1
|
Liu M, Yu J, Yang M, Cao L, Chen C. Adaptive evolution of chloroplast division mechanisms during plant terrestrialization. Cell Rep 2024; 43:113950. [PMID: 38489264 DOI: 10.1016/j.celrep.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Despite extensive research, the origin and evolution of the chloroplast division machinery remain unclear. Here, we employ recently sequenced genomes and transcriptomes of Archaeplastida clades to identify the core components of chloroplast division and reconstruct their evolutionary histories, respectively. Our findings show that complete division ring structures emerged in Charophytes. We find that Glaucophytes experienced strong selection pressure, generating diverse variants adapted to the changing terrestrial environments. By integrating the functions of chloroplast division genes (CDGs) annotated in a workflow developed using large-scale multi-omics data, we further show that dispersed duplications acquire more species-specific functions under stronger selection pressures. Notably, PARC6, a dispersed duplicate CDG, regulates leaf color and plant growth in Solanum lycopersicum, demonstrating neofunctionalization. Our findings provide an integrated perspective on the functional evolution of chloroplast division machinery and highlight the potential of dispersed duplicate genes as the primary source of adaptive evolution of chloroplast division.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyan Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Chang Y, Tang N, Zhang M. The peptidoglycan synthase PBP interacts with PLASTID DIVISION2 to promote chloroplast division in Physcomitrium patens. THE NEW PHYTOLOGIST 2024; 241:1115-1129. [PMID: 37723553 DOI: 10.1111/nph.19268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
The peptidoglycan (PG) layer, a core component of the bacterial cell wall, has been retained in the Physcomitrium patens chloroplasts. The PG layer entirely encompasses the P. patens chloroplast, including the division site, but how PG biosynthesis cooperates with the constriction of two envelope membranes at the chloroplast division site remains elusive. Here, focusing on the PG synthase penicillin-binding protein (PBP), we performed cytological and molecular analyses to dissect the mechanism of chloroplast division in P. patens. We showed that PBP, acting in the final step of PG biosynthesis, is likely a chloroplast inner envelope protein that can aggregate at mid-chloroplasts during chloroplast division. Physcomitrium patens had five orthologs of PLASTID DIVISION2 (PDV2), an outer envelope component of the chloroplast division complex. Our data indicated that PpPDV2 proteins interact with PpPBP and are responsible for recruiting PpPBP to the chloroplast division site, in addition to PpDRP5B. Furthermore, we found that PBP deletion and carbenicillin application restrain constriction of the chloroplast division complex, rather than its assembly. This work provides direct molecular evidence for a link between chloroplast division of P. patens and PG biosynthesis and indicates that PG biosynthesis is required for the constriction of the chloroplast division apparatus in P. patens.
Collapse
Affiliation(s)
- Ying Chang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ning Tang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
3
|
Esch L, Ngai QY, Barclay JE, McNelly R, Hayta S, Smedley MA, Smith AM, Seung D. Increasing amyloplast size in wheat endosperm through mutation of PARC6 affects starch granule morphology. THE NEW PHYTOLOGIST 2023; 240:224-241. [PMID: 37424336 PMCID: PMC10952435 DOI: 10.1111/nph.19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.
Collapse
Affiliation(s)
- Lara Esch
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Qi Yang Ngai
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - Rose McNelly
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Sadiye Hayta
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - David Seung
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
4
|
Sun W, Li X, Huang H, Wei J, Zeng F, Huang Y, Sun Q, Miao W, Tian Y, Li Y, Gao L, Li X, Gao H. Mutation of CsARC6 affects fruit color and increases fruit nutrition in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:111. [PMID: 37052704 DOI: 10.1007/s00122-023-04337-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/02/2023] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE A mutation of CsARC6 not only causes white fruit color in cucumber, but also affects plant growth and fruit quality. Fruit color of cucumber is a very important agronomic trait, but most of the genes affecting cucumber white fruit color are still unknow, and no further studies were reported on the effect of cucumber fruit quality caused by white fruit color genes. Here, we obtained a white fruit mutant em41 in cucumber by EMS mutagenesis. The mutant gene was mapped to a 548 kb region of chromosome 2. Through mutation site analysis, it was found to be a null allele of CsARC6 (CsaV3_2G029290). The Csarc6 mutant has a typical phenotype of arc6 mutant that mesophyll cells contained only one or two giant chloroplasts. ARC6 protein was not detected in em41, and the level of FtsZ1 and FtsZ2 was also reduced. In addition, FtsZ2 could not form FtsZ ring-like structures in em41. Although these are typical arc6 mutant phenotypes, some special phenotypes occur in Csarc6 mutant, such as dwarfness with shortened internodes, enlarged fruit epidermal cells, decreased carotenoid contents, smaller fruits, and increased fruit nutrient contents. This study discovered a new gene, CsARC6, which not only controls the white fruit color, but also affects plant growth and fruit quality in cucumber.
Collapse
Affiliation(s)
- Weike Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongyu Huang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Jingwei Wei
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yichao Huang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingqing Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weili Miao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Kernel Cucumber Research Institute, Tianjin, 300192, China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuhe Li
- Institute of Cucumber Research, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
5
|
Zhao L, Jia T, Jiao Q, Hu X. Research Progress in J-Proteins in the Chloroplast. Genes (Basel) 2022; 13:1469. [PMID: 36011380 PMCID: PMC9407819 DOI: 10.3390/genes13081469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The J-proteins, also called DNAJ-proteins or heat shock protein 40 (HSP40), are one of the famous molecular chaperones. J-proteins, HSP70s and other chaperones work together as constitute ubiquitous types of molecular chaperone complex, which function in a wide variety of physiological processes. J-proteins are widely distributed in major cellular compartments. In the chloroplast of higher plants, around 18 J-proteins and multiple J-like proteins are present; however, the functions of most of them remain unclear. During the last few years, important progress has been made in the research on their roles in plants. There is increasing evidence that the chloroplast J-proteins play essential roles in chloroplast development, photosynthesis, seed germination and stress response. Here, we summarize recent research advances on the roles of J-proteins in the chloroplast, and discuss the open questions that remain in this field.
Collapse
Affiliation(s)
- Lu Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Tamadaddi C, Verma AK, Zambare V, Vairagkar A, Diwan D, Sahi C. J-like protein family of Arabidopsis thaliana: the enigmatic cousins of J-domain proteins. PLANT CELL REPORTS 2022; 41:1343-1355. [PMID: 35290497 DOI: 10.1007/s00299-022-02857-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
J-like proteins (JLPs) are emerging as ancillaries to the cellular chaperone network. They modulate functions of Hsp70:J-domain protein (JDP) systems in novel ways thereby having key roles in diverse plant processes. J-domain proteins (JDPs) form an obligate co-chaperone partnership with Hsp70s with their highly conserved J-domain to steer protein quality control processes in the cell. The HPD motif between helix II and helix III of the J-domain is crucial for JDP's interaction with Hsp70s. According to the most recent classification, J-like proteins (JLPs) form an extended class of the JDP family possessing a degenerate J-domain with the HPD motif non-conservatively replaced by other amino acid residues and hence are not able to interact with Hsp70s. Considering this most updated and acceptable JLP classification, we identified 21 JLPs in Arabidopsis thaliana that share a structurally conserved J-like domain (JLD), but lack the HPD motif. Analysis of publicly available gene expression data as well as real-time quantitative PCR performed for a few selected JLPs implicated some of these proteins in growth, development and stress response. Here, we summarize the current state of knowledge on plant JLPs and their involvement in vital plant cellular/metabolic processes, including chloroplast division, mitochondrial protein import and flowering. Finally, we propose possible modes of action for these highly elusive proteins and other DnaJ-related proteins (DNAJRs) in regulating the Hsp70 chaperone network.
Collapse
Affiliation(s)
- Chetana Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA, USA
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Vyankatesh Zambare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, India
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Avanti Vairagkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Danish Diwan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Department of Biology, University of Alabama, Birmingham, AL, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India.
- IISER Bhopal, Room Number 117, AB3, Bhopal Bypass Road, Bhopal, 462066, MP, India.
| |
Collapse
|
7
|
Breeze E, Mullineaux PM. The Passage of H 2O 2 from Chloroplasts to Their Associated Nucleus during Retrograde Signalling: Reflections on the Role of the Nuclear Envelope. PLANTS (BASEL, SWITZERLAND) 2022; 11:552. [PMID: 35214888 PMCID: PMC8876790 DOI: 10.3390/plants11040552] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/05/2023]
Abstract
The response of chloroplasts to adverse environmental cues, principally increases in light intensity, stimulates chloroplast-to-nucleus retrograde signalling, which leads to the induction of immediate protective responses and longer-term acclimation. Hydrogen peroxide (H2O2), generated during photosynthesis, is proposed to both initiate and transduce a retrograde signal in response to photoinhibitory light intensities. Signalling specificity achieved by chloroplast-sourced H2O2 for signal transduction may be dependent upon the oft-observed close association of a proportion of these organelles with the nucleus. In this review, we consider more precisely the nature of the close association between a chloroplast appressed to the nucleus and the requirement for H2O2 to cross both the double membranes of the chloroplast and nuclear envelopes. Of particular relevance is that the endoplasmic reticulum (ER) has close physical contact with chloroplasts and is contiguous with the nuclear envelope. Therefore, the perinuclear space, which transducing H2O2 molecules would have to cross, may have an oxidising environment the same as the ER lumen. Based on studies in animal cells, the ER lumen may be a significant source of H2O2 in plant cells arising from the oxidative folding of proteins. If this is the case, then there is potential for the ER lumen/perinuclear space to be an important location to modify chloroplast-to-nucleus H2O2 signal transduction and thereby introduce modulation of it by additional different environmental cues. These would include for example, heat stress and pathogen infection, which induce the unfolded protein response characterised by an increased H2O2 level in the ER lumen.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Philip M. Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
8
|
Liu X, An J, Wang L, Sun Q, An C, Wu B, Hong C, Wang X, Dong S, Guo J, Feng Y, Gao H. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. THE PLANT CELL 2022; 34:419-432. [PMID: 34755875 PMCID: PMC8773991 DOI: 10.1093/plcell/koab272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 06/11/2023]
Abstract
In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.
Collapse
Affiliation(s)
- Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chuanjing An
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bibo Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoya Wang
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhua Guo
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
9
|
Cui H. Challenges and Approaches to Crop Improvement Through C3-to-C4 Engineering. FRONTIERS IN PLANT SCIENCE 2021; 12:715391. [PMID: 34594351 PMCID: PMC8476962 DOI: 10.3389/fpls.2021.715391] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 05/24/2023]
Abstract
With a rapidly growing world population and dwindling natural resources, we are now facing the enormous challenge of increasing crop yields while simultaneously improving the efficiency of resource utilization. Introduction of C4 photosynthesis into C3 crops is widely accepted as a key strategy to meet this challenge because C4 plants are more efficient than C3 plants in photosynthesis and resource usage, particularly in hot climates, where the potential for productivity is high. Lending support to the feasibility of this C3-to-C4 engineering, evidence indicates that C4 photosynthesis has evolved from C3 photosynthesis in multiple lineages. Nevertheless, C3-to-C4 engineering is not an easy task, as several features essential to C4 photosynthesis must be introduced into C3 plants. One such feature is the spatial separation of the two phases of photosynthesis (CO2 fixation and carbohydrate synthesis) into the mesophyll and bundle sheath cells, respectively. Another feature is the Kranz anatomy, characterized by a close association between the mesophyll and bundle sheath (BS) cells (1:1 ratio). These anatomical features, along with a C4-specific carbon fixation enzyme (PEPC), form a CO2-concentration mechanism that ensures a high photosynthetic efficiency. Much effort has been taken in the past to introduce the C4 mechanism into C3 plants, but none of these attempts has met with success, which is in my opinion due to a lack of system-level understanding and manipulation of the C3 and C4 pathways. As a prerequisite for the C3-to-C4 engineering, I propose that not only the mechanisms that control the Kranz anatomy and cell-type-specific expression in C3 and C4 plants must be elucidated, but also a good understanding of the gene regulatory network underlying C3 and C4 photosynthesis must be achieved. In this review, I first describe the past and current efforts to increase photosynthetic efficiency in C3 plants and their limitations; I then discuss a systems approach to tackling down this challenge, some practical issues, and recent technical innovations that would help us to solve these problems.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
- College of Life Science, Northwest Science University of Agriculture and Forestry, Yangling, China
| |
Collapse
|
10
|
Itoh RD, Nakajima KP, Sasaki S, Ishikawa H, Kazama Y, Abe T, Fujiwara MT. TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:237-255. [PMID: 33884686 DOI: 10.1111/tpj.15287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Yusuke Kazama
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| |
Collapse
|
11
|
Chang J, Zhang F, Qin H, Liu P, Wang J, Wu S. Mutation of SlARC6 leads to tissue-specific defects in chloroplast development in tomato. HORTICULTURE RESEARCH 2021; 8:127. [PMID: 34059665 PMCID: PMC8167136 DOI: 10.1038/s41438-021-00567-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 05/24/2023]
Abstract
The proliferation and development of chloroplasts are important for maintaining the normal chloroplast population in plant tissues. Most studies have focused on chloroplast maintenance in leaves. In this study, we identified a spontaneous mutation in a tomato mutant named suffulta (su), in which the stems appeared albinic while the leaves remained normal. Map-based cloning showed that Su encodes a DnaJ heat shock protein that is a homolog of the Arabidopsis gene AtARC6, which is involved in chloroplast division. Knockdown and knockout of SlARC6 in wild-type tomato inhibit chloroplast division, indicating the conserved function of SlARC6. In su mutants, most mesophyll cells contain only one or two giant chloroplasts, while no chloroplasts are visible in 60% of stem cells, resulting in the albinic phenotype. Compared with mature tissues, the meristem of su mutants suggested that chloroplasts could partially divide in meristematic cells, suggesting the existence of an alternative mechanism in those dividing cells. Interestingly, the adaxial petiole cells of su mutants contain more chloroplasts than the abaxial cells. In addition, prolonged lighting can partially rescue the albinic phenotypes in su mutants, implying that light may promote SlACR6-independent chloroplast development. Our results verify the role of SlACR6 in chloroplast division in tomato and uncover the tissue-specific regulation of chloroplast development.
Collapse
Affiliation(s)
- Jiang Chang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fanyu Zhang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiyang Qin
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Peng Liu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianfeng Wang
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
12
|
Autophagy-Related 2 Regulates Chlorophyll Degradation under Abiotic Stress Conditions in Arabidopsis. Int J Mol Sci 2020; 21:ijms21124515. [PMID: 32630439 PMCID: PMC7350272 DOI: 10.3390/ijms21124515] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Chloroplasts are extraordinary organelles for photosynthesis and nutrient storage in plants. During leaf senescence or under stress conditions, damaged chloroplasts are degraded and provide nutrients for developing organs. Autophagy is a high-throughput degradation pathway for intracellular material turnover in eukaryotes. Along with chloroplast degradation, chlorophyll, an important component of the photosynthetic machine, is also degraded. However, the chlorophyll degradation pathways under high light intensity and high temperature stress are not well known. Here, we identified and characterized a novel Arabidopsis mutant, sl2 (seedling lethal 2), showing defective chloroplast development and accelerated chlorophyll degradation. Map-based cloning combined with high-throughput sequencing analysis revealed that a 118.6 kb deletion region was associated with the phenotype of the mutant. Complementary experiments confirmed that the loss of function of ATG2 was responsible for accelerating chlorophyll degradation in sl2 mutants. Furthermore, we analyzed chlorophyll degradation under abiotic stress conditions and found that both chloroplast vesiculation and autophagy take part in chlorophyll degradation under high light intensity and high temperature stress. These results enhanced our understanding of chlorophyll degradation under high light intensity and high temperature stress.
Collapse
|
13
|
Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, Li L. OR His, a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. MOLECULAR PLANT 2020; 13:864-878. [PMID: 32222485 DOI: 10.1016/j.molp.2020.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 05/19/2023]
Abstract
Chromoplasts are colored plastids that synthesize and store massive amounts of carotenoids. Chromoplast number and size define the sink strength for carotenoid accumulation in plants. However, nothing is known about the mechanisms controlling chromoplast number. Previously, a natural allele of Orange (OR), ORHis, was found to promote carotenoid accumulation by activating chromoplast differentiation and increasing carotenoid biosynthesis, but cells in orange tissues in melon fruit and cauliflower OR mutant have only one or two enlarged chromoplasts. In this study, we investigated an ORHis variant of Arabidopsis OR, genetically mimicking the melon ORHis allele, and found that it also constrains chromoplast number in Arabidopsis calli. Both in vitro and in vivo experiments demonstrate that ORHis specifically interacts with the Membrane Occupation and Recognition Nexus domain of ACCUMULATION AND REPLICATION OF CHLOROPLASTS 3 (ARC3), a crucial regulator of chloroplast division. We further showed that ORHis interferes with the interaction between ARC3 and PARALOG OF ARC6 (PARC6), another key regulator of chloroplast division, suggesting a role of ORHis in competing with PARC6 for binding to ARC3 to restrict chromoplast number. Overexpression or knockout of ARC3 in Arabidopsis ORHis plants significantly alters total carotenoid levels. Moreover, overexpression of the plastid division factor PLASTID DIVISION 1 greatly enhances carotenoid accumulation. These division factors likely alter carotenoid levels via their influence on chromoplast number and/or size. Taken together, our findings provide novel mechanistic insights into the machinery controlling chromoplast number and highlight a potential new strategy for enhancing carotenoid accumulation and nutritional value in food crops.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Mullineaux PM, Exposito-Rodriguez M, Laissue PP, Smirnoff N, Park E. Spatial chloroplast-to-nucleus signalling involving plastid-nuclear complexes and stromules. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190405. [PMID: 32362250 PMCID: PMC7209948 DOI: 10.1098/rstb.2019.0405] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Communication between chloroplasts and the nucleus in response to various environmental cues may be mediated by various small molecules. Signalling specificity could be enhanced if the physical contact between these organelles facilitates direct transfer and prevents interference from other subcellular sources of the same molecules. Plant cells have plastid-nuclear complexes, which provide close physical contact between these organelles. Plastid-nuclear complexes have been proposed to facilitate transfer of photosynthesis-derived H2O2 to the nucleus in high light. Stromules (stroma filled tubular plastid extensions) may provide an additional conduit for transfer of a wider range of signalling molecules, including proteins. However, plastid-nuclear complexes and stromules have been hitherto treated as distinct phenomena. We suggest that plastid-nuclear complexes and stromules work in a coordinated manner so that, according to environmental conditions or developmental state, the two modes of connection contribute to varying extents. We hypothesize that this association is dynamic and that there may be a link between plastid-nuclear complexes and the development of stromules. Furthermore, the changes in contact could alter signalling specificity by allowing an extended or different range of signalling molecules to be delivered to the nucleus. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | | | - Nicholas Smirnoff
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Eunsook Park
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie WY 82071, USA
| |
Collapse
|
15
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
16
|
Ishikawa H, Yasuzawa M, Koike N, Sanjaya A, Moriyama S, Nishizawa A, Matsuoka K, Sasaki S, Kazama Y, Hayashi Y, Abe T, Fujiwara MT, Itoh RD. Arabidopsis PARC6 Is Critical for Plastid Morphogenesis in Pavement, Trichome, and Guard Cells in Leaf Epidermis. FRONTIERS IN PLANT SCIENCE 2019; 10:1665. [PMID: 32010156 PMCID: PMC6974557 DOI: 10.3389/fpls.2019.01665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/20/2023]
Abstract
Recently, a recessive Arabidopsis thaliana mutant with abundant stromules in leaf epidermal pavement cells was visually screened and isolated. The gene responsible for this mutant phenotype was identified as PARC6, a chloroplast division site regulator gene. The mutant allele parc6-5 carried two point mutations (G62R and W700stop) at the N- and C-terminal ends of the coding sequence, respectively. Here, we further characterized parc6-5 and other parc6 mutant alleles, and showed that PARC6 plays a critical role in plastid morphogenesis in all cell types of the leaf epidermis: pavement cells, trichome cells, and guard cells. Transient expression of PARC6 transit peptide (TP) fused to the green fluorescent protein (GFP) in plant cells showed that the G62R mutation has no or little effect on the TP activity of the PARC6 N-terminal region. Then, plastid morphology was microscopically analyzed in the leaf epidermis of wild-type (WT) and parc6 mutants (parc6-1, parc6-3, parc6-4 and parc6-5) with the aid of stroma-targeted fluorescent proteins. In parc6 pavement cells, plastids often assumed aberrant grape-like morphology, similar to those in severe plastid division mutants, atminE1, and arc6. In parc6 trichome cells, plastids exhibited extreme grape-like aggregations, without the production of giant plastids (>6 µm diameter), as a general phenotype. In parc6 guard cells, plastids exhibited a variety of abnormal phenotypes, including reduced number, enlarged size, and activated stromules, similar to those in atminE1 and arc6 guard cells. Nevertheless, unlike atminE1 and arc6, parc6 exhibited a low number of mini-chloroplasts (< 2 µm diameter) and rarely produced chloroplast-deficient guard cells. Importantly, unlike parc6, the chloroplast division site mutant arc11 exhibited WT-like plastid phenotypes in trichome and guard cells. Finally, observation of parc6 complementation lines expressing a functional PARC6-GFP protein indicated that PARC6-GFP formed a ring-like structure in both constricting and non-constricting chloroplasts, and that PARC6 dynamically changes its configuration during the process of chloroplast division.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nana Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shota Moriyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Aya Nishizawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kanae Matsuoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Yusuke Kazama
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- *Correspondence: Ryuuichi D. Itoh,
| |
Collapse
|
17
|
Nuclear movement and positioning in plant cells. Semin Cell Dev Biol 2018; 82:17-24. [DOI: 10.1016/j.semcdb.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
|
18
|
Creating Leaf Cell Suspensions for Characterization of Mesophyll and Bundle Sheath Cellular Features. Methods Mol Biol 2018. [PMID: 29978407 DOI: 10.1007/978-1-4939-7786-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Imaging of mesophyll cell suspensions prepared from Arabidopsis has been pivotal for forming our current understanding of the molecular control of chloroplast division over the past 25 years. In this chapter, we provide a method for the preparation of leaf cell suspensions that improves upon a previous method by optimizing cellular preservation and cell separation. This technique is accessible to all researchers and amenable for use with all plant species. The leaf suspensions can be used for imaging chloroplast features within a cell that are important for photosynthesis such as size, number, and distribution. However, we also provide examples to illustrate how the cells in the suspensions can be easily stained to image other features, for example pit fields where plasmodesmata are located and organelles such as mitochondria, to improve our understanding of traits that are important for photosynthetic physiology.
Collapse
|
19
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
20
|
Itoh RD, Ishikawa H, Nakajima KP, Moriyama S, Fujiwara MT. Isolation and analysis of a stromule-overproducing Arabidopsis mutant suggest the role of PARC6 in plastid morphology maintenance in the leaf epidermis. PHYSIOLOGIA PLANTARUM 2018; 162:479-494. [PMID: 28984364 DOI: 10.1111/ppl.12648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 05/10/2023]
Abstract
Stromules, or stroma-filled tubules, are thin extensions of the plastid envelope membrane that are most frequently observed in undifferentiated or non-mesophyll cells. The formation of stromules is developmentally regulated and responsive to biotic and abiotic stress; however, the physiological roles and molecular mechanisms of the stromule formation remain enigmatic. Accordingly, we attempted to obtain Arabidopsis thaliana mutants with aberrant stromule biogenesis in the leaf epidermis. Here, we characterize one of the obtained mutants. Plastids in the leaf epidermis of this mutant were giant and pleomorphic, typically having one or more constrictions that indicated arrested plastid division, and usually possessed one or more extremely long stromules, which indicated the deregulation of stromule formation. Genetic mapping, whole-genome resequencing-aided exome analysis, and gene complementation identified PARC6/CDP1/ARC6H, which encodes a vascular plant-specific, chloroplast division site-positioning factor, as the causal gene for the stromule phenotype. Yeast two-hybrid assay and double mutant analysis also identified a possible interaction between PARC6 and MinD1, another known chloroplast division site-positioning factor, during the morphogenesis of leaf epidermal plastids. To the best of our knowledge, PARC6 is the only known A. thaliana chloroplast division factor whose mutations more extensively affect the morphology of plastids in non-mesophyll tissue than in mesophyll tissue. Therefore, the present study demonstrates that PARC6 plays a pivotal role in the morphology maintenance and stromule regulation of non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Hiroki Ishikawa
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Shota Moriyama
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Makoto T Fujiwara
- Department of Biology, Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
21
|
Yoshida Y. Insights into the Mechanisms of Chloroplast Division. Int J Mol Sci 2018; 19:ijms19030733. [PMID: 29510533 PMCID: PMC5877594 DOI: 10.3390/ijms19030733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023] Open
Abstract
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, Ibaraki 310-8512, Japan.
| |
Collapse
|
22
|
Fujiwara MT, Yasuzawa M, Kojo KH, Niwa Y, Abe T, Yoshida S, Nakano T, Itoh RD. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis. PLoS One 2018; 13:e0192380. [PMID: 29466386 PMCID: PMC5821325 DOI: 10.1371/journal.pone.0192380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/20/2018] [Indexed: 01/09/2023] Open
Abstract
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Collapse
Affiliation(s)
- Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kei H. Kojo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
- CREST, JST (Japan Science and Technology Agency), Kawaguchi, Saitama, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
23
|
Irieda H, Shiomi D. Bacterial Heterologous Expression System for Reconstitution of Chloroplast Inner Division Ring and Evaluation of Its Contributors. Int J Mol Sci 2018; 19:ijms19020544. [PMID: 29439474 PMCID: PMC5855766 DOI: 10.3390/ijms19020544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022] Open
Abstract
Plant chloroplasts originate from the symbiotic relationship between ancient free-living cyanobacteria and ancestral eukaryotic cells. Since the discovery of the bacterial derivative FtsZ gene—which encodes a tubulin homolog responsible for the formation of the chloroplast inner division ring (Z ring)—in the Arabidopsis genome in 1995, many components of the chloroplast division machinery were successively identified. The knowledge of these components continues to expand; however, the mode of action of the chloroplast dividing system remains unknown (compared to bacterial cell division), owing to the complexities faced in in planta analyses. To date, yeast and bacterial heterologous expression systems have been developed for the reconstitution of Z ring-like structures formed by chloroplast FtsZ. In this review, we especially focus on recent progress of our bacterial system using the model bacterium Escherichia coli to dissect and understand the chloroplast division machinery—an evolutionary hybrid structure composed of both bacterial (inner) and host-derived (outer) components.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan.
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan.
| |
Collapse
|
24
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Chloroplast division protein ARC3 acts on FtsZ2 by preventing filament bundling and enhancing GTPase activity. Biochem J 2018; 475:99-115. [PMID: 29138260 DOI: 10.1042/bcj20170697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/28/2023]
Abstract
Chloroplasts evolved from cyanobacterial endosymbiotic ancestors and their division is a complex process initiated by the assembly of cytoskeletal FtsZ (Filamentous temperature sensitive Z) proteins into a ring structure at the division site (Z-ring). The cyanobacterial Z-ring positioning system (MinCDE proteins) is also conserved in chloroplasts, except that MinC was lost and replaced by the eukaryotic ARC3 (accumulation and replication of chloroplasts). Both MinC and ARC3 act as negative regulators of FtsZ assembly, but ARC3 bears little sequence similarity with MinC. Here, light scattering assays, co-sedimentation, GTPase assay and transmission electron microscopy in conjunction with single-particle analysis have been used to elucidate the structure of ARC3 and its effect on its main target in chloroplast division, FtsZ2. Analysis of FtsZ2 in vitro assembly reactions in the presence and absence of GMPCPP showed that ARC3 promotes FtsZ2 debundling and disassembly of existing filaments in a concentration-dependent manner and requires GTP hydrolysis. Three-dimensional reconstruction of ARC3 revealed an almost circular molecule in which the FtsZ-binding N-terminus and the C-terminal PARC6 (paralog of ARC6)-binding MORN (Membrane Occupation and Recognition Nexus) domain are in close proximity and suggest a model for PARC6-enabled binding of ARC3 to FtsZ2. The latter is corroborated by in vivo data.
Collapse
|
26
|
Pulido P, Leister D. Novel DNAJ-related proteins in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:480-490. [PMID: 29271039 DOI: 10.1111/nph.14827] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical DNAJ proteins are co-chaperones that together with HSP70s control protein homeostasis. All three classical types of DNAJ proteins (DNAJA, DNAJB and DNAJC types) possess the J-domain for interaction with HSP70. DNAJA proteins contain, in addition, both the zinc-finger motif and the C-terminal domain which are involved in substrate binding, while DNAJB retains only the latter and DNAJC comprises only the J-domain. There is increasing evidence that some of the activities of DNAJ proteins do not require the J-domain, highlighting the functional significance of the other two domains. Indeed, the so-called DNAJ-like proteins with a degenerate J-domain have been previously coined as DNAJD proteins, and also proteins containing only a DNAJ-like zinc-finger motif appear to be involved in protein homeostasis. Therefore, we propose to extend the classification of DNAJ-related proteins into three different groups. The DNAJD type comprises proteins with a J-like domain only, and has 15 members in Arabidopsis thaliana, whereas proteins of the DNAJE (33 Arabidopsis members) and DNAJF (three Arabidopsis members) types contain a DNAJA-like zinc-finger domain and DNAJA/B-like C-terminal domain, respectively. Here, we provide an overview of the entire repertoire of these proteins in A. thaliana with respect to their physiological function and possible evolutionary origin.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-Universität München, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Grosche C, Rensing SA. Three rings for the evolution of plastid shape: a tale of land plant FtsZ. PROTOPLASMA 2017; 254:1879-1885. [PMID: 28258494 DOI: 10.1007/s00709-017-1096-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Nuclear-encoded plant FtsZ genes are derived from endosymbiotic gene transfer of cyanobacteria-like genes. The green lineage (Chloroplastida) and red lineage (Rhodophyta) feature FtsZ1 and FtsZ2 or FtsZB and FtsZA, respectively, which are involved in plastid division. These two proteins show slight differences and seem to heteropolymerize to build the essential inner plastid division ring. A third gene, encoding FtsZ3, is present in glaucophyte and charophyte algae, as well as in land plants except ferns and angiosperms. This gene was probably present in the last common ancestor of the organisms united by having a primary plastid (Archaeplastida) and was lost during vascular plant evolution as well as in the red and green algae. The presence/absence pattern of FtsZ3 mirrors that of a full set of Mur genes and the peptidoglycan wall encoded by them. Based on these findings, we discuss a role for FtsZ3 in the establishment or maintenance of plastid peptidoglycan shells.
Collapse
Affiliation(s)
- Christopher Grosche
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany.
| |
Collapse
|
28
|
Dutta S, Cruz JA, Imran SM, Chen J, Kramer DM, Osteryoung KW. Variations in chloroplast movement and chlorophyll fluorescence among chloroplast division mutants under light stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3541-3555. [PMID: 28645163 PMCID: PMC5853797 DOI: 10.1093/jxb/erx203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/25/2017] [Indexed: 05/18/2023]
Abstract
Chloroplasts divide to maintain consistent size, shape, and number in leaf mesophyll cells. Altered expression of chloroplast division proteins in Arabidopsis results in abnormal chloroplast morphology. To better understand the influence of chloroplast morphology on chloroplast movement and photosynthesis, we compared the chloroplast photorelocation and photosynthetic responses of a series of Arabidopsis chloroplast division mutants with a wide variety of chloroplast phenotypes. Chloroplast movement was monitored by red light reflectance imaging of whole plants under increasing intensities of white light. The accumulation and avoidance responses were differentially affected in different mutants and depended on both chloroplast number and morphological heterogeneity. Chlorophyll fluorescence measurements during 5 d light experiments demonstrated that mutants with large-chloroplast phenotypes generally exhibited greater PSII photodamage than those with intermediate phenotypes. No abnormalities in photorelocation efficiency or photosynthetic capacity were observed in plants with small-chloroplast phenotypes. Simultaneous measurement of chloroplast movement and chlorophyll fluorescence indicated that the energy-dependent (qE) and long-lived components of non-photochemical quenching that reflect photoinhibition are affected differentially in different division mutants exposed to high or fluctuating light intensities. We conclude that chloroplast division mutants with abnormal chloroplast morphologies differ markedly from the wild type in their light adaptation capabilities, which may decrease their relative fitness in nature.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jeffrey A Cruz
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, USA
| | - Saif M Imran
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Jin Chen
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Computer Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - David M Kramer
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology Michigan State University, East Lansing, MI, USA
- Correspondence: or
| | - Katherine W Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Correspondence: or
| |
Collapse
|
29
|
Sumiya N, Miyagishima SY. Hierarchal order in the formation of chloroplast division machinery in the red alga Cyanidioschyzon merolae. Commun Integr Biol 2017; 10:e1294298. [PMID: 28451055 PMCID: PMC5398205 DOI: 10.1080/19420889.2017.1294298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Chloroplasts have evolved from a cyanobacterial endosymbiont and multiply by dividing. Chloroplast division is performed by constriction of the ring-like protein complex (the PD machinery), which forms at the division site. The PD machinery is composed of cyanobacteria-descended components such as FtsZ and eukaryote-derived proteins such as the dynamin-related protein, DRP5B. In the red alga Cyanidioschyzon merolae, FtsZ ring formation on the stromal side precedes PDR1 and DRP5B ring formation on the cytosolic side. In this study, we impaired FtsZ ring formation in C. merolae by overexpressing FtsZ just before FtsZ ring formation. As a result, PDR1 and DRP5B failed to localize at the chloroplast division site, suggesting that FtsZ ring formation is required for the PDR1 and DRP5B rings. We further found, by expressing a dominant negative form of DRP5B, that DRP5B ring formation begins on the nuclear side of the chloroplast division site. These findings provide insight into how the PD machinery forms in red algae.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan.,Core Research for Evolutional Science and Technology Program, Japan Science and Technology Agency, Saitama, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan.,Core Research for Evolutional Science and Technology Program, Japan Science and Technology Agency, Saitama, Japan.,Department of Genetics, Graduate University for Advanced Studies, Shizuoka, Japan
| |
Collapse
|
30
|
Bross CD, Howes TR, Abolhassani Rad S, Kljakic O, Kohalmi SE. Subcellular localization of Arabidopsis arogenate dehydratases suggests novel and non-enzymatic roles. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1425-1440. [PMID: 28338876 PMCID: PMC5444438 DOI: 10.1093/jxb/erx024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arogenate dehydratases (ADTs) catalyze the final step in phenylalanine biosynthesis in plants. The Arabidopsis thaliana genome encodes a family of six ADTs capable of decarboxylating/dehydrating arogenate into phenylalanine. Using cyan fluorescent protein (CFP)-tagged proteins, the subcellular localization patterns of all six A. thaliana ADTs were investigated in intact Nicotiana benthamiana and A. thaliana leaf cells. We show that A. thaliana ADTs localize to stroma and stromules (stroma-filled tubules) of chloroplasts. This localization pattern is consistent with the enzymatic function of ADTs as many enzymes required for amino acid biosynthesis are primarily localized to chloroplasts, and stromules are thought to increase metabolite transport from chloroplasts to other cellular compartments. Furthermore, we provide evidence that ADTs have additional, non-enzymatic roles. ADT2 localizes in a ring around the equatorial plane of chloroplasts or to a chloroplast pole, which suggests that ADT2 is a component of the chloroplast division machinery. In addition to chloroplasts, ADT5 was also found in nuclei, again suggesting a non-enzymatic role for ADT5. We also show evidence that ADT5 is transported to the nucleus via stromules. We propose that ADT2 and ADT5 are moonlighting proteins that play an enzymatic role in phenylalanine biosynthesis and a second role in chloroplast division or transcriptional regulation, respectively.
Collapse
Affiliation(s)
- Crystal D Bross
- Department of Biology, Western University, 1151 Richmond Street North, London Ontario, N6A 5B7, Canada
| | - Travis R Howes
- Department of Biology, Western University, 1151 Richmond Street North, London Ontario, N6A 5B7, Canada
| | - Sara Abolhassani Rad
- Department of Biology, Western University, 1151 Richmond Street North, London Ontario, N6A 5B7, Canada
| | - Ornela Kljakic
- Department of Biology, Western University, 1151 Richmond Street North, London Ontario, N6A 5B7, Canada
| | - Susanne E Kohalmi
- Department of Biology, Western University, 1151 Richmond Street North, London Ontario, N6A 5B7, Canada
| |
Collapse
|
31
|
Chang N, Sun Q, Li Y, Mu Y, Hu J, Feng Y, Liu X, Gao H. PDV2 has a dosage effect on chloroplast division in Arabidopsis. PLANT CELL REPORTS 2017; 36:471-480. [PMID: 27988788 DOI: 10.1007/s00299-016-2096-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 05/10/2023]
Abstract
PDV2 has a dosage effect on chloroplast division in Arabidopsis thaliana , but this effect may vary in different plants. Chloroplasts have to be divided as plants grow to maintain an optimized number in the cell. Chloroplasts are divided by protein complexes across the double membranes from the stroma side to the cytosolic side. PDV2 is a chloroplast division protein on the chloroplast outer membrane. It recruits the dynamin-related GTPase ARC5 to the division site. The C-terminus of PDV2 and the C-terminus of ARC6 interact in the intermembrane space, which is important for the localization of PDV2. Previously, it was shown that overexpression of PDV2 can increase the division of chloroplasts in Arabidopsis and moss, so the authors concluded that PDV2 determines the rate of chloroplast division in land plants. PDV2 was also shown to inhibit the GTPase activity of ARC5 by in vitro experiment. These results look to be contradictory. Here, we identified a null allele of PDV2 in Arabidopsis and studied plants with different levels of PDV2. Our results suggested that the chloroplast division phenotype in Arabidopsis is sensitive to the level of PDV2, while this is not the case for ARC6. The level of PDV2 protein is reduced sharply in fast-growing leaves, while the level of ARC6 is not. The levels of PDV2 and ARC6 in several other plant species at different developmental stages were also investigated. The results indicated that their expression pattern varies in different species. Thus, PDV2 is an important positive factor of chloroplast division with an apparent dosage effect in Arabidopsis, but this effect for different chloroplast division proteins in different plants may vary.
Collapse
Affiliation(s)
- Ning Chang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yiqiong Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yajuan Mu
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinglei Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Feng
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
32
|
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
33
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
34
|
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte Terrestrialization in Light of Plastid Evolution. TRENDS IN PLANT SCIENCE 2016; 21:467-476. [PMID: 26895731 DOI: 10.1016/j.tplants.2016.01.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon.
Collapse
Affiliation(s)
- Jan de Vries
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany
| | - Amanda Stanton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
35
|
Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria. PLANT & CELL PHYSIOLOGY 2016; 57:904-918. [PMID: 26985020 DOI: 10.1093/pcp/pcw015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Natalie Hoffmann
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| | - Sarah Covshoff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T6G 2E9, Canada Department of Medicine, University of Alberta, Edmonton AB, T6G 2E1, Canada BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2 Canada
| |
Collapse
|
36
|
TerBush AD, Porzondek CA, Osteryoung KW. Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:275-289. [PMID: 26917361 DOI: 10.1017/s1431927616000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloroplast division is driven by a macromolecular complex that assembles at the midplastid. The FtsZ ring (Z ring) is the central structure in this complex, and is composed of the functionally distinct cytoskeletal proteins FtsZ1 and FtsZ2. Recent studies in the heterologous Schizosaccharomyces pombe system showed that Arabidopsis FtsZ1 and FtsZ2 filaments have distinct assembly and turnover characteristics. To further analyze these FtsZs, we employed this system to compare the assembly and dynamic properties of FtsZ1 and FtsZ2 lacking their N- and/or C-termini with those of their full-length counterparts. Our data provide evidence that the N-terminus of FtsZ2 is critical for its structural dominance over FtsZ1, and that the N- and C-termini promote polymer bundling and turnover of both FtsZs and contribute to their distinct behaviors. We also assessed how ARC6 affects FtsZ2 filament dynamics, and found that it interacts with and stabilizes FtsZ2 filaments in S. pombe independent of its presumed Z-ring tethering function in planta. Finally, we generated FtsZ1-FtsZ2 coexpression constructs to facilitate reconstitution of more complex interaction networks. Our experiments yield new insight into factors influencing FtsZ behavior and highlight the utility of S. pombe for analyzing chloroplast FtsZs and their assembly regulators.
Collapse
Affiliation(s)
- Allan D TerBush
- 1Biochemistry and Molecular Biology Graduate Program,Michigan State University,East Lansing,MI 48824,USA
| | - Chris A Porzondek
- 3Biochemistry and Molecular Biology Undergraduate Program,Michigan State University,East Lansing,MI 48824,USA
| | | |
Collapse
|
37
|
Kumar N, Radhakrishnan A, Su C, Osteryoung KW, Yu EW. Crystal structure of a conserved domain in the intermembrane space region of the plastid division protein ARC6. Protein Sci 2016; 25:523-9. [PMID: 26452626 PMCID: PMC4815350 DOI: 10.1002/pro.2825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/07/2022]
Abstract
The chloroplast division machinery is composed of numerous proteins that assemble as a large complex to divide double-membraned chloroplasts through binary fission. A key mediator of division-complex formation is ARC6, a chloroplast inner envelope protein and evolutionary descendant of the cyanobacterial cell division protein Ftn2. ARC6 connects stromal and cytosolic contractile rings across the two membranes through interaction with an outer envelope protein within the intermembrane space (IMS). The ARC6 IMS region bears a structurally uncharacterized domain of unknown function, DUF4101, that is highly conserved among ARC6 and Ftn2 proteins. Here we report the crystal structure of this domain from Arabidopsis thaliana ARC6. The domain forms an α/β barrel open towards the outer envelope membrane but closed towards the inner envelope membrane. These findings provide new clues into how ARC6 and its homologs contribute to chloroplast and cyanobacterial cell division.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of ChemistryIowa State UniversityAmesIowa50011
| | | | - Chih‐Chia Su
- Department of Physics and AstronomyIowa State UniversityAmesIowa50011
| | | | - Edward W. Yu
- Department of ChemistryIowa State UniversityAmesIowa50011
- Department of Physics and AstronomyIowa State UniversityAmesIowa50011
| |
Collapse
|
38
|
WADA M. Chloroplast and nuclear photorelocation movements. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:387-411. [PMID: 27840388 PMCID: PMC5328789 DOI: 10.2183/pjab.92.387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Chloroplasts move toward weak light to increase photosynthetic efficiency, and migrate away from strong light to protect chloroplasts from photodamage and eventual cell death. These chloroplast behaviors were first observed more than 100 years ago, but the underlying mechanism has only recently been identified. Ideal plant materials, such as fern gametophytes for photobiological and cell biological approaches, and Arabidopsis thaliana for genetic analyses, have been used along with sophisticated methods, such as partial cell irradiation and time-lapse video recording under infrared light to study chloroplast movement. These studies have revealed precise chloroplast behavior, and identified photoreceptors, other relevant protein components, and novel actin filament structures required for chloroplast movement. In this review, our findings regarding chloroplast and nuclear movements are described.
Collapse
Affiliation(s)
- Masamitsu WADA
- Department Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa, Tokyo, Japan
| |
Collapse
|
39
|
Zhu X, Liang S, Yin J, Yuan C, Wang J, Li W, He M, Wang J, Chen W, Ma B, Wang Y, Qin P, Li S, Chen X. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Gene 2015. [PMID: 26210810 DOI: 10.1016/j.gene.2015.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DnaJ proteins belong to chaperones of Hsp40 family that ubiquitously participate in various cellular processes. Previous studies have shown chloroplast-targeted DnaJs are involved in the development of chloroplast in some plant species. However, little is known about the function of DnaJs in rice, one of the main staple crops. In this study, we characterized a type I DnaJ protein OsDjA7/8. We found that the gene OsDjA7/8 was expressed in all collected tissues, with a priority in the vigorous growth leaf. Subcellular localization revealed that the protein OsDjA7/8 was mainly distributed in chloroplast. Reduced expression of OsDjA7/8 in rice led to albino lethal at the seedling stage. Transmission electron microscopy observation showed that the chloroplast structures were abnormally developed in the plants silenced for OsDjA7/8. In addition, the transcriptional expression of the genes tightly associated with the development of chloroplast was deeply reduced in the plants silenced for OsDjA7/8. Collectively, our study reveals that OsDjA7/8 encodes a chloroplast-localized protein and is essential for chloroplast development and differentiation in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Sihui Liang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Junjie Yin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Can Yuan
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jing Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weitao Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Min He
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Jichun Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Weilan Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Bingtian Ma
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Yuping Wang
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Peng Qin
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Shigui Li
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China
| | - Xuewei Chen
- Rice Research Institute, Key Laboratory of Major Crop Diseases, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China; State Key Laboratory of Hybrid Rice, Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin at Sichuan, Chengdu 611130, China.
| |
Collapse
|
40
|
Okazaki K, Miyagishima SY, Wada H. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis. THE PLANT CELL 2015; 27:663-74. [PMID: 25736058 PMCID: PMC4558672 DOI: 10.1105/tpc.115.136234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 05/22/2023]
Abstract
Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner.
Collapse
Affiliation(s)
- Kumiko Okazaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
41
|
Kamau PK, Sano S, Takami T, Matsushima R, Maekawa M, Sakamoto W. A Mutation in GIANT CHLOROPLAST Encoding a PARC6 Homolog Affects Spikelet Fertility in Rice. ACTA ACUST UNITED AC 2015; 56:977-91. [DOI: 10.1093/pcp/pcv024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/04/2015] [Indexed: 01/07/2023]
|
42
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
43
|
Actin-dependent plastid movement is required for motive force generation in directional nuclear movement in plants. Proc Natl Acad Sci U S A 2014; 111:4327-31. [PMID: 24591587 DOI: 10.1073/pnas.1317902111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear movement and positioning are indispensable for most cellular functions. In plants, strong light-induced chloroplast movement to the side walls of the cell is essential for minimizing damage from strong visible light. Strong light-induced nuclear movement to the side walls also has been suggested to play an important role in minimizing damage from strong UV light. Although both movements are regulated by the same photoreceptor, phototropin, the precise cytoskeleton-based force generation mechanism for nuclear movement is unknown, in contrast to the short actin-based mechanism of chloroplast movement. Here we show that actin-dependent movement of plastids attached to the nucleus is essential for light-induced nuclear movement in the Arabidopsis leaf epidermal cell. We found that nuclei are always associated with some plastids, and that light-induced nuclear movement is correlated with the dynamics of short actin filaments associated with plastids. Indeed, nuclei without plastid attachments do not exhibit blue light-induced directional movement. Our results demonstrate that nuclei are incapable of autonomously moving in response to light, whereas attached plastids carry nuclei via the short actin filament-based movement. Thus, the close association between nuclei and plastids is essential for their cooperative movements and functions.
Collapse
|
44
|
Jarvis P, López-Juez E. Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 2014; 14:787-802. [PMID: 24263360 DOI: 10.1038/nrm3702] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are the organelles that define plants, and they are responsible for photosynthesis as well as numerous other functions. They are the ancestral members of a family of organelles known as plastids. Plastids are remarkably dynamic, existing in strikingly different forms that interconvert in response to developmental or environmental cues. The genetic system of this organelle and its coordination with the nucleocytosolic system, the import and routing of nucleus-encoded proteins, as well as organellar division all contribute to the biogenesis and homeostasis of plastids. They are controlled by the ubiquitin-proteasome system, which is part of a network of regulatory mechanisms that integrate plastid development into broader programmes of cellular and organismal development.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
45
|
Miyagishima SY, Nakamura M, Uzuka A, Era A. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division. FRONTIERS IN PLANT SCIENCE 2014; 5:459. [PMID: 25309558 PMCID: PMC4164004 DOI: 10.3389/fpls.2014.00459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/26/2014] [Indexed: 05/08/2023]
Abstract
The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
- *Correspondence: Shin-ya Miyagishima, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Mami Nakamura
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Akihiro Uzuka
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI)Mishima, Japan
| | - Atsuko Era
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- Japan Science and Technology Agency, CRESTKawaguchi, Japan
| |
Collapse
|
46
|
Abstract
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Collapse
|
47
|
Wang P, Zhang J, Su J, Wang P, Liu J, Liu B, Feng D, Wang J, Wang H. The chloroplast min system functions differentially in two specific nongreen plastids in Arabidopsis thaliana. PLoS One 2013; 8:e71190. [PMID: 23936263 PMCID: PMC3728212 DOI: 10.1371/journal.pone.0071190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/26/2013] [Indexed: 01/12/2023] Open
Abstract
The nongreen plastids, such as etioplasts, chromoplasts, etc., as well as chloroplasts, are all derived from proplastids in the meristem. To date, the Min system members in plants have been identified as regulators of FtsZ-ring placement, which are essential for the symmetrical division of chloroplasts. However, the regulation of FtsZ-ring placement in nongreen plastids is poorly understood. In this study, we investigated the division site placement of nongreen plastids by examining the etioplasts as representative in Arabidopsis Min system mutants. Surprisingly, the shape and number of etioplasts in cotyledons of arc3, arc11 and mcd1 mutants were similar to that observed in wild-type plants, whereas arc12 and parc6 mutants exhibited enlarged etioplasts that were reduced in number. In order to examine nongreen plastids in true leaves, we silenced the ALB3 gene in these Min system mutant backgrounds to produce immature chloroplasts without the thylakoidal network using virus induced gene silencing (VIGS). Interestingly, consistent with our observations in etioplasts, enlarged and fewer nongreen plastids were only detected in leaves of parc6 (VIGS-ALB3) and arc12 (VIGS-ALB3) plants. Further, the FtsZ-ring assembled properly at the midpoint in nongreen plastids of arc3, arc11 and mcd1 (VIGS-ALB3) plants, but organized into multiple rings in parc6 (VIGS-ALB3) and presented fragmented filaments in arc12 (VIGS-ALB3) plants, suggesting that division site placement in nongreen plastids requires fewer components of the plant Min system. Taken together, these results suggest that division site placement in nongreen plastids is different from that in chloroplasts.
Collapse
Affiliation(s)
- Peng Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jie Zhang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianbin Su
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peng Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jun Liu
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bing Liu
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Dongru Feng
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jinfa Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongbin Wang
- Guangdong Key Laboratory of Plant Resources and State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Holtsmark I, Lee S, Lunde KA, Auestad K, Maple-Grødem J, Møller SG. Plastid division control: the PDV proteins regulate DRP5B dynamin activity. PLANT MOLECULAR BIOLOGY 2013; 82:255-66. [PMID: 23595201 DOI: 10.1007/s11103-013-0059-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/09/2013] [Indexed: 05/21/2023]
Abstract
Chloroplast division represents a fundamental but complex biological process involving remnants of the ancestral bacterial division machinery and proteins of eukaryotic origin. Moreover, the chloroplast division machinery is divided into stromal and cytosolic sub machineries, which coordinate and control their activities to ensure appropriate division initiation and progression. Dynamin related protein 5B (DRP5B) and plastid division protein 1 and 2 (PDV1 and PDV2) are all plant-derived proteins and represent components of the cytosolic division machinery, where DRP5B is thought to exert constrictional force during division. However, the direct relationship between PDV1, PDV2 and DRP5B, and moreover how DRP5B is regulated during plastid constriction remains unclear. In this study we show that PDV1 and PDV2 can interact with themselves and with each other through their cytosolic domains. We demonstrate that DRP5B interacts with itself and with the cytosolic region of PDV1 and that the two functional isoforms of DRP5B have highly overlapping functions. We further show that DRP5B harbors GTPase activity and moreover that PDV1 and PDV2 inhibits DRP5B-mediated GTP hydrolysis in a ratio dependent manner. Our data suggest that the PDV proteins contribute to the regulation of DRP5B activity thereby enforcing control over the division process during early constriction.
Collapse
Affiliation(s)
- Ingrid Holtsmark
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | | | | | | | | |
Collapse
|
49
|
Johnson CB, Tang LK, Smith AG, Ravichandran A, Luo Z, Vitha S, Holzenburg A. Single particle tracking analysis of the chloroplast division protein FtsZ anchoring to the inner envelope membrane. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:507-512. [PMID: 23578755 DOI: 10.1017/s143192761300038x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Replication of chloroplast in plant cells is an essential process that requires co-assembly of the tubulin-like plastid division proteins FtsZ1 and FtsZ2 at mid-chloroplast to form a ring structure called the Z-ring. The Z-ring is stabilized via its interaction with the transmembrane protein ARC6 on the inner envelope membrane of chloroplasts. Plants lacking ARC6 are defective in plastid division and contain only one or two enlarged chloroplasts per cell with abnormal localization of FtsZ: instead of a single Z-ring, many short FtsZ filaments are distributed throughout the chloroplast. ARC6 is thought to be the anchoring point for FtsZ assemblies. To investigate the role of ARC6 in FtsZ anchoring, the mobility of green fluorescent protein-tagged FtsZ assemblies was assessed by single particle tracking in mutant plants lacking the ARC6 protein. Mean square displacement analysis showed that the mobility of FtsZ assemblies is to a large extent characterized by anomalous diffusion behavior (indicative of intermittent binding) and restricted diffusion suggesting that besides ARC6-mediated anchoring, an additional FtsZ-anchoring mechanism is present in chloroplasts.
Collapse
Affiliation(s)
- Carol B Johnson
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Basak I, Møller SG. Emerging facets of plastid division regulation. PLANTA 2013; 237:389-98. [PMID: 22965912 DOI: 10.1007/s00425-012-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/19/2012] [Indexed: 05/08/2023]
Abstract
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, NY 11439, USA
| | | |
Collapse
|