1
|
Takáč T, Kuběnová L, Šamajová O, Dvořák P, Řehák J, Haberland J, Bundschuh ST, Pechan T, Tomančák P, Ovečka M, Šamaj J. Actin cytoskeleton and plasma membrane aquaporins are involved in different drought response of Arabidopsis rhd2 and der1 root hair mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109137. [PMID: 39357201 DOI: 10.1016/j.plaphy.2024.109137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Actin cytoskeleton and reactive oxygen species are principal determinants of root hair polarity and tip growth. Loss of function in RESPIRATORY BURST OXIDASE HOMOLOG C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2), an NADPH oxidase emitting superoxide to the apoplast, and in ACTIN 2, a vegetative actin isovariant, in rhd2-1 and der1-3 mutants, respectively, lead to similar defects in root hair formation and elongation Since early endosome-mediated polar localization of AtRBOHC/RHD2 depends on actin cytoskeleton, comparing the proteome-wide consequences of both mutations might be of eminent interest. Therefore, we employed a differential proteomic analysis of Arabidopsis rhd2-1 and der1-3 mutants. Both mutants exhibited substantial alterations in abundances of stress-related proteins. Notably, plasma membrane (PM)-localized PIP aquaporins showed contrasting abundance patterns in the mutants compared to wild-types. Drought-responsive proteins were mostly downregulated in rhd2-1 but upregulated in der1-3. Proteomic data suggest that opposite to der1-3, altered vesicular transport in rhd2-1 mutant likely contributes to the deregulation of PM-localized proteins, including PIPs. Moreover, lattice light sheet microscopy revealed reduced actin dynamics in rhd2-1 roots, a finding contrasting with previous reports on der1-3 mutant. Phenotypic experiments demonstrated a drought stress susceptibility in rhd2-1 and resistance in der1-3. Thus, mutations in AtRBOHC/RHD2 and ACTIN2 cause similar root hair defects, but they differently affect the actin cytoskeleton and vesicular transport. Reduced actin dynamics in rhd2-1 mutant is accompanied by alteration of vesicular transport proteins abundance, likely leading to altered protein delivery to PM, including aquaporins, thereby significantly affecting drought stress responses.
Collapse
Affiliation(s)
- Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Haberland
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, United States
| | - Pavel Tomančák
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Lewis CD, Tierney ML. Contrasting Retromer with a Newly Described Retriever in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2470. [PMID: 39273954 PMCID: PMC11397296 DOI: 10.3390/plants13172470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The tight regulation of protein composition within the plasma membranes of plant cells is crucial for the proper development of plants and for their ability to respond to a changing environment. Upon being endocytosed, integral membrane proteins can be secreted, sorted into multivesicular bodies/late endosomes, and degraded in the lytic vacuole, or recycled back to the plasma membrane to continue functioning. The evolutionarily conserved retromer complex has attracted the interest of plant cell biologists for over a decade as it has emerged as a key regulator of the trafficking of endocytosed integral plasma membrane proteins. Recently, a related recycling complex that shares a subunit with retromer was described in metazoan species. Named "retriever", homologs to the proteins that comprise this new recycling complex and its accessory proteins are found within plant lineages. Initial experiments indicate that there is conservation of function between metazoan and plant retriever proteins, suggesting that it is prudent to re-evaluate the available plant retromer data with the added potential of a plant retriever complex.
Collapse
Affiliation(s)
- Connor D Lewis
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| | - Mary L Tierney
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Qi W, Zhang Y, Li M, Zhang P, Xing J, Chen Y, Zhang L. Endocytic recycling in plants: pathways and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4712-4728. [PMID: 38655916 DOI: 10.1093/jxb/erae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Endocytic recycling is an intracellular trafficking pathway that returns endocytosed molecules to the plasma membrane via the recycling endosome. This pathway plays a crucial role in remodelling plasma membrane composition and is thus essential for cellular homeostasis. In plants, endocytic recycling regulates the localization and abundance of receptors, transporters, and channels at the plasma membrane that are involved in many aspects of plant growth and development. Despite its importance, the recycling endosome and the underlying sorting mechanisms for cargo recycling in plants remain understudied in comparison to the endocytic recycling pathways in animals. In this review, we focus on the cumulative evidence suggesting the existence of endosomes decorated by regulators that contribute to recycling in plant cells. We summarize the chemical inhibitors used for analysing cargo recycling and discuss recent advances in our understanding of how endocytic recycling participates in various plant cellular and physiological events.
Collapse
Affiliation(s)
- Wencai Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yu Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengting Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Zhu Y, Zhao Q, Cao W, Huang S, Ji C, Zhang W, Trujillo M, Shen J, Jiang L. The plant-unique protein DRIF1 coordinates with sorting nexin 1 to regulate membrane protein homeostasis. THE PLANT CELL 2023; 35:4217-4237. [PMID: 37647529 PMCID: PMC10689196 DOI: 10.1093/plcell/koad227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Membrane protein homeostasis is fine-tuned by the cellular pathways for vacuolar degradation and recycling, which ultimately facilitate plant growth and cell-environment interactions. The endosomal sorting complex required for transport (ESCRT) machinery plays important roles in regulating intraluminal vesicle (ILV) formation and membrane protein sorting to vacuoles. We previously showed that the plant-specific ESCRT component FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FREE1) performs multiple functions in plants, although the underlying mechanisms remain elusive. In this study, we performed a suppressor screen of the FREE1-RNAi mutant and identified and characterized 2 suppressor of free1 (sof) mutants in Arabidopsis (Arabidopsis thaliana). These mutants, sof10 and sof641, result in a premature stop codon or a missense mutation in AT5G10370, respectively. This gene was named DEAH and RING domain-containing protein as FREE1 suppressor 1 (DRIF1). DRIF1 has a homologous gene, DRIF2, in the Arabidopsis genome with 95% identity to DRIF1. The embryos of drif1 drif2 mutants arrested at the globular stage and formed enlarged multivesicular bodies (MVBs) with an increased number of ILVs. DRIF1 is a membrane-associated protein that coordinates with retromer component sorting nexin 1 to regulate PIN-FORMED2 recycling to the plasma membrane. Altogether, our data demonstrate that DRIF1 is a unique retromer interactor that orchestrates FREE1-mediated ILV formation of MVBs and vacuolar sorting of membrane proteins for degradation in plants.
Collapse
Affiliation(s)
- Ying Zhu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Marco Trujillo
- RWTH Aachen University, Institute for Biology 3, Aachen 52074, Germany
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
5
|
Shao X, Xu H, Pimpl P. Nanobody-based VSR7 tracing shows clathrin-dependent TGN to Golgi recycling. Nat Commun 2023; 14:6926. [PMID: 37903761 PMCID: PMC10616157 DOI: 10.1038/s41467-023-42331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Receptor-mediated transport of soluble proteins is nature's key to empowering eukaryotic cells to access a plethora of macromolecules, either by direct accumulation or as products from resulting biochemical pathways. The transport efficiency of these mechanisms results from the receptor's capability to capture, transport, and release ligands on the one hand and the cycling ability that allows for performing multiple rounds of ligand transport on the other. However, the plant VACUOLAR SORTING RECEPTOR (VSR) protein family is diverse, and their ligand-specificity and bidirectional trafficking routes and transport mechanisms remain highly controversial. Here we employ nanobody-epitope interaction-based molecular tools to assess the function of the VSR 7 in vivo. We demonstrate the specificity of the VSR7 for sequence-specific vacuolar sorting signals, and we trace its anterograde transport and retrograde recycling route. VSR7 localizes at the cis-Golgi apparatus at steady state conditions and transports ligands downstream to release them in the trans-Golgi network/early endosome (TGN/EE) before undergoing clathrin-dependent recycling from the TGN/EE back to the cis-Golgi.
Collapse
Affiliation(s)
- Xiaoyu Shao
- Harbin Institute of Technology, Harbin, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hao Xu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Peter Pimpl
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
6
|
Zeng Y, Liang Z, Liu Z, Li B, Cui Y, Gao C, Shen J, Wang X, Zhao Q, Zhuang X, Erdmann PS, Wong KB, Jiang L. Recent advances in plant endomembrane research and new microscopical techniques. THE NEW PHYTOLOGIST 2023; 240:41-60. [PMID: 37507353 DOI: 10.1111/nph.19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
The endomembrane system consists of various membrane-bound organelles including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), endosomes, and the lysosome/vacuole. Membrane trafficking between distinct compartments is mainly achieved by vesicular transport. As the endomembrane compartments and the machineries regulating the membrane trafficking are largely conserved across all eukaryotes, our current knowledge on organelle biogenesis and endomembrane trafficking in plants has mainly been shaped by corresponding studies in mammals and yeast. However, unique perspectives have emerged from plant cell biology research through the characterization of plant-specific regulators as well as the development and application of the state-of-the-art microscopical techniques. In this review, we summarize our current knowledge on the plant endomembrane system, with a focus on several distinct pathways: ER-to-Golgi transport, protein sorting at the TGN, endosomal sorting on multivesicular bodies, vacuolar trafficking/vacuole biogenesis, and the autophagy pathway. We also give an update on advanced imaging techniques for the plant cell biology research.
Collapse
Affiliation(s)
- Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zizhen Liang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zhiqi Liu
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Philipp S Erdmann
- Human Technopole, Viale Rita Levi-Montalcini, 1, Milan, I-20157, Italy
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The CUHK Shenzhen Research Institute, Shenzhen, 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
7
|
Jha SG, Larson ER. Diversity of retromer-mediated vesicular trafficking pathways in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1184047. [PMID: 37409293 PMCID: PMC10319002 DOI: 10.3389/fpls.2023.1184047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The plant endomembrane system is organized and regulated by large gene families that encode proteins responsible for the spatiotemporal delivery and retrieval of cargo throughout the cell and to and from the plasma membrane. Many of these regulatory molecules form functional complexes like the SNAREs, exocyst, and retromer, which are required for the delivery, recycling, and degradation pathways of cellular components. The functions of these complexes are well conserved in eukaryotes, but the extreme expansion of the protein subunit families in plants suggests that plant cells require more regulatory specialization when compared with other eukaryotes. The retromer is associated with retrograde sorting and trafficking of protein cargo back towards the TGN and vacuole in plants, while in animals, there is new evidence that the VPS26C ortholog is associated with recycling or 'retrieving' proteins back to the PM from the endosomes. The human VPS26C was shown to rescue vps26c mutant phenotypes in Arabidopsis thaliana, suggesting that the retriever function could be conserved in plants. This switch from retromer to retriever function may be associated with core complexes that include the VPS26C subunit in plants, similar to what has been suggested in other eukaryotic systems. We review what is known about retromer function in light of recent findings on functional diversity and specialization of the retromer complex in plants.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- William Myron Keck Science Department - Biology, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States
| | - Emily R. Larson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
9
|
Bassham DC. An unexpected function for an ESCRT protein. Proc Natl Acad Sci U S A 2022; 119:e2207055119. [PMID: 35700356 PMCID: PMC9245635 DOI: 10.1073/pnas.2207055119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
10
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
11
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proc Natl Acad Sci U S A 2022; 119:e2200492119. [PMID: 35533279 PMCID: PMC9171914 DOI: 10.1073/pnas.2200492119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery in multicellular organisms plays canonical functions in multivesicular body (MVB) biogenesis and membrane protein sorting. Nonetheless, its critical role in the sorting of soluble vacuolar proteins and its interplay with endosomal recycling machinery have yet to be reported. In this study, we demonstrate that Arabidopsis ESCRT-associated ALIXinteracts with the retromer core subunitsto regulate their recruitment onto endosome membrane for recycling of vacuolar sorting receptors (VSRs) for efficient sorting of soluble vacuolar proteins. This work provides molecular insights into the unique properties of ALIX in regulating vacuolar transport of soluble proteins, thus shedding new light on the crosstalk and coordination between the vacuolar trafficking and endosomal recycling pathways in plants. Vacuolar proteins play essential roles in plant physiology and development, but the factors and the machinery regulating their vesicle trafficking through the endomembrane compartments remain largely unknown. We and others have recently identified an evolutionarily conserved plant endosomal sorting complex required for transport (ESCRT)-associated protein apoptosis-linked gene-2 interacting protein X (ALIX), which plays canonical functions in the biogenesis of the multivesicular body/prevacuolar compartment (MVB/PVC) and in the sorting of ubiquitinated membrane proteins. In this study, we elucidate the roles and underlying mechanism of ALIX in regulating vacuolar transport of soluble proteins, beyond its conventional ESCRT function in eukaryotic cells. We show that ALIX colocalizes and physically interacts with the retromer core subunits Vps26 and Vps29 in planta. Moreover, double-mutant analysis reveals the genetic interaction of ALIX with Vps26 and Vps29 for regulating trafficking of soluble vacuolar proteins. Interestingly, depletion of ALIX perturbs membrane recruitment of Vps26 and Vps29 and alters the endosomal localization of vacuolar sorting receptors (VSRs). Taken together, ALIX functions as a unique retromer core subcomplex regulator by orchestrating receptor-mediated vacuolar sorting of soluble proteins.
Collapse
|
13
|
Zheng P, Zheng C, Otegui MS, Li F. Endomembrane mediated-trafficking of seed storage proteins: from Arabidopsis to cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1312-1326. [PMID: 34849750 DOI: 10.1093/jxb/erab519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Seed storage proteins (SSPs) are of great importance in plant science and agriculture, particularly in cereal crops, due to their nutritional value and their impact on food properties. During seed maturation, massive amounts of SSPs are synthesized and deposited either within protein bodies derived from the endoplasmic reticulum, or into specialized protein storage vacuoles (PSVs). The processing and trafficking of SSPs vary among plant species, tissues, and even developmental stages, as well as being influenced by SSP composition. The different trafficking routes, which affect the amount of SSPs that seeds accumulate and their composition and modifications, rely on a highly dynamic and functionally specialized endomembrane system. Although the general steps in SSP trafficking have been studied in various plants, including cereals, the detailed underlying molecular and regulatory mechanisms are still elusive. In this review, we discuss the main endomembrane routes involved in SSP trafficking to the PSV in Arabidopsis and other eudicots, and compare and contrast the SSP trafficking pathways in major cereal crops, particularly in rice and maize. In addition, we explore the challenges and strategies for analyzing the endomembrane system in cereal crops.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Life Science, Huizhou University, Huizhou, China
| | - Chunyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WIUSA
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
15
|
Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, Zhang Y, Harrison MJ, Kirchhelle C, Goshima G, Coate JE, Doyle JJ, Hamant O, Sugimoto K, Dolan L, Meyer H, Ehrhardt DW, Boudaoud A, Messina C. Fifteen compelling open questions in plant cell biology. THE PLANT CELL 2022; 34:72-102. [PMID: 34529074 PMCID: PMC8774073 DOI: 10.1093/plcell/koab225] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/02/2023]
Abstract
As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, Missouri 63130, USA
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christine Faulkner
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | | | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Jeremy E Coate
- Department of Biology, Reed College, Portland, Oregon 97202, USA
| | - Jeff J Doyle
- School of Integrative Plant Science, Section of Plant Biology and Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCBL, INRAE, CNRS, Lyon Cedex 07, France
| | - Keiko Sugimoto
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Liam Dolan
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna 1030, Austria
| | - Heather Meyer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau Cedex 91128 France
| | | |
Collapse
|
16
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
17
|
Cao B, Xia Z, Hao Z, Liu C, Long D, Fan W, Zhao A. The C-terminal tail of the plant endosomal-type NHXs plays a key role in its function and stability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110791. [PMID: 33487365 DOI: 10.1016/j.plantsci.2020.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Typically, Na+/H+ antiporters (NHXs) possess a conserved N-terminus for cation binding and exchange and a hydrophilic C-terminus for regulating the antiporter activity. Plant endosomal-type NHXs play important roles in protein trafficking, as well as K+ and vesicle pH homeostasis, however the role of the C-terminal tail remains unclear. Here, the function of MnNHX6, an endosomal-type NHX in mulberry, was investigated using heterologous expression in yeast. Functional and localization analyses of C-terminal truncation and mutations in MnNHX6 revealed that the C-terminal conserved region was responsible for the function and stability of the protein and its hydrophobicity, which is a key domain requirement. Nuclear magnetic resonance spectroscopy provided direct structural evidence and yeast two-hybrid screening indicated that this functional domain was also necessary for interaction with sorting nexin 1. Our findings demonstrate that although the C-terminal tail of MnNHX6 is intrinsically disordered, the C-terminal conserved region may be an important part of the external mouth of this transporter, which controls protein function and stability by serving as an inter-molecular cork with a chain mechanism. These findings improve our understanding of the roles of the C-terminal tail of endosomal-type NHXs in plants and the ion transport mechanism of NHX-like antiporters.
Collapse
Affiliation(s)
- Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Zhongqiang Xia
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Wei Fan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
18
|
Zhang M, Hu S, Yi F, Gao Y, Zhu D, Wang Y, Cai Y, Hou D, Lin X, Shen J. Organelle Visualization With Multicolored Fluorescent Markers in Bamboo. FRONTIERS IN PLANT SCIENCE 2021; 12:658836. [PMID: 33936145 PMCID: PMC8081836 DOI: 10.3389/fpls.2021.658836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Bamboo is an important model plant to study the molecular mechanisms of rapid shoot growth and flowering once in a lifetime. However, bamboo research about protein functional characterization is largely lagged behind, mainly due to the lack of gene transformation platforms. In this study, a protoplast transient gene expression system in moso bamboo has been first established. Using this reliable and efficient system, we have generated a set of multicolored fluorescent markers based on the targeting sequences from endogenous proteins, which have been validated by their comparative localization with Arabidopsis organelle markers, in a combination with pharmaceutical treatments. Moreover, we further demonstrated the power of this multicolor marker set for rapid, combinatorial analysis of the subcellular localization of uncharacterized proteins, which may play potential functions in moso bamboo flowering and fast growth of shoots. Finally, this protoplast transient gene expression system has been elucidated for functional analysis in protein-protein interaction by fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. Taken together, in combination with the set of moso bamboo organelle markers, the protoplast transient gene expression system could be used for subcellular localization and functional study of unknown proteins in bamboo and will definitely promote rapid progress in diverse areas of research in bamboo plants.
Collapse
Affiliation(s)
- Mengdi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shuai Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Fang Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yizhu Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
19
|
Ivanov R, Robinson DG. EMAC, Retromer, and VSRs: do they connect? PROTOPLASMA 2020; 257:1725-1729. [PMID: 32780164 PMCID: PMC8286218 DOI: 10.1007/s00709-020-01543-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/06/2020] [Indexed: 06/02/2023]
Abstract
Eukaryotic organisms share many common features in terms of endomembrane trafficking. This fact has helped plant scientists to propose testable hypotheses on how plant intracellular membrane trafficking is achieved and regulated based on knowledge from yeast and mammals. However, when a new compartment has been identified in a plant cell that has a vesicle tethering complex located at a position which is completely different to its counterpart in yeast and mammalian cells, caution is demanded when interpreting possible interactions with other trafficking elements. This is exemplified by the recently discovered EMAC (ER and microtubule-associated compartment). It has been postulated that this compartment is the recipient of vacuolar sorting receptors (VSRs) transported retrogradely via "retromer vesicles" from a post-Golgi location. Unfortunately, this suggestion was based entirely on our knowledge of retromer from yeast and mammalian cells, and did not take into account the available literature on the composition, localization, and function of the plant retromer. It also lacked reference to recent contradictory findings on VSR trafficking. In this short article, we have tried to rectify this situation, pointing out that plant retromer may not function as a pentameric complex of two subunits: the retromer core and the sorting nexins.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69117, Heidelberg, Germany
| |
Collapse
|
20
|
Hu S, Li Y, Shen J. A Diverse Membrane Interaction Network for Plant Multivesicular Bodies: Roles in Proteins Vacuolar Delivery and Unconventional Secretion. FRONTIERS IN PLANT SCIENCE 2020; 11:425. [PMID: 32425960 PMCID: PMC7203423 DOI: 10.3389/fpls.2020.00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 05/15/2023]
Abstract
Vesicle trafficking between the membrane-bound organelles in plant cells plays crucial roles in the precise transportation of various materials, and thus supports cell proliferation and cellular polarization. Conventionally, plant prevacuolar compartments (PVCs), identified as multivesicular bodies (MVBs), play important roles in both the secretory pathway as intermediate compartments and the endocytic pathway as late endosomes. In recent years, the PVC/MVBs have been proposed to play important roles in both protein vacuolar delivery and unconventional secretion, but several important questions on the new regulators and environmental cues that coordinate the PVC/MVB-organelle membrane interactions and their biological significances remain. In this review, we first summarize the identity and nature of the plant PVC/MVBs, and then we present an update on our current understanding on the interaction of PVC/MVBs with other organelles in the plant endomembrane system with focus on the vacuole, autophagosome, and plasma membrane (PM) in plant development and stress responses. Finally, we raise some open questions and present future perspectives in the study of PVC/MVB-organelle interactions and associated biological functions.
Collapse
|
21
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
22
|
Jha SG, Larson ER, Humble J, Domozych DS, Barrington DS, Tierney ML. Vacuolar Protein Sorting 26C encodes an evolutionarily conserved large retromer subunit in eukaryotes that is important for root hair growth in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:595-611. [PMID: 29495075 DOI: 10.1111/tpj.13880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 05/24/2023]
Abstract
The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved function, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3) in a vps26c background. These studies illustrate that GFP-HsDSCR3 is able to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep conservation of cellular function for this large retromer subunit across plant and animal kingdoms.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - Emily R Larson
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - Jordan Humble
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | | | - David S Barrington
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| | - Mary L Tierney
- Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
23
|
Kalinowska K, Isono E. All roads lead to the vacuole-autophagic transport as part of the endomembrane trafficking network in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1313-1324. [PMID: 29165603 DOI: 10.1093/jxb/erx395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/14/2017] [Indexed: 05/10/2023]
Abstract
Plants regulate their development and response to the changing environment by sensing and interpreting environmental signals. Intracellular trafficking pathways including endocytic-, vacuolar-, and autophagic trafficking are important for the various aspects of responses in plants. Studies in the last decade have shown that the autophagic transport pathway uses common key components of endomembrane trafficking as well as specific regulators. A number of factors previously described for their function in endosomal trafficking have been discovered to be involved in the regulation of autophagy in plants. These include conserved endocytic machineries, such as the endosomal sorting complex required for transport (ESCRT), subunits of the HOPS and exocyst complexes, SNAREs, and RAB GTPases as well as plant-specific proteins. Defects in these factors have been shown to cause impairment of autophagosome formation, transport, fusion, and degradation, suggesting crosstalk between autophagy and other intracellular trafficking processes. In this review, we focus mainly on possible functions of endosomal trafficking components in autophagy.
Collapse
|
24
|
Früholz S, Fäßler F, Kolukisaoglu Ü, Pimpl P. Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nat Commun 2018; 9:643. [PMID: 29440677 PMCID: PMC5811495 DOI: 10.1038/s41467-018-02909-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022] Open
Abstract
Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway and release them into the vacuolar route. Sorting efficiency is suggested to result from receptor recycling. However, how and to where plant VSRs recycle remains controversial. Here we present a nanobody-epitope interaction-based protein labeling and tracking approach to dissect their anterograde and retrograde transport routes in vivo. We simultaneously employ two different nanobody-epitope pairs: one for the location-specific post-translational fluorescence labeling of receptors and the other pair to trigger their compartment-specific lockdown via an endocytosed dual-epitope linker protein. We demonstrate VSR recycling from the TGN/EE, thereby identifying the cis-Golgi as the recycling target and show that recycled VSRs reload ligands. This is evidence that bidirectional VSR-mediated sorting of vacuolar proteins exists and occurs between the Golgi and the TGN/EE.
Collapse
Affiliation(s)
- Simone Früholz
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Florian Fäßler
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
- SUSTech-PKU Institute of Plant and Food Science (IPFS), Department of Biology, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Rd, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Früholz S, Fäßler F, Kolukisaoglu Ü, Pimpl P. Nanobody-triggered lockdown of VSRs reveals ligand reloading in the Golgi. Nat Commun 2018. [PMID: 29440677 DOI: 10.1038/s41467-018-02909-2906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway and release them into the vacuolar route. Sorting efficiency is suggested to result from receptor recycling. However, how and to where plant VSRs recycle remains controversial. Here we present a nanobody-epitope interaction-based protein labeling and tracking approach to dissect their anterograde and retrograde transport routes in vivo. We simultaneously employ two different nanobody-epitope pairs: one for the location-specific post-translational fluorescence labeling of receptors and the other pair to trigger their compartment-specific lockdown via an endocytosed dual-epitope linker protein. We demonstrate VSR recycling from the TGN/EE, thereby identifying the cis-Golgi as the recycling target and show that recycled VSRs reload ligands. This is evidence that bidirectional VSR-mediated sorting of vacuolar proteins exists and occurs between the Golgi and the TGN/EE.
Collapse
Affiliation(s)
- Simone Früholz
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Florian Fäßler
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Üner Kolukisaoglu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
- SUSTech-PKU Institute of Plant and Food Science (IPFS), Department of Biology, Southern University of Science and Technology (SUSTech), 1088 Xueyuan Rd, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Heucken N, Ivanov R. The retromer, sorting nexins and the plant endomembrane protein trafficking. J Cell Sci 2018; 131:jcs.203695. [PMID: 29061884 DOI: 10.1242/jcs.203695] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein sorting in the endomembrane system is responsible for the coordination of cellular functions. Plant intracellular trafficking has its own unique features, which include specific regulatory aspects of endosomal sorting and recycling of cargo proteins, mediated by the retromer complex. Recent work has led to significant progress in understanding the role of Arabidopsis retromer subunits in recycling vacuolar sorting receptors and plasma membrane proteins. As a consequence, members of the sorting nexin (SNX) protein family and their interaction partners have emerged as critical protein trafficking regulators, in particular with regard to adaptation to environmental change, such as temperature fluctuations and nutrient deficiency. In this Review, we discuss the known and proposed functions of the comparatively small Arabidopsis SNX protein family. We review the available information on the role of the three Bin-Amphiphysin-Rvs (BAR)-domain-containing Arabidopsis thaliana (At)SNX proteins and discuss their function in the context of their potential participation in the plant retromer complex. We also summarize the role of AtSNX1-interacting proteins in different aspects of SNX-dependent protein trafficking and comment on the potential function of three novel, as yet unexplored, Arabidopsis SNX proteins.
Collapse
Affiliation(s)
- Nicole Heucken
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Occhialini A, Marc-Martin S, Gouzerh G, Hillmer S, Neuhaus JM. RMR (Receptor Membrane RING-H2) type 1 and 2 show different promoter activities and subcellular localizations in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:9-18. [PMID: 29241571 DOI: 10.1016/j.plantsci.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/27/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
Soluble vacuolar proteins reach their compartments of final accumulation through the binding with specific transmembrane cargo receptors. In Arabidopsis thaliana two different families of receptors have been characterized. The AtVSRs (Vacuolar Sorting Receptor), which are known to be involved in the protein sorting to lytic vacuoles (LV), and the AtRMRs (Receptor Membrane RING-H2), for which there is less evidence for a role in the traffic to the protein storage vacuole (PSV). In this study we investigated the localization and tissue expression of two RMRs (AtRMR1 and 2) in their species of origin, A. thaliana. Our experiments using leaf protoplasts and transgenic plants supported previous results of subcellular localization in Nicotiana benthamiana that visualized AtRMR1 and 2 in the cisternae of endoplasmic reticulum (ER) and in the trans-Golgi network (TGN), respectively. The promoter activities of AtRMR1 and AtRMR2 detected in transgenic A. thaliana lines suggest that the expression of these two receptors only partially overlap in some organs and tissues. These results suggest that AtRMR1 and 2 are not functionally redundant, but could also interact and participate in the same cellular process in tissues with an overlapping expression.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food Science, University of Tennessee, Food Safety and Processing Building, 2600 River Dr., Knoxville, TN 37996, USA; Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland.
| | - Sophie Marc-Martin
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Guillaume Gouzerh
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
28
|
Li TT, Liu WC, Wang FF, Ma QB, Lu YT, Yuan TT. SORTING NEXIN 1 Functions in Plant Salt Stress Tolerance Through Changes of NO Accumulation by Regulating NO Synthase-Like Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:1634. [PMID: 30542353 PMCID: PMC6277890 DOI: 10.3389/fpls.2018.01634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/19/2018] [Indexed: 05/12/2023]
Abstract
Nitric oxide (NO) production via NO synthase (NOS) plays a vital role in plant tolerance to salt stress. However, the factor(s) regulating NOS-like activity in plant salt stress tolerance remains elusive. Here, we show that Arabidopsis SORTING NEXIN 1 (SNX1), which can restore H2O2-induced NO accumulation in yeast Δsnx4 mutant, functions in plant salt stress tolerance. Salt stress induced NO accumulation through promoted NOS-like activity in the wild type, but this induction was repressed in salt-stressed snx1-2 mutant with the mutation of SNX1 because NOS-like activity was inhibited in the mutant. Consistently, snx1-2 displayed reduced tolerance to high salinity with decreased survival rate compared with the wild type, and exogenous treatment with NO donor significantly rescued the hypersensitivity of the mutant to salt stress. In addition, the snx1-2 mutant with reduced NOS-like activity repressed the expression of stress-responsive genes, decreased proline accumulation and anti-oxidant ability compared with wild-type plants when subjected to salt stress. Taken together with our finding that salt induces the expression of SNX1, our results reveal that SNX1 plays a crucial role in plant salt stress tolerance by regulating NOS-like activity and thus NO accumulation.
Collapse
|
29
|
Di Sansebastiano GP, Barozzi F, Piro G, Denecke J, de Marcos Lousa C. Trafficking routes to the plant vacuole: connecting alternative and classical pathways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:79-90. [PMID: 29096031 DOI: 10.1093/jxb/erx376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/27/2017] [Indexed: 05/02/2023]
Abstract
Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole.
Collapse
Affiliation(s)
- Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Fabrizio Barozzi
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Gabriella Piro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | | | - Carine de Marcos Lousa
- Centre for Plant Sciences, Leeds University, UK
- Leeds Beckett University, School of Applied and Clinical Sciences, UK
| |
Collapse
|
30
|
A Secretion System for Cargo Protein Identification of Vacuolar Sorting Receptors. Methods Mol Biol 2017. [PMID: 28861828 DOI: 10.1007/978-1-4939-7262-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins in plant cells that can sort cargo proteins at the late Golgi or trans-Golgi network (TGN) for vacuolar transport via the prevacuolar compartment (PVC). However, little is known about VSR cargo proteins in plants. Here, we describe a new method for the identification of VSR cargos, which is based on the premise that the expressed N-terminus of VSRs will be secreted into the culture media along with their corresponding cargo proteins. The protocol described here should be applicable to all VSRs and should be also useful for other receptor cargo identification and protein-protein interaction in vivo.
Collapse
|
31
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
32
|
Floyd BE, Mugume Y, Morriss SC, MacIntosh GC, Bassham DC. Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis. PLANTA 2017; 245:779-792. [PMID: 28025674 DOI: 10.1007/s00425-016-2644-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 05/28/2023]
Abstract
Localization of the RNase RNS2 to the vacuole via a C-terminal targeting signal is essential for its function in rRNA degradation and homeostasis. RNase T2 ribonucleases are highly conserved enzymes present in the genomes of nearly all eukaryotes and many microorganisms. Their constitutive expression in different tissues and cell types of many organisms suggests a housekeeping role in RNA homeostasis. The Arabidopsis thaliana class II RNase T2, RNS2, is encoded by a single gene and functions in rRNA degradation. Loss of RNS2 results in RNA accumulation and constitutive activation of autophagy, possibly as a compensatory mechanism. While the majority of RNase T2 enzymes is secreted, RNS2 is located within the vacuole and in the endoplasmic reticulum (ER), possibly within ER bodies. As RNS2 has a neutral pH optimum, and the endomembrane organelles are connected by vesicle transport, the site within the endomembrane system at which RNS2 functions is unclear. Here we demonstrate that localization to the vacuole is essential for the physiological function of RNS2. A mutant allele of RNS2, rns2-1, results in production of an active RNS2 RNase but with a mutation that removes a putative C-terminal vacuolar targeting signal. The mutant protein is, therefore, secreted from the cell. This results in a constitutive autophagy phenotype similar to that observed in rns2 null mutants. These findings illustrate that the intracellular retention of RNS2 and localization within the vacuole are critical for its cellular function.
Collapse
Affiliation(s)
- Brice E Floyd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yosia Mugume
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie C Morriss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Früholz S, Pimpl P. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays. Methods Mol Biol 2017; 1662:171-182. [PMID: 28861827 DOI: 10.1007/978-1-4939-7262-3_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope. For this, we use a secreted GFP-tagged α-amylase as a reporter together with a vacuolar-targeted RFP-tagged nanobody. The interaction between these proteins is then revealed by a transport alteration of the secretory reporter due to the interaction-triggered attachment of the vacuolar sorting signal.
Collapse
Affiliation(s)
- Simone Früholz
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Peter Pimpl
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
- Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
34
|
Ocampo CG, Lareu JF, Marin Viegas VS, Mangano S, Loos A, Steinkellner H, Petruccelli S. Vacuolar targeting of recombinant antibodies in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2265-2275. [PMID: 27159528 PMCID: PMC5103231 DOI: 10.1111/pbi.12580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 05/31/2023]
Abstract
Plant-based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C-terminal fused to the heavy chain of 14D9 (vac-Abs) and compared with secreted and ER-retained variants (sec-Ab, ER-Ab, respectively). Accumulation of ER- and vac-Abs was 10- to 15-fold higher than sec-Ab. N-glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec-Ab while vac-Abs carried mainly oligomannosidic (Man 7-9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec-Ab-RFP localized in the apoplast while vac-Abs-RFP were exclusively detected in the central vacuole. The data suggest that vac-Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N-glycans). Importantly, vac-Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post-translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.
Collapse
Affiliation(s)
- Carolina Gabriela Ocampo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Jorge Fabricio Lareu
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Vanesa Soledad Marin Viegas
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| | - Silvina Mangano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
- Present address: Fundación Instituto LeloirAv. Patricias Argentinas 435Buenos AiresArgentina
| | - Andreas Loos
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- Present address: Aridis Pharmaceuticals Inc.5941 Optical CourtSan JoseCA95138USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Silvana Petruccelli
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Departamento de Ciencias BiológicasFacultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
| |
Collapse
|
35
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4435-49. [PMID: 27262127 DOI: 10.1093/jxb/erw222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans-Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea (Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor-ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchatel, Switzerland
| |
Collapse
|
37
|
Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L. Biogenesis of Plant Prevacuolar Multivesicular Bodies. MOLECULAR PLANT 2016; 9:774-86. [PMID: 26836198 DOI: 10.1016/j.molp.2016.01.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 05/20/2023]
Abstract
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was identified as an MVB more than 10 years ago, great progress has been made toward the understanding of PVC/MVB function and biogenesis in plants. In this review, we first summarize previous research into the identification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field.
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
38
|
Künzl F, Früholz S, Fäßler F, Li B, Pimpl P. Receptor-mediated sorting of soluble vacuolar proteins ends at the trans-Golgi network/early endosome. NATURE PLANTS 2016; 2:16017. [PMID: 27249560 DOI: 10.1038/nplants.2016.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/01/2016] [Indexed: 05/03/2023]
Abstract
The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however. Here, we examine the potential for VSR-ligand interactions in all compartments of the vacuolar transport system in tobacco mesophyll protoplasts. To do this, we developed compartment-specific VSR sensors that assemble as a result of a nanobody-epitope interaction, and monitored the degree of ligand binding by analysing Förster resonance energy transfer using fluorescence lifetime imaging microscopy (FRET-FLIM). We show that VSRs bind ligands in the endoplasmic reticulum (ER) and in the Golgi, but not in the trans-Golgi network/early endosome (TGN/EE) or multivesicular late endosomes, suggesting that the post-TGN/EE trafficking of ligands towards the vacuole is VSR independent. We verify this by showing that non-VSR-ligands are also delivered to the vacuole from the TGN/EE after endocytic uptake. We conclude that VSRs are required for the transport of ligands from the ER and the Golgi to the TGN/EE, and suggest that the onward transport to the vacuole occurs by default.
Collapse
Affiliation(s)
- Fabian Künzl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Simone Früholz
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Florian Fäßler
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Beibei Li
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Peter Pimpl
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
39
|
Brumbarova T, Ivanov R. Differential Gene Expression and Protein Phosphorylation as Factors Regulating the State of the Arabidopsis SNX1 Protein Complexes in Response to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2016; 7:1456. [PMID: 27725825 PMCID: PMC5035748 DOI: 10.3389/fpls.2016.01456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/12/2016] [Indexed: 05/19/2023]
Abstract
Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein-protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress.
Collapse
|
40
|
Ashnest JR, Huynh DL, Dragwidge JM, Ford BA, Gendall AR. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing. PLANT & CELL PHYSIOLOGY 2015; 56:2220-33. [PMID: 26416852 DOI: 10.1093/pcp/pcv138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/18/2015] [Indexed: 05/26/2023]
Abstract
The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking.
Collapse
Affiliation(s)
- Joanne R Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dung L Huynh
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jonathan M Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brett A Ford
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia Present address: Commonwealth Scientific and Industrial Research Organization Agriculture Flagship, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
41
|
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, University Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
42
|
Chi RJ, Harrison MS, Burd CG. Biogenesis of endosome-derived transport carriers. Cell Mol Life Sci 2015; 72:3441-3455. [PMID: 26022064 DOI: 10.1007/s00018-015-1935-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/29/2023]
Abstract
Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Megan S Harrison
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
43
|
Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:287-98. [PMID: 25516570 DOI: 10.1093/pcp/pcu195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Present address: Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yasuyuki Suda
- RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan Present address: Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Samantha Vernhettes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
44
|
Shen J, Ding Y, Gao C, Rojo E, Jiang L. N-linked glycosylation of AtVSR1 is important for vacuolar protein sorting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:977-92. [PMID: 25293377 DOI: 10.1111/tpj.12696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post-translationally modified by the attachment of N-glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex-type N-glycans, which are located in the N-terminal 'PA domain', the central region and the C-terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N-glycans do not affect the targeting of AtVSR1 to pre-vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N-glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N-glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
45
|
Kang H, Hwang I. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells. PLANTS 2014; 3:392-408. [PMID: 27135510 PMCID: PMC4844349 DOI: 10.3390/plants3030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/13/2023]
Abstract
Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs), which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.
Collapse
Affiliation(s)
- Hyangju Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
46
|
Kim SJ, Brandizzi F. The plant secretory pathway: an essential factory for building the plant cell wall. PLANT & CELL PHYSIOLOGY 2014; 55:687-93. [PMID: 24401957 DOI: 10.1093/pcp/pct197] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For building and maintaining the complex structure of the surrounding wall throughout their life, plant cells rely on the endomembrane system, which functions as the main provider and transporter of cell wall constituents. Efforts to understand the mechanisms of synthesis and transport of cell wall materials have been generating valuable information for diverse practical applications. Nonetheless, the identity of the endomembrane components necessary for the transport of cell wall enzymes and polysaccharides is not well known. Evidence indicates that plant cells can accomplish secretion of cell wall constituents through multiple pathways during development or under stress conditions and, that compared with other eukaryotes, they rely on a highly diversified toolkit of proteins for membrane traffic. This suggests that production of the cell wall in plants consists of intricate and highly regulated pathways. In this review, we summarize important discoveries that have allowed the activities of the plant secretory pathway to be linked to the production and deposition of cell wall-synthesizing enzymes and polysaccharides.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
47
|
Ivanov R, Brumbarova T, Blum A, Jantke AM, Fink-Straube C, Bauer P. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1. THE PLANT CELL 2014; 26:1294-307. [PMID: 24596241 PMCID: PMC4001385 DOI: 10.1105/tpc.113.116244] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 05/18/2023]
Abstract
Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.
Collapse
Affiliation(s)
- Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
- Address correspondence to
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Ailisa Blum
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | - Anna-Maria Jantke
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, D-40225 Duesseldorf, Germany
- Department of Biosciences-Plant Biology, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
48
|
Gershlick DC, de Marcos Lousa C, Foresti O, Lee AJ, Pereira EA, daSilva LL, Bottanelli F, Denecke J. Golgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco. THE PLANT CELL 2014; 26:1308-29. [PMID: 24642936 PMCID: PMC4001386 DOI: 10.1105/tpc.113.122226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 05/02/2023]
Abstract
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand interactions in the cis-Golgi play an important role in vacuolar sorting. We also show that a conserved Glu is required but not sufficient for rate-limiting YXX-mediated receptor trafficking. Protein-protein interaction studies show that the VSR tail interacts with the μ-subunits of plant or mammalian clathrin adaptor complex AP1 and plant AP4 but not that of plant and mammalian AP2. Mutants causing a detour of full-length receptors via the cell surface invariantly cause the secretion of VSR ligands. Therefore, we propose that cycling via the plasma membrane is unlikely to play a role in biosynthetic vacuolar sorting under normal physiological conditions and that the conserved Ile-Met motif is mainly used to recover mistargeted receptors. This occurs via a fundamentally different pathway from the prevacuolar compartment that does not mediate recycling. The role of clathrin and clathrin-independent pathways in vacuolar targeting is discussed.
Collapse
Affiliation(s)
- David C. Gershlick
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carine de Marcos Lousa
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Lee
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | - Jurgen Denecke
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
49
|
Viotti C. ER and vacuoles: never been closer. FRONTIERS IN PLANT SCIENCE 2014; 5:20. [PMID: 24550928 PMCID: PMC3913007 DOI: 10.3389/fpls.2014.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Corrado Viotti
- *Correspondence: Corrado Viotti, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnéusväg 6, 90187 Umeå, Sweden e-mail:
| |
Collapse
|
50
|
Robinson DG, Pimpl P. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. PROTOPLASMA 2014; 251:247-64. [PMID: 24019013 DOI: 10.1007/s00709-013-0542-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 05/20/2023]
Abstract
In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the "classical model" for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR-ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour. Firstly, unlike mammalian cells where the sorting receptor for lysosomal hydrolases recognizes its ligand in the TGN, the available data suggests that in plants VSRs interact with vacuolar cargo ligands already in the endoplasmic reticulum. Secondly, the evidence supporting the packaging of VSR-ligand complexes into CCV at the TGN is not conclusive. Thirdly, the prevacuolar compartment appears to have a pH unsuitable for VSR-ligand dissociation and lacks the retromer core and the sorting nexins needed for VSR recycling. We present an alternative model for protein sorting in the TGN that draws attention to the much overlooked role of Ca(2+) in VSR-ligand interactions and which may possibly also be a factor in the sequestration of secretory proteins.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|