1
|
Hou Q, Shang C, Qiao G, Shen L, Zhou K, Wen X. Involvement of sweet cherry PavPP2C59 in negatively regulating fruitlet abscission and fruit ripening. Int J Biol Macromol 2025; 311:143841. [PMID: 40360107 DOI: 10.1016/j.ijbiomac.2025.143841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Abnormal fruitlet drop poses a significant challenge to the cherry industry, and ABA is known to be involved in organ abscission. The protein phosphatase 2Cs (PP2Cs) plays a crucial role in ABA signaling; however, their functions in the abscission of sweet cherry fruitlets remain unexplored. Currently, 17 F-clade PP2C members were identified in the sweet cherry, among which PavPP2C59 was significantly downregulated in fruit ripening and abscission. The PavPP2C59 promoter exhibited GUS expression activity in the abscission petals of Arabidopsis thaliana, which decreased during silique development and ripening and responded to IAA or ABA treatment. Overexpression of PavPP2C59 in A. thaliana promoted root elongation, delayed petal abscission, and shortened silique length. Yeast one-hybrid and dual-luciferase reporter assays demonstrated that PavDOF18 and PavERF110 interacted with the PavPP2C59 promoter and inhibited its transcription, respectively. PavDOF18 and PavERF110 are localized in the nucleus as transcriptional repressors and have regulatory functions in fruit development and abscission. Y2H and luciferase complementation imaging assays revealed that PavPP2C59 interacts with PavRDUF1, which may lead to its ubiquitination and subsequent degradation. These findings indicate that PavPP2C59 negatively regulates fruitlet abscission and ripening in sweet cherry, providing new insights for a better understanding of fruit abscission in plants.
Collapse
Affiliation(s)
- Qiandong Hou
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/ Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunqiong Shang
- College of Forestry, Guizhou University/ Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, Guizhou Province, China
| | - Guang Qiao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/ Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Luonan Shen
- College of Forestry, Guizhou University/ Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, Guizhou Province, China
| | - Kui Zhou
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/ Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiaopeng Wen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/ Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Martínez-Barradas V, Galbiati M, Barco-Rubio F, Paolo D, Espinoza C, Cominelli E, Arce-Johnson P. PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context. Biol Res 2024; 57:52. [PMID: 39127708 PMCID: PMC11316432 DOI: 10.1186/s40659-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is one of the main nutritional resources in the world, and a low environmental impact source of protein. However, the majority of its cultivation areas are affected by drought and this scenario is only expected to worsen with climate change. Stomatal closure is one of the most important plant responses to drought and the MYB60 transcription factor is among the key elements regulating stomatal aperture. If targeting and mutating the MYB60 gene of common bean would be a valuable strategy to establish more drought-tolerant beans was therefore investigated. RESULTS The MYB60 gene of common bean, with orthology to the Arabidopsis AtMYB60 gene, was found to have conserved regions with MYB60 typical motifs and architecture. Stomata-specific expression of PvMYB60 was further confirmed by q-RT PCR on organs containing stomata, and stomata-enriched leaf fractions. Further, function of PvMYB60 in promoting stomata aperture was confirmed by complementing the defective phenotype of a previously described Arabidopsis myb60-1 mutant. CONCLUSIONS Our study finally points PvMYB60 as a potential target for obtaining more drought-tolerant common beans in the present context of climate change which would further greatly contribute to food security particularly in drought-prone countries.
Collapse
Affiliation(s)
- Vera Martínez-Barradas
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Massimo Galbiati
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Francisco Barco-Rubio
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dario Paolo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy
| | - Carmen Espinoza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Eleonora Cominelli
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milan, Italy.
| | - Patricio Arce-Johnson
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Iglesias-Moya J, Benítez Á, Segura M, Alonso S, Garrido D, Martínez C, Jamilena M. Structural and functional characterization of genes PYL-PP2C-SnRK2s in the ABA signalling pathway of Cucurbita pepo. BMC Genomics 2024; 25:268. [PMID: 38468207 PMCID: PMC10926676 DOI: 10.1186/s12864-024-10158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.
Collapse
Affiliation(s)
- Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Dolores Garrido
- Department of Plant Physiology. Faculty of Science, University of Granada, 18021, Granada, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
4
|
Chen Y, Zhao H, Wang Y, Qiu X, Gao G, Zhu A, Chen P, Wang X, Chen K, Chen J, Chen P, Chen J. Genome-Wide Identification and Expression Analysis of BnPP2C Gene Family in Response to Multiple Stresses in Ramie ( Boehmeria nivea L.). Int J Mol Sci 2023; 24:15282. [PMID: 37894962 PMCID: PMC10607689 DOI: 10.3390/ijms242015282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein phosphatase 2C (PP2C), a key regulator of the ABA signaling pathway, plays important roles in plant growth and development, hormone signaling, and abiotic stress response. Although the PP2C gene family has been identified in many species, systematic analysis was still relatively lacking in ramie (Boehmeria nivea L.). In the present study, we identified 63 BnPP2C genes from the ramie genome, using bioinformatics analysis, and classified them into 12 subfamilies, and this classification was consistently supported by their gene structures and conserved motifs. In addition, we observed that the functional differentiation of the BnPP2C family of genes was restricted and that fragment replication played a major role in the amplification of the BnPP2C gene family. The promoter cis-regulatory elements of BnPP2C genes were mainly involved in light response regulation, phytohormone synthesis, transport and signaling, environmental stress response and plant growth and development regulation. We identified BnPP2C genes with tissue specificity, using ramie transcriptome data from different tissues, in rhizome leaves and bast fibers. The qRT-PCR results showed that the BnPP2C1, BnPP2C26 and BnPP2C27 genes had a strong response to drought, high salt and ABA, and there were a large number of stress-responsive elements in the promoter region of BnPP2C1 and BnPP2C26. The results suggested that BnPP2C1 and BnPP2C26 could be used as the candidate genes for drought and salt tolerance in ramie. These results provide a reference for further studies on the function of the PP2C gene and advance the development of the mechanism of ramie stress response, with a view to providing candidate genes for the molecular breeding of ramie for drought and salt tolerance.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Yue Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China; (Y.C.); (H.Z.); (Y.W.); (X.Q.); (G.G.); (A.Z.); (P.C.); (X.W.); (K.C.); (J.C.)
- National Breeding Center or Bast Fiber Crops, MARA, Changsha 410221, China
| |
Collapse
|
5
|
Guo L, Lu S, Liu T, Nai G, Ren J, Gou H, Chen B, Mao J. Genome-Wide Identification and Abiotic Stress Response Analysis of PP2C Gene Family in Woodland and Pineapple Strawberries. Int J Mol Sci 2023; 24:ijms24044049. [PMID: 36835472 PMCID: PMC9961684 DOI: 10.3390/ijms24044049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Protein phosphatase 2C (PP2C) is a negative regulator of serine/threonine residue protein phosphatase and plays an important role in abscisic acid (ABA) and abiotic-stress-mediated signaling pathways in plants. The genome complexity of woodland strawberry and pineapple strawberry is different due to the difference in chromosome ploidy. This study conducted a genome-wide investigation of the FvPP2C (Fragaria vesca) and FaPP2C (Fragaria ananassa) gene family. Fifty-six FvPP2C genes and 228 FaPP2C genes were identified from the woodland strawberry and pineapple strawberry genomes, respectively. FvPP2Cs were distributed on seven chromosomes, and FaPP2Cs were distributed on 28 chromosomes. The size of the FaPP2C gene family was significantly different from that of the FvPP2C gene family, but both FaPP2Cs and FvPP2Cs were localized in the nucleus, cytoplasm, and chloroplast. Phylogenetic analysis revealed that 56 FvPP2Cs and 228 FaPP2Cs could be divided into 11 subfamilies. Collinearity analysis showed that both FvPP2Cs and FaPP2Cs had fragment duplication, and the whole genome duplication was the main cause of PP2C gene abundance in pineapple strawberry. FvPP2Cs mainly underwent purification selection, and there were both purification selection and positive selection effects in the evolution of FaPP2Cs. Cis-acting element analysis found that the PP2C family genes of woodland and pineapple strawberries mainly contained light responsive elements, hormone responsive elements, defense and stress responsive elements, and growth and development-related elements. The results of quantitative real-time PCR (qRT-PCR) showed that the FvPP2C genes showed different expression patterns under ABA, salt, and drought treatment. The expression level of FvPP2C18 was upregulated after stress treatment, which may play a positive regulatory role in ABA signaling and abiotic stress response mechanisms. This study lays a foundation for further investigation on the function of the PP2C gene family.
Collapse
|
6
|
Zhang G, Zhang Z, Luo S, Li X, Lyu J, Liu Z, Wan Z, Yu J. Genome-wide identification and expression analysis of the cucumber PP2C gene family. BMC Genomics 2022; 23:563. [PMID: 35933381 PMCID: PMC9356470 DOI: 10.1186/s12864-022-08734-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Type 2C protein phosphatase (PP2C) is a negative regulator of ABA signaling pathway, which plays important roles in stress signal transduction in plants. However, little research on the PP2C genes family of cucumber (Cucumis sativus L.), as an important economic vegetable, has been conducted. Results This study conducted a genome-wide investigation of the CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results reveal that CsPP2C family genes showed different expression patterns under ABA, drought, salt, and cold treatment, and that CsPP2C3, 11–17, 23, 45, 54 and 55 responded significantly to the four stresses. By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements and drought response elements. Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions The results of this study provide a reference for the genome-wide identification of the PP2C gene family in other species and provide a basis for future studies on the function of PP2C genes in cucumber. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08734-y.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xia Li
- Gansu Institute of Geological and Natural Disaster Prevention, Lanzhou, 730000, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Wan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Luo B, Guang M, Yun W, Ding S, Ren S, Gao H. Camellia sinensis Chloroplast Fluoride Efflux Gene CsABCB9 Is Involved in the Fluoride Tolerance Mechanism. Int J Mol Sci 2022; 23:ijms23147756. [PMID: 35887104 PMCID: PMC9317437 DOI: 10.3390/ijms23147756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Soil is a main source of fluoride for plants. The tea plants (Camellia sinensis) accumulate excessive amounts of fluoride in their leaves compared to other plants, but their fluoride tolerance mechanism is poorly understood. A chloroplast fluoride efflux gene (CsABCB9) was newly discovered by using transcriptome analysis, cloned from Camellia sinensis, and its function was demonstrated in the fluoride detoxication mechanism in Escherichia coli/Xenopus laevis oocytes and Arabidopsis thaliana. CsABCB9 is expressed in tea leaves upon F− treatment. The growth of tea, E. coli, and Arabidopsis were inhibited by F− treatment. However, growth of CsABCB9-overexpression in E. coli was shown to increase with lower fluoride content under F− treatment compared to the control. Furthermore, chlorophyll, xanthophyll and soluble sugar contents of CsABCB9-overexpression in Arabidopsis were improved under F− treatment compared to the wild type. CsABCB9 functions in fluoride transport, and the mechanism by which CsABCB9 improves fluoride resistance in tea is mainly chloroplast protection through fluoride efflux.
Collapse
Affiliation(s)
- Bingbing Luo
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (B.L.); (H.G.); Tel./Fax: +86-0551-65786447 (H.G.)
| | - Min Guang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenjing Yun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shitao Ding
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Suna Ren
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; (M.G.); (W.Y.); (S.D.); (S.R.)
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (B.L.); (H.G.); Tel./Fax: +86-0551-65786447 (H.G.)
| |
Collapse
|
8
|
Moriwaki K, Yanagisawa S, Iba K, Negi J. Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:440-451. [PMID: 35061307 DOI: 10.1111/tpj.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.
Collapse
Affiliation(s)
- Kosuke Moriwaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Xie X, Cao P, Wang Z, Gao J, Wu M, Li X, Zhang J, Wang Y, Gong D, Yang J. Genome-wide characterization and expression profiling of the PDR gene family in tobacco (Nicotiana tabacum). Gene 2021; 788:145637. [PMID: 33848571 DOI: 10.1016/j.gene.2021.145637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022]
Abstract
The pleiotropic drug resistance (PDR) proteins of the ATP-binding cassette (ABC) family play essential roles in physiological processes and have been characterized in many plant species. However, no comprehensive investigation of tobacco (Nicotiana tabacum), an important economic crop and a useful model plant for scientific research, has been presented. We identified 32 PDR genes in the tobacco genome and explored their domain organization, chromosomal distribution and evolution, promoter cis-elements, and expression profiles. A phylogenetic analysis revealed that tobacco has a significantly expanded number of PDR genes involved in plant defense. It also revealed that two tobacco PDR proteins may function as strigolactone transporters to regulate shoot branching, and several NtPDR genes may be involved in cadmium transport. Moreover, tissue expression profiles of NtPDR genes and their responses to several hormones and abiotic stresses were assessed using quantitative real-time PCR. Most of the NtPDR genes were regulated by jasmonate or salicylic acid, suggesting the important regulatory roles of NtPDRs in plant defense and secondary metabolism. They were also responsive to abiotic stresses, like drought and cold, and there was a strong correlation between the presence of promoter cis-elements and abiotic/biotic stress responses. These results provide useful clues for further in-depth studies on the functions of the tobacco PDR genes.
Collapse
Affiliation(s)
- Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Daping Gong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Hewage KAH, Yang J, Wang D, Hao G, Yang G, Zhu J. Chemical Manipulation of Abscisic Acid Signaling: A New Approach to Abiotic and Biotic Stress Management in Agriculture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001265. [PMID: 32999840 PMCID: PMC7509701 DOI: 10.1002/advs.202001265] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Indexed: 05/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is the best-known stress signaling molecule in plants. ABA protects sessile land plants from biotic and abiotic stresses. The conserved pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) perceives ABA and triggers a cascade of signaling events. A thorough knowledge of the sequential steps of ABA signaling will be necessary for the development of chemicals that control plant stress responses. The core components of the ABA signaling pathway have been identified with adequate characterization. The information available concerning ABA biosynthesis, transport, perception, and metabolism has enabled detailed functional studies on how the protective ability of ABA in plants might be modified to increase plant resistance to stress. Some of the significant contributions to chemical manipulation include ABA biosynthesis inhibitors, and ABA receptor agonists and antagonists. Chemical manipulation of key control points in ABA signaling is important for abiotic and biotic stress management in agriculture. However, a comprehensive review of the current knowledge of chemical manipulation of ABA signaling is lacking. Here, a thorough analysis of recent reports on small-molecule modulation of ABA signaling is provided. The challenges and prospects in the chemical manipulation of ABA signaling for the development of ABA-based agrochemicals are also discussed.
Collapse
Affiliation(s)
- Kamalani Achala H. Hewage
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Ge‐Fei Hao
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhan430079P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and HealthCentral China Normal UniversityWuhan430079P. R. China
- Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072P. R. China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biologyand CAS Center of Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghai20032P. R. China
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
11
|
Harris BJ, Harrison CJ, Hetherington AM, Williams TA. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr Biol 2020; 30:2001-2012.e2. [PMID: 32302587 DOI: 10.1016/j.cub.2020.03.048] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
The origin of land plants was accompanied by new adaptations to life on land, including the evolution of stomata-pores on the surface of plants that regulate gas exchange. The genes that underpin the development and function of stomata have been extensively studied in model angiosperms, such as Arabidopsis. However, little is known about stomata in bryophytes, and their evolutionary origins and ancestral function remain poorly understood. Here, we resolve the position of bryophytes in the land plant tree and investigate the evolutionary origins of genes that specify stomatal development and function. Our analyses recover bryophyte monophyly and demonstrate that the guard cell toolkit is more ancient than has been appreciated previously. We show that a range of core guard cell genes, including SPCH/MUTE, SMF, and FAMA, map back to the common ancestor of embryophytes or even earlier. These analyses suggest that the first embryophytes possessed stomata that were more sophisticated than previously envisioned and that the stomata of bryophytes have undergone reductive evolution, including their complete loss from liverworts.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
12
|
Haider MS, Khan N, Pervaiz T, Zhongjie L, Nasim M, Jogaiah S, Mushtaq N, Jiu S, Jinggui F. Genome-wide identification, evolution, and molecular characterization of the PP2C gene family in woodland strawberry. Gene 2019; 702:27-35. [PMID: 30890476 DOI: 10.1016/j.gene.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
The protein phosphatase 2C (PP2C) gene family is one of the momentous and conserved plant-specific gene families, known to participate in cellular processes via reversible protein phosphorylation and regulates signal transduction in eukaryotic organisms. Recently, PP2Cs were identified in Arabidopsis and maize, however, the whole-genome analysis of PP2C in strawberry has not yet been reported. In the current research, we found 62 PP2C-encoding genes in total from the strawberry genome. Further, the phylogenetic analysis categorized FvPP2C genes into twelve subgroups with significant structural conservation based on conserved domain and amino acid sequence. Moreover, we observed a strong signature of purifying selection between the comparison of orthologous gene pairs of strawberry and Arabidopsis. The comparison of RNA-sequence (RNA-seq) data published on various vegetative and reproductive tissues of strawberry plant suggested the significant role of FvPP2C genes in organ development. The qRT-PCR validation of thirty FvPP2C genes indicated their critical tolerance-related role under abiotic stress stimuli in strawberry. Finally, the subcellular localization of FvPP2C51 gene proves that it resides and stimulates its function in the nucleus. Our findings provide an overview of the identification of strawberry FvPP2C gene family and demonstrate their critical role in tissue-specific response and abiotic stress-tolerance, thereby, intimating their significance in the strawberry molecular breeding for the resistant cultivars.
Collapse
Affiliation(s)
- Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Nadeem Khan
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liu Zhongjie
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Maazullah Nasim
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnataka University, Dharwad, India
| | - Naveed Mushtaq
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fang Jinggui
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Fasani E, DalCorso G, Varotto C, Li M, Visioli G, Mattarozzi M, Furini A. The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. THE NEW PHYTOLOGIST 2017; 214:1614-1630. [PMID: 28332702 DOI: 10.1111/nph.14529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/14/2017] [Indexed: 05/08/2023]
Abstract
In the hyperaccumulator Arabidopsis halleri, the zinc (Zn) vacuolar transporter MTP1 is a key component of hypertolerance. Because protein sequences and functions are highly conserved between A. halleri and Arabidopsis thaliana, Zn tolerance in A. halleri may reflect the constitutively higher MTP1 expression compared with A. thaliana, based on copy number expansion and different cis regulation. Three MTP1 promoters were characterized in A. halleri ecotype I16. The comparison with the A. thaliana MTP1 promoter revealed different expression profiles correlated with specific cis-acting regulatory elements. The MTP1 5' untranslated region, highly conserved among A. thaliana, Arabidopsis lyrata and A. halleri, contains a dimer of MYB-binding motifs in the A. halleri promoters absent in the A. thaliana and A. lyrata sequences. Site-directed mutagenesis of these motifs revealed their role for expression in trichomes. A. thaliana mtp1 transgenic lines expressing AtMTP1 controlled by the native A. halleri promoter were more Zn-tolerant than lines carrying mutations on MYB-binding motifs. Differences in Zn tolerance were associated with different distribution of Zn among plant organs and in trichomes. The different cis-acting elements in the MTP1 promoters of A. halleri, particularly the MYB-binding sites, are probably involved in the evolution of Zn tolerance.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige (TN), 38010, Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige (TN), 38010, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
14
|
Alves GSC, Torres LF, Déchamp E, Breitler JC, Joët T, Gatineau F, Andrade AC, Bertrand B, Marraccini P, Etienne H. Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3017-3031. [PMID: 28830103 PMCID: PMC5853422 DOI: 10.1093/jxb/erx166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/25/2017] [Indexed: 05/02/2023]
Abstract
Despite the importance of the DREB1D gene (also known as CBF4) in plant responses to water deficit and cold stress, studies analysing its regulation by transgenic approaches are lacking. In the current work, a functional study of three CcDREB1D promoter haplotypes (named HP15, HP16 and HP17) isolated from drought-tolerant and drought-sensitive clones of Coffea canephora was carried out in plants of C. arabica stably transformed by Agrobacterium tumefaciens by analysing their ability to regulate the expression of the uidA reporter gene in response to water deficit mimicked by polyethylene glycol (-2.0 MPa) and low relative humidity treatments. A deletion analysis of their corresponding 5'-upstream regions revealed increased specificity of β-glucuronidase activity in the polyethylene glycol and low relative humidity treatments, with high expression in leaf mesophyll and guard cells in full-length constructs. RT-qPCR assays also revealed that the HP16 haplotype (specific to clone tolerant to water deficit) had stronger and earlier activity compared with the HP15 and HP17 haplotypes. As most of the cis-regulatory elements involved in ABA-dependent and -independent networks, tissue specificity and light regulation are common to these haplotypes, we propose that their organization, as well as the nucleic acid polymorphisms present outside these boxes, may play a role in modulating activities of DREB1D promoters in guard cells.
Collapse
Affiliation(s)
- Gabriel Sergio Costa Alves
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- CIRAD, UMR IPME, F-34394 Montpellier, France
- Universidade Federal de Lavras, Departamento de Química, Laboratório Central de Biologia Molecular (LCBM), Lavras, MG, Brazil
| | - Luana Ferreira Torres
- CIRAD, UMR IPME, F-34394 Montpellier, France
- Universidade Federal de Lavras, Departamento de Química, Laboratório Central de Biologia Molecular (LCBM), Lavras, MG, Brazil
| | | | | | - Thierry Joët
- IRD, UMR DIADE, 911 Avenue Agropolis, Montpellier, France
| | | | - Alan Carvalho Andrade
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- Embrapa Café, INOVACAFÉ, Campus UFLA, Lavras, MG, Brazil
| | | | - Pierre Marraccini
- EMBRAPA Recursos Genéticos e Biotecnologia (LGM), Parque EB, Brasilia, DF, Brazil
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | |
Collapse
|
15
|
Sasse J, Schlegel M, Borghi L, Ullrich F, Lee M, Liu GW, Giner JL, Kayser O, Bigler L, Martinoia E, Kretzschmar T. Petunia hybrida PDR2 is involved in herbivore defense by controlling steroidal contents in trichomes. PLANT, CELL & ENVIRONMENT 2016; 39:2725-2739. [PMID: 27628025 DOI: 10.1111/pce.12828] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/29/2016] [Indexed: 05/24/2023]
Abstract
As a first line of defense against insect herbivores many plants store high concentrations of toxic and deterrent secondary metabolites in glandular trichomes. Plant Pleiotropic Drug Resistance (PDR)-type ABC transporters are known secondary metabolite transporters, and several have been implicated in pathogen or herbivore defense. Here, we report on Petunia hybrida PhPDR2 as a major contributor to trichome-related chemical defense. PhPDR2 was found to localize to the plasma membrane and be predominantly expressed in multicellular glandular trichomes of leaves and stems. Down-regulation of PhPDR2 via RNA interference (pdr2) resulted in a markedly higher susceptibility of the transgenic plants to the generalist foliage feeder Spodoptera littoralis. Untargeted screening of pdr2 trichome metabolite contents showed a significant decrease in petuniasterone and petuniolide content, compounds, which had previously been shown to act as potent toxins against various insects. Our findings suggest that PhPDR2 plays a leading role in controlling petuniasterone levels in leaves and trichomes of petunia, thus contributing to herbivory resistance.
Collapse
Affiliation(s)
- Joëlle Sasse
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Markus Schlegel
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Lorenzo Borghi
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Friederike Ullrich
- Department of Biochemical and Chemical Engineering, TU Dortmund, Dortmund, Germany
| | - Miyoung Lee
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Guo-Wei Liu
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | | | - Oliver Kayser
- Department of Biochemical and Chemical Engineering, TU Dortmund, Dortmund, Germany
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zürich, 8008, Switzerland
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Tobias Kretzschmar
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
- International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
16
|
Castorina G, Fox S, Tonelli C, Galbiati M, Conti L. A novel role for STOMATAL CARPENTER 1 in stomata patterning. BMC PLANT BIOLOGY 2016; 16:172. [PMID: 27484174 PMCID: PMC4970199 DOI: 10.1186/s12870-016-0851-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Guard cells (GCs) are specialised cells within the plant epidermis which form stomatal pores, through which gas exchange can occur. The GCs derive through a specialised lineage of cell divisions which is specified by the transcription factor SPEECHLESS (SPCH), the expression of which can be detected in undifferentiated epidermal cells prior to asymmetric division. Other transcription factors may act before GC specification and be required for correct GC patterning. Previously, the DOF transcription factor STOMATAL CARPENTER 1 (SCAP1) was shown to be involved in GC function, by activating a set of GC-specific genes required for GC maturation and activity. It is thus far unknown whether SCAP1 can also affect stomatal development. RESULTS Here we show that SCAP1 expression can also be observed in young leaf primordia, before any GC differentiation occurs. The study of transgenic plants carrying a proSCAP1:GUS-GFP transcriptional fusion, coupled with qPCR analyses, indicate that SCAP1 expression peaks in a temporal window which is coincident with expression of stomatal patterning genes. Independent scap1 loss-of-function mutants have a reduced number of GCs whilst SCAP1 over expression lines have an increased number of GCs, in addition to altered GC distribution and spacing patterns. The study of early markers for stomatal cell lineage in a background carrying gain-of-function alleles of SCAP1 revealed that, compared to the wild type, an increased number of protodermal cells are recruited in the GC lineage, which is reflected in an increased number of meristemoids. CONCLUSIONS Our results suggest an early role for SCAP1 in GC differentiation. We propose that a function of SCAP1 is to integrate different aspects of GC biology including specification, spacing, maturation and function.
Collapse
Affiliation(s)
- Giulia Castorina
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Samantha Fox
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH UK
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Massimo Galbiati
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
17
|
Cao J, Jiang M, Li P, Chu Z. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 2016; 17:175. [PMID: 26935448 PMCID: PMC4776448 DOI: 10.1186/s12864-016-2526-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background The type-2C protein phosphatases (PP2Cs), negatively regulating ABA responses and MAPK cascade pathways, play important roles in stress signal transduction in plants. Brachypodium distachyon is a new model plant for exploring the functional genomics of temperate grasses, cereals and biofuel crops. To date, genome-wide identification and analysis of the PP2C gene family in B. distachyon have not been investigated. Results In this study, 86 PP2C genes in B. distachyon were identified. Domain-based analyses of PP2C proteins showed that they all contained the phosphatase domains featured as 11 conserved signature motifs. Although not all phosphatase domains of BdPP2C members included all 11 motifs, tertiary structure analysis showed that four residues contributing to magnesium/manganese ions (Mg2+/Mn2+) coordination were conserved, except for two noncanonical members. The analysis of their chromosomal localizations showed that most of the BdPP2C genes were located within the low CpG density region. Phylogenetic tree and synteny blocks analyses among B. distachyon, Arabidopsis thaliana and Oryza sativa revealed that all PP2C members from the three species can be phylogenetically categorized into 13 subgroups (A–M) and BdPP2Cs were evolutionarily more closely related to OsPP2Cs than to AtPP2Cs. Segmental duplications contributed particularly to the expansion of the BdPP2C gene family and all duplicated BdPP2Cs evolved mainly from purifying selection. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis showed that BdPP2Cs were broadly expressed in disparate tissues. We also found that almost all members displayed up-regulation in response to abiotic stresses such as cold, heat, PEG and NaCl treatments, but down-regulation to biotic stresses such as Ph14, Guy11 and F0968 infection. Conclusions In the present study, a comprehensive analysis of genome-wide identification and characterization of protein domains, phylogenetic relationship, gene and protein structure, chromosome location and expression pattern of the PP2C gene family was carried out for the first time in a new model monocot, i.e., B. distachyon. Our results provide a reference for genome-wide identification of the PP2C gene family of other species and also provide a foundation for future functional research on PP2C genes in B. distachyon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2526-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianmei Cao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China. .,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
18
|
Horrer D, Flütsch S, Pazmino D, Matthews JSA, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening. Curr Biol 2016; 26:362-70. [PMID: 26774787 DOI: 10.1016/j.cub.2015.12.036] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 11/28/2022]
Abstract
Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of β-amylase 1 (BAM1) and α-amylase 3 (AMY3)-enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H(+)-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light.
Collapse
Affiliation(s)
- Daniel Horrer
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Sabrina Flütsch
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Jack S A Matthews
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Matthias Thalmann
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Arianna Nigro
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes (LBDP), UMR 7265 CNRS-CEA Université Aix-Marseille II, CEA Cadarache Bat 156, 13108 Saint Paul Lez Durance, France
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Diana Santelia
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| |
Collapse
|
19
|
Rajsz A, Warzybok A, Migocka M. Genes Encoding Cucumber Full-Size ABCG Proteins Show Different Responses to Plant Growth Regulators and Sclareolide. PLANT MOLECULAR BIOLOGY REPORTER 2016; 34:720-736. [PMID: 27429510 PMCID: PMC4923091 DOI: 10.1007/s11105-015-0956-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Full-size members of the ABCG (ATP-binding cassette, subfamily G) subfamily of ABC transporters have been found only in plants and fungi. The plant genes encoding full-size ABCGs identified so far appeared to be differentially regulated under various environmental constraints, plant growth regulators, and microbial elicitors, indicating a broad functional role of these proteins in plant responses to abiotic and biotic stress. Nevertheless, the structure and physiological function of full-size ABCGs in many plant species are still unknown. We have recently identified 16 genes encoding full-size ABCG proteins in cucumber and found that the transcripts of two of them, CsABCG36 (CsPDR8) and CsABCG40 (CsPDR12), are most abundant in roots and are significantly affected by phytohormones and auxin herbicide. In this study, we analyzed the structure and phylogeny of all the full-size cucumber ABCG transporters and studied the organ expression profiles of the remaining 14 CsABCG genes. In addition, we investigated the effect of different plant growth regulators and the diterpene sclareolide on CsABCG expression in cucumber roots. Until now, the full-size plant ABCG transporters have been grouped into five different clusters. The new phylogenetic analysis of full-size ABCGs from model plants and cucumber clustered these proteins into six different subgroups. Interestingly, the expression profiles of cucumber ABCG genes assigned to the same clusters were not correlated, suggesting functional diversification or different regulatory mechanisms of the full-size cucumber ABCG proteins.
Collapse
Affiliation(s)
- Adam Rajsz
- Department of Plant Molecular Physiology, University of Wroclaw, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Warzybok
- Department of Plant Molecular Physiology, University of Wroclaw, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Magdalena Migocka
- Department of Plant Molecular Physiology, University of Wroclaw, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
20
|
Abscisic acid transporters cooperate to control seed germination. Nat Commun 2015; 6:8113. [PMID: 26334616 PMCID: PMC4569717 DOI: 10.1038/ncomms9113] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues.
Collapse
|
21
|
Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, Singh VK, Yadav D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. PLANTA 2015; 241:549-62. [PMID: 25564353 DOI: 10.1007/s00425-014-2239-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/25/2014] [Indexed: 05/18/2023]
Abstract
The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.
Collapse
Affiliation(s)
- S Gupta
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, 273 009, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Andolfo G, Ruocco M, Di Donato A, Frusciante L, Lorito M, Scala F, Ercolano MR. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC PLANT BIOLOGY 2015; 15:51. [PMID: 25850033 PMCID: PMC4358917 DOI: 10.1186/s12870-014-0323-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/06/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND ATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants. RESULTS Recently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza. sativa, Solanum lycopersicum, Solanum tuberosum and Vitis vinifera) and 76 transporters in the green alga Volvox carteri, by comparing them with those reannotated in Arabidopsis thaliana and the yeast Saccharomyces cerevisiae. Retrieved proteins have been phylogenetically analysed to infer orthologous relationships. Most orthologous relationships in the A, D, E and F subfamilies were found, and interesting expansions within the ABCG subfamily were observed and discussed. A high level of purifying selection is acting in the five ABC subfamilies A, B, C, D and E. However, evolutionary rates of recent duplicate genes could influence vascular plant genome diversification. The transcription profiles of ABC genes within tomato organs revealed a broad functional role for some transporters and a more specific activity for others, suggesting the presence of key ABC regulators in tomato. CONCLUSIONS The findings achieved in this work could contribute to address several biological questions concerning the evolution of the relationship between genomes of different species. Plant ABC protein inventories obtained could be a valuable tool both for basic and applied studies. Indeed, interpolation of the putative role of gene functions can accelerate the discovering of new ABC superfamily members.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Michelina Ruocco
- />CNR – Istituto per la Protezione Sostenibile delle Piante (IPSP-CNR), Portici, Italy
| | - Antimo Di Donato
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Luigi Frusciante
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Matteo Lorito
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Felice Scala
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| | - Maria Raffaella Ercolano
- />Department of Agricultural Sciences, University of Naples ‘Federico II’, Via Universita’ 100, 80055 Portici, Italy
| |
Collapse
|
23
|
Imai H, Noda Y, Tamaoki M. Alteration of Arabidopsis SLAC1 promoter and its association with natural variation in drought tolerance. PLANT SIGNALING & BEHAVIOR 2015; 10:e989761. [PMID: 25695335 PMCID: PMC4623007 DOI: 10.4161/15592324.2014.989761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 05/08/2023]
Abstract
Natural variation for drought tolerance is a major issue in adaptation and geographic distribution of terrestrial plants. Despite the importance, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We analyzed the intraspecific drought tolerance variation between 2 accessions of Arabidopsis thaliana, Columbia (Col)-0 and Wassilewskija (Ws)-2. Measurement of weight loss in detached seedlings demonstrated a clear difference between drought-tolerant Col-0 and drought-sensitive Ws-2. They also differed in their stomatal response under drought condition. Using a quantitative genetic approach, we found a significant quantitative locus on chromosome 1. Surveying in the locus, we extrapolated that the SLAC1 gene, which is associated with stomatal closure, was likely responsible for the difference of drought tolerance. Comparison of their nucleotide and amino acid sequences revealed that there were few differences in regions encoding SLAC1 protein but was a large deletion in SLAC1 promoter of Ws-2. Histochemical GUS staining showed that the SLAC1 expressed dominantly in guard cells of Col-0, but did less in guard cells of Ws-2. Quantitative PCR analysis also showed that transcript level of SLAC1 in guard cells was higher in Col-0 than in Ws-2. The SLAC1 transcription analyses indicate low accumulation of SLAC1 in guard cells of Ws-2. When taken together, our results suggest that the low drought tolerance of Ws-2 was associated with the deletion of the promoter region of Ws-2 SLAC1.
Collapse
Affiliation(s)
- Hiroe Imai
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tennohdai; Tsukuba, Ibaraki, Japan
| | - Yusaku Noda
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tennohdai; Tsukuba, Ibaraki, Japan
| | - Masanori Tamaoki
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tennohdai; Tsukuba, Ibaraki, Japan
- Center for Environmental Biology and Ecosystem; National Institute for Environmental Studies; Onogawa; Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Lawson T, Simkin AJ, Kelly G, Granot D. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. THE NEW PHYTOLOGIST 2014; 203:1064-1081. [PMID: 25077787 DOI: 10.1111/nph.12945] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/02/2014] [Indexed: 05/19/2023]
Abstract
Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere. Guard cells determine stomatal aperture and must operate to ensure an appropriate balance between CO2 uptake for photosynthesis (A) and water loss, and ultimately plant water use efficiency (WUE). A strong correlation between A and stomatal conductance (gs ) is well documented and often observed, but the underlying mechanisms, possible signals and metabolites that promote this relationship are currently unknown. In this review we evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behaviour with mesophyll carbon assimilation. We explore a possible role of various metabolites including sucrose and malate (from several potential sources; including guard cell photosynthesis) and new evidence that improvements in WUE have been made by manipulating sucrose metabolism within the guard cells. Finally we discuss the new tools and techniques available for potentially manipulating cell-specific metabolism, including guard and mesophyll cells, in order to elucidate mesophyll-derived signals that coordinate mesophyll CO2 demands with stomatal behaviour, in order to provide a mechanistic understanding of these processes as this may identify potential targets for manipulations in order to improve plant WUE and crop yield.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Andrew J Simkin
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, 50250, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, 50250, Israel
| |
Collapse
|
25
|
Marchadier E, Hetherington AM. Involvement of two-component signalling systems in the regulation of stomatal aperture by light in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 203:462-468. [PMID: 24758561 DOI: 10.1111/nph.12813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/14/2014] [Indexed: 05/07/2023]
Abstract
Two-component signalling (TCS) systems play important roles in cytokinin and ethylene signalling in Arabidopsis thaliana. Although the involvement of histidine kinases (AHKs) in drought stress responses has been described, their role and that of histidine phosphotransferases (AHPs) in guard cell signalling remain to be fully elucidated. Here, we investigated the roles of TCS genes, the histidine phosphotransferase AHP2 and the histidine kinases AHK2 and AHK3, previously reported to play roles in cytokinin and abscisic acid (ABA) signalling. We show that AHP2 is present in the nucleus and the cytoplasm, and is involved in light-induced opening. We also present evidence that there is some redistribution of AHP2 from the nucleus to the cytoplasm on addition of ABA. In addition, we provide data to support a role for the cytokinin receptors AHK2 and AHK3 in light-induced stomatal opening and, by inference, in controlling the stomatal sensitivity to ABA. Our results provide new insights into the operation of TCS in plants, cross-talk in stomatal signalling and, in particular, the process of light-induced stomatal opening.
Collapse
Affiliation(s)
- Elodie Marchadier
- Department of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
- INRA-Institut National de la Recherche Agronomique, UMR 1318, Institut Jean-Pierre Bourgin, RD10, F-78000, Versailles, France
| | - Alistair M Hetherington
- Department of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
26
|
Han SK, Wagner D. Role of chromatin in water stress responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2785-99. [PMID: 24302754 PMCID: PMC4110454 DOI: 10.1093/jxb/ert403] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to environmental stresses throughout their life. They have developed survival strategies such as developmental and morphological adaptations, as well as physiological responses, to protect themselves from adverse environments. In addition, stress sensing triggers large-scale transcriptional reprogramming directed at minimizing the deleterious effect of water stress on plant cells. Here, we review recent findings that reveal a role of chromatin in water stress responses. In addition, we discuss data in support of the idea that chromatin remodelling and modifying enzymes may be direct targets of stress signalling pathways. Modulation of chromatin regulator activity by these signaling pathways may be critical in minimizing potential trade-offs between growth and stress responses. Alterations in the chromatin organization and/or in the activity of chromatin remodelling and modifying enzymes may furthermore contribute to stress memory. Mechanistic insight into these phenomena derived from studies in model plant systems should allow future engineering of broadly drought-tolerant crop plants that do not incur unnecessary losses in yield or growth.
Collapse
Affiliation(s)
- Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Lawson T, Blatt MR. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. PLANT PHYSIOLOGY 2014; 164:1556-70. [PMID: 24578506 PMCID: PMC3982722 DOI: 10.1104/pp.114.237107] [Citation(s) in RCA: 513] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 02/25/2014] [Indexed: 05/18/2023]
Abstract
The control of gaseous exchange between the leaf and bulk atmosphere by stomata governs CO₂ uptake for photosynthesis and transpiration, determining plant productivity and water use efficiency. The balance between these two processes depends on stomatal responses to environmental and internal cues and the synchrony of stomatal behavior relative to mesophyll demands for CO₂. Here we examine the rapidity of stomatal responses with attention to their relationship to photosynthetic CO₂ uptake and the consequences for water use. We discuss the influence of anatomical characteristics on the velocity of changes in stomatal conductance and explore the potential for manipulating the physical as well as physiological characteristics of stomatal guard cells in order to accelerate stomatal movements in synchrony with mesophyll CO₂ demand and to improve water use efficiency without substantial cost to photosynthetic carbon fixation. We conclude that manipulating guard cell transport and metabolism is just as, if not more likely to yield useful benefits as manipulations of their physical and anatomical characteristics. Achieving these benefits should be greatly facilitated by quantitative systems analysis that connects directly the molecular properties of the guard cells to their function in the field.
Collapse
Affiliation(s)
| | - Michael R. Blatt
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (T.L.); and
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (M.R.B.)
| |
Collapse
|
28
|
Negi J, Hashimoto-Sugimoto M, Kusumi K, Iba K. New approaches to the biology of stomatal guard cells. PLANT & CELL PHYSIOLOGY 2014; 55:241-50. [PMID: 24104052 PMCID: PMC3913439 DOI: 10.1093/pcp/pct145] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 05/19/2023]
Abstract
CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a convenient indicator of transpiration, and can be used to detect mutants with altered stomatal control. To identify genes that function in CO2 responses in guard cells, CO2-insensitive mutants were isolated through high-throughput leaf thermal imaging. The isolated mutants are categorized into three groups according to their phenotypes: (i) impaired in stomatal opening under low CO2 concentrations; (ii) impaired in stomatal closing under high CO2 concentrations; and (iii) impaired in stomatal development. Characterization of these mutants has begun to yield insights into the mechanisms of stomatal CO2 responses. In this review, we summarize the current status of the field and discuss future prospects.
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
- These authors contributed equally to this work
| | - Kensuke Kusumi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| |
Collapse
|
29
|
Wang H, Kanagarajan S, Han J, Hao M, Yang Y, Lundgren A, Brodelius PE. Studies on the expression of linalool synthase using a promoter-β-glucuronidase fusion in transgenic Artemisia annua. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:85-96. [PMID: 24331423 DOI: 10.1016/j.jplph.2013.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/21/2013] [Accepted: 09/28/2013] [Indexed: 05/22/2023]
Abstract
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.
Collapse
Affiliation(s)
- Hongzhen Wang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Junli Han
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Mengshu Hao
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Yiyi Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
30
|
ABCG Transporters and Their Role in the Biotic Stress Response. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-319-06511-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Rusconi F, Simeoni F, Francia P, Cominelli E, Conti L, Riboni M, Simoni L, Martin CR, Tonelli C, Galbiati M. The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3361-71. [PMID: 23828545 PMCID: PMC3733157 DOI: 10.1093/jxb/ert180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have evolved different strategies to resist drought, of which the best understood is the abscisic acid (ABA)-induced closure of stomatal pores to reduce water loss by transpiration. The availability of useful promoters that allow for precise spatial and temporal control of gene expression in stomata is essential both for investigating stomatal regulation in model systems and for biotechnological applications in field crops. Previous work indicated that the regulatory region of the transcription factor AtMYB60 specifically drives gene expression in guard cells of Arabidopsis, although its activity is rapidly down-regulated by ABA. Here, the activity of the full-length and minimal AtMYB60 promoters is reported in rice (Oryza sativa), tobacco (Nicotiana tabacum), and tomato (Solanum lycopersicum), using a reporter gene approach. In rice, the activity of both promoters was completely abolished, whereas it was spatially restricted to guard cells in tobacco and tomato. To overcome the negative effect of ABA on the AtMYB60 promoter, a chimeric inducible system was developed, which combined the cellular specificity of the AtMYB60 minimal promoter with the positive responsiveness to dehydration and ABA of the rd29A promoter. Remarkably, the synthetic module specifically up-regulated gene expression in guard cells of Arabidopsis, tobacco, and tomato in response to dehydration or ABA. The comparative analysis of different native and synthetic regulatory modules derived from the AtMYB60 promoter offers new insights into the functional conservation of the cis-mechanisms that mediate gene expression in guard cells in distantly related dicotyledonous species and provides novel tools for modulating stomatal activity in plants.
Collapse
Affiliation(s)
| | - Fabio Simeoni
- Fondazione Filarete, Milano, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Milano, Milano, Italy
| | - Priscilla Francia
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- * Present address: Dipartimento Formazione e Apprendimento SUPSI-DFA, Locarno, Switzerland
| | - Eleonora Cominelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- Present address: Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | - Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Matteo Riboni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | | | | | - Chiara Tonelli
- Fondazione Filarete, Milano, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Massimo Galbiati
- Fondazione Filarete, Milano, Italy
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Han L, Han YN, Xiao XG. Truncated cotton subtilase promoter directs guard cell-specific expression of foreign genes in tobacco and Arabidopsis. PLoS One 2013; 8:e59802. [PMID: 23555786 PMCID: PMC3612094 DOI: 10.1371/journal.pone.0059802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/19/2013] [Indexed: 02/01/2023] Open
Abstract
A 993-bp regulatory region upstream of the translation start codon of subtilisin-like serine protease gene was isolated from Gossypium barbadense. This (T/A)AAAG-rich region, GbSLSP, and its 5'- and 3'-truncated versions were transferred into tobacco and Arabidopsis after fusing with GUS or GFP. Histochemical and quantitative GUS analysis and confocal GFP fluorescence scanning in the transgenic plants showed that the GbSLSP-driven GUS and GFP expressed preferentially in guard cells, whereas driven by GbSLSPF2 to GbSLSPF4, the 5'-truncated GbSLSP versions with progressively reduced Dof1 elements, both GUS and GFP expressed exclusively in guard cells, and the expression strength declined with (T/A)AAAG copy decrement. Deletion of 5'-untranslated region from GbSLSP markedly weakened the activity of GUS and GFP, while deletion from the strongest guard cell-specific promoter, GbSLSPF2, not only significantly decreased the expression strength, but also completely abolished the guard cell specificity. These results suggested both guard cell specificity and expression strength of the promoters be coordinately controlled by 5'-untranslated region and a cluster of at least 3 (T/A)AAAG elements within a region of about 100 bp relative to transcription start site. Our guard cell-specific promoters will enrich tools to manipulate gene expression in guard cells for scientific research and crop improvement.
Collapse
Affiliation(s)
- Lei Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ya-Nan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xing-Guo Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Negi J, Moriwaki K, Konishi M, Yokoyama R, Nakano T, Kusumi K, Hashimoto-Sugimoto M, Schroeder JI, Nishitani K, Yanagisawa S, Iba K. A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis. Curr Biol 2013; 23:479-84. [PMID: 23453954 DOI: 10.1016/j.cub.2013.02.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/07/2013] [Accepted: 02/01/2013] [Indexed: 11/16/2022]
Abstract
Stomata are highly specialized organs that consist of pairs of guard cells and regulate gas and water vapor exchange in plants [1-3]. Although early stages of guard cell differentiation have been described [4-10] and were interpreted in analogy to processes of cell type differentiation in animals [11], the downstream development of functional stomatal guard cells remains poorly understood. We have isolated an Arabidopsis mutant, stomatal carpenter 1 (scap1), that develops irregularly shaped guard cells and lacks the ability to control stomatal aperture, including CO2-induced stomatal closing and light-induced stomatal opening. SCAP1 was identified as a plant-specific Dof-type transcription factor expressed in maturing guard cells, but not in guard mother cells. SCAP1 regulates the expression of genes encoding key elements of stomatal functioning and morphogenesis, such as K(+) channel protein, MYB60 transcription factor, and pectin methylesterase. Consequently, ion homeostasis was disturbed in scap1 guard cells, and esterification of extracellular pectins was impaired so that the cell walls lining the pores did not mature normally. We conclude that SCAP1 regulates essential processes of stomatal guard cell maturation and functions as a key transcription factor regulating the final stages of guard cell differentiation.
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bates GW, Rosenthal DM, Sun J, Chattopadhyay M, Peffer E, Yang J, Ort DR, Jones AM. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS One 2012. [PMID: 23185391 PMCID: PMC3504121 DOI: 10.1371/journal.pone.0049641] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microarray analysis was performed on RNA isolated from guard cells that were manually dissected from leaves of Arabidopsis. By pooling our data with those of two earlier studies on Arabidopsis guard cell protoplasts, we provide a robust view of the guard-cell transcriptome, which is rich in transcripts for transcription factors, signaling proteins, transporters, and carbohydrate-modifying enzymes. To test the hypothesis that photosynthesis-derived sugar signals guard cells to adjust stomatal opening, we determined the profile of genes expressed in guard cells from leaves that had been treated with sucrose. The results revealed that expression of 440 genes changed in guard cells in response to sucrose. Consistent with this hypothesis, these genes encoded cellular functions for photosynthesis and transport of sugars, water, amino acids, and ions. Plants of T-DNA insertion lines for 50 genes highly responsive to sucrose were examined for defects in guard cell function. Twelve genes not previously known to function in guard cells were shown to be important in leaf conductance, water-use efficiency, and/or stomate development. Of these, three are of particular interest, having shown effects in nearly every test of stomatal function without a change in stomatal density: TPS5 (At4g17770), a TRAF domain-containing protein (At1g65370), and a WD repeat–containing protein (At1g15440).
Collapse
Affiliation(s)
- George W Bates
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N Biotechnol 2012; 30:355-61. [PMID: 23165101 DOI: 10.1016/j.nbt.2012.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/05/2012] [Indexed: 11/29/2022]
Abstract
Drought and high salinity are two major abiotic stresses affecting crop productivity. Therefore, the development of crops better adapted to cope with these stresses represents a key goal to ensure global food security to an increasing world population. Although many genes involved in the response to these abiotic stresses have been extensively characterised and some stress tolerant plants developed, the success rate in producing stress-tolerant crops for field conditions has been thus far limited. In this review we discuss different factors hampering the successful transfer of beneficial genes from model species to crops, emphasizing some limitations in the phenotypic characterisation and definition of the stress tolerant plants developed so far. We also highlight some technological advances and different approaches that may help in developing cultivated stress tolerant plants.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via E. Bassini 15, 20133 Milano, Italy
| | | | | | | |
Collapse
|
36
|
|
37
|
Cominelli E, Galbiati M, Tonelli C. Transcription factors controlling stomatal movements and drought tolerance. Transcription 2012; 1:41-5. [PMID: 21327157 DOI: 10.4161/trns.1.1.12064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/19/2022] Open
Abstract
In the last years some efforts in the characterization of transcription factors involved in stomatal movements in plants have been undertaken. These findings provide new insights into the molecular mechanisms that plants adopt to cope with abiotic stress and offer new strategies to improve plant drought tolerance.
Collapse
|
38
|
Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC PLANT BIOLOGY 2011; 11:162. [PMID: 22088138 PMCID: PMC3248575 DOI: 10.1186/1471-2229-11-162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/16/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND We previously demonstrated that the Arabidopsis thaliana AtMYB60 protein is an R2R3MYB transcription factor required for stomatal opening. AtMYB60 is specifically expressed in guard cells and down-regulated at the transcriptional levels by the phytohormone ABA. RESULTS To investigate the molecular mechanisms governing AtMYB60 expression, its promoter was dissected through deletion and mutagenesis analyses. By studying different versions of AtMYB60 promoter::GUS reporter fusions in transgenic plants we were able to demonstrate a modular organization for the AtMYB60 promoter. Particularly we defined: a minimal promoter sufficient to confer guard cell-specific activity to the reporter gene; the distinct roles of different DOF-binding sites organised in a cluster in the minimal promoter in determining guard cell-specific expression; the promoter regions responsible for the enhancement of activity in guard cells; a promoter region responsible for the negative transcriptional regulation by ABA. Moreover from the analysis of single and multiple mutants we could rule out the involvement of a group of DOF proteins, known as CDFs, already characterised for their involvement in flowering time, in the regulation of AtMYB60 expression. CONCLUSIONS These findings shed light on the regulation of gene expression in guard cells and provide new promoter modules as useful tools for manipulating gene expression in guard cells, both for physiological studies and future biotechnological applications.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | - Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Fondazione Filarete, Milano, Italy
| | - Alessandra Albertini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fornara
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Lucio Conti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Fondazione Filarete, Milano, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chiara Tonelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
39
|
Galbiati M, Matus JT, Francia P, Rusconi F, Cañón P, Medina C, Conti L, Cominelli E, Tonelli C, Arce-Johnson P. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC PLANT BIOLOGY 2011; 11:142. [PMID: 22018045 PMCID: PMC3206852 DOI: 10.1186/1471-2229-11-142] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Under drought, plants accumulate the signaling hormone abscisic acid (ABA), which induces the rapid closure of stomatal pores to prevent water loss. This event is trigged by a series of signals produced inside guard cells which finally reduce their turgor. Many of these events are tightly regulated at the transcriptional level, including the control exerted by MYB proteins. In a previous study, while identifying the grapevine R2R3 MYB family, two closely related genes, VvMYB30 and VvMYB60 were found with high similarity to AtMYB60, an Arabidopsis guard cell-related drought responsive gene. RESULTS Promoter-GUS transcriptional fusion assays showed that expression of VvMYB60 was restricted to stomatal guard cells and was attenuated in response to ABA. Unlike VvMYB30, VvMYB60 was able to complement the loss-of-function atmyb60-1 mutant, indicating that VvMYB60 is the only true ortholog of AtMYB60 in the grape genome. In addition, VvMYB60 was differentially regulated during development of grape organs and in response to ABA and drought-related stress conditions. CONCLUSIONS These results show that VvMYB60 modulates physiological responses in guard cells, leading to the possibility of engineering stomatal conductance in grapevine, reducing water loss and helping this species to tolerate drought under extreme climatic conditions.
Collapse
Affiliation(s)
- Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - José Tomás Matus
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
- Centre for Research in Agricultural Genomics (CRAG), 08193 Barcelona, Spain
| | - Priscilla Francia
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Fabio Rusconi
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Paola Cañón
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Consuelo Medina
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| | - Lucio Conti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Fondazione Filarete, Viale Ortles 22/4, 20139, Milano, Italy
| | - Eleonora Cominelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Istituto di Biologia e Biotecnologia Agraria, CNR; Milano, Italy
| | - Chiara Tonelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Patricio Arce-Johnson
- Pontificia Universidad Católica de Chile, Departamento de Genética Molecular y Microbiología. Alameda 340. Santiago, Chile
| |
Collapse
|
40
|
Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D. Cytochromes p450. THE ARABIDOPSIS BOOK 2011; 9:e0144. [PMID: 22303269 PMCID: PMC3268508 DOI: 10.1199/tab.0144] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization.
Collapse
Affiliation(s)
- Søren Bak
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Fred Beisson
- Department of Plant Biology and Environmental Microbiology, CEA/CNRS/Aix-Marseille Université, UMR 6191 Cadarache, F-13108 Saint-Paul-lez-Durance, France
| | - Gerard Bishop
- Division of Biology, Faculty of Natural Sciences, Imperial College London, SW7 2AZ
| | - Björn Hamberger
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - René Höfer
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| | - Suzanne Paquette
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Department of Biological Structure, HSB G-514, Box 357420, University of Washington, Seattle, WA, 98195-9420
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
41
|
Atarés A, Moyano E, Morales B, Schleicher P, García-Abellán JO, Antón T, García-Sogo B, Perez-Martin F, Lozano R, Flores FB, Moreno V, del Carmen Bolarin M, Pineda B. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. PLANT CELL REPORTS 2011; 30:1865-79. [PMID: 21647638 PMCID: PMC3172414 DOI: 10.1007/s00299-011-1094-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/14/2011] [Accepted: 05/22/2011] [Indexed: 05/20/2023]
Abstract
Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T(0) lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought.
Collapse
Affiliation(s)
- Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Moyano
- CEBAS-CSIC, Campus de Espinardo, Apdo. 164, 30100 Murcia, Spain
| | - Belén Morales
- CEBAS-CSIC, Campus de Espinardo, Apdo. 164, 30100 Murcia, Spain
| | - Peter Schleicher
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fernando Perez-Martin
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Rafael Lozano
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | | | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain
| | | | - Benito Pineda
- Departamento de Biología Aplicada, E. Politécnica Superior, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
42
|
Cominelli E, Tonelli C. Transgenic crops coping with water scarcity. N Biotechnol 2010; 27:473-7. [DOI: 10.1016/j.nbt.2010.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 08/10/2010] [Indexed: 11/30/2022]
|
43
|
Landoni M, De Francesco A, Galbiati M, Tonelli C. A loss-of-function mutation in Calmodulin2 gene affects pollen germination in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2010; 74:235-247. [PMID: 20683641 DOI: 10.1007/s11103-010-9669-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
44
|
Abstract
High-resolution cellular analysis will help answer many important questions in plant biology including how genetic information is differentially used to enable the formation and development of the plant body. By comparing transcriptome data from distinct cell types during various stages of development, insight can be obtained into the transcriptional networks that underpin the attributes and contributions of particular cells and tissues. Laser microdissection (LM) is a technique that enables researchers to obtain specific cells or tissues from histological samples in a manner conducive to downstream molecular analysis. LM has become an established strategy in many areas of biology and it has recently been adapted for use with many types of plant tissue.
Collapse
Affiliation(s)
- Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
45
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|
46
|
Nadeau JA. Stomatal development: new signals and fate determinants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:29-35. [PMID: 19042149 PMCID: PMC2645895 DOI: 10.1016/j.pbi.2008.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 05/18/2023]
Abstract
Stomata and pavement cells are produced by a series of asymmetric divisions and progressive fate transitions within a stem cell lineage. In Arabidopsis, this process is regulated so that new lineages can be inserted between previously differentiated cells while maintaining stomatal spacing. The small peptide EPIDERMAL PATTERNING FACTOR 1 may be a positional signal secreted by stomatal precursors to modulate behavior of nearby cells. Signal-receiving cells may use TOO MANY MOUTHS and ERECTA family receptors and a MAPK pathway to regulate initiation of new lineages, promote asymmetric division, and control the plane of spacing divisions. Cell fate transitions are controlled by basic helix-loop-helix transcription factor (bHLH), MYB, and MADS-box transcription factors, and there is evidence of miRNA regulation. These results provide insight into positive and negative influences on stomatal cell transitions and suggest points of potential environmental regulation.
Collapse
Affiliation(s)
- Jeanette A Nadeau
- Department of Biology, University of Central Florida, Orlando, FL 32816-2368, USA.
| |
Collapse
|
47
|
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1439-63. [PMID: 19181866 DOI: 10.1093/jxb/ern340] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stomatal guard cells are functionally specialized epidermal cells usually arranged in pairs surrounding a pore. Changes in ion fluxes, and more specifically osmolytes, within the guard cells drive opening/closing of the pore, allowing gas exchange while limiting water loss through evapo-transpiration. Adjustments of the pore aperture to optimize these conflicting needs are thus centrally important for land plants to survive, especially with the rise in CO(2) associated with global warming and increasing water scarcity this century. The basic biophysical events in modulating membrane transport have been gradually delineated over two decades. Genetics and molecular approaches in recent years have complemented and extended these earlier studies to identify major regulatory nodes. In Arabidopsis, the reference for guard cell genetics, stomatal opening driven by K(+) entry is mainly through KAT1 and KAT2, two voltage-gated K(+) inward-rectifying channels that are activated on hyperpolarization of the plasma membrane principally by the OST2 H(+)-ATPase (proton pump coupled to ATP hydrolysis). By contrast, stomatal closing is caused by K(+) efflux mainly through GORK, the outward-rectifying channel activated by membrane depolarization. The depolarization is most likely initiated by SLAC1, an anion channel distantly related to the dicarboxylate/malic acid transport protein found in fungi and bacteria. Beyond this established framework, there is also burgeoning evidence for the involvement of additional transporters, such as homologues to the multi-drug resistance proteins (or ABC transporters) as intimated by several pharmacological and reverse genetics studies. General inhibitors of protein kinases and protein phosphatases have been shown to profoundly affect guard cell membrane transport properties. Indeed, the first regulatory enzymes underpinning these transport processes revealed genetically were several protein phosphatases of the 2C class and the OST1 kinase, a member of the SnRK2 family. Taken together, these results are providing the first glimpses of an emerging signalling complex critical for modulating the stomatal aperture in response to environmental stimuli.
Collapse
Affiliation(s)
- Caroline Sirichandra
- Institut des Sciences du Végetal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
Chloroplasts are a key feature of most guard cells; however, the function of these organelles in stomatal responses has been a subject of debate. This review examines evidence for and against a role of guard cell chloroplasts in stimulating stomatal opening. Controversy remains over the extent to which guard cell Calvin cycle activity contributes to stomatal regulation. However, this is only one of four possible functions of guard cell chloroplasts; other roles include supply of ATP, blue-light signalling and starch storage. Evidence exists for all these mechanisms, but is highly dependent upon species and growth/measurement conditions, with inconsistencies between different laboratories reported. Significant plasticity and extreme flexibility in guard cell osmoregulatory, signalling and sensory pathways may be one explanation. The use of chlorophyll a fluorescence analysis of individual guard cells is discussed in assessing guard and mesophyll cell physiology in relation to stomatal function. Developments in transgenic and molecular techniques have recently provided interesting, albeit contrasting, data regarding the role of these highly conserved organelles in stomatal function. Recent studies examining the link between mesophyll photosynthesis and stomatal conductance are discussed. An enhanced understanding of these processes may be fundamental in generating crop plants with greater water use efficiencies, capable of combating future climatic changes.
Collapse
Affiliation(s)
- Tracy Lawson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
49
|
Kwak JM, Mäser P, Schroeder JI. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. THE ARABIDOPSIS BOOK 2008; 6:e0114. [PMID: 22303239 PMCID: PMC3243356 DOI: 10.1199/tab.0114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following features: Figure 1. Model for the roles of ion channels in ABA signaling.Figure 2. Blue light signaling pathways in guard cells.Figure 3. ABA signaling pathways in guard cells.Figure 1 is linked to explanations that appear upon mouse-over. Figure 2 and Figure 3 are clickable and linked to info boxes, which in turn are linked to TAIR, to relevant abstracts in PubMed, and to updated background explanations from Schroeder et al (2001), used with permission of Annual Reviews of Plant Biology.
Collapse
Affiliation(s)
- June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Pascal Mäser
- Institute of Cell Biology, University of Berne, CH-3012 Bern, Switzerland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116
| |
Collapse
|
50
|
Gardner MJ, Baker AJ, Assie JM, Poethig RS, Haseloff JP, Webb AAR. GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:213-26. [PMID: 19033548 PMCID: PMC3071773 DOI: 10.1093/jxb/ern292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/07/2008] [Accepted: 10/16/2008] [Indexed: 05/17/2023]
Abstract
To facilitate the monitoring of guard cells during development and isolation, a population of 704 GAL4 GFP enhancer trap lines was screened and four single insert lines with guard cell GFP expression and one with developmentally-regulated guard cell GFP expression were identified. The location of the T-DNA inserts, the expression of the flanking genes, and the promoter activity of the genomic DNA upstream of the T-DNA were characterized. The results indicated that the GFP expression pattern in at least one of the lines was due to elements in the intergenic DNA immediately upstream of the T-DNA, rather than due to the activity of the promoters of genes flanking the insert, and provide evidence for the involvement of Dof elements in regulating guard cell gene expression. It is shown further that the GAL4 GFP lines can be used to track the contribution of guard cell material in vitro, and this method was used to assess the purity of guard cell samples obtained using two methods of guard cell isolation.
Collapse
Affiliation(s)
- Michael J. Gardner
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew J. Baker
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jean-Maurice Assie
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jim P. Haseloff
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|