1
|
Barmukh R, Garg V, Liu H, Chitikineni A, Xin L, Henry R, Varshney RK. Spatial omics for accelerating plant research and crop improvement. Trends Biotechnol 2025:S0167-7799(25)00092-7. [PMID: 40221306 DOI: 10.1016/j.tibtech.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Plant cells communicate information to regulate developmental processes and respond to environmental stresses. This communication spans various 'omics' layers within a cell and operates through intricate regulatory networks. The emergence of spatial omics presents a promising approach to thoroughly analyze cells, allowing the combined analysis of diverse modalities either in parallel or on the same tissue section. Here, we provide an overview of recent advancements in spatial omics and delineate scientific discoveries in plant research enabled by these technologies. We delve into experimental and computational challenges and outline strategies to navigate these challenges for advancing breeding efforts. With ongoing insightful discoveries and improved accessibility, spatial omics stands on the brink of playing a crucial role in designing future crops.
Collapse
Affiliation(s)
- Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Hao Liu
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, 510640, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Liu Xin
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia; BGI-Shenzhen, Shenzhen, 518083, China
| | - Robert Henry
- Queensland Alliance for Agriculture & Food Innovation, Queensland Biosciences Precinct, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
2
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Bai P, Li G, Luo J, Liang C. Deep learning model for protein multi-label subcellular localization and function prediction based on multi-task collaborative training. Brief Bioinform 2024; 25:bbae568. [PMID: 39489606 PMCID: PMC11531862 DOI: 10.1093/bib/bbae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The functional study of proteins is a critical task in modern biology, playing a pivotal role in understanding the mechanisms of pathogenesis, developing new drugs, and discovering novel drug targets. However, existing computational models for subcellular localization face significant challenges, such as reliance on known Gene Ontology (GO) annotation databases or overlooking the relationship between GO annotations and subcellular localization. To address these issues, we propose DeepMTC, an end-to-end deep learning-based multi-task collaborative training model. DeepMTC integrates the interrelationship between subcellular localization and the functional annotation of proteins, leveraging multi-task collaborative training to eliminate dependence on known GO databases. This strategy gives DeepMTC a distinct advantage in predicting newly discovered proteins without prior functional annotations. First, DeepMTC leverages pre-trained language model with high accuracy to obtain the 3D structure and sequence features of proteins. Additionally, it employs a graph transformer module to encode protein sequence features, addressing the problem of long-range dependencies in graph neural networks. Finally, DeepMTC uses a functional cross-attention mechanism to efficiently combine upstream learned functional features to perform the subcellular localization task. The experimental results demonstrate that DeepMTC outperforms state-of-the-art models in both protein function prediction and subcellular localization. Moreover, interpretability experiments revealed that DeepMTC can accurately identify the key residues and functional domains of proteins, confirming its superior performance. The code and dataset of DeepMTC are freely available at https://github.com/ghli16/DeepMTC.
Collapse
Affiliation(s)
- Peihao Bai
- School of Information and Software Engineering, East China Jiaotong University, No. 808 Shuanggang East Road, Nanchang 330013, China
| | - Guanghui Li
- School of Information and Software Engineering, East China Jiaotong University, No. 808 Shuanggang East Road, Nanchang 330013, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, No. 2 Lushan Road, Changsha 410082, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, No. 1 University Road, Jinan 250358, China
- Shandong Key Laboratory of Biophysics, Dezhou University, No. 566 University Road, Dezhou 253023, China
| |
Collapse
|
4
|
Xiao H, Zou Y, Wang J, Wan S. A Review for Artificial Intelligence Based Protein Subcellular Localization. Biomolecules 2024; 14:409. [PMID: 38672426 PMCID: PMC11048326 DOI: 10.3390/biom14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and Alzheimer's disease. Knowing where a target protein resides within a cell will give insights into tailored drug design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location identification. However, the booming era of proteomics and high-throughput sequencing generates tons of newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML), especially deep learning methods, have made significant progress in this research area. In this article, we review the latest advances in AI-based method development in three typical types of approaches, including sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges and future directions in AI-based method development in this research field.
Collapse
Affiliation(s)
- Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yijin Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Gao M, Schornack S. Antibodies for a bespoke plant immunity. Cell Host Microbe 2023; 31:683-684. [PMID: 37167947 DOI: 10.1016/j.chom.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/07/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
Plants do not have antibodies. However, in a recent Science article, Kourelis and Marchal et al. have demonstrated that plant immune receptors can be retrofitted with animal antibodies to provide plants potentially with hundreds and thousands of options to perceive attacking microbes. This is the dawn of bespoke plant immunity.
Collapse
Affiliation(s)
- Mingjun Gao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| | | |
Collapse
|
6
|
Luo N, Shang D, Tang Z, Mai J, Huang X, Tao LZ, Liu L, Gao C, Qian Y, Xie Q, Li F. Engineered ATG8-binding motif-based selective autophagy to degrade proteins and organelles in planta. THE NEW PHYTOLOGIST 2023; 237:684-697. [PMID: 36263708 DOI: 10.1111/nph.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Protein-targeting technologies represent essential approaches in biological research. Protein knockdown tools developed recently in mammalian cells by exploiting natural degradation mechanisms allow for precise determination of protein function and discovery of degrader-type drugs. However, no method to directly target endogenous proteins for degradation is currently available in plants. Here, we describe a novel method for targeted protein clearance by engineering an autophagy receptor with a binder to provide target specificity and an ATG8-binding motif (AIM) to link the targets to nascent autophagosomes, thus harnessing the autophagy machinery for degradation. We demonstrate its specificity and broad potentials by degrading various fluorescence-tagged proteins, including cytosolic mCherry, the nucleus-localized bZIP transcription factor TGA5, and the plasma membrane-anchored brassinosteroid receptor BRI1, as well as fluorescence-coated peroxisomes, using a tobacco-based transient expression system. Stable expression of AIM-based autophagy receptors in Arabidopsis further confirms the feasibility of this approach in selective autophagy of endogenous proteins. With its wide substrate scope and its specificity, our concept of engineered AIM-based selective autophagy could provide a convenient and robust research tool for manipulating endogenous proteins in plants and may open an avenue toward degradation of cytoplasmic components other than proteins in plant research.
Collapse
Affiliation(s)
- Na Luo
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Shang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiwei Tang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Mai
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yangwen Qian
- WIMI Biotechnology Co. Ltd, Changzhou, 213000, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
7
|
Madina MH, Santhanam P, Asselin Y, Jaswal R, Bélanger RR. Progress and Challenges in Elucidating the Functional Role of Effectors in the Soybean- Phytophthora sojae Interaction. J Fungi (Basel) 2022; 9:12. [PMID: 36675833 PMCID: PMC9866111 DOI: 10.3390/jof9010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Phytophthora sojae, the agent responsible for stem and root rot, is one of the most damaging plant pathogens of soybean. To establish a compatible-interaction, P. sojae secretes a wide array of effector proteins into the host cell. These effectors have been shown to act either in the apoplastic area or the cytoplasm of the cell to manipulate the host cellular processes in favor of the development of the pathogen. Deciphering effector-plant interactions is important for understanding the role of P. sojae effectors in disease progression and developing approaches to prevent infection. Here, we review the subcellular localization, the host proteins, and the processes associated with P. sojae effectors. We also discuss the emerging topic of effectors in the context of effector-resistance genes interaction, as well as model systems and recent developments in resources and techniques that may provide a better understanding of the soybean-P. sojae interaction.
Collapse
|
8
|
Suresh S, Osmani SA. Protein Retargeting in Aspergillus nidulans to Study the Function of Nuclear Pore Complex Proteins. Methods Mol Biol 2022; 2502:183-201. [PMID: 35412239 DOI: 10.1007/978-1-0716-2337-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeting a protein of interest to a subcellular location by linking it to another protein is a commonly used approach to help determine function in many model systems. Such targeting strategies rely on the creation of functional protein-protein fusions followed by microscopic examination if one or both proteins have fluorescent tags. In this paper, using the model filamentous fungus Aspergillus nidulans, we describe methods to link GFP-tagged proteins to other proteins in the cell by fusing the latter with a GFP-Binding Protein (GBP) that has a high affinity for GFP. This method enables rapid generation of strains with linked proteins in filamentous fungi by sexual crossing or transformations. Additionally, if these two linked proteins stably associate with subcellular structures, it is possible to link the structures using this approach. For example, we used this method to link Nuclear Pore Complexes (NPCs) with mitotic chromatin in A. nidulans. This was done to show that the NPC protein Nup2, that uniquely transitions from NPC onto mitotic chromatin, couples NPC segregation with chromatin segregation by bridging these two structures. In the absence of Nup2, we used the described approach to show that an artificial NPC-chromatin bridge was sufficient for faithful NPC segregation.
Collapse
Affiliation(s)
- Subbulakshmi Suresh
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Stephen A Osmani
- The Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Fagbadebo FO, Rothbauer U. Peptide-Tag Specific Nanobodies for Studying Proteins in Live Cells. Methods Mol Biol 2022; 2446:555-579. [PMID: 35157294 DOI: 10.1007/978-1-0716-2075-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-domain antibodies such as nanobodies (Nbs) have substantially expanded the possibilities of advanced cellular imaging. In comparison to conventional antibodies, Nbs are characterized by small size, high stability, and solubility in many environments, including the cytoplasm. Nbs can be efficiently functionalized or modified according to the needs of the imaging approach. Target-specific Nbs can be easily converted into genetically encoded fluorescently labeled intrabodies, also known as chromobodies (CBs), which represent powerful tools to study the dynamics of different proteins of interest within living cells. In this context, CBs specific for a short peptide epitope provide a versatile alternative to bypass the limitations observed with larger fluorescent protein fusions and can be readily used to visualize and monitor peptide-tagged proteins for which specific Nbs are not available. Here, we present our novel detection system comprising a 15 amino acid peptide-tag (PepTag) in combination with a peptide-tag specific CB (PepCB). We provide protocols for adding the PepTag to different proteins of interest, reformatting the peptide-specific Nb (PepNb) into a CB for expression in mammalian cells, and establishment of stable cell lines expressing the PepCB for protein interaction assays and compound screenings.
Collapse
Affiliation(s)
- Funmilayo O Fagbadebo
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany.
- Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany.
| |
Collapse
|
10
|
Malaquias ADM, Marques LEC, Pereira SS, de Freitas Fernandes C, Maranhão AQ, Stabeli RG, Florean EOPT, Guedes MIF, Fernandes CFC. A review of plant-based expression systems as a platform for single-domain recombinant antibody production. Int J Biol Macromol 2021; 193:1130-1137. [PMID: 34699899 DOI: 10.1016/j.ijbiomac.2021.10.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies have contributed to improving the treatment of several diseases. However, limitations related to pharmacokinetic parameters and production costs have instigated the search for alternative products. Camelids produce functional immunoglobulins G devoid of light chains and CH1 domains, in which the antigenic recognition site is formed by a single domain called VHH or nanobody. VHHs' small size and similarity to the human VH domain contribute to high tissue penetration and low immunogenicity. In addition, VHHs provide superior antigen recognition compared to human antibodies, better solubility and stability. Due to these characteristics and the possibility of obtaining gene-encoding VHHs, applications of this biological tool, whether as a monomer or in related recombinant constructs, have been reported. To ensure antibody efficacy and cost-effectiveness, strategies for their expression, either using prokaryotic or eukaryotic systems, have been utilized. Plant-based expression systems are useful for VHH related constructs that require post-translational modifications. This system has exhibited versatility, low-cost upstream production, and safety. This article presents the main advances associated to the heterologous expression of VHHs in plant systems. Besides, we show insights related to the use of VHHs as a strategy for plant pathogen control and a tool for genomic manipulation in plant systems.
Collapse
Affiliation(s)
| | | | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
12
|
Wang W, Yuan J, Jiang C. Applications of nanobodies in plant science and biotechnology. PLANT MOLECULAR BIOLOGY 2021; 105:43-53. [PMID: 33037986 PMCID: PMC7547553 DOI: 10.1007/s11103-020-01082-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/05/2020] [Indexed: 05/15/2023]
Abstract
Present review summarizes the current applications of nanobodies in plant science and biotechnology, including plant expression of nanobodies, plant biotechnological applications, nanobody-based immunodetection, and nanobody-mediated resistance against plant pathogens. Nanobodies (Nbs) are variable domains of heavy chain-only antibodies (HCAbs) isolated from camelids. In spite of their single domain structure, nanobodies display many unique features, such as small size, high stability, and cryptic epitopes accessibility, which make them ideal for sophisticated applications in plants and animals. In this review, we summarize the current applications of nanobodies in plant science and biotechnology, focusing on nanobody expression in plants, plant biotechnological applications, determination of plant toxins and pathogens, and nanobody-mediated resistance against plant pathogens. Prospects and challenges of nanobody applications in plants are also discussed.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China.
| | - Jumao Yuan
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Changan Jiang
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai, Guangdong Province, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| |
Collapse
|
13
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Traenkle B, Segan S, Fagbadebo FO, Kaiser PD, Rothbauer U. A novel epitope tagging system to visualize and monitor antigens in live cells with chromobodies. Sci Rep 2020; 10:14267. [PMID: 32868807 PMCID: PMC7459311 DOI: 10.1038/s41598-020-71091-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Epitope tagging is a versatile approach to study different proteins using a well-defined and established methodology. To date, most epitope tags such as myc, HA, V5 and FLAG tags are recognized by antibodies, which limits their use to fixed cells, tissues or protein samples. Here we introduce a broadly applicable tagging strategy utilizing a short peptide tag (PepTag) which is specifically recognized by a nanobody (PepNB). We demonstrated that the PepNB can be easily functionalized for immunoprecipitation or direct immunofluorescence staining of Pep-tagged proteins in vitro. For in cellulo studies we converted the PepNB into a fluorescently labeled Pep-chromobody (PepCB) which is functionally expressed in living cells. The addition of the small PepTag does not interfere with the examined structures in different cellular compartments and its detection with the PepCB enables optical antigen tracing in real time. By employing the phenomenon of antigen-mediated chromobody stabilization (AMCBS) using a turnover-accelerated PepCB we demonstrated that the system is suitable to visualize and quantify changes in Pep-tagged antigen concentration by quantitative live-cell imaging. We expect that this novel tagging strategy offers new opportunities to study the dynamic regulation of proteins, e.g. during cellular signaling, cell differentiation, or upon drug action.
Collapse
Affiliation(s)
- Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University, Tuebingen, Germany.,Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Sören Segan
- Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | | | - Philipp D Kaiser
- Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tuebingen, Germany. .,Natural and Medical Sciences Institute, University of Tuebingen, Markwiesenstr. 55, 72770, Reutlingen, Germany.
| |
Collapse
|
15
|
Ochoa-Fernandez R, Abel NB, Wieland FG, Schlegel J, Koch LA, Miller JB, Engesser R, Giuriani G, Brandl SM, Timmer J, Weber W, Ott T, Simon R, Zurbriggen MD. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods 2020; 17:717-725. [PMID: 32601426 DOI: 10.1038/s41592-020-0868-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
Collapse
Affiliation(s)
- Rocio Ochoa-Fernandez
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Nikolaj B Abel
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Jenia Schlegel
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - J Benjamin Miller
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Raphael Engesser
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Giovanni Giuriani
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.,Univeersity of Glasgow, Glasgow, Scotland, UK
| | - Simon M Brandl
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rüdiger Simon
- iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,Institute of Developmental Genetics, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany. .,iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany. .,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
16
|
Hennen J, Kohler J, Karuka SR, Saunders CA, Luxton GWG, Mueller JD. Differentiating Luminal and Membrane-Associated Nuclear Envelope Proteins. Biophys J 2020; 118:2385-2399. [PMID: 32304637 DOI: 10.1016/j.bpj.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
17
|
Zhang K, He J, Liu L, Xie R, Qiu L, Li X, Yuan W, Chen K, Yin Y, Kyaw MMM, San AA, Li S, Tang X, Fu C, Li M. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus. PLANT METHODS 2020; 16:43. [PMID: 32256679 PMCID: PMC7106750 DOI: 10.1186/s13007-020-00585-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Brassica napus is an important oilseed crop that offers a considerable amount of biomass for global vegetable oil production. The establishment of an efficient genetic transformation system with a convenient transgenic-positive screening method is of great importance for gene functional analysis and molecular breeding. However, to our knowledge, there are few of the aforementioned systems available for efficient application in B. napus. RESULTS Based on the well-established genetic transformation system in B. napus, five vectors carrying the red fluorescence protein encoding gene from Discosoma sp. (DsRed) were constructed and integrated into rapeseed via Agrobacterium-mediated hypocotyl transformation. An average of 59.1% tissues were marked with red fluorescence by the visual screening method in tissue culture medium, 96.1% of which, on average, were amplified with the objective genes from eight different rapeseed varieties. In addition, the final transgenic-positive efficiency of the rooted plantlets reached up to 90.7% from red fluorescence marked tissues, which was much higher than that in previous reports. Additionally, visual screening could be applicable to seedlings via integration of DsRed, including seed coats, roots, hypocotyls and cotyledons during seed germination. These results indicate that the highly efficient genetic transformation system combined with the transgenic-positive visual screening method helps to conveniently and efficiently obtain transgenic-positive rapeseed plantlets. CONCLUSION A rapid, convenient and highly efficient method was developed to obtain transgenic plants, which can help to obtain the largest proportion of transgene-positive regenerated plantlets, thereby avoiding a long period of plant regeneration. The results of this study will benefit gene functional studies especially in high-throughput molecular biology research.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Runda Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Lu Qiu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xicheng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wenjue Yuan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - May Me Me Kyaw
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Aye Aye San
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Shisheng Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| | - Xianying Tang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074 China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000 China
| |
Collapse
|
18
|
Küey C, Larocque G, Clarke NI, Royle SJ. Unintended perturbation of protein function using GFP nanobodies in human cells. J Cell Sci 2019; 132:jcs234955. [PMID: 31601614 PMCID: PMC6857592 DOI: 10.1242/jcs.234955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Tagging a protein of interest with GFP using genome editing is a popular approach to study protein function in cell and developmental biology. To avoid re-engineering cell lines or organisms in order to introduce additional tags, functionalized nanobodies that bind GFP can be used to extend the functionality of the GFP tag. We developed functionalized nanobodies, which we termed 'dongles', that could add, for example, an FKBP tag to a GFP-tagged protein of interest, enabling knocksideways experiments in GFP knock-in cell lines. The power of knocksideways is that it allows investigators to rapidly switch the protein from an active to an inactive state. We show that dongles allow for effective knocksideways of GFP-tagged proteins in genome-edited human cells. However, we discovered that nanobody binding to dynamin-2-GFP caused inhibition of dynamin function prior to knocksideways. The function of GFP-tagged tumor protein D54 (TPD54, also known as TPD52L2) in anterograde traffic was also perturbed by dongles. While these issues potentially limit the application of dongles, we discuss strategies for their deployment as cell biological tools.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Cansu Küey
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Nicholas I Clarke
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
19
|
Klein A, Hank S, Raulf A, Joest EF, Tissen F, Heilemann M, Wieneke R, Tampé R. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem Sci 2018; 9:7835-7842. [PMID: 30429993 PMCID: PMC6194584 DOI: 10.1039/c8sc02910e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate labeling of endogenous proteins for advanced light microscopy in living cells remains challenging. Nanobodies have been widely used for antigen labeling, visualization of subcellular protein localization and interactions. To facilitate an expanded application, we present a scalable and high-throughput strategy to simultaneously target multiple endogenous proteins in living cells with micro- to nanometer resolution. For intracellular protein labeling, we advanced nanobodies by site-specific and stoichiometric attachment of bright organic fluorophores. Their fast and fine-tuned intracellular transfer by microfluidic cell squeezing enabled high-throughput delivery with less than 10% dead cells. This strategy allowed for the dual-color imaging of distinct endogenous cellular structures, and culminated in super-resolution imaging of native protein networks in genetically non-modified living cells. The simultaneous delivery of multiple engineered nanobodies does not only offer exciting prospects for multiplexed imaging of endogenous protein, but also holds potential for visualizing native cellular structures with unprecedented accuracy.
Collapse
Affiliation(s)
- A Klein
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - S Hank
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - A Raulf
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - E F Joest
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - F Tissen
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - M Heilemann
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - R Wieneke
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - R Tampé
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
- Cluster of Excellence - Macromolecular Complexes , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany
| |
Collapse
|
20
|
Harmansa S, Affolter M. Protein binders and their applications in developmental biology. Development 2018; 145:145/2/dev148874. [PMID: 29374062 DOI: 10.1242/dev.148874] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developmental biology research would benefit greatly from tools that enable protein function to be regulated, both systematically and in a precise spatial and temporal manner, in vivo In recent years, functionalized protein binders have emerged as versatile tools that can be used to target and manipulate proteins. Such protein binders can be based on various scaffolds, such as nanobodies, designed ankyrin repeat proteins (DARPins) and monobodies, and can be used to block or perturb protein function in living cells. In this Primer, we provide an overview of the protein binders that are currently available and highlight recent progress made in applying protein binder-based tools in developmental and synthetic biology.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Tools for retargeting proteins within Aspergillus nidulans. PLoS One 2017; 12:e0189077. [PMID: 29194456 PMCID: PMC5711018 DOI: 10.1371/journal.pone.0189077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
Endogenously tagging proteins with green fluorescent protein (GFP) enables the visualization of the tagged protein using live cell microscopy. GFP-tagging is widely utilized to study biological processes in model experimental organisms including filamentous fungi such as Aspergillus nidulans. Many strains of A. nidulans have therefore been generated with different proteins endogenously tagged with GFP. To further enhance experimental approaches based upon GFP-tagging, we have adapted the GFP Binding Protein (GBP) system for A. nidulans. GBP is a genetically encoded Llama single chain antibody against GFP which binds GFP with high affinity. Using gene replacement approaches, it is therefore possible to link GBP to anchor proteins, which will then retarget GFP-tagged proteins away from their normal location to the location of the anchor-GBP protein. To facilitate this approach in A. nidulans, we made four base plasmid cassettes that can be used to generate gene replacement GBP-tagging constructs by utilizing fusion PCR. Using these base cassettes, fusion PCR, and gene targeting approaches, we generated strains with SPA10-GBP and Tom20-GBP gene replacements. These strains enabled test targeting of GFP-tagged proteins to septa or to the surface of mitochondria respectively. SPA10-GBP is shown to effectively target GFP-tagged proteins to both forming and mature septa. Tom20-GBP has a higher capacity to retarget GFP-tagged proteins being able to relocate all Nup49-GFP from its location within nuclear pore complexes (NPCs) to the cytoplasm in association with mitochondria. Notably, removal of Nup49-GFP from NPCs causes cold sensitivity as does deletion of the nup49 gene. The cassette constructs described facilitate experimental approaches to generate precise protein-protein linkages in fungi. The A. nidulans SPA10-GBP and Tom20-GBP strains can be utilized to modulate other GFP-tagged proteins of interest.
Collapse
|
22
|
Traenkle B, Rothbauer U. Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Front Immunol 2017; 8:1030. [PMID: 28883823 PMCID: PMC5573807 DOI: 10.3389/fimmu.2017.01030] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.
Collapse
Affiliation(s)
- Bjoern Traenkle
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| |
Collapse
|
23
|
Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife 2017; 6. [PMID: 28395731 PMCID: PMC5388529 DOI: 10.7554/elife.22549] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The role of protein localization along the apical-basal axis of polarized cells is difficult to investigate in vivo, partially due to lack of suitable tools. Here, we present the GrabFP system, a collection of four nanobody-based GFP-traps that localize to defined positions along the apical-basal axis. We show that the localization preference of the GrabFP traps can impose a novel localization on GFP-tagged target proteins and results in their controlled mislocalization. These new tools were used to mislocalize transmembrane and cytoplasmic GFP fusion proteins in the Drosophila wing disc epithelium and to investigate the effect of protein mislocalization. Furthermore, we used the GrabFP system as a tool to study the extracellular dispersal of the Decapentaplegic (Dpp) protein and show that the Dpp gradient forming in the lateral plane of the Drosophila wing disc epithelium is essential for patterning of the wing imaginal disc.
Collapse
Affiliation(s)
- Stefan Harmansa
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Dimitri Bieli
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Emmanuel Caussinus
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Chen YH, Wang GY, Hao HC, Chao CJ, Wang Y, Jin QW. Facile manipulation of protein localization in fission yeast through binding of GFP-binding protein to GFP. J Cell Sci 2017; 130:1003-1015. [PMID: 28082423 DOI: 10.1242/jcs.198457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
GFP-binding protein (or GBP) has been recently developed in various systems and organisms as an efficient tool to purify GFP-fusion proteins. Due to the high affinity between GBP and GFP or GFP variants, this GBP-based approach is also ideally suited to alter the localization of functional proteins in live cells. In order to facilitate the wide use of the GBP-targeting approach in the fission yeast Schizosaccharomyces pombe, we developed a set of pFA6a-, pJK148- and pUC119-based vectors containing GBP- or GBP-mCherry-coding sequences and variants of inducible nmt1 or constitutive adh1 promoters that result in different levels of expression. The GBP or GBP-mCherry fragments can serve as cassettes for N- or C-terminal genomic tagging of genes of interest. We illustrated the application of these vectors in the construction of yeast strains with Dma1 or Cdc7 tagged with GBP-mCherry and efficient targeting of Dma1- or Cdc7-GBP-mCherry to the spindle pole body by Sid4-GFP. This series of vectors should help to facilitate the application of the GBP-targeting approach in manipulating protein localization and the analysis of gene function in fission yeast, at the level of single genes, as well as at a systematic scale.
Collapse
Affiliation(s)
- Ying-Hui Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Gao-Yuan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao-Chao Hao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chun-Jiang Chao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
25
|
Choi S, Jayaraman J, Segonzac C, Park HJ, Park H, Han SW, Sohn KH. Pseudomonas syringae pv. actinidiae Type III Effectors Localized at Multiple Cellular Compartments Activate or Suppress Innate Immune Responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2017; 8:2157. [PMID: 29326748 PMCID: PMC5742410 DOI: 10.3389/fpls.2017.02157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 05/15/2023]
Abstract
Bacterial phytopathogen type III secreted (T3S) effectors have been strongly implicated in altering the interaction of pathogens with host plants. Therefore, it is useful to characterize the whole effector repertoire of a pathogen to understand the interplay of effectors in plants. Pseudomonas syringae pv. actinidiae is a causal agent of kiwifruit canker disease. In this study, we generated an Agrobacterium-mediated transient expression library of YFP-tagged T3S effectors from two strains of Psa, Psa-NZ V13 and Psa-NZ LV5, in order to gain insight into their mode of action in Nicotiana tabacum and N. benthamiana. Determining the subcellular localization of effectors gives an indication of the possible host targets of effectors. A confocal microscopy assay detecting YFP-tagged Psa effectors revealed that the nucleus, cytoplasm and cell periphery are major targets of Psa effectors. Agrobacterium-mediated transient expression of multiple Psa effectors induced HR-like cell death (HCD) in Nicotiana spp., suggesting that multiple Psa effectors may be recognized by Nicotiana spp.. Virus-induced gene silencing (VIGS) of several known plant immune regulators, EDS1, NDR1, or SGT1 specified the requirement of SGT1 in HCD induced by several Psa effectors in N. benthamiana. In addition, the suppression activity of Psa effectors on HCD-inducing proteins and PTI was assessed. Psa effectors showed differential suppression activities on each HCD inducer or PTI. Taken together, our Psa effector repertoire analysis highlights the great diversity of T3S effector functions in planta.
Collapse
Affiliation(s)
- Sera Choi
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Jay Jayaraman
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Cécile Segonzac
- Plant Science Department, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Hanbi Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, South Korea
| | - Kee Hoon Sohn
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
- *Correspondence: Kee Hoon Sohn,
| |
Collapse
|
26
|
Holappa LD, Ronald PC, Kramer EM. Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. FRONTIERS IN PLANT SCIENCE 2017; 8:395. [PMID: 28424709 PMCID: PMC5381359 DOI: 10.3389/fpls.2017.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/08/2017] [Indexed: 05/14/2023]
Abstract
Members of the sucrose non-fermenting related kinase Group2 (SnRK2) subclasses are implicated in both direct and indirect abscisic acid (ABA) response pathways. We have used phylogenetic, biochemical, and transient in vivo approaches to examine interactions between Triticum tauschii protein kinase 1 (TtPK1) and an interacting protein, Oryza sativa SnRK2-calcium sensor (OsSCS1). Given that TtPK1 has 100% identity with its rice ortholog, osmotic stress/ABA-activated protein kinase (OsSAPK2), we hypothesized that the SCS and TtPK1 interactions are present in both wheat and rice. Here, we show that SnRK2s are clearly divided into four pan-angiosperm clades with those in the traditionally defined Subclass II encompassing two distinct clades (OsSAPK1/2 and OsSAPK3), although OsSAPK3 lacks an Arabidopsis ortholog. We also show that SCSs are distinct from a second lineage, that we term SCSsister, and while both clades pre-date land plants, the SCSsister clade lacks Poales representatives. Our Y2H assays revealed that the removal of the OsSCS1 C-terminal region along with its N-terminal EF-hand abolished its interaction with the kinase. Using transient in planta bimolecular fluorescence complementation experiments, we demonstrate that TtPK1/OsSCS1 dimerization co-localizes with DAPI-stained nuclei and with FM4-64-stained membranes. Finally, OsSCS1- and OsSAPK2-hybridizing transcripts co-accumulate in shoots/coleoptile of drying seedlings, consistent with up-regulated kinase transcripts of PKABA1 and TtPK1. Our studies suggest that interactions between homologs of the SnRK2 and SCS lineages are broadly conserved across angiosperms and offer new directions for investigations of related proteins.
Collapse
Affiliation(s)
- Lynn D. Holappa
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
- *Correspondence: Lynn D. Holappa
| | - Pamela C. Ronald
- Plant Pathology and the Genome Center, University of California DavisDavis, CA, USA
| | - Elena M. Kramer
- Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
27
|
Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, Sun Y, Xiao Y, Yu L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine 2016; 11:3287-303. [PMID: 27499623 PMCID: PMC4959585 DOI: 10.2147/ijn.s107194] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the “me-too” products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.
Collapse
Affiliation(s)
- Yongzhong Wang
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Zhen Fan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Lei Shao
- State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai
| | - Xiaowei Kong
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Xianjuan Hou
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Dongrui Tian
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Ying Sun
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Yazhong Xiao
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
28
|
Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, Koch-Nolte F, Hao Q, Zhang H, Lee HC, Zhao YJ. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 2016; 6:27055. [PMID: 27251573 PMCID: PMC4890012 DOI: 10.1038/srep27055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.
Collapse
Affiliation(s)
- Ting Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shali Qi
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mandy Unger
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yun Nan Hou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi Wen Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Connie M C Lam
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Du Xin
- Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518029, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department of Biology, and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
29
|
Künzl F, Früholz S, Fäßler F, Li B, Pimpl P. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. NATURE PLANTS 2016; 2:16017. [PMID: 27249560 DOI: 10.1038/nplants.2016.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however. Here, we examine the potential for VSR-ligand interactions in all compartments of the vacuolar transport system in tobacco mesophyll protoplasts. To do this, we developed compartment-specific VSR sensors that assemble as a result of a nanobody-epitope interaction, and monitored the degree of ligand binding by analysing Förster resonance energy transfer using fluorescence lifetime imaging microscopy (FRET-FLIM). We show that VSRs bind ligands in the endoplasmic reticulum (ER) and in the Golgi, but not in the trans-Golgi network/early endosome (TGN/EE) or multivesicular late endosomes, suggesting that the post-TGN/EE trafficking of ligands towards the vacuole is VSR independent. We verify this by showing that non-VSR-ligands are also delivered to the vacuole from the TGN/EE after endocytic uptake. We conclude that VSRs are required for the transport of ligands from the ER and the Golgi to the TGN/EE, and suggest that the onward transport to the vacuole occurs by default.
Collapse
Affiliation(s)
- Fabian Künzl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Simone Früholz
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Florian Fäßler
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Beibei Li
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Peter Pimpl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
30
|
Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. Development and Application of Functionalized Protein Binders in Multicellular Organisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:181-213. [DOI: 10.1016/bs.ircmb.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
31
|
Huet S, Gorre H, Perrocheau A, Picot J, Cinier M. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag. PLoS One 2015; 10:e0142304. [PMID: 26539718 PMCID: PMC4634965 DOI: 10.1371/journal.pone.0142304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.
Collapse
|
32
|
Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies. PLoS One 2015; 10:e0124303. [PMID: 25822527 PMCID: PMC4378939 DOI: 10.1371/journal.pone.0124303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Single domain antibodies are recombinantly expressed functional antibodies devoid of light chains. These binding elements are derived from heavy chain antibodies found in camelids and offer several distinctive properties for applications in biotechnology such as small size, stability, solubility, and expression in high yields. In this study we demonstrated the potential of using single domain antibodies as capturing molecules in biosensing applications. Single domain antibodies raised against green fluorescent protein were anchored onto biosensor surfaces by using several immobilization strategies based on Ni2+:nitrilotriacetic acid-polyhistidine tag, antibody-antigen, biotin-streptavidin interactions and amine-coupling chemistry. The interaction with the specific target of the single domain antibodies was characterized by surface plasmon resonance. The immobilized single domain antibodies show high affinities for their antigens with KD = 3-6 nM and outperform other antibody partners as capturing molecules facilitating also the data analysis. Furthermore they offer high resistance and stability to a wide range of denaturing agents. These unique biophysical properties and the production of novel single domain antibodies against affinity tags make them particularly attractive for use in biosensing and diagnostic assays.
Collapse
|
33
|
Abstract
Owing to their small size and enhanced stability, nanobodies derived from camelids have previously been used for the construction of intracellular “nanotraps,” which enable redirection and manipulation of green fluorescent protein (GFP)-tagged targets within living plant and animal cells. By taking advantage of intracellular compartmentalization in the magnetic bacterium Magnetospirillum gryphiswaldense, we demonstrate that proteins and even entire organelles can be retargeted also within prokaryotic cells by versatile nanotrap technology. Expression of multivalent GFP-binding nanobodies on magnetosomes ectopically recruited the chemotaxis protein CheW1-GFP from polar chemoreceptor clusters to the midcell, resulting in a gradual knockdown of aerotaxis. Conversely, entire magnetosome chains could be redirected from the midcell and tethered to one of the cell poles. Similar approaches could potentially be used for building synthetic cellular structures and targeted protein knockdowns in other bacteria. Importance Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks. Intrabodies are commonly used in eukaryotic systems for intracellular analysis and manipulation of proteins within distinct subcellular compartments. In particular, so-called nanobodies have great potential for synthetic biology approaches because they can be expressed easily in heterologous hosts and actively interact with intracellular targets, for instance, by the construction of intracellular “nanotraps” in living animal and plant cells. Although prokaryotic cells also exhibit a considerable degree of intracellular organization, there are few tools available equivalent to the well-established methods used in eukaryotes. Here, we demonstrate the ectopic retargeting and depletion of polar membrane proteins and entire organelles to distinct compartments in a magnetotactic bacterium, resulting in a gradual knockdown of magneto-aerotaxis. This intracellular nanotrap approach has the potential to be applied in other bacteria for building synthetic cellular structures, manipulating protein function, and creating gradual targeted knockdowns. Our findings provide a proof of principle for the universal use of fluorescently tagged proteins as targets for nanotraps to fulfill these tasks.
Collapse
|
34
|
Brauchle M, Hansen S, Caussinus E, Lenard A, Ochoa-Espinosa A, Scholz O, Sprecher SG, Plückthun A, Affolter M. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry. Biol Open 2014; 3:1252-61. [PMID: 25416061 PMCID: PMC4265764 DOI: 10.1242/bio.201410041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein–protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications. Here we used the Designed Ankyrin Repeat Protein (DARPin) scaffold to generate binders to fluorescent proteins and used them to modify biological systems directly at the protein level. DARPins binding to GFP or mCherry were selected by ribosome display. For GFP, binders with KD as low as 160 pM were obtained, while for mCherry the best affinity was 6 nM. We then verified in cell culture their specific binding in a complex cellular environment and found an affinity cut-off in the mid-nanomolar region, above which binding is no longer detectable in the cell. Next, their binding properties were employed to change the localization of the respective fluorescent proteins within cells. Finally, we performed experiments in Drosophila melanogaster and Danio rerio and utilized these DARPins to either degrade or delocalize fluorescently tagged fusion proteins in developing organisms, and to phenocopy loss-of-function mutations. Specific protein binders can thus be selected in vitro and used to reprogram developmental systems in vivo directly at the protein level, thereby bypassing some limitations of approaches that function at the DNA or the RNA level.
Collapse
Affiliation(s)
- Michael Brauchle
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland Department of Zoology, University of Fribourg, Chemi du Musée 10, 1700 Fribourg, Switzerland
| | - Simon Hansen
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Emmanuel Caussinus
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Anna Lenard
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Oliver Scholz
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon G Sprecher
- Department of Zoology, University of Fribourg, Chemi du Musée 10, 1700 Fribourg, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Markus Affolter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Tao EY, Calvert M, Balasubramanian MK. Rewiring Mid1p-independent medial division in fission yeast. Curr Biol 2014; 24:2181-2188. [PMID: 25176634 DOI: 10.1016/j.cub.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Correct positioning of the cell division machinery is key to genome stability. Schizosaccharomyces pombe is an attractive organism to study cytokinesis as it, like higher eukaryotes, divides using a contractile actomyosin ring. In S. pombe, many actomyosin ring components assemble at the medial cortex into node-like structures before coalescing into a ring [1, 2]. Assembly of cytokinetic nodes requires Mid1p, which recruits IQGAP-related Rng2p to the division site, after which other node components accumulate at the division site in a characteristic sequence [3-6]. How cytokinetic nodes assemble, whether the order of assembly of ring components is important, and whether Mid1p solely participates in ring positioning are poorly understood. Here, we show that synthetic targeting of IQGAP-related Rng2p, formin-Cdc12p, and myosin II (Myo2p) restores medial division in mid1 mutants, suggesting that ring proteins need not assemble at the division site in an invariant order. Unlike in wild-type cells, actomyosin rings in cells rewired to divide medially in the absence of Mid1p assemble late in anaphase. Furthermore, the rewiring process affects the ability of the actomyosin ring to track the nucleus upon perturbation of nuclear position. Our work reveals the power of synthetic rewiring studies in deciphering roles performed by multifunctional proteins.
Collapse
Affiliation(s)
- Evelyn Yaqiong Tao
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Meredith Calvert
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore
| | - Mohan K Balasubramanian
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Republic of Singapore; Mechanobiology Institute, The National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore; Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
36
|
Kanca O, Ochoa-Espinosa A, Affolter M. IV. Tools and methods for studying cell migration and cell rearrangement in tissue and organ development. Methods 2014; 68:228-32. [PMID: 24631575 DOI: 10.1016/j.ymeth.2014.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022] Open
Abstract
A vast diversity of biological systems, ranging from prokaryotes to multicellular organisms, show cell migration behavior. Many of the basic cellular and molecular concepts in cell migration apply to diverse model organisms. Drosophila, with its vast repertoire of tools for imaging and for manipulation, is one of the favorite organisms to study cell migration. Moreover, distinct Drosophila tissues and organs offer diverse cell migration models that are amenable to live imaging and genetic manipulations. In this review, we will provide an overview of the fruit fly toolbox that is of particular interest for the analysis of cell migration. We provide examples to highlight how those tools were used in diverse migration systems, with an emphasis on tracheal morphogenesis, a process that combines morphogenesis with cell migration.
Collapse
Affiliation(s)
- Oguz Kanca
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
37
|
Kaiser PD, Maier J, Traenkle B, Emele F, Rothbauer U. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1933-1942. [PMID: 24792387 DOI: 10.1016/j.bbapap.2014.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Philipp D Kaiser
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Julia Maier
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Bjoern Traenkle
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Felix Emele
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany; Department of Pharmaceutical Biotechnology, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
38
|
De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 2014; 32:263-70. [PMID: 24698358 DOI: 10.1016/j.tibtech.2014.03.001] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/17/2014] [Accepted: 03/05/2014] [Indexed: 01/25/2023]
Abstract
Since the serendipitous discovery 20 years ago of bona fide camelid heavy-chain antibodies, their single-domain antigen-binding fragments, known as VHHs or nanobodies, have received a progressively growing interest. As a result of the beneficial properties of these stable recombinant entities, they are currently highly valued proteins for multiple applications, including fundamental research, diagnostics, and therapeutics. Today, with the original patents expiring, even more academic and industrial groups are expected to explore innovative VHH applications. Here, we provide a thorough overview of novel implementations of VHHs as research and diagnostic tools, and of the recently evaluated production platforms for several VHHs and VHH-derived antibody formats.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Serge Muyldermans
- Structural Biology Research Center, VIB, 1050 Brussel, Belgium; Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
39
|
Caussinus E, Kanca O, Affolter M. Protein knockouts in living eukaryotes using deGradFP and green fluorescent protein fusion targets. ACTA ACUST UNITED AC 2013; 73:30.2.1-30.2.13. [PMID: 24510595 DOI: 10.1002/0471140864.ps3002s73] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This unit describes deGradFP (degrade Green Fluorescent Protein), an easy-to-implement protein knockout method applicable in any eukaryotic genetic system. Depleting a protein in order to study its function in a living organism is usually achieved at the gene level (genetic mutations) or at the RNA level (RNA interference and morpholinos). However, any system that acts upstream of the proteic level depends on the turnover rate of the existing target protein, which can be extremely slow. In contrast, deGradFP is a fast method that directly depletes GFP fusion proteins. In particular, deGradFP is able to counteract maternal effects in embryos and causes early and fast onset loss-of-function phenotypes of maternally contributed proteins.
Collapse
Affiliation(s)
| | - Oguz Kanca
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
40
|
Yoshihara T, Spalding EP, Iino M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:267-79. [PMID: 23331961 DOI: 10.1111/tpj.12118] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/05/2013] [Accepted: 01/11/2013] [Indexed: 05/18/2023]
Abstract
The present study identified a family of six A. thaliana genes that share five limited regions of sequence similarity with LAZY1, a gene in Oryza sativa (rice) shown to participate in the early gravity signaling for shoot gravitropism. A T-DNA insertion into the Arabidopsis gene (At5g14090) most similar to LAZY1 increased the inflorescence branch angle to 81° from the wild type value of 42°. RNA interference lines and molecular rescue experiments confirmed the linkage between the branch-angle phenotype and the gene consequently named AtLAZY1. Time-resolved gravitropism measurements of atlazy1 hypocotyls and primary inflorescence stems showed a significantly reduced bending rate during the first hour of response. The subcellular localization of AtLAZY1 protein was investigated to determine if the nuclear localization predicted from the gene sequence was observable and important to its function in shoot gravity responses. AtLAZY1 fused to green fluorescent protein largely rescued the branch-angle phenotype of atlazy1, and was observed by confocal microscopy at the cell periphery and within the nucleus. Mutation of the nuclear localization signal prevented detectable levels of AtLAZY1 in the nucleus without affecting the ability of the gene to rescue the atlazy1 branch-angle phenotype. These results indicate that AtLAZY1 functions in gravity signaling during shoot gravitropism, being a functional ortholog of rice LAZY1. The nuclear pool of the protein appears to be unnecessary for this function, which instead relies on a pool that appears to reside at the cell periphery.
Collapse
Affiliation(s)
- Takeshi Yoshihara
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
41
|
Mack NA, Porter AP, Whalley HJ, Schwarz JP, Jones RC, Khaja ASS, Bjartell A, Anderson KI, Malliri A. β2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity. Nat Cell Biol 2012; 14:1169-80. [PMID: 23103911 PMCID: PMC3498067 DOI: 10.1038/ncb2608] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify β2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly β2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that β2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, β2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that β2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polarity.
Collapse
Affiliation(s)
- Natalie A Mack
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, The University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Burgess A, Lorca T, Castro A. Quantitative live imaging of endogenous DNA replication in mammalian cells. PLoS One 2012; 7:e45726. [PMID: 23029203 PMCID: PMC3447815 DOI: 10.1371/journal.pone.0045726] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
Historically, the analysis of DNA replication in mammalian tissue culture cells has been limited to static time points, and the use of nucleoside analogues to pulse-label replicating DNA. Here we characterize for the first time a novel Chromobody cell line that specifically labels endogenous PCNA. By combining this with high-resolution confocal time-lapse microscopy, and with a simplified analysis workflow, we were able to produce highly detailed, reproducible, quantitative 4D data on endogenous DNA replication. The increased resolution allowed accurate classification and segregation of S phase into early-, mid-, and late-stages based on the unique subcellular localization of endogenous PCNA. Surprisingly, this localization was slightly but significantly different from previous studies, which utilized over-expressed GFP tagged forms of PCNA. Finally, low dose exposure to Hydroxyurea caused the loss of mid- and late-S phase localization patterns of endogenous PCNA, despite cells eventually completing S phase. Taken together, these results indicate that this simplified method can be used to accurately identify and quantify DNA replication under multiple and various experimental conditions.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Center, Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Thierry Lorca
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, Montpellier, France
| | - Anna Castro
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, Montpellier, France
- * E-mail:
| |
Collapse
|
43
|
Lu YJ, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, Schumacher K, Kamoun S, Robatzek S. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 2012; 14:682-97. [PMID: 22233428 PMCID: PMC4854193 DOI: 10.1111/j.1462-5822.2012.01751.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
Collapse
Affiliation(s)
- Yi-Ju Lu
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Thomas Spallek
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Joanne Chory
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swen Schellmann
- Botanical Institute, Biocenter Cologne, Zülpicher Strasse 47b, Cologne, Germany
| | - Karin Schumacher
- Plant Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
44
|
Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 2011; 19:117-21. [PMID: 22157958 DOI: 10.1038/nsmb.2180] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022]
Abstract
The use of genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Recent advances in reverse genetics such as RNA interference and morpholinos are widely used to further apply this paradigm. Nevertheless, such systems act upstream of the proteic level, and protein depletion depends on the turnover rate of the existing target proteins. Here we present deGradFP, a genetically encoded method for direct and fast depletion of target green fluorescent protein (GFP) fusions in any eukaryotic genetic system. This method is universal because it relies on an evolutionarily highly conserved eukaryotic function, the ubiquitin pathway. It is traceable, because the GFP tag can be used to monitor the protein knockout. In many cases, it is a ready-to-use solution, as GFP protein-trap stock collections are being generated in Drosophila melanogaster and in Danio rerio.
Collapse
|
45
|
Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, Rothbauer U, Schüler D. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2011; 77:6165-71. [PMID: 21764974 PMCID: PMC3165405 DOI: 10.1128/aem.05282-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells.
Collapse
Affiliation(s)
- Anna Pollithy
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Tina Romer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Claus Lang
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Frank D. Müller
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Jonas Helma
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
| | - Ulrich Rothbauer
- Ludwig-Maximilians-Universität München, Dept. Biologie II, Bereich Anthropologie und Humangenetik, Biozentrum der LMU, Großhaderner Str. 2, D-82152 Martinsried, Germany
- ChromoTek GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany
| | - Dirk Schüler
- Ludwig-Maximilians-Universität München, Dept. Biologie I, Bereich Mikrobiologie, Biozentrum der LMU, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| |
Collapse
|
46
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|
47
|
Kubala MH, Kovtun O, Alexandrov K, Collins BM. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Protein Sci 2011; 19:2389-401. [PMID: 20945358 DOI: 10.1002/pro.519] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The green fluorescent protein (GFP)-nanobody is a single-chain VHH antibody domain developed with specific binding activity against GFP and is emerging as a powerful tool for isolation and cellular engineering of fluorescent protein fusions in many different fields of biological research. Using X-ray crystallography and isothermal titration calorimetry, we determine the molecular details of GFP:GFP-nanobody complex formation and explain the basis of high affinity and at the same time high specificity of protein binding. Although the GFP-nanobody can also bind YFP, it cannot bind the closely related CFP or other fluorescent proteins from the mFruit series. CFP differs from GFP only within the central chromophore and at one surface amino acid position, which lies in the binding interface. Using this information, we have engineered a CFP variant (I146N) that is also able to bind the GFP-nanobody with high affinity, thus extending the toolbox of genetically encoded fluorescent probes that can be isolated using the GFP-nanobody.
Collapse
Affiliation(s)
- Marta H Kubala
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
48
|
Huang L, Muyldermans S, Saerens D. Nanobodies®: proficient tools in diagnostics. Expert Rev Mol Diagn 2010; 10:777-85. [PMID: 20843201 DOI: 10.1586/erm.10.62] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the advent of new antibody engineering technologies, conventional antibodies have been minimized into smaller antibody formats. Small size is an important advantage for current and future diagnostic development. Nanobodies® (Ablynx) are among the smallest known antigen-binding antibody fragments, and are derived from the heavy-chain only antibodies that occur naturally in the serum of Camelidae. Endowed by natural evolution, these Nanobodies inherently exhibit unique biophysical, biochemical and pharmacological characteristics. In addition to their excellent potential as molecules in drug development, Nanobodies possess very attractive functional properties that aid in their development for diagnostic tools. Here we present several examples of currently available applications of Nanobodies to the field of immunosensor for cancer, immunoaffinity chromatography, in vivo and intracellular imaging.
Collapse
Affiliation(s)
- Lieven Huang
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
49
|
Ek-Ramos MJ, Avila J, Cheng C, Martin GB, Devarenne TP. The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3 (Adi3) directs nuclear localization for suppression of plant cell death. J Biol Chem 2010; 285:17584-94. [PMID: 20371603 PMCID: PMC2878523 DOI: 10.1074/jbc.m110.117416] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/05/2010] [Indexed: 02/02/2023] Open
Abstract
In tomato (Solanum lycopersicum), resistance to Pseudomonas syringae pv. tomato is elicited by the interaction of the host Pto kinase with the pathogen effector protein AvrPto, which leads to various immune responses including localized cell death termed the hypersensitive response. The AGC kinase Adi3 functions to suppress host cell death and interacts with Pto only in the presence of AvrPto. The cell death suppression (CDS) activity of Adi3 requires phosphorylation by 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and loss of Adi3 function is associated with the hypersensitive response cell death initiated by the Pto/AvrPto interaction. Here we studied the relationship between Adi3 cellular localization and its CDS activity. Adi3 is a nuclear-localized protein, and this localization is dictated by a nuclear localization signal found in the Adi3 T-loop extension, an approximately 80 amino acid insertion into the T-loop, or activation loop, which is phosphorylated for kinase activation. Nuclear localization of Adi3 is required for its CDS activity and loss of nuclear localization causes elimination of Adi3 CDS activity and induction of cell death. This nuclear localization of Adi3 is dependent on Ser-539 phosphorylation by Pdk1 and non-nuclear Adi3 is found in punctate structures throughout the cell. Our data support a model in which Pdk1 phosphorylation of Adi3 directs nuclear localization for CDS and that disruption of Adi3 nuclear localization may be a mechanism for induction of cell death such as that during the Pto/AvrPto interaction.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Julian Avila
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Cheng Cheng
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Gregory B. Martin
- the Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, and
- the Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| | - Timothy P. Devarenne
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|