1
|
Nishad A, Gautam JK, Agarwal I, Nandi AK. Immune Priming Promotes Thermotolerance, Whereas Thermopriming Suppresses Systemic Acquired Resistance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3352-3363. [PMID: 39737832 DOI: 10.1111/pce.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101. Similarly, through the development of systemic acquired resistance (SAR), previously experienced plants achieve a higher resistance than naïve plants. SAR activation requires mobile signals and primarily depends on salicylic acid (SA) signaling. Studies to understand the interaction between ATT and SAR are limiting. To investigate the possible interconnection, we studied cross-protection between SAR and ATT on 4-week-old soil-grown Arabidopsis plants. We observed localized pathogen inoculation provides thermotolerance. Pathogens activate the expressions of HSFA2, HSFA3, HSA32, and HSP101 in pathogen-free systemic tissues. Interestingly, pathogen-induced SAR activation is impaired in hsfa2, hsfa3, and hsp101 mutants, suggesting these HS memory genes are essential for SAR induction. In contrast, thermopriming by exposing plants to sublethal temperatures, blocks SAR activation by pathogens. Thermopriming suppresses SAR mobile signal generation, accumulation of SA, and PR1 gene expression in systemic leaves. Altogether, our results demonstrate a complex interaction between SAR and ATT induction pathways in plants.
Collapse
Affiliation(s)
- Anand Nishad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Janesh Kumar Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ishu Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
2
|
Liu H, Iyer LM, Norris P, Liu R, Yu K, Grant M, Aravind L, Kachroo A, Kachroo P. Piperideine-6-carboxylic acid regulates vitamin B6 homeostasis and modulates systemic immunity in plants. NATURE PLANTS 2025; 11:263-278. [PMID: 39953358 DOI: 10.1038/s41477-025-01906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Dietary consumption of lysine in humans leads to the biosynthesis of Δ1-piperideine-6-carboxylic acid (P6C), with elevated levels linked to the neurological disorder epilepsy. Here we demonstrate that P6C biosynthesis is also a critical component of lysine catabolism in Arabidopsis thaliana. P6C regulates vitamin B6 homeostasis, and increased P6C levels deplete B6 vitamers, resulting in compromised plant immunity. We further establish a key role for pyridoxal and pyridoxal-5-phosphate biosynthesis in plant immunity. Our analysis indicates that P6C metabolism probably evolved through combining select lysine and proline metabolic enzymes horizontally acquired from diverse bacterial sources at different points during evolution. More generally, certain enzymes from the lysine and proline metabolic pathways were probably recruited in evolution as potential guardians of B6 vitamers and for semialdehyde detoxification.
Collapse
Affiliation(s)
- Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Ruiying Liu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, UK
| | - L Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Jung J, Ahn S, Kim DH, Riu M. Triple interactions for induced systemic resistance in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1464710. [PMID: 39649811 PMCID: PMC11620860 DOI: 10.3389/fpls.2024.1464710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
Induced systemic resistance (ISR) is a crucial concept in modern agriculture, explaining plant defense mechanisms primed by rhizosphere stimuli and activated by subsequent infections. Biological factors contributing to ISR generally include plant growth-promoting microbes3 (PGPM). Bacillus spp., Pseudomonas spp., and Trichoderma spp. have been extensively studied for their plant growth-promoting characteristics and ISR effect against above-ground pathogens and insect infestations. These phenomena elucidate the bottom-up effects of how beneficial rhizosphere microbes help plants resist above-ground attacks. Conversely, soil microbiome analysis in the rhizosphere of plants infected by above-ground pathogens has shown increased beneficial microbes in the soil, a phenomenon termed 'soil legacy effects'. This represents the top-down effects of above-ground attackers on plants' rhizosphere environments. Interestingly, recent studies have shown that above-ground stimuli not only recruit PGPM in the rhizosphere but also that these PGPM influence plant defense responses against subsequent pathogen infections. This can be seen as a four-step plant defense mechanism involving above-ground attackers, host plants, rhizosphere microbes, and subsequent attacks. This represents an active defense mechanism that overcomes the limitations of sessile plants. This review summarizes plant ISR mechanisms in terms of triple inter-organism interactions and provides molecular evidence for each step.
Collapse
Affiliation(s)
- Jihye Jung
- Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration, Wanju, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
6
|
Silva-Martins G, Roussin-Léveillée C, Bolaji A, Veerapen VP, Moffett P. A Jasmonic Acid-Related Mechanism Affects ARGONAUTE5 Expression and Antiviral Defense Against Potato Virus X in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:425-433. [PMID: 36853196 DOI: 10.1094/mpmi-11-22-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guilherme Silva-Martins
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Varusha Pillay Veerapen
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
7
|
Shekhar S, Panwar R, Prasad SC, Kumar D, Rustagi A. Overexpression of flowering locus D (FLD) in Indian mustard (Brassica juncea) enhances tolerance to Alternaria brassicae and Sclerotinia sclerotiorum. PLANT CELL REPORTS 2023; 42:1233-1250. [PMID: 37119284 DOI: 10.1007/s00299-023-03021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE Overexpression of BjFLD in Brassica juncea imparts resistance against fungal pathogens and increases the yield. These transgenics could lower the use of fungicides, which have detrimental effects on the environment. Productivity of Indian mustard (Brassica juncea) is adversely affected by fungal phytopathogens, Alternaria brassicae and Sclerotinia sclerotiorum. Arabidopsis flowering locus D (FLD) positively regulates jasmonic acid signaling and defense against necrotrophic pathogens. In this study, the endogenous FLD (B. juncea FLD; BjFLD) in Indian mustard was overexpressed in B. juncea to determine its role in biotic stress tolerance. We report the isolation, characterization, and functional validation of BjFLD. The transgene expression was confirmed by qRT-PCR. The constitutive overexpression of BjFLD enhanced the tolerance of B. juncea to A. brassicae and S. sclerotiorum, which was manifested as delayed appearance of symptom, impeded disease progression, and enhanced percentage of disease protection. The transgenic lines maintained a higher photosynthetic capacity and redox potential under biotic stress and could detoxify reactive oxygen species (ROS) by modulating the antioxidant machinery and physiochemical attributes. The BjFLD-overexpressing lines showed enhanced SA level as well higher NPR1 expression. The overexpression of BjFLD induced early flowering and higher seed yield in the transgenic lines. These findings indicate that overexpression of BjFLD enhances the tolerance of B. juncea to A. brassicae and S. sclerotiorum by induction of systemic acquired resistance and mitigating the damage caused by stress-induced ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Ruby Panwar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | | | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India.
| |
Collapse
|
8
|
Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays Biochem 2022; 66:673-681. [PMID: 35920211 DOI: 10.1042/ebc20210098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Systemic acquired resistance (SAR), a type of long-distance immunity in plants, provides long-lasting resistance to a broad spectrum of pathogens. SAR is thought to involve the rapid generation and systemic transport of a mobile signal that prepares systemic parts of the plant to better resist future infections. Exploration of the molecular mechanisms underlying SAR have identified multiple mobile regulators of SAR in the last few decades. Examination of the relationship among several of these seemingly unrelated molecules depicts a forked pathway comprising at least two branches of equal importance to SAR. One branch is regulated by the plant hormone salicylic acid (SA), and the other culminates (based on current knowledge) with the phosphorylated sugar derivative, glycerol-3-phosphate (G3P). This review summarizes the activities that contribute to pathogen-responsive generation of SA and G3P and the components that regulate their systemic transport during SAR.
Collapse
|
9
|
Hu Y, Zhang M, Lu M, Wu Y, Jing T, Zhao M, Zhao Y, Feng Y, Wang J, Gao T, Zhou Z, Wu B, Jiang H, Wan X, Schwab W, Song C. Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. PLANT PHYSIOLOGY 2022; 188:1507-1520. [PMID: 34893910 PMCID: PMC8896648 DOI: 10.1093/plphys/kiab569] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 05/28/2023]
Abstract
Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.
Collapse
Affiliation(s)
- Yunqing Hu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yi Wu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yifan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Yingying Feng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Zixiang Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Bin Wu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, China
| |
Collapse
|
10
|
Perchepied L, Chevreau E, Ravon E, Gaillard S, Pelletier S, Bahut M, Berthelot P, Cournol R, Schouten HJ, Vergne E. Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species. BMC Genomics 2021; 22:843. [PMID: 34802418 PMCID: PMC8607633 DOI: 10.1186/s12864-021-08157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Scab is the most important fungal disease of apple and pear. Apple (Malus x domestica Borkh.) and European pear (Pyrus communis L.) are genetically related but they are hosts of two different fungal species: Venturia inaequalis for apple and V. pyrina for European pear. The apple/V. inaequalis pathosystem is quite well known, whereas knowledge about the pear/V. pyrina pathosystem is still limited. The aim of our study was to analyse the mode of action of a major resistance gene of apple (Rvi6) in transgenic apple and pear plants interacting with the two scab species (V. inaequalis and V. pyrina), in order to determine the degree of functional transferability between the two pathosystems. Results Transgenic pear clones constitutively expressing the Rvi6 gene from apple were compared to a scab transgenic apple clone carrying the same construct. After inoculation in greenhouse with V. pyrina, strong defense reactions and very limited sporulation were observed on all transgenic pear clones tested. Microscopic observations revealed frequent aborted conidiophores in the Rvi6 transgenic pear / V. pyrina interaction. The macro- and microscopic observations were very comparable to the Rvi6 apple / V. inaequalis interaction. However, this resistance in pear proved variable according to the strain of V. pyrina, and one of the strains tested overcame the resistance of most of the transgenic pear clones. Comparative transcriptomic analyses of apple and pear resistant interactions with V. inaequalis and V. pyrina, respectively, revealed different cascades of molecular mechanisms downstream of the pathogen recognition by Rvi6 in the two species. Signal transduction was triggered in both species with calcium (and G-proteins in pear) and interconnected hormonal signaling (jasmonic acid in pear, auxins in apple and brassinosteroids in both species), without involvement of salicylic acid. This led to the induction of defense responses such as a remodeling of primary and secondary cell wall, lipids biosynthesis (galactolipids in apple and cutin and cuticular waxes in pear), systemic acquired resistance signal generation (in apple) or perception in distal tissues (in pear), and the biosynthesis of phenylpropanoids (flavonoids in apple but also lignin in pear). Conclusion This study is the first example of a successful intergeneric transfer of a resistance gene among Rosaceae, with a resistance gene functioning towards another species of pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08157-1.
Collapse
Affiliation(s)
- L Perchepied
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - E Chevreau
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - E Ravon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - S Gaillard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - S Pelletier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - M Bahut
- Univ Angers, SFR QUASAV, F-49000, Angers, France
| | - P Berthelot
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - R Cournol
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - H J Schouten
- Wageningen Univ & Res, Plant Breeding, NL-6700, Wageningen, AJ, Netherlands
| | - E Vergne
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
11
|
Rufián JS, Rueda-Blanco J, López-Márquez D, Macho AP, Beuzón CR, Ruiz-Albert J. The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 231:1138-1156. [PMID: 33960430 DOI: 10.1111/nph.17442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.
Collapse
Affiliation(s)
- José S Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Javier Rueda-Blanco
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Diego López-Márquez
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Carmen R Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
12
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
13
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Nishad A, Nandi AK. Recent advances in plant thermomemory. PLANT CELL REPORTS 2021; 40:19-27. [PMID: 32975635 DOI: 10.1007/s00299-020-02604-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/13/2020] [Indexed: 05/04/2023]
Abstract
This review summarizes the process of thermal acquired tolerance in plants and the knowledge gap compared to systemic acquired resistance that a plant shows after pathogen inoculation. Plants are continuously challenged by several biotic stresses such as pests and pathogens, or abiotic stresses like high light, UV radiation, drought, salt, and very high or low temperature. Interestingly, for most stresses, prior exposure makes plants more tolerant during the subsequent exposures, which is often referred to as acclimatization. Research of the last two decades reveals that the memory of most of the stresses is associated with epigenetic changes. Heat stress causes damage to membrane proteins, denaturation and inactivation of various enzymes, and accumulation of reactive oxygen species leading to cell injury and death. Plants are equipped with thermosensors that can recognize certain specific changes and activate protection machinery. Phytochrome and calcium signaling play critical roles in sensing sudden changes in temperature and activate cascades of signaling, leading to the production of heat shock proteins (HSPs) that keep protein-unfolding under control. Heat shock factors (HSFs) are the transcription factors that read the activation of thermosensors and induce the expression of HSPs. Epigenetic modifications of HSFs are likely to be the key component of thermal acquired tolerance (TAT). Despite the advances in understanding the process of thermomemory generation, it is not known whether plants are equipped with systemic activation thermal protection, as happens in the form of systemic acquired resistance (SAR) upon pathogen infection. This review describes the recent advances in the understanding of thermomemory development in plants and the knowledge gap in comparison with SAR.
Collapse
Affiliation(s)
- Anand Nishad
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
15
|
Kachroo A, Kachroo P. Mobile signals in systemic acquired resistance. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:41-47. [PMID: 33202317 DOI: 10.1016/j.pbi.2020.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 05/20/2023]
Abstract
Plants possess a unique form of broad-spectrum long-distance immunity termed systemic acquired resistance (SAR). SAR involves the rapid generation of mobile signal(s) in response to localized microbial infection, which transport to the distal tissue and 'prime' them against future infections by related and unrelated pathogens. Several SAR-inducing chemicals that could be classified as the potential mobile signal have been identified. Many of these function in a bifurcate pathway with both branches being equally essential for SAR induction. This review reflects on the potential candidacy of the known SAR inducers as mobile signal(s) based on historical knowledge of the SAR signal and recent advances in the SAR signaling pathway.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
16
|
Chaturvedi R, Giri M, Chowdhury Z, Venables BJ, Mohanty D, Petros RA, Shah J. CYP720A1 function in roots is required for flowering time and systemic acquired resistance in the foliage of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6612-6622. [PMID: 32793967 DOI: 10.1093/jxb/eraa374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism that systemically enhances resistance against pathogens in foliar tissues. SAR, which engages salicylic acid (SA) signaling, shares molecular components with the autonomous pathway, which is involved in controlling flowering time in Arabidopsis thaliana. FLOWERING LOCUS D (FLD) is one such autonomous pathway component that is required for flowering time and the systemic accumulation of SA during SAR. Here, we show that CYP720A1, a putative cytochrome P450 monoxygenase, controls FLD expression and is required for the timing of flowering and the manifestation of SAR. The delayed flowering time in the cyp720a1 mutant correlated with the elevated transcript level of the floral repressor FLC, while the SAR deficiency phenotype of the cyp720a1 mutant correlated with the inability to systemically accumulate SA. CYP720A1 transcript abundance in shoots is poor compared with roots. Reciprocal root-shoot grafting confirmed that CYP720A1 function in the roots is critical for flowering time and SAR. We therefore suggest that root to shoot communication involving a CYP720A1-dependent factor contributes to the timing of reproductive development and defense in the foliage.
Collapse
Affiliation(s)
- Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Mrunmay Giri
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Zulkarnain Chowdhury
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX, USA
| | - Devasantosh Mohanty
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Robby A Petros
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
17
|
Roy S, Saxena S, Sinha A, Nandi AK. DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. JOURNAL OF PLANT RESEARCH 2020; 133:409-417. [PMID: 32227262 DOI: 10.1007/s10265-020-01183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
To fine tune defense response output, plants recruit both positive and negative regulators. Here we report Arabidopsis DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2(DAP2) gene as a negative regulator of basal defense against virulent bacterial pathogens. Expression of DAP2 enhances upon pathogen inoculation. Our experiments show that DAP2 suppressed resistance against virulent strains of bacterial pathogens, pathogen-induced callose deposition, and ROS accumulation; however, it did not influence effector-triggered immunity. In addition, DAP2 negatively regulated systemic acquired resistance (SAR). DAP2 expression was enhanced in the pathogen-free systemic tissues of SAR-induced plants. Previously, Arabidopsis Flowering locus D (FLD) gene has been shown to be essential for SAR but not for local resistance. We show here that FLD function is necessary for SAR-induced expression of DAP2, suggesting DAP2 as a target of FLD for activation of SAR in Arabidopsis.
Collapse
Affiliation(s)
- Shweta Roy
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobhita Saxena
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aviroop Sinha
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Systemic acquired resistance networks amplify airborne defense cues. Nat Commun 2019; 10:3813. [PMID: 31444353 PMCID: PMC6707303 DOI: 10.1038/s41467-019-11798-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Salicylic acid (SA)-mediated innate immune responses are activated in plants perceiving volatile monoterpenes. Here, we show that monoterpene-associated responses are propagated in feed-forward loops involving the systemic acquired resistance (SAR) signaling components pipecolic acid, glycerol-3-phosphate, and LEGUME LECTIN-LIKE PROTEIN1 (LLP1). In this cascade, LLP1 forms a key regulatory unit in both within-plant and between-plant propagation of immunity. The data integrate molecular components of SAR into systemic signaling networks that are separate from conventional, SA-associated innate immune mechanisms. These networks are central to plant-to-plant propagation of immunity, potentially raising SAR to the population level. In this process, monoterpenes act as microbe-inducible plant volatiles, which as part of plant-derived volatile blends have the potential to promote the generation of a wave of innate immune signaling within canopies or plant stands. Hence, plant-to-plant propagation of SAR holds significant potential to fortify future durable crop protection strategies following a single volatile trigger. Plants immune responses are triggered upon perception of volatile monoterpenes. Here, Wenig et al. show that a feed-forward loop featuring LEGUME LECTIN-LIKE PROTEIN1 propagates monoterpene-associated cues both within and between plants, illustrating how systemic immunity could act at a population level.
Collapse
|
19
|
Gautam JK, Nandi AK. APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:92-99. [PMID: 30396118 DOI: 10.1016/j.plaphy.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis AP2 FAMILY PROTEIN INVOLVED IN DISEASE DEFENSE (APD1) is a member of AP2/EREBP super-family that positively regulates SA biosynthesis and defense against virulent bacterial pathogens. Here we report additional roles of APD1 in plant defense and development. We show that APD1 function is required for light-mediated defense against bacterial pathogens and systemic acquired resistance (SAR). We demonstrate that APD1 function is not required for generating SAR mobile signal at the site of primary inoculation but is required at the distal end for SAR manifestation. In addition, the APD1 function is required for PTI-induced callose deposition, defense against necrotrophic pathogen Botrytis cinerea and Alternaria alternata, which are ethylene (ET) or ethylene-Jasmonate (JA) dependent responses. Development of seedling under dark and ET is partly dependent on APD1. The mutant apd1 plants are non-responsive towards exogenous ACC application regarding apical hook formation and hypocotyl shortening, however, possess WT-like ET-mediated root growth inhibition. JA-mediated root growth inhibition is also impaired in apd1 seedlings. Altogether our results suggest that APD1 impacts multiple aspects of plant growth and development.
Collapse
Affiliation(s)
- Janesh Kumar Gautam
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Chaliha C, Rugen MD, Field RA, Kalita E. Glycans as Modulators of Plant Defense Against Filamentous Pathogens. FRONTIERS IN PLANT SCIENCE 2018; 9:928. [PMID: 30022987 PMCID: PMC6039678 DOI: 10.3389/fpls.2018.00928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 05/25/2023]
Abstract
Plants and microbes utilize glycoconjugates as structural entities, energy reserves for cellular processes, and components of cellular recognition or binding events. The structural heterogeneity of carbohydrates in such systems is a result of the ability of the carbohydrate biosynthetic enzymes to reorient sugar monomers in a variety of forms, generating highly complex, linear, branched, or hierarchical structures. During the interaction between plants and their microbial pathogens, the microbial cell surface glycans, cell wall derived glycans, and glycoproteins stimulate the signaling cascades of plant immune responses, through a series of specific or broad spectrum recognition events. The microbial glycan-induced plant immune responses and the downstream modifications observed in host-plant glycan structures that combat the microbial attack have garnered immense interest among scientists in recent times. This has been enabled by technological advancements in the field of glycobiology, making it possible to study the ongoing co-evolution of the microbial and the corresponding host glycan structures, in greater detail. The new glycan analogs emerging in this evolutionary arms race brings about a fresh perspective to our understanding of plant-pathogen interactions. This review discusses the role of diverse classes of glycans and their derivatives including simple sugars, oligosaccharides, glycoproteins, and glycolipids in relation to the activation of classical Pattern-Triggered Immunity (PTI) and Effector-Triggered Immunity (ETI) defense responses in plants. While primarily encompassing the biological roles of glycans in modulating plant defense responses, this review categorizes glycans based on their structure, thereby enabling parallels to be drawn to other areas of glycobiology. Further, we examine how these molecules are currently being used to develop new bio-active molecules, potent as priming agents to stimulate plant defense response and as templates for designing environmentally friendly foliar sprays for plant protection.
Collapse
Affiliation(s)
- Chayanika Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Michael D. Rugen
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
21
|
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O. Signals of Systemic Immunity in Plants: Progress and Open Questions. Int J Mol Sci 2018; 19:E1146. [PMID: 29642641 PMCID: PMC5979450 DOI: 10.3390/ijms19041146] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in Arabidopsis and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of tobacco mosaic virus (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV (cucumber mosaic virus) infection in tobacco, like bacteria in Arabidopsis, caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in Arabidopsis. These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
Collapse
Affiliation(s)
- Attila L Ádám
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Zoltán Á Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Emese Mergenthaler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| | - Orsolya Viczián
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
| |
Collapse
|
22
|
Banday ZZ, Nandi AK. Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:464-475. [PMID: 28093893 PMCID: PMC6638090 DOI: 10.1111/mpp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
A partly infected plant develops systemic acquired resistance (SAR) and shows heightened resistance during subsequent infections. The infected parts generate certain mobile signals that travel to the distal tissues and help to activate SAR. SAR is associated with epigenetic modifications of several defence-related genes. However, the mechanisms by which mobile signals contribute to epigenetic changes are little known. Previously, we have shown that the Arabidopsis REDUCED SYSTEMIC IMMUNITY 1 (RSI1, alias FLOWERING LOCUS D; FLD), which codes for a putative histone demethylase, is required for the activation of SAR. Here, we report the identification of GLUTATHIONE-S-TRANSFERASE THETA 2 (GSTT2) as an interacting factor of FLD. GSTT2 expression increases in pathogen-inoculated as well as pathogen-free distal tissues. The loss-of-function mutant of GSTT2 is compromised for SAR, but activates normal local resistance. Complementation lines of GSTT2 support its role in SAR activation. The distal tissues of gstt2 mutant plants accumulate significantly less salicylic acid (SA) and express a reduced level of the SA biosynthetic gene PAL1. In agreement with the established histone modification activity of FLD, gstt2 mutant plants accumulate an enhanced level of methylated and acetylated histones in the promoters of WRKY6 and WRKY29 genes. Together, these results demonstrate that GSTT2 is an interactor of FLD, which is required for SAR and SAR-associated epigenetic modifications.
Collapse
Affiliation(s)
| | - Ashis Kumar Nandi
- School of Life SciencesJawaharlal Nehru UniversityNew Delhi110067India
| |
Collapse
|
23
|
Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A "Green" synthetic strategy and activity on Gram-negative pathogenic bacteria. J Colloid Interface Sci 2017; 507:437-452. [PMID: 28810197 DOI: 10.1016/j.jcis.2017.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/22/2022]
Abstract
A facile, single-step, non-seeded photochemical protocol for producing a new type of anisotropic silver nanostructure, "nanoworms", with curved longer dimensions and smooth, rounded edges. The nanoworms exhibit surface plasmon resonance (SPR) absorption in the near-infrared window (NIRW) region and are stabilized using biocompatible polymer chitosan, rendering biocompatibility and amplified safety for biological utility of the composition. Both NIRW-absorbing nanoworms and visible-absorbing nanospheres herein are attained exclusively by employing green chemistry principles. Contrary to seed-mediated or polyol techniques, the protocol demonstrates the feasibility to selectively synthesize NIRW-absorbing silver nanostructures in a single step and in complete absence of any known reducing agent. The effect of irradiation, pH, and concentration of starting materials on the formation of nanoworms vs nanospheres is investigated in detail and analyzed by optical spectroscopy and electron microscopy. The dominant SPR obtained in the NIRW region of the nanoworms results from anisotropic AgNPs, as opposed to agglomeration. From TEM images, it is also very clear that a strong correlation exists between the SPR peak maximum and the size distribution of the anisotropic nanoworm structures, with SPR peak maximum exhibiting red shift with the increase in the size of the nanoworm population. Although there is significant size variation of different nanoworms of a given population, all samples exhibit remarkable stability. The nanoworms retained their NIRW-absorbing features even at physiological pH and at a constant ionic strength. The nanodispersions also retained their SPR features in King's B medium. Antipathogenic assays reveal that the anisotropic NIRW-absorbing nanoworms exhibit the highest growth inhibition compared to other spherical nanosilver and molecular silver forms on Gram-negative pathogenic bacteria, Pseudomonas syringae pv. maculicola ES4326 and P. syringae pv. tomato DC3000. These results underscore shape effects of AgNPs and suggest that nanoworms favor the adhesion to (curved) rod-shaped Gram-negative bacteria, resulting in the highest inhibition compared to isotropic AgNPs (smaller spheres), sulfa antibiotics (silver sulfadiazine), and silver ions (AgNO3).
Collapse
|
24
|
Agut B, Gamir J, Jaques JA, Flors V. Systemic resistance in citrus to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5711-5723. [PMID: 27683726 PMCID: PMC5066491 DOI: 10.1093/jxb/erw335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent research suggests that systemic signalling and communication between roots and leaves plays an important role in plant defence against herbivores. In the present study, we show that the oviposition of the two-spotted spider mite Tetranychus urticae in the systemic leaves of citrus rootstock Citrus aurantium (sour orange) was reduced by 50% when a lower leaf was previously infested with conspecifics. Metabolomic and gene expression analysis of the root efflux revealed a strong accumulation of glutamic acid (Glu) that triggered the expression of the citrus putative glutamate receptor (GRL) in the shoots. Additionally, uninfested sour orange systemic leaves showed increased expression of glutamate receptors and higher amounts of jasmonic acid (JA) and 12-oxo-phytodienoic acid in plants that were previously infested. Glu perception in the shoots induced the JA pathway, which primed LOX-2 gene expression when citrus plants were exposed to a second infestation. The spider mite-susceptible citrus rootstock Cleopatra mandarin (C. unshiu) also expressed systemic resistance, although the resistance was less effective than the resistance in sour orange. Surprisingly, the mobile signal in Cleopatra mandarin was not Glu, which suggests a strong genotype-dependency for systemic signalling in citrus. When the cultivar Clemenules (C. clementina) was grafted onto sour orange, there was a reduction in symptomatic leaves and T. urticae populations compared to the same cultivar grafted onto Cleopatra mandarin. Thus, systemic resistance is transmitted from the roots to the shoots in citrus and is dependent on rootstock resistance.
Collapse
Affiliation(s)
- Blas Agut
- Metabolic Integration and Cell Signalling Group, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| | - Jordi Gamir
- Unit of Plant Biology, Université de Fribourg, Avenue de l'Europe 20, 1700 Fribourg, Suïssa
| | - Josep A Jaques
- Unitat Associada d'Entomologia IVIA-UJI, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus del Riu Sec, E-12071-Castelló de la Plana, Spain
| |
Collapse
|
25
|
Isaacs M, Carella P, Faubert J, Champigny MJ, Rose JKC, Cameron RK. Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus. FRONTIERS IN PLANT SCIENCE 2016; 7:566. [PMID: 27200039 PMCID: PMC4854023 DOI: 10.3389/fpls.2016.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 05/05/2023]
Abstract
AtDIR1 (Defective in Induced Resistance1) is an acidic lipid transfer protein essential for systemic acquired resistance (SAR) in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1's central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate) provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis-cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus), and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA), glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis-cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber.
Collapse
Affiliation(s)
- Marisa Isaacs
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Philip Carella
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jennifer Faubert
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Marc J. Champigny
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jocelyn K. C. Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robin K. Cameron
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S. Rapid, Long-Distance Electrical and Calcium Signaling in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:287-307. [PMID: 27023742 DOI: 10.1146/annurev-arplant-043015-112130] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.
Collapse
Affiliation(s)
- Won-Gyu Choi
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Richard Hilleary
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Sarah J Swanson
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Su-Hwa Kim
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706; , , , ,
| |
Collapse
|
27
|
Cao JY, Xu YP, Cai XZ. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. J Proteomics 2016; 143:265-277. [PMID: 26947552 DOI: 10.1016/j.jprot.2016.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED The white mould disease, caused by Sclerotinia sclerotiorum, is one of the most important diseases in the vital oil crop Brassica napus. Nevertheless, the defense mechanisms of B. napus against S. sclerotiorum are poorly understood. In this study, we performed comparative quantitative proteomics analyses to reveal B. napus defense mechanisms against S. sclerotiorum. The proteomes of B. napus leaves inoculated with S. sclerotiorum wild-type strain 1980 and nonpathogenic mutant strain Ep-1PB as well as empty agar plug as the control were analyzed using TMT label-based quantitative analysis technique. A total of 79, 299 and 173 proteins consistently differentially expressed between Ep-1PB- and mock-inoculated leaves, 1980- and mock-inoculated leaves, as well as 1980- and Ep-1PB-inoculated leaves, respectively, were identified. The differential expression of 12 selected proteins was confirmed by qRT-PCR analyses. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction prediction analyses revealed that redox homeostasis, lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and defense-related proteins such as defensin and defensin-like proteins and cyanate lyase, contribute to defense against S. sclerotiorum. Our results provide new insights into molecular mechanisms that may be involved in defense responses of B. napus to S. sclerotiorum. SIGNIFICANCE The Sclerotinia white mould disease is one of the most important diseases in the significant oil crop Brassica napus. Nevertheless, the defense mechanisms of B. napus against S. sclerotiorum are still largely unknown to date. In this study, we addressed this issue by performing TMT label-based comparative quantitative analyses of the proteomes of B. napus leaves inoculated with S. sclerotiorum wild-type strain 1980 and nonpathogenic mutant strain Ep-1PB as well as empty agar plug as the control. Through comparative analyses on 79, 299, and 173 proteins that are consistently differentially expressed in between Ep-1PB-inoculated and the control leaves, 1980-inoculated and the control leaves, as well as 1980-inoculated and Ep-1PB-inoculated leaves, respectively, we revealed that redox homeostasis, lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and defense-related proteins such as defensin and defensin-like proteins as well as cyanate lyase, contribute to B. napus defenses against S. sclerotiorum. Notably, the potential role of lipid signaling, calcium signaling, histone and DNA methylation-mediated transcription regulation and cyanate lyase in B. napus defense against S. sclerotiorum are not reported previously but rather unveiled for the first time in this study. The current study represents the most extensive analysis of the protein profile of B. napus in response to S. sclerotiorum inoculation and includes for the first time the results from comparison between plants inoculated with the wild-type strain and a nonpathogenic mutant strain of S. sclerotiorum. Collectively, our results provide new insights into the molecular mechanisms of interactions between B. napus and S. sclerotiorum.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - You-Ping Xu
- Centre of Analysis and Measurement, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
28
|
Lipids in plant-microbe interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1379-1395. [PMID: 26928590 DOI: 10.1016/j.bbalip.2016.02.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.
Collapse
|
29
|
Zhang X, Dong J, Liu H, Wang J, Qi Y, Liang Z. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza. PLoS One 2016; 11:e0147849. [PMID: 26808150 PMCID: PMC4726470 DOI: 10.1371/journal.pone.0147849] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022] Open
Abstract
Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoru Zhang
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Juane Dong
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, People's Republic of China
- * E-mail: (JD); (ZL)
| | - Hailong Liu
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Jiao Wang
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Yuexin Qi
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Zongsuo Liang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail: (JD); (ZL)
| |
Collapse
|
30
|
Abstract
Lipids are important signaling compounds in plants. They can range from small lipophilic molecules like the dicarboxylic acid Azelaic acid to complex phosphoglycerolipids and regulate plant development as well as the response to biotic and abiotic stress. While their intracellular function is well described, several lipophilic signals are known to be found in the plant phloem and can, thus, also play a role in long-distance signaling. Mostly, they play a role in the pathogen response and systemic acquired resistance. This is particularly true for oxylipins, dehydroabietinal, and azelaic acid. However, several phospholipids have now been described in phloem exudates. Their intracellular function as well as implications and a model for long-distance signaling are discussed in this chapter.
Collapse
|
31
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:228. [PMID: 25918514 PMCID: PMC4394658 DOI: 10.3389/fpls.2015.00228] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Shifeng Zhu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- *Correspondence: Aardra Kachroo, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans drive, Lexington, KY 40546, USA
| |
Collapse
|
34
|
Banday ZZ, Nandi AK. Interconnection between flowering time control and activation of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:174. [PMID: 25852723 PMCID: PMC4365546 DOI: 10.3389/fpls.2015.00174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/04/2015] [Indexed: 05/06/2023]
Abstract
The ability to avoid or neutralize pathogens is inherent to all higher organisms including plants. Plants recognize pathogens through receptors, and mount resistance against the intruders, with the help of well-elaborated defense arsenal. In response to some localinfections, plants develop systemic acquired resistance (SAR), which provides heightened resistance during subsequent infections. Infected tissues generate mobile signaling molecules that travel to the systemic tissues, where they epigenetically modify expression o a set of genes to initiate the manifestation of SAR in distant tissues. Immune responses are largely regulated at transcriptional level. Flowering is a developmental transition that occurs as a result of the coordinated action of large numbers of transcription factors that respond to intrinsic signals and environmental conditions. The plant hormone salicylic acid (SA) which is required for SAR activation positively regulates flowering. Certain components of chromatin remodeling complexes that are recruited for suppression of precocious flowering are also involved in suppression of SAR in healthy plants. FLOWERING LOCUS D, a putative histone demethylase positively regulates SAR manifestation and flowering transition in Arabidopsis. Similarly, incorporation of histone variant H2A.Z in nucleosomes mediated by PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1, an ortholog of yeast chromatin remodeling complex SWR1, concomitantly influences SAR and flowering time. SUMO conjugation and deconjugation mechanisms also similarly affect SAR and flowering in an SA-dependent manner. The evidences suggest a common underlying regulatory mechanism for activation of SAR and flowering in plants.
Collapse
Affiliation(s)
| | - Ashis K. Nandi
- *Correspondence: Ashis K. Nandi, School of Life Sciences, Jawaharlal Nehru University, Room 415, New Delhi-110067, Delhi, India
| |
Collapse
|
35
|
Gao QM, Yu K, Xia Y, Shine MB, Wang C, Navarre D, Kachroo A, Kachroo P. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep 2014; 9:1681-1691. [PMID: 25466253 DOI: 10.1016/j.celrep.2014.10.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022] Open
Abstract
The plant galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO). Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR). In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA) and glycerol-3-phosphate (G3P) that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ye Xia
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Caixia Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; Qingdao Agricultural University, Number 700, Changcheng Road, Chengyang District, Qingdao City 266109, PRC
| | - DuRoy Navarre
- Agricultural Research Service, United States Department of Agriculture, Washington State University, Prosser, WA 99350, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
36
|
Sun L, Zhu L, Xu L, Yuan D, Min L, Zhang X. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nat Commun 2014; 5:5372. [PMID: 25371113 PMCID: PMC4241986 DOI: 10.1038/ncomms6372] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/25/2014] [Indexed: 11/09/2022] Open
Abstract
Plant oxylipins are derived from unsaturated fatty acids and play roles in plant growth and development as well as defence. Although recent studies have revealed that fatty acid metabolism is involved in systemic acquired resistance, the precise function of oxylipins in plant defence remains unknown. Here we report a cotton P450 gene SILENCE-INDUCED STEM NECROSIS (SSN), RNAi suppression of which causes a lesion mimic phenotype. SSN is also involved in jasmonate metabolism and the response to wounding. Fatty acid and oxylipin metabolite analysis showed that SSN overexpression causes hyperaccumulation of hydroxide and ketodiene fatty acids and reduced levels of 18:2 fatty acids, whereas silencing causes an imbalance in LOX (lipoxygenase) expression and excessive hydroperoxide fatty acid accumulation. We also show that an unknown oxylipin-derived factor is a putative mobile signal required for systemic cell death and hypothesize that SSN acts as a valve to regulate HR on pathogen infection. Oxylipin signalling is known to play important roles in plant growth, development and defence against pathogens. Here Sun et al. identify a novel cytochrome P450 in cotton and show that its suppression leads to activation of plant defence responses and alteration of oxylipin metabolism.
Collapse
Affiliation(s)
- Longqing Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
37
|
Vu HS, Shiva S, Roth MR, Tamura P, Zheng L, Li M, Sarowar S, Honey S, McEllhiney D, Hinkes P, Seib L, Williams TD, Gadbury G, Wang X, Shah J, Welti R. Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:728-43. [PMID: 25200898 DOI: 10.1111/tpj.12659] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 05/03/2023]
Abstract
A direct-infusion electrospray ionization triple-quadrupole mass spectrometry method with multiple reaction monitoring (MRM) was employed to measure 264 lipid analytes extracted from leaves of Arabidopsis thaliana subjected to mechanical wounding. The method provided precise measurements with an average coefficient of variation of 6.1%. Lipid classes analyzed comprised galactolipids and phospholipids (including monoacyl molecular species, molecular species with oxidized acyl chains, phosphatidic acids (PAs)), tri- and tetra-galactosyldiacylglycerols (TrGDGs and TeGDGs), head-group-acylated galactolipids, and head-group-acylated phosphatidylglycerol (acPG), sulfoquinovosyldiacylglycerols (SQDGs), sphingolipids, di- and tri-acylglycerols (DAGs and TAGs), and sterol derivatives. Of the 264 lipid analytes, 254 changed significantly in response to wounding. In general, levels of structural lipids decreased, whereas monoacyl molecular species, galactolipids and phosphatidylglycerols (PGs) with oxidized fatty acyl chains, PAs, TrGDGs, TeGDGs, TAGs, head-group-acylated galactolipids, acPG, and some sterol derivatives increased, many transiently. The observed changes are consistent with activation of lipid oxidizing, hydrolyzing, glycosylating, and acylating activities in the wounding response. Correlation analysis of the levels of lipid analytes across individual control and treated plants was used to construct a lipid dendrogram and to define clusters and sub-clusters of lipid analytes, each composed of a group of lipids which occurred in a coordinated manner. Current knowledge of metabolism supports the notion that observed sub-clusters comprise lipids generated by a common enzyme and/or metabolically downstream of a common enzyme. This work demonstrates that co-occurrence analysis, based on correlation of lipid levels among plants, is a powerful approach to defining lipids generated in vivo by a common enzymatic pathway.
Collapse
Affiliation(s)
- Hieu Sy Vu
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wittek F, Hoffmann T, Kanawati B, Bichlmeier M, Knappe C, Wenig M, Schmitt-Kopplin P, Parker JE, Schwab W, Vlot AC. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5919-31. [PMID: 25114016 PMCID: PMC4203127 DOI: 10.1093/jxb/eru331] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.
Collapse
Affiliation(s)
- Finni Wittek
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Thomas Hoffmann
- Technical University Munich, Biotechnology of Natural Products, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - Basem Kanawati
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Marlies Bichlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Research Unit Analytical Biogeochemistry, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | - Jane E Parker
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Wilfried Schwab
- Technical University Munich, Biotechnology of Natural Products, Liesel-Beckmann-Str. 1, D-85354 Freising, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
39
|
Ye S, Jiang Y, Duan Y, Karim A, Fan D, Yang L, Zhao X, Yin J, Luo K. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. TREE PHYSIOLOGY 2014; 34:1118-29. [PMID: 25281841 DOI: 10.1093/treephys/tpu079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
WRKY proteins are involved in various physiological processes in plants, especially in coping with diverse biotic and abiotic stresses. However, limited information is available on the roles of specific WRKY transcription factors in poplar defense. In this study, we reported the characterization of PtoWRKY60, a Group IIa WRKY member, from Populus tomentosa Carr. The gene expression profile of PtoWRKY60 in various tissues showed that it significantly accumulated in old leaves. Phylogenetic analyses revealed that PtoWRKY60 had a close relationship with AtWRKY18, AtWRKY40 and AtWRKY60. PtoWRKY60 was induced mainly by salicylic acid (SA) and slightly by Dothiorella gregaria Sacc., jasmonic acid, wounding treatment, low temperature and salinity stresses. Overexpression of PtoWRKY60 in poplar resulted in increased resistance to D. gregaria. The defense-associated genes, such as PR5.1, PR5.2, PR5.4, PR5.5 and CPR5, were markedly up-regulated in transgenic plants overexpressing PtoWRKY60. These results indicate that PtoWRKY60 might be partly involved in the signal transduction pathway initiated by SA in Populus.
Collapse
Affiliation(s)
- Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Li Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jia Yin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
40
|
Arabidopsis flowering locus D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 2014; 39:119-26. [PMID: 24499796 DOI: 10.1007/s12038-013-9407-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A plant that is in part infected by a pathogen is more resistant throughout its whole body to subsequent infections--a phenomenon known as systemic acquired resistance (SAR). Mobile signals are synthesized at the site of infection and distributed throughout the plant through vascular tissues. Mechanism of SAR development subsequent to reaching the mobile signal in the distal tissue is largely unknown. Recently we showed that flowering locus D (FLD) gene of Arabidopsis thaliana is required in the distal tissue to activate SAR. FLD codes for a homologue of human-lysine-specific histone demethylase. Here we show that FLD function is required for priming (SAR induced elevated expression during challenge inoculation) of WRKY29 and WRKY6 genes. FLD also differentially influences basal and SAR-induced expression of WRKY38, WRKY65 and WRKY53 genes. In addition, we also show that FLD partly localizes in nucleus and influences histone modifications at the promoters of WRKY29 and WRKY6 genes. The results altogether indicate to the possibility of FLD's involvement in epigenetic regulation of SAR.
Collapse
|
41
|
Wendehenne D, Gao QM, Kachroo A, Kachroo P. Free radical-mediated systemic immunity in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:127-34. [PMID: 24929297 DOI: 10.1016/j.pbi.2014.05.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping pathways leading to SAR. This review discusses the potential significance of branched pathways and the relative contributions of NO/ROS-derived and SA-derived pathways in SAR.
Collapse
Affiliation(s)
- David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes, ERL CNRS 6300, Dijon, France
| | - Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
42
|
Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA. Signaling by small metabolites in systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:645-58. [PMID: 24506415 DOI: 10.1111/tpj.12464] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 01/27/2014] [Indexed: 05/18/2023]
Abstract
Plants can retain the memory of a prior encounter with a pest. This memory confers upon a plant the ability to subsequently activate defenses more robustly when challenged by a pest. In plants that have retained the memory of a prior, localized, foliar infection by a pathogen, the pathogen-free distal organs develop immunity against subsequent infections by a broad-spectrum of pathogens. The long-term immunity conferred by this mechanism, which is termed systemic acquired resistance (SAR), is inheritable over a few generations. Signaling mediated by the phenolic metabolite salicylic acid (SA) is critical for the manifestation of SAR. Recent studies have described the involvement of additional small metabolites in SAR signaling, including methyl salicylate, the abietane diterpenoid dehydroabietinal, the lysine catabolite pipecolic acid, a glycerol-3-phosphate-dependent factor and the dicarboxylic acid azelaic acid. Many of these metabolites can be systemically transported through the plant and probably facilitate communication by the primary infected tissue with the distal tissues, which is essential for the activation of SAR. Some of these metabolites have been implicated in the SAR-associated rapid activation of defenses in response to subsequent exposure to the pathogen, a mechanism termed priming. Here, we summarize the role of these signaling metabolites in SAR, and the relationship between them and SA signaling in SAR.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | | | | | | | | |
Collapse
|
43
|
Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:567-77. [PMID: 24450774 DOI: 10.1094/mpmi-11-13-0349-r] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.
Collapse
|
44
|
Breitenbach HH, Wenig M, Wittek F, Jordá L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance. PLANT PHYSIOLOGY 2014; 165:791-809. [PMID: 24755512 PMCID: PMC4044859 DOI: 10.1104/pp.114.239665] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.
Collapse
Affiliation(s)
- Heiko H Breitenbach
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Finni Wittek
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Lucia Jordá
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Ana M Maldonado-Alconada
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Hakan Sarioglu
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Thomas Colby
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marlies Bichlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Elisabeth Pabst
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - David Mackey
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Jane E Parker
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| |
Collapse
|
45
|
Gao QM, Kachroo A, Kachroo P. Chemical inducers of systemic immunity in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1849-55. [PMID: 24591049 DOI: 10.1093/jxb/eru010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is a highly desirable form of resistance that protects against a broad-spectrum of related or unrelated pathogens. SAR involves the generation of multiple signals at the site of primary infection, which arms distal portions against subsequent secondary infections. The last decade has witnessed considerable progress, and a number of chemical signals contributing to SAR have been isolated and characterized. The diverse chemical nature of these chemicals had led to the growing belief that SAR might involve interplay of multiple diverse and independent signals. However, recent results suggest that coordinated signalling from diverse signalling components facilitates SAR in plants. This review mainly discusses organized signalling by two such chemicals, glycerol-3-phoshphate and azelaic acid, and the role of basal salicylic acid levels in G3P-conferred SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
46
|
Host–Pathogen Interaction, Plant Diseases, Disease Management Strategies, and Future Challenges. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Hung CY, Aspesi Jr P, Hunter MR, Lomax AW, Perera IY. Phosphoinositide-signaling is one component of a robust plant defense response. FRONTIERS IN PLANT SCIENCE 2014; 5:267. [PMID: 24966862 PMCID: PMC4052902 DOI: 10.3389/fpls.2014.00267] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/22/2014] [Indexed: 05/03/2023]
Abstract
The phosphoinositide pathway and inositol-1,4,5-triphosphate (InsP3) have been implicated in plant responses to many abiotic stresses; however, their role in response to biotic stress is not well characterized. In the current study, we show that both basal defense and systemic acquired resistance responses are affected in transgenic plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) which have greatly reduced InsP3 levels. Flagellin induced Ca(2+)-release as well as the expressions of some flg22 responsive genes were attenuated in the InsP 5-ptase plants. Furthermore, the InsP 5-ptase plants were more susceptible to virulent and avirulent strains of Pseudomonas syringae pv. tomato (Pst) DC3000. The InsP 5-ptase plants had lower basal salicylic acid (SA) levels and the induction of SAR in systemic leaves was reduced and delayed. Reciprocal exudate experiments showed that although the InsP 5-ptase plants produced equally effective molecules that could trigger PR-1 gene expression in wild type plants, exudates collected from either wild type or InsP 5-ptase plants triggered less PR-1 gene expression in InsP 5-ptase plants. Additionally, expression profiles indicated that several defense genes including PR-1, PR-2, PR-5, and AIG1 were basally down regulated in the InsP 5-ptase plants compared with wild type. Upon pathogen attack, expression of these genes was either not induced or showed delayed induction in systemic leaves. Our study shows that phosphoinositide signaling is one component of the plant defense network and is involved in both basal and systemic responses. The dampening of InsP3-mediated signaling affects Ca(2+) release, modulates defense gene expression and compromises plant defense responses.
Collapse
Affiliation(s)
| | | | | | | | - Imara Y. Perera
- *Correspondence: Imara Y. Perera, Department of Plant and Microbial Biology, North Carolina State University, Box 7612, Raleigh, NC 27695, USA e-mail:
| |
Collapse
|
48
|
Abstract
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Collapse
|
49
|
Yang Y, Zhao J, Liu P, Xing H, Li C, Wei G, Kang Z. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS One 2013; 8:e81756. [PMID: 24312351 PMCID: PMC3843702 DOI: 10.1371/journal.pone.0081756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022] Open
Abstract
Glycerol-3-phosphate (G3P) is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR). The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH) and GLI1-encoded glycerol kinase (GK) are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In this study, quantification analysis revealed that G3P levels were significantly induced in wheat leaves challenged by the avirulent Puccinia striiformis f. sp. tritici (Pst) race CYR23. The transcriptional levels of TaGLY1 and TaGLI1 were likewise significantly induced by avirulent Pst infection. Furthermore, knocking down TaGLY1 and TaGLI1 individually or simultaneously with barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) inhibited G3P accumulation and compromised the resistance in the wheat cultivar Suwon 11, whereas the accumulation of salicylic acid (SA) and the expression of the SA-induced marker gene TaPR1 in plant leaves were altered significantly after gene silencing. These results suggested that G3P contributes to wheat systemic acquired resistance (SAR) against stripe rust, and provided evidence that the G3P function as a signaling molecule is conserved in dicots and monocots. Meanwhile, the simultaneous co-silencing of multiple genes by the VIGS system proved to be a powerful tool for multi-gene functional analysis in plants.
Collapse
Affiliation(s)
- Yuheng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J, Nandi AK. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1079-88. [PMID: 23745676 DOI: 10.1094/mpmi-04-13-0096-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Localized infection in plants often induces systemic acquired resistance (SAR), which provides long-term protection against subsequent infections. A signal originating in the SAR-inducing organ is transported to the distal organs, where it stimulates salicylic acid (SA) accumulation and priming, a mechanism that results in more robust activation of defenses in response to subsequent pathogen infection. In recent years, several metabolites that promote long-distance SAR signaling have been identified. However, the mechanism or mechanisms by which plants perceive and respond to the SAR signals are largely obscure. Here, we show that, in Arabidopsis thaliana, the FLOWERING LOCUS D (FLD) is required for responding to the SAR signals leading to the systemic accumulation of SA and enhancement of disease resistance. Although the fld mutant was competent in accumulating the SAR-inducing signal, it was unable to respond to the SAR signal that accumulates in petiole exudates of wild-type leaves inoculated with a SAR-inducing pathogen. Supporting FLD's role in systemic SAR signaling, we observed that dehydroabietinal and azelaic acid, two metabolites that, in wild-type plants, promote SAR-associated systemic accumulation of SA and priming, respectively, were unable to promote SAR in the fld mutant. FLD also participates in flowering, where it functions to repress expression of the flowering repressor FLOWERING LOCUS C (FLC). However, epistasis analysis indicates that FLD's function in SAR is independent of FLC.
Collapse
Affiliation(s)
- Vijayata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|