplexans and is an essential component. Perturbation of apicoplast function or inheritance results in parasite death, making the organelle a promising target for chemotherapy. Plastids, including those of malaria parasites, are essentially reduced endosymbiotic bacteria living inside a eukaryotic host. This means that plastids have bacterial-type metabolic pathways and housekeeping processes, all of which are vulnerable to antibacterial compounds. Indeed, many antibacterials kill malaria parasites by blocking essential processes in the plastid. Furthermore, a range of herbicides that target plastid metabolism of undesired plants are also parasiticidal, making them potential new leads for antimalarial drugs. In the present review, we examine the evolutionary origins of the malaria parasite's plastid by endosymbiosis and outline the recent findings on how the organelle imports nuclear-encoded proteins through a set of translocation machineries in the membranes that bound the organelle.
Collapse
|
47
|
Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 2010; 89:895-905. [PMID: 20701997 DOI: 10.1016/j.ejcb.2010.06.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the course of evolution plants have evolved a complex phytohormone-based network to regulate their growth and development. Herein auxins have a pivotal function, as they are involved in controlling virtually every aspect related to plant growth. Indole-3-acetic acid (IAA) is the major endogenous auxin of higher plants that is already known for more than 80 years. In spite of the long-standing interest in this topic, IAA biosynthesis is still only partially uncovered. Several pathways for the formation of IAA have been proposed over the past years, but none of these pathways are yet completely defined. The aim of this review is to summarize the current knowledge on the indole-3-acetamide (IAM)-dependent pathway of IAA production in plants and to discuss the properties of the involved proteins and genes, respectively. Their evolutionary relationship to known bacterial IAM hydrolases and other amidases from bacteria, algae, moss, and higher plants is discussed on the basis of phylogenetic analyses. Moreover, we report on the transcriptional regulation of the Arabidopsis AMI1 gene.
Collapse
|
48
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
49
|
Aronsson H, Combe J, Patel R, Agne B, Martin M, Kessler F, Jarvis P. Nucleotide binding and dimerization at the chloroplast pre-protein import receptor, atToc33, are not essential in vivo but do increase import efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:297-311. [PMID: 20444229 DOI: 10.1111/j.1365-313x.2010.04242.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The atToc33 protein is one of several pre-protein import receptors in the outer envelope of Arabidopsis chloroplasts. It is a GTPase with motifs characteristic of such proteins, and its loss in the plastid protein import 1 (ppi1) mutant interferes with the import of photosynthesis-related pre-proteins, causing a chlorotic phenotype in mutant plants. To assess the significance of GTPase cycling by atToc33, we generated several atToc33 point mutants with predicted effects on GTP binding (K49R, S50N and S50N/S51N), GTP hydrolysis (G45R, G45V, Q68A and N101A), both binding and hydrolysis (G45R/K49N/S50R), and dimerization or the functional interaction between dimeric partners (R125A, R130A and R130K). First, a selection of these mutants was assessed in vitro, or in yeast, to confirm that the mutations have the desired effects: in relation to nucleotide binding and dimerization, the mutants behaved as expected. Then, activities of selected mutants were tested in vivo, by assessing for complementation of ppi1 in transgenic plants. Remarkably, all tested mutants mediated high levels of complementation: complemented plants were similar to the wild type in growth rate, chlorophyll accumulation, photosynthetic performance, and chloroplast ultrastructure. Protein import into mutant chloroplasts was also complemented to >50% of the wild-type level. Overall, the data indicate that neither nucleotide binding nor dimerization at atToc33 is essential for chloroplast import (in plants that continue to express the other TOC receptors in native form), although both processes do increase import efficiency. Absence of atToc33 GTPase activity might somehow be compensated for by that of the Toc159 receptors. However, overexpression of atToc33 (or its close relative, atToc34) in Toc159-deficient plants did not mediate complementation, indicating that the receptors do not share functional redundancy in the conventional sense.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jonathan Combe
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Ramesh Patel
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Birgit Agne
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Meryll Martin
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Felix Kessler
- Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland
| | - Paul Jarvis
- Department of Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
50
|
Andrès C, Agne B, Kessler F. The TOC complex: preprotein gateway to the chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:715-23. [PMID: 20226817 DOI: 10.1016/j.bbamcr.2010.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 01/22/2023]
Abstract
Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.
Collapse
Affiliation(s)
- Charles Andrès
- Institut de Biologie, Université de Neuchâtel, CH-2009 Neuchâtel, Switzerland
| | | | | |
Collapse
|