1
|
Chaurasia AK, Patil HB, Krishna B, Subramaniam VR, Sane PV, Sane AP. The transition from vegetative growth to flowering is associated with suppression of the MUSA CENTRORADIALIS (MCN) gene family in day neutral banana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112289. [PMID: 39414148 DOI: 10.1016/j.plantsci.2024.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Control over flowering time is essential for reproductive success and survival of plants. The TERMINAL FLOWER1/CENTRORADIALIS/BROTHER OF FT AND TFL1 (TFL1/CEN/BFT) genes are key suppressor of flowering time that prevents premature conversion of the apical meristem into a floral meristem thereby allowing indeterminate vegetative growth. We have identified and characterized seven members of banana TFL1/CEN/BFT gene family (MCN1-7). All genes except MCN6 show overlapping expression in the shoot apical meristem as well as leaves from the initial to mid-vegetative phases. Their expression is collectively reduced to their lowest just prior to flowering initiation at around 171 days, 226 days and 297 days, respectively, in three differently flowering varieties. Thereafter, there is steady increase in their transcript levels in the apical meristem as well as leaves that correlates with the development and growth of the inflorescence. The ability of three of the genes, MCNs1-3, to functionally complement the tfl1-14 mutant of Arabidopsis provides additional evidence for structural and functional similarities of the MCN proteins to TFL1 even in a distantly related plant. Together, these results suggest that the MCN family in banana is associated with vegetative growth and suppression of flowering time initiation as well as indeterminate growth of inflorescence.
Collapse
Affiliation(s)
- Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Hemant B Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India.
| | - Vadakanthara R Subramaniam
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
2
|
Nolan CT, Campbell I, Farrell-Sherman A, Ortiz BAB, Naish KA, Stilio VD, Kaldy JE, Donoghue C, Ruesink JL, Imaizumi T. Florigen and antiflorigen gene expression correlates with reproductive state in a marine angiosperm, Zostera marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622789. [PMID: 39605329 PMCID: PMC11601257 DOI: 10.1101/2024.11.09.622789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
• Florigen and antiflorigen genes within the phosphatidylethanolamine-binding protein (PEBP) family regulate flowering in angiosperms. In eelgrass (Zostera marina), a marine foundation species threatened by climate change, flowering and seed production are crucial for population resilience. Yet, the molecular mechanism underpinning flowering remains unknown. • Using phylogenetic analysis and functional assays in Arabidopsis, we identified thirteen PEBP genes in Z. marina (ZmaPEBP) and showed that four genes altered flowering phenotypes when overexpressed. We used quantitative RT-PCR on Z. marina shoots from perennial and annual populations in Willapa Bay, USA to assess expression of these four genes in different tissue and expression changes throughout the growth season. • We demonstrated that ZmaFT2 and ZmaFT4 promote flowering, and ZmaFT9 and ZmaTFL1a repress flowering in Arabidopsis. Across five natural sites exhibiting different degrees of population genetic structure, ZmaFT2 and ZmaFT4 were expressed in leaves of vegetative and reproductive shoots and in stems and rhizomes of reproductive shoots. ZmaFT9 was distinctively expressed in leaves of vegetative and juvenile shoots, while ZmaTFL1a levels increased after flowering shoots emerged. • Our results suggest that ZmaFT2 and ZmaFT4 may promote flowering, while ZmaFT9 may inhibit a floral transition in eelgrass. We speculate that ZmaTFL1a may be involved in flowering shoot architecture.
Collapse
Affiliation(s)
| | - Ian Campbell
- Department of Biology, University of Washington, Seattle, WA USA 98195
| | - Anna Farrell-Sherman
- Department of Biology, University of Washington, Seattle, WA USA 98195
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA USA 98109
| | | | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA USA 98195
| | | | - James E. Kaldy
- Pacific Ecological Systems Division, US EPA, Newport, OR USA 97365
| | - Cinde Donoghue
- Washington Department of Natural Resources, Olympia, WA USA 98504
- Washington Department of Ecology, Lacey, WA USA 98503
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA USA 98195
| |
Collapse
|
3
|
Xue R, Liu Y, Feng M, Huang Y, Zhao Y, Chen J, Li T, Zhong C, Ge W. Genome-wide characterization of PEBP genes in Mung bean (Vigna radiata L.) with functional analysis of VrFT1 in relation to photoperiod. Sci Rep 2024; 14:26413. [PMID: 39488543 PMCID: PMC11531570 DOI: 10.1038/s41598-024-73936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024] Open
Abstract
Mung bean (Vigna radiata L.), a widely cultivated legume, belongs to the Fabaceae family's Papilionoideae subfamily. Although Phosphatidylethanolamine-binding protein (PEBP) genes have been identified in several plant species, their presence and function in mung bean remain largely unexplored. In this study, we identified seven VrPEBP genes from mung bean and classified them into four clades: FT, MFT, TFL and FT-like. Cis-regulatory element analysis revealed that VrPEBP genes may play a role in light, hormone, and stress responses. Quantitative real-time PCR (qRT-PCR) analysis indicated that VrPEBPs were constitutively expressed in various tissues. However, tissue-specific expression patterns were observed among VrPEBP genes. Under short-day (SD) conditions, VrFT1 and VrMFT1 exhibited significantly higher expression levels than under long-day (LD) conditions at 8 and 4 h, respectively. Conversely, VrTFL2 and VrTFL3 showed significantly higher expression levels under LD conditions compared to SD conditions at 8 and 12 h, respectively. The varied expression patterns of these genes under different photoperiod suggest their potential involvement in the photoperiodic regulation of flowering in mung bean. Additionally, phenotypic analysis of transgenic Arabidopsis plants overexpressing VrFT1 revealed higher expression levels under SD conditions and predicted its role in promoting flowering. These results provide valuable insights into the evolution and function of PEBP genes in mung bean and lay the foundation for further research on their regulatory mechanisms and potential applications in mung bean improvement.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yu Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China
| | - Ming Feng
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yuning Huang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Yang Zhao
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Tao Li
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China
| | - Chao Zhong
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110000, China.
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning, China.
- Liaoning Provincial Key Laboratory of Miscellaneous Grain Germplasm Innovation and Genetic Breeding, Liaoning Province, China.
| |
Collapse
|
4
|
Yang J, Song J, Park YG, Jeong BR. Both the Positioned Supplemental or Night-Interruptional Blue Light and the Age of Leaves (or Tissues) Are Important for Flowering and Vegetative Growth in Chrysanthemum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2874. [PMID: 39458821 PMCID: PMC11511255 DOI: 10.3390/plants13202874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
In this study, the effects of supplemental or night interruptional blue light (S-BL or NI-BL) positioning on morphological growth, photoperiodic flowering, and expression of floral genes in Chrysanthemum morifolium were investigated. Blue light-emitting diodes (LEDs) at an intensity of 30 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) were used for 4 h either (1) to supplement the white LEDs at the end of the 10 h short-day (SD10 + S-BL4) and 13 h long-day conditions (LD13 + S-BL4), or (2) to provide night interruption in the SD10 (SD10 + NI-BL4) and LD13 (LD13 + NI-BL4). The S-BL4 or NI-BL4 was positioned to illuminate either the shoot tip, the youngest leaf (vigorously growing the third leaf from the shoot tip), or the old leaf (the third leaf from the stem base). In the text, they will be denoted as follows: SD10 + S-BL4-S, -Y, or -O; SD10 + NI-BL4-S, -Y, or -O; LD13 + S-BL4-S, -Y, or -O; LD13 + NI-BL4-S, -Y, or -O. Normally, the LD13 conditions enhanced more vegetative growth than the SD10 periods. The growth of leaves, stems, and branches strongly responded to the S-BL4 or NI-BL4 when it was targeted onto the shoot tip, followed by the youngest leaf. The SD10 + S-BL4 or +NI-BL4 on the old leaf obviously suppressed plant extension growth, resulting in the smallest plant height. Under LD13 conditions, the flowering-related traits were significantly affected when the S-BL4 or NI-BL4 was shed onto the youngest leaf. However, these differences do not exist in the SD10 environments. At the harvest stage, other than the non-flowered LD13 treatment, the LD13 + S-BL4 irradiating the youngest leaf induced the most flowers, followed by the shoot tip and old leaf. Moreover, LD13 + NI-BL4 resulted in the latest flowering, especially when applied to the shoot tip and old leaf. However, the SD10 + S-BL4 or + NI-BL4 irradiated the shoot tip, youngest leaf, or old leaf all significantly earlier and increased flowering compared to the SD10 treatment. Overall: (1) Generally, vegetative growth was more sensitive to photoperiod rather than lighting position, while, during the same photoperiod, the promotion of growth was stronger when the light position of S-BL4 or NI-BL4 was applied to the shoot tip or the youngest leaf. (2) The photoperiodic flowering of these short-day plants (SDPs) comprehensively responded to the photoperiod combined with blue light positioning. Peculiarly, when they were exposed to the LD13 flowering-inhibited environments, the S-BL4 or NI-BL4 shed onto the leaves, especially the youngest leaves, significantly affecting flowering.
Collapse
Affiliation(s)
- Jingli Yang
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jinnan Song
- Weifang Key Laboratory for Stress Resistance and High Yield Regulation of Horticultural Crops, Shandong Provincial University Laboratory for Protected Horticulture, College of Jia Sixie Agriculture, Weifang University of Science and Technology, Shouguang 262700, China or (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Yoo Gyeong Park
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea;
- National Institute of Biological Resources (NIBR), 1008-11, Sangnam-ro, Sangnam-myeon, Miryang-si 50452, Republic of Korea
| | - Byoung Ryong Jeong
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Li H, Liao C, Yang H, Kong L, Liu S, Wei J, Chen H, Zhao X, Liu B, Kong F, Chen L. AP1c and SOC1 Form a Regulatory Feedback Loop to Regulate Flowering Time in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370759 DOI: 10.1111/pce.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Flowering time is a key agronomic trait that directly affects soybean yield. Both APETALA1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) regulate flowering time in soybean, but their genetic and regulatory relationships have not been clarified. Here, we report that AP1c physically interacted with two SOC1 proteins, SOC1a and SOC1b, and that these SOC1s upregulated the expression of AP1c, promoting flowering. Moreover, AP1c repressed the expression of the SOC1s by directly binding to their promoters, thus preventing plants from flowering too early. These findings indicate that AP1c and SOC1s form a regulatory feedback loop that regulates flowering time. Importantly, we identified an exceptional allele, AP1cG, that was selected for during soybean domestication and promotes the early-flowering phenotype in cultivated soybean. Collectively, our work identifies a previously unknown allelic combination potentially useful for both classical and molecular soybean breeding.
Collapse
Affiliation(s)
- Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chunmei Liao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin Wei
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haili Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
6
|
Takagi H, Ito S, Shim JS, Kubota A, Hempton AK, Lee N, Suzuki T, Yang C, Nolan CT, Bubb KL, Alexandre CM, Kurihara D, Sato Y, Tada Y, Kiba T, Pruneda-Paz JL, Queitsch C, Cuperus JT, Imaizumi T. A florigen-expressing subpopulation of companion cells expresses other small proteins and reveals a nitrogen-sensitive FT repressor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608367. [PMID: 39229231 PMCID: PMC11370445 DOI: 10.1101/2024.08.17.608367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The precise onset of flowering is crucial to ensure successful plant reproduction. The gene FLOWERING LOCUS T (FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes, FT is induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of the FT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression in FT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with high FT expression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters of FT and the genes co-expressed with FT in the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogous NIGT1.2 and NIGT1.4 repressed FT expression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependent FT repressors. Taken together, our results demonstrate that major FT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Jae Sung Shim
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Akane Kubota
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, 52828, South Korea
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Chansie Yang
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Christine T. Nolan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Cristina M. Alexandre
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Jose L. Pruneda-Paz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
7
|
Zhao JX, Wang S, Wen J, Zhou SZ, Jiang XD, Zhong MC, Liu J, Dong X, Deng Y, Hu JY, Li DZ. Evolution of FLOWERING LOCUS T-like genes in angiosperms: a core Lamiales-specific diversification. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3946-3958. [PMID: 38642399 DOI: 10.1093/jxb/erae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Plant life history is determined by two transitions, germination and flowering time, in which the phosphatidylethanolamine-binding proteins (PEBPs) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) play key regulatory roles. Compared with the highly conserved TFL1-like genes, FT-like genes vary significantly in copy numbers in gymnosperms, and monocots within the angiosperms, while sporadic duplications can be observed in eudicots. Here, via a systematic analysis of the PEBPs in angiosperms with a special focus on 12 representative species featuring high-quality genomes in the order Lamiales, we identified a successive lineage-specific but systematic expansion of FT-like genes in the families of core Lamiales. The first expansion event generated FT1-like genes mainly via a core Lamiales-specific whole-genome duplication (cL-WGD), while a likely random duplication produced the FT2-like genes in the lineages containing Scrophulariaceae and the rest of the core Lamiales. Both FT1- and FT2-like genes were further amplified tandemly in some families. These expanded FT-like genes featured highly diverged expression patterns and structural variation, indicating functional diversification. Intriguingly, some core Lamiales contained the relict MOTHER OF FT AND TFL1 like 2 (MFT2) that probably expanded in the common ancestor of angiosperms. Our data showcase the highly dynamic lineage-specific expansion of the FT-like genes, and thus provide important and fresh evolutionary insights into the gene regulatory network underpinning flowering time diversity in Lamiales and, more generally, in angiosperms.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shu Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jing Wen
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Dong Jiang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mi-Cai Zhong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jie Liu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Dong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunfei Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou 510650, China
| | - Jin-Yong Hu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Machado R, Muchut SE, Dezar C, Reutemann AG, Alesso CA, Günthardt MM, Vegetti AC, Vogel J, Uberti Manassero NG. BdRCN4, a Brachypodium distachyon TFL1 homologue, is involved in regulation of apical meristem fate. PLANT MOLECULAR BIOLOGY 2024; 114:81. [PMID: 38940986 DOI: 10.1007/s11103-024-01467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.
Collapse
Affiliation(s)
- Rodrigo Machado
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Concordia, Santa Fe, Argentina
| | - Sebastián Elias Muchut
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | - Carlos Dezar
- ICiAgro Litoral, FCA, UNL-CONICET, Esperanza, Santa Fe, 3080, Argentina
| | | | | | - María Margarita Günthardt
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina
| | | | - John Vogel
- DOE Joint Genome Institute, Walnut Creek, CA, 94595, USA
| | - Nora G Uberti Manassero
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, 3080, Argentina.
| |
Collapse
|
9
|
Fan L, Zhu Z, Lin X, Shen X, Yang T, Wang H, Zhou X. Comparative Genomic Analysis of PEBP Genes in Cucurbits Explores the Interactors of Cucumber CsPEBPs Related to Flowering Time. Int J Mol Sci 2024; 25:3815. [PMID: 38612626 PMCID: PMC11011414 DOI: 10.3390/ijms25073815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (L.F.); (Z.Z.); (X.L.); (X.S.); (T.Y.); (H.W.)
| |
Collapse
|
10
|
Kaur H, Manchanda P, Sidhu GS, Chhuneja P. Genome-wide identification and characterization of flowering genes in Citrus sinensis (L.) Osbeck: a comparison among C. Medica L., C. Reticulata Blanco, C. Grandis (L.) Osbeck and C. Clementina. BMC Genom Data 2024; 25:20. [PMID: 38378481 PMCID: PMC10880302 DOI: 10.1186/s12863-024-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Flowering plays an important role in completing the reproductive cycle of plants and obtaining next generation of plants. In case of citrus, it may take more than a year to achieve progeny. Therefore, in order to fasten the breeding processes, the juvenility period needs to be reduced. The juvenility in plants is regulated by set of various flowering genes. The citrus fruit and leaves possess various medicinal properties and are subjected to intensive breeding programs to produce hybrids with improved quality traits. In order to break juvenility in Citrus, it is important to study the role of flowering genes. The present study involved identification of genes regulating flowering in Citrus sinensis L. Osbeck via homology based approach. The structural and functional characterization of these genes would help in targeting genome editing techniques to induce mutations in these genes for producing desirable results. RESULTS A total of 43 genes were identified which were located on all the 9 chromosomes of citrus. The in-silico analysis was performed to determine the genetic structure, conserved motifs, cis-regulatory elements (CREs) and phylogenetic relationship of the genes. A total of 10 CREs responsible for flowering were detected in 33 genes and 8 conserved motifs were identified in all the genes. The protein structure, protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to study the functioning of these genes which revealed the involvement of flowering proteins in circadian rhythm pathways. The gene ontology (GO) and gene function analysis was performed to functionally annotate the genes. The structure of the genes and proteins were also compared among other Citrus species to study the evolutionary relationship among them. The expression study revealed the expression of flowering genes in floral buds and ovaries. The qRT-PCR analysis revealed that the flowering genes were highly expressed in bud stage, fully grown flower and early stage of fruit development. CONCLUSIONS The findings suggested that the flowering genes were highly conserved in citrus species. The qRT-PCR analysis revealed the tissue specific expression of flowering genes (CsFT, CsCO, CsSOC, CsAP, CsSEP and CsLFY) which would help in easy detection and targeting of genes through various forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Harleen Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India.
| | - Gurupkar S Sidhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141001, Punjab, India
| |
Collapse
|
11
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
12
|
Yang J, Ning C, Liu Z, Zheng C, Mao Y, Wu Q, Wang D, Liu M, Zhou S, Yang L, He L, Liu Y, He C, Chen J, Liu J. Genome-Wide Characterization of PEBP Gene Family and Functional Analysis of TERMINAL FLOWER 1 Homologs in Macadamia integrifolia. PLANTS (BASEL, SWITZERLAND) 2023; 12:2692. [PMID: 37514306 PMCID: PMC10385423 DOI: 10.3390/plants12142692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Edible Macadamia is one of the most important commercial nut trees cultivated in many countries, but its large tree size and long juvenile period pose barriers to commercial cultivation. The short domestication period and well-annotated genome of Macadamia integrifolia create great opportunities to breed commercial varieties with superior traits. Recent studies have shown that members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in regulating plant architecture and flowering time in various plants. In this study, thirteen members of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies: MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower phenotypes in the tfl1-14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in controlling the inflorescence architecture and flowering time. This study will provide insight into the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved traits in plant architecture and flowering time.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Conghui Ning
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Ziyan Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mingli Liu
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Chengzhong He
- School of Life Sciences, Southwest Forestry University, Kunming 650224, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Jinghong 666100, China
| |
Collapse
|
13
|
Ahsan MU, Barbier F, Hayward A, Powell R, Hofman H, Parfitt SC, Wilkie J, Beveridge CA, Mitter N. Molecular Cues for Phenological Events in the Flowering Cycle in Avocado. PLANTS (BASEL, SWITZERLAND) 2023; 12:2304. [PMID: 37375929 DOI: 10.3390/plants12122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Reproductively mature horticultural trees undergo an annual flowering cycle that repeats each year of their reproductive life. This annual flowering cycle is critical for horticultural tree productivity. However, the molecular events underlying the regulation of flowering in tropical tree crops such as avocado are not fully understood or documented. In this study, we investigated the potential molecular cues regulating the yearly flowering cycle in avocado for two consecutive crop cycles. Homologues of flowering-related genes were identified and assessed for their expression profiles in various tissues throughout the year. Avocado homologues of known floral genes FT, AP1, LFY, FUL, SPL9, CO and SEP2/AGL4 were upregulated at the typical time of floral induction for avocado trees growing in Queensland, Australia. We suggest these are potential candidate markers for floral initiation in these crops. In addition, DAM and DRM1, which are associated with endodormancy, were downregulated at the time of floral bud break. In this study, a positive correlation between CO activation and FT in avocado leaves to regulate flowering was not seen. Furthermore, the SOC1-SPL4 model described in annual plants appears to be conserved in avocado. Lastly, no correlation of juvenility-related miRNAs miR156, miR172 with any phenological event was observed.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosanna Powell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen Hofman
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - Siegrid Carola Parfitt
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | - John Wilkie
- Department of Agriculture and Fisheries, Queensland Government, Bundaberg, QLD 4670, Australia
| | | | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Li Y, Xiao L, Zhao Z, Zhao H, Du D. Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L. BMC Genom Data 2023; 24:27. [PMID: 37138210 PMCID: PMC10155459 DOI: 10.1186/s12863-023-01127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND With the release of genomic data for B.rapa, B.oleracea, and B.napus, research on the genetic and molecular functions of Brassica spp. has entered a new stage. PEBP genes in plants play an important role in the transition to flowering as well as seed development and germination. Molecular evolutionary and functional analyses of the PEBP gene family in B.napus based on molecular biology methods can provide a theoretical basis for subsequent investigations of related regulators. RESULTS In this paper, we identified a total of 29 PEBP genes from B.napus that were located on 14 chromosomes and 3 random locations. Most members contained 4 exons and 3 introns; motif 1 and motif 2 were the characteristic motifs of PEBP members. On the basis of intraspecific and interspecific collinearity analyses, it is speculated that fragment replication and genomic replication are the main drivers of for the amplification and evolution of the PEBP gene in the B.napus genome. The results of promoter cis-elements prediction suggest that BnPEBP family genes are inducible promoters, which may directly or indirectly participate in multiple regulatory pathways of plant growth cycle. Furthermore, the tissue-specific expression results show that the expression levels of BnPEBP family genes in different tissues were quite different, but the gene expression organization and patterns of the same subgroup were basically the same. qRT‒PCR revealed certain spatiotemporal patterns in the expression of the PEBP subgroups in roots, stems, leaves, buds, and siliques, was tissue-specific, and related to function. CONCLUSIONS A systematic comparative analysis of the B.napus PEBP gene family was carried out at here. The results of gene identification, phylogenetic tree construction, structural analysis, gene duplication analysis, prediction of promoter cis-elements and interacting proteins, and expression analysis provide a reference for exploring the molecular mechanisms of BnPEBP family genes in future research.
Collapse
Affiliation(s)
- Yanling Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Lu Xiao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Zhi Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Hongping Zhao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China
| | - Dezhi Du
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, China.
- The Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Xining, 810016, China.
- Key Laboratory of Spring Rapeseed Genetic Improvement of Qinghai Province, Xining, 810016, China.
- Qinghai Spring Rape Engineering Research Center, Xining, 810016, China.
- Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Xining, 810016, China.
| |
Collapse
|
15
|
Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Lian T, Ma Q, Nian H, Ge L. MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. THE NEW PHYTOLOGIST 2023. [PMID: 36740575 DOI: 10.1111/nph.18792] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Soybean is a major crop that produces valuable seed oil and protein for global consumption. Seed oil and protein are regulated by complex quantitative trait loci (QTLs) and have undergone intensive selections during the domestication of soybean. It is essential to identify the major genetic components and understand their mechanism behind seed oil and protein in soybean. We report that MOTHER-OF-FT-AND-TFL1 (GmMFT) is the gene of a classical QTL that has been reported to regulate seed oil and protein content in many studies. Mutation of MFT decreased seeds oil content and weight in both Arabidopsis and soybean, whereas increased expression of GmMFT enhanced seeds oil content and weight. Haplotype analysis showed that GmMFT has undergone selection, which resulted in the extended haplotype homozygosity in the cultivated soybean and the enriching of the oil-favorable allele in modern soybean cultivars. This work unraveled the GmMFT-mediated mechanism regulating seed oil and protein content and seed weight, and revealed a previously unknown function of MFT that provides new insights into targeted soybean improvement and breeding.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiwang Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuan Yang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianghua Zhou
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Liangfa Ge
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
16
|
Liu H, Liu X, Chang X, Chen F, Lin Z, Zhang L. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots. FRONTIERS IN PLANT SCIENCE 2023; 13:1039500. [PMID: 36684773 PMCID: PMC9847362 DOI: 10.3389/fpls.2022.1039500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
FLOWERING LOCUS T (FT) are well-known key genes for initiating flowering in plants. Delineating the evolutionary history and functional diversity of FT genes is important for understanding the diversification of flowering time and how plants adapt to the changing surroundings. We performed a comprehensive phylogenetic analysis of FT genes in 47 sequenced flowering plants and the 1,000 Plant Transcriptomes (1KP) database with a focus on monocots, especially cereals. We revealed the evolutionary history of FT genes. The FT genes in monocots can be divided into three clades (I, II, and III), whereas only one monophyletic group was detected in early angiosperms, magnoliids, and eudicots. Multiple rounds of whole-genome duplications (WGD) events followed by gene retention contributed to the expansion and variation of FT genes in monocots. Amino acid sites in the clade II and III genes were preferentially under high positive selection, and some sites located in vital domain regions are known to change functions when mutated. Clade II and clade III genes exhibited high variability in important regions and functional divergence compared with clade I genes; thus, clade I is more conserved than clade II and III. Genes in clade I displayed higher expression levels in studied organs and tissues than the clade II and III genes. The co-expression modules showed that some of the FT genes might have experienced neofunctionalization and subfunctionalization, such as the acquisition of environmental resistance. Overall, FT genes in monocots might form three clades by the ancient gene duplication, and each clade was subsequently subjected to different selection pressures and amino acid substitutions, which eventually led to different expression patterns and functional diversification. Our study provides a global picture of FT genes' evolution in monocots, paving a road for investigating FT genes' function in future.
Collapse
Affiliation(s)
- Hongling Liu
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xing Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojun Chang
- Laboratory of Medicinal Plant Biotechnology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St Louis, MO, United States
| | - Liangsheng Zhang
- Hainan Institute of Zhejiang University, Sanya, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Herath D, Voogd C, Mayo‐Smith M, Yang B, Allan AC, Putterill J, Varkonyi‐Gasic E. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2064-2076. [PMID: 35796629 PMCID: PMC9616528 DOI: 10.1111/pbi.13888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 06/11/2023]
Abstract
Phosphatidylethanolamine-binding protein (PEBP) genes regulate flowering and architecture in many plant species. Here, we study kiwifruit (Actinidia chinensis, Ac) PEBP genes with homology to BROTHER OF FT AND TFL1 (BFT). CRISPR-Cas9 was used to target AcBFT genes in wild-type and fast-flowering kiwifruit backgrounds. The editing construct was designed to preferentially target AcBFT2, whose expression is elevated in dormant buds. Acbft lines displayed an evergrowing phenotype and increased branching, while control plants established winter dormancy. The evergrowing phenotype, encompassing delayed budset and advanced budbreak after defoliation, was identified in multiple independent lines with edits in both alleles of AcBFT2. RNA-seq analyses conducted using buds from gene-edited and control lines indicated that Acbft evergrowing plants had a transcriptome similar to that of actively growing wild-type plants, rather than dormant controls. Mutations in both alleles of AcBFT2 did not promote flowering in wild-type or affect flowering time, morphology and fertility in fast-flowering transgenic kiwifruit. In summary, editing of AcBFT2 has the potential to reduce plant dormancy with no adverse effect on flowering, giving rise to cultivars better suited for a changing climate.
Collapse
Affiliation(s)
- Dinum Herath
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| | | | - Bo Yang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Erika Varkonyi‐Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt AlbertAucklandNew Zealand
| |
Collapse
|
18
|
Zhong C, Li Z, Cheng Y, Zhang H, Liu Y, Wang X, Jiang C, Zhao X, Zhao S, Wang J, Zhang H, Liu X, Yu H. Comparative Genomic and Expression Analysis Insight into Evolutionary Characteristics of PEBP Genes in Cultivated Peanuts and Their Roles in Floral Induction. Int J Mol Sci 2022; 23:ijms232012429. [PMID: 36293287 PMCID: PMC9604132 DOI: 10.3390/ijms232012429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.
Collapse
|
19
|
Almeida de Jesus D, Batista DM, Monteiro EF, Salzman S, Carvalho LM, Santana K, André T. Structural changes and adaptative evolutionary constraints in FLOWERING LOCUS T and TERMINAL FLOWER1-like genes of flowering plants. Front Genet 2022; 13:954015. [PMID: 36246591 PMCID: PMC9556947 DOI: 10.3389/fgene.2022.954015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of flowering is a crucial event in the evolutionary history of angiosperms. The production of flowers is regulated through the integration of different environmental and endogenous stimuli, many of which involve the activation of different genes in a hierarchical and complex signaling network. The FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1) gene family is known to regulate important aspects of flowering in plants. To better understand the pivotal events that changed FT and TFL1 functions during the evolution of angiosperms, we reconstructed the ancestral sequences of FT/TFL1-like genes and predicted protein structures through in silico modeling to identify determinant sites that evolved in both proteins and allowed the adaptative diversification in the flowering phenology and developmental processes. In addition, we demonstrate that the occurrence of destabilizing mutations in residues located at the phosphatidylcholine binding sites of FT structure are under positive selection, and some residues of 4th exon are under negative selection, which is compensated by the occurrence of stabilizing mutations in key regions and the P-loop to maintain the overall protein stability. Our results shed light on the evolutionary history of key genes involved in the diversification of angiosperms.
Collapse
Affiliation(s)
- Deivid Almeida de Jesus
- Institute of Biology Genetics Graduate Program, Federal University of Rio de Janeiro Rio de Janeiro, Rio de Janeiro, Brazil
| | - Darlisson Mesquista Batista
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará Santarém, Pará, Santarém, Brazil
| | - Elton Figueira Monteiro
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará Santarém, Pará, Santarém, Brazil
| | - Shayla Salzman
- School of Integrative Plant Sciences. Section of Plant Biology. Cornell University Ithaca, New York, NY, United States
| | - Lucas Miguel Carvalho
- Center for Computing in Engineering and Sciences, State University of Campinas. Campinas, São Paulo, Brazil
| | - Kauê Santana
- Institute of Biodiversity, Federal University of Western Pará Santarém Pará, Santarém, Brazil
- *Correspondence: Kauê Santana, ; Thiago André,
| | - Thiago André
- Botany Department, University of Brasília, Brasília, Brazil
- *Correspondence: Kauê Santana, ; Thiago André,
| |
Collapse
|
20
|
Yang J, Song J, Jeong BR. The flowering of SDP chrysanthemum in response to intensity of supplemental or night-interruptional blue light is modulated by both photosynthetic carbon assimilation and photoreceptor-mediated regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:981143. [PMID: 36186037 PMCID: PMC9523439 DOI: 10.3389/fpls.2022.981143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The photoreceptor-mediated photoperiodic sensitivity determines the obligate short-day flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) when the night length is longer than a critical minimum, otherwise, flowering is effectively inhibited. The reversal of this inhibition by subsequent exposure to a short period of supplemental (S) or night-interruptional (NI) blue (B) light (S-B; NI-B) indicates the involvement of B light-received photoreceptors in the flowering response. Flowering is mainly powered by sugars produced through photosynthetic carbon assimilation. Thus, the light intensity can be involved in flowering regulation by affecting photosynthesis. Here, it is elucidated that the intensity of S-B or NI-B in photoperiodic flowering regulation of chrysanthemums by applying 4-h of S-B or NI-B with either 0, 10, 20, 30, or 40 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10-h short-day (SD10) [SD10 + 4B or + NI-4B (0, 10, 20, 30, or 40)] or 13-h long-day (LD13) condition [LD13 + 4B or + NI-4B (0, 10, 20, 30, or 40)] provided by 300 ± 5 μmol·m-2·s-1 PPFD white (W) LEDs. After 60 days of photoperiodic light treatments other than the LD13 and LD13 + NI-4B (40), flowering with varying degrees was observed, although the SD10 gave the earliest flowering. And the LD13 + 4B (30) produced the greatest number of flowers. The flowering pattern in response to the intensity of S-B or NI-B was consistent as it was gradually promoted from 10 to 30 μmol m-2 s-1 PPFD and inhibited by 40B regardless of the photoperiod. In SD conditions, the same intensity of S-B and NI-B did not significantly affect flowering, while differential flowering inhibition was observed with any intensity of NI-B in LDs. Furthermore, the 30 μmol·m-2·s-1 PPFD of S-B or NI-B up-regulated the expression of floral meristem identity or florigen genes, as well as the chlorophyll content, photosynthetic efficiency, and carbohydrate accumulation. The 40B also promoted these physiological traits but led to the unbalanced expression of florigen or anti-florigen genes. Overall, the photoperiodic flowering in response to the intensity of S-B or NI-B of the SDP chrysanthemum suggests the co-regulation of photosynthetic carbon assimilation and differential photoreceptor-mediated control.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
21
|
Gafni I, Rai AC, Halon E, Zviran T, Sisai I, Samach A, Irihimovitch V. Expression Profiling of Four Mango FT/TFL1-Encoding Genes under Different Fruit Load Conditions, and Their Involvement in Flowering Regulation. PLANTS 2022; 11:plants11182409. [PMID: 36145810 PMCID: PMC9506463 DOI: 10.3390/plants11182409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Plant flowering is antagonistically modulated by similar FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) proteins. In mango (Mangifera indica L.), flowering is induced by cold temperatures, unless the tree is juvenile or the adult tree had a high fruit load (HFL) in the summer. Here, we studied the effects of juvenility and fruit load on the expression of four MiFT/TFL1 genes cloned from the mango ‘Shelly’ cultivar. Ectopic expression of MiFT1 in Arabidopsis resulted in early flowering, whereas over-expression of MiFT2 and the two cloned MiTFL1 genes repressed flowering. Moreover, juvenility was positively correlated with higher transcript levels of MiFT2 and both MiTFL1s. In trees with a low fruit load, leaf MiFT1 expression increased in winter, whereas HFL delayed its upregulation. MiFT2 expression was upregulated in both leaves and buds under both fruit load conditions. Downregulation of both MITFL1s in buds was associated with a decrease in regional temperatures under both conditions; nevertheless, HFL delayed the decrease in their accumulation. Our results suggest that cold temperature has opposite effects on the expression of MiFT1 and the MiTFL1s, thereby inducing flowering, whereas HFL represses flowering by both suppressing MiFT1 upregulation and delaying MiTFL1s downregulation. The apparent flowering-inhibitory functions of MiFT2 are discussed.
Collapse
Affiliation(s)
- Itamar Gafni
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avinash Chandra Rai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Eyal Halon
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Tali Zviran
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Isaac Sisai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Vered Irihimovitch
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7528809, Israel
- Correspondence: ; Tel.: +972-3-9683965; Fax: +972-3-9669583
| |
Collapse
|
22
|
Wang S, Yang Y, Chen F, Jiang J. Functional diversification and molecular mechanisms of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in horticultural plants. MOLECULAR HORTICULTURE 2022; 2:19. [PMID: 37789396 PMCID: PMC10515248 DOI: 10.1186/s43897-022-00039-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/29/2022] [Indexed: 10/05/2023]
Abstract
Flowering is an important process in higher plants and is regulated by a variety of factors, including light, temperature, and phytohormones. Flowering restriction has a considerable impact on the commodity value and production cost of many horticultural crops. In Arabidopsis, the FT/TFL1 gene family has been shown to integrate signals from various flowering pathways and to play a key role in the transition from flower production to seed development. Studies in several plant species of the FT/TFL1 gene family have revealed it harbors functional diversity in the regulation of flowering. Here, we review the functional evolution of the FT/TFL1 gene family in horticulture plants and its unique regulatory mechanisms; in addition, the FT/TFL1 family of genes as an important potential breeding target is explored.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiman Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, Dornelas MC. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. PLANT REPRODUCTION 2022; 35:105-126. [PMID: 34748087 DOI: 10.1007/s00497-021-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
24
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
25
|
Patil HB, Chaurasia AK, Kumar S, Krishna B, Subramaniam VR, Sane AP, Sane PV. Synchronized flowering in pomegranate, following pruning, is associated with expression of the FLOWERING LOCUS T homolog, PgFT1. PHYSIOLOGIA PLANTARUM 2022; 174:e13620. [PMID: 34989003 DOI: 10.1111/ppl.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Flowering in angiosperms is a crucial event that marks the transition from the vegetative to the reproductive phase. In many perennials, pruning is an important horticultural practice that induces synchronized and profuse flowering. In pomegranate, vegetative growth immediately after pruning is associated with activation of PgCENa, a flowering suppressor of the phosphatidyl ethanolamine binding protein (PEBP) family, while a reduction is associated with synchronous flowering. We show that flowering in pomegranate is activated by expression of another PEBP family member, PgFT1, a homolog of the FLOWERING LOCUS T (FT) gene that promotes flowering. PgFT1 shows a rapid reduction in expression during the extensive vegetative growth immediately after pruning but shows robust expression during synchronous flowering post-pruning, in flower-bearing shoots but not in branches that do not bear flowers. A continuous low-level flowering in the absence of pruning is associated with continuous but reduced expression of PgFT1. Flowering by heterologous expression of PgFT1 in Arabidopsis is affected by a single amino acid change in the C-terminal region of PgFT1, which upon correction, promotes flowering in Arabidopsis. Our study provides insights into the molecular mechanisms by which pruning affects flowering pathways in tropical perennial fruit plants such as pomegranate.
Collapse
Affiliation(s)
- Hemant Bhagwan Patil
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Akhilesh Kumar Chaurasia
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Sandeep Kumar
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| | | | | | - Prafullachandra Vishnu Sane
- Plant Molecular Biology Lab, Jain R&D Laboratory, Jain Irrigation Systems Limited, Agri Park, Jalgaon, India
| |
Collapse
|
26
|
Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol 2021; 19:181. [PMID: 34465318 PMCID: PMC8408984 DOI: 10.1186/s12915-021-01128-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background In flowering plants, precise timing of the floral transition is crucial to maximize chances of reproductive success, and as such, this process has been intensively studied. FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have been identified as closely related eukaryotic phosphatidylethanolamine-binding proteins (‘EuPEBPs’) that integrate multiple environmental stimuli, and act antagonistically to determine the optimal timing of the floral transition. Extensive research has demonstrated that FT acts similar to hormonal signals, being transported in the phloem from its primary site of expression in leaves to its primary site of action in the shoot meristem; TFL1 also appears to act as a mobile signal. Recent work implicates FT, TFL1, and the other members of the EuPEBP family, in the control of other important processes, suggesting that the EuPEBP family may be key general regulators of developmental transitions in flowering plants. In eudicots, there are a small number of EuPEBP proteins, but in monocots, and particularly grasses, there has been a large, but uncharacterized expansion of EuPEBP copy number, with unknown consequences for the EuPEBP function. Results To systematically characterize the evolution of EuPEBP proteins in flowering plants, and in land plants more generally, we performed a high-resolution phylogenetic analysis of 701 PEBP sequences from 208 species. We refine previous models of EuPEBP evolution in early land plants, demonstrating the algal origin of the family, and pin-pointing the origin of the FT/TFL1 clade at the base of monilophytes. We demonstrate how a core set of genes (MFT1, MFT2, FT, and TCB) at the base of flowering plants has undergone differential evolution in the major angiosperm lineages. This includes the radical expansion of the FT family in monocots into 5 core lineages, further re-duplicated in the grass family to 12 conserved clades. Conclusions We show that many grass FT proteins are strongly divergent from other FTs and are likely neo-functional regulators of development. Our analysis shows that monocots and eudicots have strongly divergent patterns of EuPEBP evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01128-8.
Collapse
|
27
|
Abstract
Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ana M Torres
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain.
| |
Collapse
|
28
|
Aguilar-Benitez D, Casimiro-Soriguer I, Maalouf F, Torres AM. Linkage mapping and QTL analysis of flowering time in faba bean. Sci Rep 2021; 11:13716. [PMID: 34215783 PMCID: PMC8253854 DOI: 10.1038/s41598-021-92680-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Flowering time marks the transition from vegetative to reproductive growth and is key for optimal yield in any crop. The molecular mechanisms controlling this trait have been extensively studied in model plants such as Arabidopsis thaliana and rice. While knowledge on the molecular regulation of this trait is rapidly increasing in sequenced galegoid legume crops, understanding in faba bean remains limited. Here we exploited translational genomics from model legume crops to identify and fine map QTLs linked to flowering time in faba bean. Among the 31 candidate genes relevant for flowering control in A. thaliana and Cicer arietinum assayed, 25 could be mapped in a segregating faba bean RIL population. While most of the genes showed conserved synteny among related legume species, none of them co-localized with the 9 significant QTL regions identified. The FT gene, previously implicated in the control of flowering time in numerous members of the temperate legume clade, mapped close to the most relevant stable and conserved QTL in chromosome V. Interestingly, QTL analysis suggests an important role of epigenetic modifications in faba bean flowering control. The new QTLs and candidate genes assayed here provide a robust framework for further genetic studies and will contribute to the elucidation of the molecular mechanisms controlling this trait.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Fouad Maalouf
- International Center for Agricultural Research in the Dry Areas (ICARDA), Beirut, Lebanon
| | - Ana M Torres
- Área de Genómica y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain.
| |
Collapse
|
29
|
Yan X, Cao QZ, He HB, Wang LJ, Jia GX. Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:250-260. [PMID: 33866146 DOI: 10.1016/j.plaphy.2021.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 05/22/2023]
Abstract
Lilium is an important commercial flowering species, and there are many varieties and more than 100 species of wild Lilium. Lilium × formolongi is usually propagated from seedlings, and the flowering of these plants is driven mainly by the photoperiodic pathway. Most of the other lily plants are propagated via bulblets and need to be vernalized; these plants can be simply divided into pretransplantation types and posttransplantation types according to the time at which the floral transition occurs. We identified three Lilium FLOWERING LOCUS T (LFT) family members in 7 Lilium varieties, and for each gene, the coding sequence of the different varieties was identical. Among these genes, the LFT1 gene of Lilium was most homologous to the AtFT gene, which promotes flowering in Arabidopsis. We analyzed the expression patterns of LFT genes in Lilium × formolongi seedlings and in different Lilium varieties, and the results showed that LFT1 and LFT3 may promote floral induction. Compared with LFT3, LFT1 may have a greater effect on floral induction in Lilium, which is photoperiod sensitive, while LFT3 may play a more important role in the floral transition of lily plants, which have a high requirement for vernalization. LFT2 may be involved in the differentiation of bulblets, which was verified by tissue culture experiments, and LFT1 may have other functions involved in promoting bulblet growth. The functions of LFT genes were verified by the use of transgenic Arabidopsis thaliana plants, which showed that both the LFT1 and LFT3 genes can promote early flowering in Arabidopsis. Compared with LFT3, LFT1 promoted flowering more obviously, and thus, this gene could be an important promoter of floral induction in Lilium.
Collapse
Affiliation(s)
- Xiao Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qin-Zheng Cao
- School of Agroforestry & Medicine, The Open University of China, Beijing, 100083, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lian-Juan Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
30
|
Yue L, Li X, Fang C, Chen L, Yang H, Yang J, Chen Z, Nan H, Chen L, Zhang Y, Li H, Hou X, Dong Z, Weller JL, Abe J, Liu B, Kong F. FT5a interferes with the Dt1-AP1 feedback loop to control flowering time and shoot determinacy in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1004-1020. [PMID: 33458938 DOI: 10.1111/jipb.13070] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 05/29/2023]
Abstract
Flowering time and stem growth habit determine inflorescence architecture in soybean, which in turn influences seed yield. Dt1, a homolog of Arabidopsis TERMINAL FLOWER 1 (TFL1), is a major controller of stem growth habit, but its underlying molecular mechanisms remain unclear. Here, we demonstrate that Dt1 affects node number and plant height, as well as flowering time, in soybean under long-day conditions. The bZIP transcription factor FDc1 physically interacts with Dt1, and the FDc1-Dt1 complex directly represses the expression of APETALA1 (AP1). We propose that FT5a inhibits Dt1 activity via a competitive interaction with FDc1 and directly upregulates AP1. Moreover, AP1 represses Dt1 expression by directly binding to the Dt1 promoter, suggesting that AP1 and Dt1 form a suppressive regulatory feedback loop to determine the fate of the shoot apical meristem. These findings provide novel insights into the roles of Dt1 and FT5a in controlling the stem growth habit and flowering time in soybean, which determine the adaptability and grain yield of this important crop.
Collapse
Affiliation(s)
- Lin Yue
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoming Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chao Fang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Liyu Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Hui Yang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonghui Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyang Nan
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Linnan Chen
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Yuhang Zhang
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Hou
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Zhicheng Dong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Baohui Liu
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| | - Fanjiang Kong
- School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 1500000, China
| |
Collapse
|
31
|
Transcriptomic Analysis of Radish ( Raphanus sativus L.) Spontaneous Tumor. PLANTS 2021; 10:plants10050919. [PMID: 34063717 PMCID: PMC8147785 DOI: 10.3390/plants10050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022]
Abstract
Spontaneous tumors can develop in different organs of various plant species without any pathogen infection and, as a rule, appear in plants with a certain genotype: Mutants, interspecific hybrids, etc. In particular, among the inbred lines of radish (Raphanus sativus L.), lines that form spontaneous tumors on the taproot during the flowering period were obtained many years ago. In this work, we analyzed the differential gene expression in the spontaneous tumors of radish versus the lateral roots using the RNA-seq method. Data were obtained indicating the increased expression of genes associated with cell division and growth (especially genes that regulate G2-M transition and cytokinesis) in the spontaneous tumor. Among genes downregulated in the tumor tissue, genes participating in the response to stress and wounding, mainly involved in the biosynthesis of jasmonic acid and glucosinolates, were enriched. Our data will help elucidate the mechanisms of spontaneous tumor development in higher plants.
Collapse
|
32
|
Khosa J, Bellinazzo F, Kamenetsky Goldstein R, Macknight R, Immink RGH. PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS: the conductors of dual reproduction in plants with vegetative storage organs. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2845-2856. [PMID: 33606013 DOI: 10.1093/jxb/erab064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 05/18/2023]
Abstract
Geophytes, the plants that form vegetative storage organs, are characterized by a dual reproduction system, in which vegetative and sexual propagation are tightly regulated to ensure fitness in harsh climatic conditions. Recent findings highlight the role of the PEBP (PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN) gene family in geophytes as major players in the molecular cascades underlying both types of reproduction. In this review, we briefly explain the life cycle and reproduction strategies of different geophytes and what is known about the physiological aspects related to these processes. Subsequently, an in-depth overview is provided of the molecular and genetic pathways driving these processes. In the evolution of plants, the PEBP gene family has expanded, followed by neo- and subfunctionalization. Careful characterization revealed that differential expression and differential protein complex formation provide the members of this gene family with unique functions, enabling them to mediate the crosstalk between the two reproductive events in geophytes in response to environmental and endogenous cues. Taking all these studies into account, we propose to regard the PEBPs as conductors of geophyte reproductive development.
Collapse
Affiliation(s)
- Jiffinvir Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Francesca Bellinazzo
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | | | - Richard Macknight
- Department of Biochemistry, University of Otago, 9016 Dunedin, PO Box 56 Dunedin, New Zealand
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
33
|
Pieper R, Tomé F, Pankin A, von Korff M. FLOWERING LOCUS T4 delays flowering and decreases floret fertility in barley. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:107-121. [PMID: 33048122 PMCID: PMC7816854 DOI: 10.1093/jxb/eraa466] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
FLOWERING LOCUS T-like (FT-like) genes control the photoperiodic regulation of flowering in many angiosperm plants. The family of FT-like genes is characterized by extensive gene duplication and subsequent diversification of FT functions which occurred independently in modern angiosperm lineages. In barley, there are 12 known FT-like genes (HvFT), but the function of most of them remains uncharacterized. This study aimed to characterize the role of HvFT4 in flowering time control and development in barley. The overexpression of HvFT4 in the spring cultivar Golden Promise delayed flowering time under long-day conditions. Microscopic dissection of the shoot apical meristem revealed that overexpression of HvFT4 specifically delayed spikelet initiation and reduced the number of spikelet primordia and grains per spike. Furthermore, ectopic overexpression of HvFT4 was associated with floret abortion and with the down-regulation of the barley MADS-box genes VRN-H1, HvBM3, and HvBM8 which promote floral development. This suggests that HvFT4 functions as a repressor of reproductive development in barley. Unraveling the genetic basis of FT-like genes can contribute to the identification of novel breeding targets to modify reproductive development and thereby spike morphology and grain yield.
Collapse
Affiliation(s)
- Rebecca Pieper
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Filipa Tomé
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artem Pankin
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria von Korff
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, ‘SMART Plants for Tomorrow’s Needs’, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
34
|
Chen L, Nan H, Kong L, Yue L, Yang H, Zhao Q, Fang C, Li H, Cheng Q, Lu S, Kong F, Liu B, Dong L. Soybean AP1 homologs control flowering time and plant height. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1868-1879. [PMID: 32619080 DOI: 10.1111/jipb.12988] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 05/07/2023]
Abstract
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss-of-function mutations in all four GmAP1 genes. Under short-day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.
Collapse
Affiliation(s)
- Liyu Chen
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Qingsong Zhao
- The Key Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210000, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 150000, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, the Chinese Academy of Sciences, Harbin, 150000, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
35
|
|
36
|
Sheng X, Zhao Z, Wang J, Yu H, Shen Y, Gu H. Identification of Brassica oleracea orthologs of the PEBP family and their expression patterns in curd development and flowering in cauliflower. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1790418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xiaoguang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| | - Zhenqing Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| | - Jiansheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| | - Huifang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
37
|
An Z, Yin L, Liu Y, Peng M, Shen WH, Dong A. The histone methylation readers MRG1/MRG2 and the histone chaperones NRP1/NRP2 associate in fine-tuning Arabidopsis flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1010-1024. [PMID: 32324922 DOI: 10.1111/tpj.14780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.
Collapse
Affiliation(s)
- Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universitè de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, F-67000, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
38
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
39
|
Sharma N, Singh AK, Singh SK, Mahato AK, Srivastav M, Singh NK. Comparative RNA sequencing based transcriptome profiling of regular bearing and alternate bearing mango (Mangifera indica L.) varieties reveals novel insights into the regulatory mechanisms underlying alternate bearing. Biotechnol Lett 2020; 42:1035-1050. [PMID: 32193655 DOI: 10.1007/s10529-020-02863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study is to understand a comprehensive perspective on the molecular mechanisms underlying alternate bearing in mango (Mangifera indica L.) via transcriptome wide gene expression profiling of both regular and irregular mango varieties. RESULTS Transcriptome data of regular (Neelam) and irregular (Dashehari) mango varieties revealed a total of 42,397 genes. Out of that 12,557 significantly differentially expressed genes were identified, of which 6453 were found to be up-regulated and 6104 were found to be down-regulated genes. Further, many of the common unigenes which were involved in hormonal regulation, metabolic processes, oxidative stress, ion homeostasis, alternate bearing etc. showed significant differences between these two different bearing habit varieties. Pathway analysis showed the highest numbers of differentially expressed genes were related with the metabolic processes (523). A total of 26 alternate bearing genes were identified and principally three genes viz; SPL-like gene (GBVX01015803.1), Rumani GA-20-oxidase-like gene (GBVX01019650.1) and LOC103420644 (GBVX01016070.1) were significantly differentially expressed (at log2FC and pval less than 0.05) while, only single gene (gbGBVW01004309.1) related with flowering was found to be differentially expressed. A total of 15 differentially expressed genes from three important pathways viz; alternate bearing, carbohydrate metabolism and hormone synthesis were validated using Real time PCR and results were at par with in silico analysis. CONCLUSIONS Deciphering the differentially expressed genes (DEGs) and potential candidate genes associated with alternate bearing, hormone and carbohydrate metabolism pathways will help for illustrating the molecular mechanisms underlying the bearing tendencies in mango.
Collapse
Affiliation(s)
- Nimisha Sharma
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anand Kumar Singh
- Indian Council of Agricultural Research, Krishi Anusandhan Bhawan-II, Pusa Campus, New Delhi, 110012, India
| | - Sanjay Kumar Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ajay Kumar Mahato
- ICAR-National Institute for Plant Biotechnology, Pusa campus, New Delhi, 110012, India
| | - Manish Srivastav
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- ICAR-National Institute for Plant Biotechnology, Pusa campus, New Delhi, 110012, India
| |
Collapse
|
40
|
Ospina-Zapata DA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression of Reproductive Transition Regulatory Genes FT/ TFL1 With Emphasis in Selected Neotropical Orchids. FRONTIERS IN PLANT SCIENCE 2020; 11:469. [PMID: 32373149 PMCID: PMC7186885 DOI: 10.3389/fpls.2020.00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 05/23/2023]
Abstract
Flowering is a rigorously timed and morphologically complex shift in plant development. This change depends on endogenous as well as environmental factors. FLOWERING LOCUS T (FT) integrates several cues from different pathways acting as a flowering promoter. Contrary to the role of FT, its paralog TERMINAL FLOWER 1 (TFL1) delays floral transition. Although FT/TFL1 homologs have been studied in model eudicots and monocots, scarce studies are available in non-model monocots like the Orchidaceae. Orchids are very diverse and their floral complexity is translated into a unique aesthetic display, which appeals the ornamental plant market. Nonetheless, orchid trade faces huge limitations due to their long vegetative phase and intractable indoor flowering seasons. Little is known about the genetic basis that control reproductive transition in orchids and, consequently, manipulating their flowering time remains a challenge. In order to contribute to the understanding of the genetic bases that control flowering in orchids we present here the first broad-scale analysis of FT/TFL1-like genes in monocots with an expanded sampling in Orchidaceae. We also compare expression patterns in three selected species and propose hypotheses on the putative role of these genes in their reproductive transition. Our findings show that FT-like genes are by far more diversified than TFL1-like genes in monocots with six subclades in the former and only one in the latter. Within MonFT1, the comparative protein sequences of MonFT1A and MonFT1B suggest that they could have recruited functional roles in delaying flowering, a role typically assigned to TFL1-like proteins. On the other hand, MonFT2 proteins have retained their canonical motifs and roles in promoting flowering transition. This is also shown by their increased expression levels from the shoot apical meristem (SAM) and leaves to inflorescence meristems (IM) and floral buds (FBs). Finally, TFL1-like genes are retained as single copy and often times are lost. Their loss could be linked to the parallel recruitment of MonFT1A and MonFT1B homologs in delaying flowering and maintaining indeterminacy of the inflorescence meristem. These hypotheses lay the foundation for future functional validation in emerging model orchid species and comparative analyses in orchids with high horticultural potential in the market.
Collapse
Affiliation(s)
- Diego A. Ospina-Zapata
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Natalia Pabón-Mora,
| |
Collapse
|
41
|
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, Yang X, Song H, Gao Y, Lin S. EjTFL1 Genes Promote Growth but Inhibit Flower Bud Differentiation in Loquat. FRONTIERS IN PLANT SCIENCE 2020; 11:576. [PMID: 32528491 PMCID: PMC7247538 DOI: 10.3389/fpls.2020.00576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 04/17/2020] [Indexed: 05/14/2023]
Abstract
TERMINAL FLOWER1 (TFL1), a key factor belonging to the phosphatidyl ethanolamine-binding protein (PEBP) family, controls flowering time and inflorescence architecture in some plants. However, the role of TFL1 in loquat remains unknown. In this study, we cloned two TFL1-like genes (EjTFL1-1 and EjTFL1-2) with conserved deduced amino acid sequences from cultivated loquat (Eriobotrya japonica Lindl.). First, we determined that flower bud differentiation occurs at the end of June and early July, and then comprehensively analyzed the temporal and spatial expression patterns of these EjTFL1s during loquat growth and development. We observed the contrasting expression trends for EjTFL1s and EjAP1s (APETALA 1) in shoot apices, and EjTFL1s were mainly expressed in young tissues. In addition, short-day and exogenous GA3 treatments promoted the expression of EjTFL1s, and no flower bud differentiation was observed after these treatments in loquat. Moreover, EjTFL1s were localized to the cytoplasm and nucleus, and both interacted with another flowering transcription factor, EjFD, in the nucleus, and EjTFL1s-EjFD complex significantly repressed the promoter activity of EjAP1-1. The two EjTFL1s were overexpressed in wild-type Arabidopsis thaliana Col-0, which delayed flowering time, promoted stem elongation, increased the number of branches, and also affected flower and silique phenotypes. In conclusion, our results suggested that EjTFL1-1 and EjTFL1-2 do not show the same pattern of expression whereas both are able of inhibiting flower bud differentiation and promoting vegetative growth in loquat by integrating GA3 and photoperiod signals. These findings provide useful clues for analyzing the flowering regulatory network of loquat and provide meaningful references for flowering regulation research of other woody fruit trees.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yunmei Zhu
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ling Zhang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenbing Su
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiangrong Peng
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xianghui Yang
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Huwei Song
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huai’an, China
| | - Yongshun Gao
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Yongshun Gao,
| | - Shunquan Lin
- Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Shunquan Lin,
| |
Collapse
|
42
|
Wang M, Tan Y, Cai C, Zhang B. Identification and expression analysis of phosphatidy ethanolamine-binding protein (PEBP) gene family in cotton. Genomics 2019; 111:1373-1380. [DOI: 10.1016/j.ygeno.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 11/15/2022]
|
43
|
Jin H, Tang X, Xing M, Zhu H, Sui J, Cai C, Li S. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis. BMC PLANT BIOLOGY 2019; 19:484. [PMID: 31706291 PMCID: PMC6842551 DOI: 10.1186/s12870-019-2113-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/31/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in the regulation of plant architecture and flowering time. The functions of PEBP genes have been studied in many plant species. However, little is known about the characteristics and expression profiles of PEBP genes in wild peanut species, Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanuts. RESULTS In this study, genome-wide identification methods were used to identify and characterize a total of 32 peanut PEBP genes, 16 from each of the two wild peanut species, A. duranensis and A. ipaensis. These PEBP genes were classified into 3 groups (TERMINAL FLOWER1-like, FLOWERING LOCUS T-like, and MOTHER OF FT AND TFL1-like) based on their phylogenetic relationships. The gene structures, motifs, and chromosomal locations for each of these PEBPs were analyzed. In addition, 4 interchromosomal duplications and 1 tandem duplication were identified in A. duranensis, and 2 interchromosomal paralogs and 1 tandem paralog were identified in A. ipaensis. Ninety-five different cis-acting elements were identified in the PEBP gene promoter regions and most genes had different numbers and types of cis-elements. As a result, the transcription patterns of these PEBP genes varied in different tissues and under long day and short day conditions during different growth phases, indicating the functional diversities of PEBPs in different tissues and their potential functions in plant photoperiod dependent developmental pathways. Moreover, our analysis revealed that AraduF950M/AraduWY2NX in A. duranensis, and Araip344D4/Araip4V81G in A. ipaensis are good candidates for regulating plant architecture, and that Aradu80YRY, AraduYY72S, and AraduEHZ9Y in A. duranensis and AraipVEP8T in A. ipaensis may be key factors regulating flowering time. CONCLUSION Sixteen PEBP genes were identified and characterized from each of the two diploid wild peanut genomes, A. duranensis and A. ipaensis. Genetic characterization and spatio-temporal expression analysis support their importance in plant growth and development. These findings further our understanding of PEBP gene functions in plant species.
Collapse
Affiliation(s)
- Hanqi Jin
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xuemin Tang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Mengge Xing
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
44
|
Yang Z, Chen L, Kohnen MV, Xiong B, Zhen X, Liao J, Oka Y, Zhu Q, Gu L, Lin C, Liu B. Identification and Characterization of the PEBP Family Genes in Moso Bamboo (Phyllostachys heterocycla). Sci Rep 2019; 9:14998. [PMID: 31628413 PMCID: PMC6802209 DOI: 10.1038/s41598-019-51278-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest.
Collapse
Affiliation(s)
- Zhaohe Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bei Xiong
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xi Zhen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Bobin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
45
|
Lee C, Kim SJ, Jin S, Susila H, Youn G, Nasim Z, Alavilli H, Chung KS, Yoo SJ, Ahn JH. Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:452-464. [PMID: 30943325 DOI: 10.1111/tpj.14335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/26/2019] [Accepted: 03/26/2019] [Indexed: 05/10/2023]
Abstract
During the transition to the reproductive phase, the shoot apical meristem switches from the developmental program that generates vegetative organs to instead produce flowers. In this study, we examined the genetic interactions of FLOWERING LOCUS T (FT)/TWIN SISTER OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) in the determination of inflorescence meristem identity in Arabidopsis thaliana. The ft-10 tsf-1 mutants produced a compact inflorescence surrounded by serrated leaves (hyper-vegetative shoot) at the early bolting stage, as did plants overexpressing TFL1. Plants overexpressing FT or TSF (or both FT and TFL1) generated a terminal flower, as did tfl1-20 mutants. The terminal flower formed in tfl1-20 mutants converted to a hyper-vegetative shoot in ft-10 tsf-1 mutants. Grafting ft-10 tsf-1 or ft-10 tsf-1 tfl1-20 mutant scions to 35S::FT rootstock plants produced a normal inflorescence and a terminal flower in the scion plants, respectively, although both scions showed similar early flowering. Misexpression of FT in the vasculature and in the shoot apex in wild-type plants generated a normal inflorescence and a terminal flower, respectively. By contrast, in ft-10 tsf-1 mutants the vasculature-specific misexpression of FT converted the hyper-vegetative shoot to a normal inflorescence, and in the ft-10 tsf-1 tfl1-20 mutants converted the shoot to a terminal flower. TFL1 levels did not affect the inflorescence morphology caused by FT/TSF overexpression at the early bolting stage. Taking these results together, we proposed that FT/TSF and TFL1 play antagonistic roles in the determination of inflorescence meristem identity, and that FT/TSF are more important than TFL1 in this process.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Soo-Jin Kim
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Hemasundar Alavilli
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Kyung-Sook Chung
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Seong Jeon Yoo
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| |
Collapse
|
46
|
Bi Z, Tahir AT, Huang H, Hua Y. Cloning and functional analysis of five TERMINAL FLOWER 1/CENTRORADIALIS-like genes from Hevea brasiliensis. PHYSIOLOGIA PLANTARUM 2019; 166:612-627. [PMID: 30069883 DOI: 10.1111/ppl.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/14/2023]
Abstract
Five TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes were isolated and characterized from rubber tree (Hevea brasiliensis). All genes, except HbCEN1, were found to have conserved genomic organization, characteristic of the phosphatidyl ethanolamine-binding protein (PEBP) family. Overexpression of all of them delayed flowering and altered flower architecture compared with the wild-type (wt) counterpart. In addition, as premature-flowering of the terminal bud was successfully overcome in the tfl1-1 mutant of Arabidopsis, all these genes have a potential function similar to TFL1. Quantitative reverse transcriptase-polymerase chain reaction analysis showed higher expressions of HbCEN1 and HbCEN2 in the shoot apices and stems of both immature and mature rubber trees than in reproductive organs. HbTFL1-1 and HbTFL1-2 expression was confined to roots of 3-month-old seedlings and HbTFL1-3 was significantly higher in the shoot apices of these seedlings. These results suggested that HbCEN1 and HbCEN2 could be associated with the development of vegetative growth, whereas HbTFL1-1, HbTFL1-2 and HbTFL1-3 seem to be mainly related with maintenance of juvenility. In addition, four of the five genes displayed variable diurnal expression, HbTFL1-1 and HbTFL1-3 being mainly expressed during the night whereas HbCEN1 and HbCEN2 showed irregular diurnal rhythms.
Collapse
Affiliation(s)
- Zhenghong Bi
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Ayesha T Tahir
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Huasun Huang
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Yuwei Hua
- Key Laboratory of Rubber Biology of the Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| |
Collapse
|
47
|
Luccioni L, Krzymuski M, Sánchez-Lamas M, Karayekov E, Cerdán PD, Casal JJ. CONSTANS delays Arabidopsis flowering under short days. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:923-932. [PMID: 30468542 DOI: 10.1111/tpj.14171] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Long days (LD) promote flowering of Arabidopsis thaliana compared with short days (SD) by activating the photoperiodic pathway. Here we show that growth under very-SD (3 h) or darkness (on sucrose) also accelerates flowering on a biological scale, indicating that SD actively repress flowering compared with very-SD. CONSTANS (CO) repressed flowering under SD, and the early flowering of co under SD required FLOWERING LOCUS T (FT). FT was expressed at a basal level in the leaves under SD, but these levels were not enhanced in co. This indicates that the action of CO in A. thaliana is not the mirror image of the action of its homologue in rice. In the apex, CO enhanced the expression of TERMINAL FLOWER 1 (TFL1) around the time when FT expression is important to promote flowering. Under SD, the tfl1 mutation was epistatic to co and in turn ft was epistatic to tfl1. These observations are consistent with the long-standing but not demonstrated model where CO can inhibit FT induction of flowering by affecting TFL1 expression.
Collapse
Affiliation(s)
- Laura Luccioni
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Martín Krzymuski
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Pablo D Cerdán
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| | - Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina
- IIBBA-CONICET, Fundación Instituto Leloir, C1405BWE, Buenos Aires, Argentina
| |
Collapse
|
48
|
Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Sci Rep 2019; 9:976. [PMID: 30700760 PMCID: PMC6354013 DOI: 10.1038/s41598-018-37086-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
After domestication in the Near East around 10,000 years ago several founder crops, flax included, spread to European latitudes. On reaching northerly latitudes the architecture of domesticated flax became more suitable to fiber production over oil, with longer stems, smaller seeds and fewer axillary branches. Latitudinal adaptations in crops typically result in changes in flowering time, often involving the PEBP family of genes that also have the potential to influence plant architecture. Two PEBP family genes in the flax genome, LuTFL1 and LuTFL2, vary in wild and cultivated flax over latitudinal range with cultivated flax receiving LuTFL1 alleles from northerly wild flax populations. Compared to a background of population structure of flaxes over latitude, the LuTFL1 alleles display a level of differentiation that is consistent with selection for an allele III in the north. We demonstrate through heterologous expression in Arabidopsis thaliana that LuTFL1 is a functional homolog of TFL1 in A. thaliana capable of changing both flowering time and plant architecture. We conclude that specialized fiber flax types could have formed as a consequence of a natural adaptation of cultivated flax to higher latitudes.
Collapse
|
49
|
Li Y, Feng J, Cheng L, Dai C, Gao Q, Liu Z, Kang C. Gene Expression Profiling of the Shoot Meristematic Tissues in Woodland Strawberry Fragaria vesca. FRONTIERS IN PLANT SCIENCE 2019; 10:1624. [PMID: 31921266 PMCID: PMC6923813 DOI: 10.3389/fpls.2019.01624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/19/2019] [Indexed: 05/07/2023]
Abstract
Fragaria vesca, a wild diploid strawberry, has recently emerged as a model for the cultivated strawberry and other members of the Rosaceae. Differentiation and maintenance of meristems largely determines plant architecture, flower development and ultimately fruit yield. However, in strawberry, our knowledge of molecular regulation of meristems in different developmental context is limited. In this study, we hand dissected three types of tissues than contain meristematic tissues corresponding to shoot apical meristem (SAM), flower meristem (FM), and receptacle meristem (REM), in F. vesca for RNA-seq analyses. A total of 3,009 differentially expressed genes (DEGs) were identified through pairwise comparisons. These DEGs were grouped into nine clusters with dynamic and distinct expression patterns. In these nine clusters, 336 transcription factor genes belong to 46 families were identified; some of which were significantly enriched in FM and REM such as the MADS-box family or in REM such as the B3 family. We found conserved and distinctive expression patterns of totally 149 genes whose homologs regulate flowering time or SAM, leaf, and flower development in other plant species. In addition to the ABCE genes in flower development, new MADS box genes were identified to exhibit differential expression in these different tissues. Additionally, the cytokinin and auxin pathway genes also exhibited distinct expression patterns. The Arabidopsis homeobox gene WUSCHEL (WUS), essential for stem cell maintenance, is expressed in organizing center of meristems. The F. vesca homolog FvWUS1 exhibited a broader expression domain in young strawberry flowers than its Arabidopsis counterpart. Altogether, this work provides a valuable data resource for dissecting gene regulatory networks operating in different meristematic tissues in strawberry.
Collapse
Affiliation(s)
- Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chunying Kang,
| |
Collapse
|
50
|
Song S, Wang G, Hu Y, Liu H, Bai X, Qin R, Xing Y. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4283-4293. [PMID: 30124949 PMCID: PMC6093437 DOI: 10.1093/jxb/ery232] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 05/04/2023]
Abstract
Heading date and panicle architecture are important agronomic traits in rice. Here, we identified a gene MOTHER OF FT AND TFL1 (OsMFT1) that regulates rice heading and panicle architecture. Overexpressing OsMFT1 delayed heading date by over 7 d and greatly increased spikelets per panicle and the number of branches. In contrast, OsMFT1 knockout mutants had an advanced heading date and reduced spikelets per panicle. Overexpression of OsMFT1 significantly suppressed Ehd1 expression, and Ghd7 up-regulated OsMFT1 expression. Double mutants showed that OsMFT1 acted downstream of Ghd7. In addition, transcription factor OsLFL1 was verified to directly bind to the promoter of OsMFT1 via an RY motif and activate the expression of OsMFT1 in vivo and in vitro. RNA-seq and RNA in situ hybridization analysis confirmed that OsMFT1 repressed expression of FZP and five SEPALLATA-like genes, indicating that the transition from branch meristem to spikelet meristem was delayed and thus more panicle branches were produced. Therefore, OsMFT1 is a suppressor of flowering acting downstream of Ghd7 and upstream of Ehd1, and a positive regulator of panicle architecture.
Collapse
Affiliation(s)
- Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guanfeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Rui Qin
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|