1
|
Etesami H, Santoyo G. Boosting Rhizobium-legume symbiosis: The role of nodule non-rhizobial bacteria in hormonal and nutritional regulation under stress. Microbiol Res 2025; 297:128192. [PMID: 40279725 DOI: 10.1016/j.micres.2025.128192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Legumes are vital for sustainable agriculture due to their unique ability to fix atmospheric nitrogen through symbiosis with rhizobia. Recent research has highlighted the significant role of non-rhizobial bacteria (NRB) within root nodules in enhancing this symbiotic relationship, particularly under stress conditions. These NRB exhibit plant growth-promoting (PGP) metabolites by modulating phytohormones and enhancing nutrient availability, thereby improving nodule development and function. Bacteria produce essential hormones, such as auxin (indole-3-acetic acid), cytokinins, gibberellic acids abscisic acid, jasmonic acid, and salicylic acid, and enzymes like 1-aminocyclopropane-1-carboxylate deaminase, which mitigate ethylene's inhibitory effects on nodulation. Furthermore, NRB contribute to nutrient cycling by solubilizing minerals like phosphate, potassium, silicate, zinc, and iron, essential for effective nitrogen fixation. The co-inoculation of legumes with both rhizobia and NRB with multiple PGP metabolites has shown synergistic effects on plant growth, yield, and resilience against environmental stresses. This review emphasizes the need to further explore the diversity and functional roles of nodule-associated non-rhizobial endophytes, aiming to optimize legume productivity through improved nutrient and hormonal management. Understanding these interactions is crucial for developing sustainable agricultural practices that enhance the efficiency of legume-rhizobia symbiosis, ultimately contributing to food security and ecosystem health.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58095, Mexico
| |
Collapse
|
2
|
Shen Y, Yan Y, Yin T, Zhang H, Zhu H, Zhang S, Hu H, Wei G, Chou M. An isoflavone reductase-like protein MtIFL negatively regulates nodule symbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2025. [PMID: 40433813 DOI: 10.1111/nph.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Flavonoids are valuable metabolites produced by legumes, including Medicago truncatula, and play crucial roles in signaling communication during legume-rhizobium symbiosis. Isoflavone reductase proteins (IFRs) are involved in the biosynthesis of isoflavones and plant defense regulation. However, their role in symbiotic nitrogen fixation remains mostly elusive. Here, 13 putative IFR gene family members were identified, and an IFR-like gene named MtIFL was functionally characterized through expression patterns, phenotypic characterizations, flavonoid metabolome, and transcriptome analyses. Furthermore, the binding partner of MtIFL was investigated using Y1H, EMSA, and Dual-LUC assays. MtIFL was strongly induced in the process of nodule development and expressed in the meristem and infection zone of mature nodules. Knockout of MtIFL promoted nodulation, while overexpression of MtIFL induced premature senescence of nodules. Further investigations revealed that MtIFL negatively regulates nitrogen-fixing symbiosis by mediating isoflavone metabolism, and MtNIN regulates MtIFL expression by binding to the hNRE motif. Overall, our findings suggest that MtIFL negatively regulates nodule formation, thereby influencing the survival of rhizobia in nodule cells. MtNIN regulates MtIFL expression and may play a role in isoflavone metabolism. These results provide novel insights into the function of IFRs in symbiotic nodulation and the role of flavonoids in nodule development.
Collapse
Affiliation(s)
- Yongrui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Yan Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Ting Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Hongyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Haijing Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Siyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Haiqing Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| | - Minxia Chou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, China
| |
Collapse
|
3
|
Majumdar P, Molla F, DasGupta M. From Inception to Maturation: Recent Insights in Nodule Organogenesis. PHYSIOLOGIA PLANTARUM 2025; 177:e70277. [PMID: 40401688 DOI: 10.1111/ppl.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Root branching and lateral root formation aided successful colonization of land plants in terrestrial ecosystems, eventually resulting in the origin of an adaptive trait called nodulation in specific land plant lineages. Nodule and lateral root formations involve de novo organogenesis, which is induced post-embryonically with coordinated steps of cell division and differentiation. There are substantial resemblances between the initiation of nodule and lateral root, including the types of root cell lineages that acquire mitotic competence to induce new organ formation and the pattern of formative division within the incipient organ primordia, both converging on a localized auxin response. The recruitment of specific genetic modules of lateral root developmental pathways during nodule organogenesis corroborates their evolutionary origin as modified lateral roots. However, such genetic modules are likely to be regulated differentially depending on the acquisition of nodulation-specific adaptations to ensure novelty in nodule organogenesis. Despite commonalities, these two lateral organs have differential morphology, vascular organizations, and functions due to the acquisition of different organ identities, suggesting involvement of distinct differentiation pathways during the maturation of both these organs. The current review provides a consolidated idea of the recent advances in nodule development with its resemblance to lateral root formation, emphasizing the shared and unique genetic regulators involved from their inception to maturation.
Collapse
Affiliation(s)
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | |
Collapse
|
4
|
Xiao TT, Müller S, Shen D, Liu J, Adema K, van Seters A, Franssen H, Bisseling T, Kulikova O, Kohlen W. Nodule organogenesis in Medicago truncatula requires local stage-specific auxin biosynthesis and transport. PLANT PHYSIOLOGY 2025; 197:kiaf133. [PMID: 40181792 PMCID: PMC12002018 DOI: 10.1093/plphys/kiaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The importance of auxin in plant organ development, including root nodule formation, is well known. The spatiotemporal distribution pattern of auxin during nodule development has been illustrated using auxin reporter constructs. However, our understanding of how this pattern is established and maintained remains elusive. Here, we studied how the auxin gradient is associated with the spatiotemporal expression patterns of known auxin biosynthesis and transport genes at different stages of nodule development in Medicago (Medicago truncatula). In addition, we examined the Medicago PIN-FORMED10 (MtPIN10) expression pattern and polar positioning on the cell membrane during nodule primordium development to investigate auxin flux. RNA interference and the application of auxin biosynthesis inhibitors were used to demonstrate the importance of auxin biosynthesis and transport at the initial stages of nodulation. Our results show that upon rhizobium inoculation before the first cell divisions, a specific subset of Medicago YUCCA (MtYUC) and MtPIN genes, as well as Medicago LIKE AUXIN RESISTANT2 (MtLAX2), are expressed in the pericycle and contribute to the creation of an auxin maximum. Overall, we demonstrate that the dynamic spatiotemporal expression of both MtYUC and MtPIN genes results in specific auxin outputs during the different stages of nodule primordia and nodule meristem formation.
Collapse
Affiliation(s)
- Ting Ting Xiao
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sophia Müller
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Defeng Shen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jieyu Liu
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Kelvin Adema
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Amber van Seters
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Olga Kulikova
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
- Department of Plant Sciences, Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
5
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Cao J, Zhou Y, Tian T, Ji J, Deng Y, Guan Y, Qi Y, Wang L, Wang L, Huang Y, Fan Q, Duanmu D. Type-B response regulator RRB12 regulates nodule formation in Lotus japonicus. BMC Biol 2024; 22:293. [PMID: 39695619 DOI: 10.1186/s12915-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The mutualistic beneficial relationship between legume plants and rhizobia enables the growth of plants in nitrogen-limiting conditions. Rhizobia infect legumes through root hairs and trigger nodule organogenesis in the cortex. The plant hormone cytokinin plays a pivotal role in regulating both rhizobial infection and the initiation of nodule development. However, the mechanism used by the cytokinin output module to control symbiosis remains poorly documented. RESULTS In this study, we identified a cytokinin signaling output component encoded by the Type-B RESPONSE REGULATOR (RRB) gene, LjRRB12, which is expressed in Lotus japonicus nodule primordia and young nodules. Disruption of LjRRB12 leads to a reduction in nodulation and to an increase in the number of infection threads. Overexpression of LjRRB12D76E, an active form of the LjRRB12 protein, induces nodule-like structures in wild type and hit1 (hyperinfected 1/lotus histidine kinase 1) mutants but not in nin2 (nodule inception 2) mutants. Additionally, we utilized nCUT&Tag and EMSA to demonstrate that LjRRB12 can bind a CE (cytokinin response element) from the LjNIN promoter. CONCLUSIONS Our results provide a deeper understanding of nodule organogenesis by establishing a link between the cytokinin signal and the transcriptional regulation of LjNIN.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui, 234000, China
| | - Tao Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ji
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhao Guan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongmei Qi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longxiang Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Longlong Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Yibo Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiuling Fan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
8
|
Guo D, Li J, Liu P, Wang Y, Cao N, Fang X, Wang T, Dong J. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. MOLECULAR PLANT 2024; 17:1183-1203. [PMID: 38859588 DOI: 10.1016/j.molp.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.
Collapse
Affiliation(s)
- Da Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Na Cao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Niu B, Bai N, Liu X, Ma L, Dai L, Mu X, Wu S, Ma J, Hao X, Wang L, Li P. The role of GmHSP23.9 in regulating soybean nodulation under elevated CO 2 condition. Int J Biol Macromol 2024; 274:133436. [PMID: 38936572 DOI: 10.1016/j.ijbiomac.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Legume-rhizobia symbiosis offers a unique approach to increase leguminous crop yields. Previous studies have indicated that the number of soybean nodules are increased under elevated CO2 concentration. However, the underlying mechanism behind this phenomenon remains elusive. In this study, transcriptome analysis was applied to identify candidate genes involved in regulating soybean nodulation mediated by elevated CO2 concentration. Among the different expression genes (DEGs), we identified a gene encoding small heat shock protein (sHSP) called GmHSP23.9, which mainly expressed in soybean roots and nodules, and its expression was significantly induced by rhizobium USDA110 infection at 14 days after inoculation (DAI) under elevated CO2 conditions. We further investigated the role of GmHSP23.9 by generating transgenic composite plants carrying GmHSP23.9 overexpression (GmHSP23.9-OE), RNA interference (GmHSP23.9-RNAi), and CRISPR-Cas9 (GmHSP23.9-KO), and these modifications resulted in notable changes in nodule number and the root hairs deformation and suggesting that GmHSP23.9 function as an important positive regulator in soybean. Moreover, we found that altering the expression of GmHSP23.9 influenced the expression of genes involved in the Nod factor signaling pathway and AON signaling pathway to modulate soybean nodulation. Interestingly, we found that knocking down of GmHSP23.9 prevented the increase in the nodule number of soybean in response to elevated CO2 concentration. This research has successfully identified a crucial regulator that influences soybean nodulation under elevated CO2 level and shedding new light on the role of sHSPs in legume nodulation.
Collapse
Affiliation(s)
- Bingjie Niu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Nan Bai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofeng Liu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Longjing Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lijiao Dai
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoya Mu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Shenjie Wu
- College of Life Sceinces, Shanxi Agricultural University, Taigu 030801, China
| | - Junkui Ma
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Lixiang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
10
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Velandia K, Correa-Lozano A, McGuiness PM, Reid JB, Foo E. Cell-layer specific roles for gibberellins in nodulation and root development. THE NEW PHYTOLOGIST 2024; 242:626-640. [PMID: 38396236 DOI: 10.1111/nph.19623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Alejandro Correa-Lozano
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Peter M McGuiness
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
12
|
Lee T, Orvosova M, Batzenschlager M, Bueno Batista M, Bailey PC, Mohd-Radzman NA, Gurzadyan A, Stuer N, Mysore KS, Wen J, Ott T, Oldroyd GED, Schiessl K. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Curr Biol 2024; 34:825-840.e7. [PMID: 38301650 DOI: 10.1016/j.cub.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.
Collapse
Affiliation(s)
- Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Martina Orvosova
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul C Bailey
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Nadia A Mohd-Radzman
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aram Gurzadyan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Naomi Stuer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Schänzlestrasse, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse, 79104 Freiburg, Germany
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
13
|
Zhang D, Wu Q, Zhao Y, Yan Z, Xiao A, Yu H, Cao Y. Dual RNA-Seq Analysis Pinpoints a Balanced Regulation between Symbiosis and Immunity in Medicago truncatula- Sinorhizobium meliloti Symbiotic Nodules. Int J Mol Sci 2023; 24:16178. [PMID: 38003367 PMCID: PMC10671737 DOI: 10.3390/ijms242216178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Legume-rhizobial symbiosis initiates the formation of root nodules, within which rhizobia reside and differentiate into bacteroids to convert nitrogen into ammonium, facilitating plant growth. This process raises a fundamental question: how is plant immunity modulated within nodules when exposed to a substantial number of foreign bacteria? In Medicago truncatula, a mutation in the NAD1 (Nodules with Activated Defense 1) gene exclusively results in the formation of necrotic nodules combined with activated immunity, underscoring the critical role of NAD1 in suppressing immunity within nodules. In this study, we employed a dual RNA-seq transcriptomic technology to comprehensively analyze gene expression from both hosts and symbionts in the nad1-1 mutant nodules at different developmental stages (6 dpi and 10 dpi). We identified 89 differentially expressed genes (DEGs) related to symbiotic nitrogen fixation and 89 DEGs from M. truncatula associated with immunity in the nad1-1 nodules. Concurrently, we identified 27 rhizobial DEGs in the fix and nif genes of Sinorhizobium meliloti. Furthermore, we identified 56 DEGs from S. meliloti that are related to stress responses to ROS and NO. Our analyses of nitrogen fixation-defective plant nad1-1 mutants with overactivated defenses suggest that the host employs plant immunity to regulate the substantial bacterial colonization in nodules. These findings shed light on the role of NAD1 in inhibiting the plant's immune response to maintain numerous rhizobial endosymbiosis in nodules.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.Z.)
| |
Collapse
|
14
|
Mongès A, Yaakoub H, Bidon B, Glévarec G, Héricourt F, Carpin S, Chauderon L, Drašarová L, Spíchal L, Binder BM, Papon N, Rochange S. Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:656-665. [PMID: 37851914 DOI: 10.1094/mpmi-05-23-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Signals are exchanged at all stages of the arbuscular mycorrhizal (AM) symbiosis between fungi and their host plants. Root-exuded strigolactones are well-known early symbiotic cues, but the role of other phytohormones as interkingdom signals has seldom been investigated. Here we focus on ethylene and cytokinins, for which candidate receptors have been identified in the genome of the AM fungus Rhizophagus irregularis. Ethylene is known from the literature to affect asymbiotic development of AM fungi, and in the present study, we found that three cytokinin forms could stimulate spore germination in R. irregularis. Heterologous complementation of a Saccharomyces cerevisiae mutant strain with the candidate ethylene receptor RiHHK6 suggested that this protein can sense and transduce an ethylene signal. Accordingly, its N-terminal domain expressed in Pichia pastoris displayed saturable binding to radiolabeled ethylene. Thus, RiHHK6 displays the expected characteristics of an ethylene receptor. In contrast, the candidate cytokinin receptor RiHHK7 did not complement the S. cerevisiae mutant strain or Medicago truncatula cytokinin receptor mutants and seemed unable to bind cytokinins, suggesting that another receptor is involved in the perception of these phytohormones. Taken together, our results support the hypothesis that AM fungi respond to a range of phytohormones and that these compounds bear multiple functions in the rhizosphere beyond their known roles as internal plant developmental regulators. Our analysis of two phytohormone receptor candidates also sheds new light on the possible perception mechanisms in AM fungi. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ayla Mongès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Hajar Yaakoub
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | | | - Gaëlle Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Lucie Chauderon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Šlechtitelů 27, Olomouc CZ-783 71, Palacký University, Olomouc, Czech Republic
| | - Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Nicolas Papon
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
15
|
Van Dingenen J, De Keyser A, Desmet S, Clarysse A, Beullens S, Michiels J, Planque M, Goormachtig S. Strigolactones repress nodule development and senescence in pea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:7-22. [PMID: 37608631 DOI: 10.1111/tpj.16421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- VIB Metabolomics Core, VIB, Technologiepark 71, 9052, Ghent, Belgium
| | - Alexander Clarysse
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Serge Beullens
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Mélanie Planque
- Spatial Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| |
Collapse
|
16
|
Nishida H, Shimoda Y, Win KT, Imaizumi-Anraku H. Rhizosphere frame system enables nondestructive live-imaging of legume-rhizobium interactions in the soil. JOURNAL OF PLANT RESEARCH 2023; 136:769-780. [PMID: 37402088 PMCID: PMC10421814 DOI: 10.1007/s10265-023-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Most plants interact with various soil microorganisms as they grow through the soil. Root nodule symbiosis by legumes and rhizobia is a well-known phenomenon of plant-microbe interactions in the soil. Although microscopic observations are useful for understanding the infection processes of rhizobia, nondestructive observation methods have not been established for monitoring interactions between rhizobia and soil-grown roots. In this study, we constructed Bradyrhizobium diazoefficiens strains that constitutively express different fluorescent proteins, which allows identification of tagged rhizobia by the type of fluorophores. In addition, we constructed a plant cultivation device, Rhizosphere Frame (RhizoFrame), which is a soil-filled container made of transparent acrylic plates that allows observation of roots growing along the acrylic plates. Combining fluorescent rhizobia with RhizoFrame, we established a live imaging system, RhizoFrame system, that enabled us to track the nodulation processes with fluorescence stereomicroscope while retaining spatial information about roots, rhizobia, and soil. Mixed inoculation with different fluorescent rhizobia using RhizoFrame enabled the visualization of mixed infection of a single nodule with two strains. In addition, observation of transgenic Lotus japonicus expressing auxin-responsive reporter genes indicated that RhizoFrame system could be used for a real-time and nondestructive reporter assay. Thus, the use of RhizoFrame system is expected to enhance the study of the spatiotemporal dynamics of plant-microbe interactions in the soil.
Collapse
Affiliation(s)
- Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Khin Thuzar Win
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
17
|
Molla F, Kundu A, DasGupta M. Sucrose-induced auxin conjugate hydrolase restores symbiosis in a Medicago cytokinin perception mutant. PLANT PHYSIOLOGY 2023; 191:2447-2460. [PMID: 36722159 PMCID: PMC10069879 DOI: 10.1093/plphys/kiad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Rhizobia-legume interactions recruit cytokinin for the induction of nodule primordia in the cortex. Cytokinin signaling regulates auxin transport and biosynthesis, causing local auxin accumulation, which triggers cortical cell division. Since sugar signaling can trigger auxin responses, we explored whether sugar treatments could rescue symbiosis in the Medicago truncatula cytokinin response 1 (cre1) mutant. Herein, we demonstrate that sucrose and its nonmetabolizable isomer turanose can trigger auxin response and recover functional symbiosis in cre1, indicating sucrose signaling to be necessary for the restoration of symbiosis. In both M. truncatula A17 (wild type) and cre1, sucrose signaling significantly upregulated IAA-Ala Resistant 3 (IAR33), encoding an auxin conjugate hydrolase, in rhizobia-infected as well as in uninfected roots. Knockdown of IAR33 (IAR33-KD) significantly reduced nodulation in A17, highlighting the importance of deconjugation-mediated auxin accumulation during nodule inception. In cre1, IAR33-KD restricted the sucrose-mediated restoration of functional symbiosis, suggesting that deconjugation-mediated auxin accumulation plays a key role in the absence of CRE1-mediated auxin biosynthesis and transport control. Overexpression of IAR33 also restored functional symbiosis in cre1, further suggesting that IAR33 mediates auxin accumulation in response to sucrose signaling. Since all the observed sucrose-mediated responses were common to A17 and cre1, deconjugation-mediated auxin response appeared to be independent of CRE1, which normally governs local auxin accumulation in the presence of rhizobia. We propose that sucrose-dependent restoration of symbiosis in cre1 occurs by the activation of IAR33-mediated auxin deconjugation.
Collapse
Affiliation(s)
- Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
18
|
Basu U, Parida SK. The developmental dynamics in cool season legumes with focus on chickpea. PLANT MOLECULAR BIOLOGY 2023; 111:473-491. [PMID: 37016106 DOI: 10.1007/s11103-023-01340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Chickpea is one of the most widely consumed grain legume world-wide. Advances in next-generation sequencing and genomics tools have led to genetic dissection and identification of potential candidate genes regulating agronomic traits in chickpea. However, the developmental particularities and its potential in reforming the yield and nutritional value remain largely unexplored. Studies in crops such as rice, maize, tomato and pea have highlighted the contribution of key regulator of developmental events in yield related traits. A comprehensive knowledge on the development aspects of a crop can pave way for new vistas to explore. Pea and Medicago are the close relatives of genus Cicer and the basic developmental events in these legumes are similar. However, there are some distinct developmental features in chickpea which hold potential for future crop improvement endeavours. The global chickpea germplasm encompasses wide range of diversities in terms of morphology at both vegetative and reproductive stages. There is an immediate need for understanding the genetic and molecular basis of this diversity and utilizing them for the yield contributing trait improvement. The review discusses some of the key developmental events which have potential in yield enhancement and the lessons which can be learnt from model legumes in this regard.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India
| | - Swarup K Parida
- Genomics-assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, P.O. Box: 10531, New Delhi, 110067, India.
| |
Collapse
|
19
|
Taleski M, Chapman K, Novák O, Schmülling T, Frank M, Djordjevic MA. CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nat Commun 2023; 14:1683. [PMID: 36973257 PMCID: PMC10042822 DOI: 10.1038/s41467-023-37282-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractC-TERMINALLY ENCODED PEPTIDE (CEP) and cytokinin hormones act over short and long distances to control plant responses to environmental cues. CEP and cytokinin pathway mutants share phenotypes, however, it is not known if these pathways intersect. We show that CEP and cytokinin signalling converge on CEP DOWNSTREAM (CEPD) glutaredoxins to inhibit primary root growth. CEP inhibition of root growth was impaired in mutants defective in trans-zeatin (tZ)-type cytokinin biosynthesis, transport, perception, and output. Concordantly, mutants affected in CEP RECEPTOR 1 showed reduced root growth inhibition in response to tZ, and altered levels of tZ-type cytokinins. Grafting and organ-specific hormone treatments showed that tZ-mediated root growth inhibition involved CEPD activity in roots. By contrast, root growth inhibition by CEP depended on shoot CEPD function. The results demonstrate that CEP and cytokinin pathways intersect, and utilise signalling circuits in separate organs involving common glutaredoxin genes to coordinate root growth.
Collapse
|
20
|
Kantsurova (Rudaya) ES, Ivanova AN, Kozyulina PY, Dolgikh EA. Exogenously Applied Cytokinin Altered the Bacterial Release and Subsequent Stages of Nodule Development in Pea Ipd3/Cyclops Mutant. PLANTS (BASEL, SWITZERLAND) 2023; 12:657. [PMID: 36771742 PMCID: PMC9921755 DOI: 10.3390/plants12030657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Regulation of plant hormonal status is one of the major targets of symbiotic signaling during nodule formation in legume plants. However, the genetic and hormonal networks that regulate transition to differentiation of nodules are not well-characterized in legume plants. Analysis of plant mutants forming nodules impaired in rhizobial infection allowed us to identify some regulators involved in the control of the later stages of nodule development. In the current work, we extend our earlier studies on the influence of exogenously applied cytokinin on the later stages of nodule morphogenesis using pea sym33 (ipd3/cyclops) mutants impaired in the gene encoding IPD3/CYCLOPS transcription factor. One of the noticeable effects of the influence of exogenously applied cytokinin on nodules in the sym33-3 mutant was an increasing size of these structures. Cytokinin treatment was shown to stimulate bacterial release and increase the percentage of infected cells in nodules. To explore the role of possible regulators of nodule differentiation, we performed searching in pea transcriptome. The transcriptome study in pea P. sativum revealed the importance of the CCS52 regulator, EFD transcription factor, SYMREM regulator, RSD, the MADS-domain/AGL, and SHORT INTERNODE/STYLISH gene families encoding transcription factors in the control of nodule differentiation. Analysis of the expression patterns was verified by real-time PCR in response to exogenously applied cytokinin treatment.
Collapse
Affiliation(s)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia
- Research Park, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Polina Y. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, Pushkin, 196608 St. Petersburg, Russia
| |
Collapse
|
21
|
Kurepa J, Shull TE, Smalle JA. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. PLANTS (BASEL, SWITZERLAND) 2023; 12:517. [PMID: 36771601 PMCID: PMC9921348 DOI: 10.3390/plants12030517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Land plants survive the challenges of new environments by evolving mechanisms that protect them from excess irradiation, nutrient deficiency, and temperature and water availability fluctuations. One such evolved mechanism is the regulation of the shoot/root growth ratio in response to water and nutrient availability by balancing the actions of the hormones auxin and cytokinin. Plant terrestrialization co-occurred with a dramatic expansion in secondary metabolism, particularly with the evolution and establishment of the flavonoid biosynthetic pathway. Flavonoid biosynthesis is responsive to a wide range of stresses, and the numerous synthesized flavonoid species offer two main evolutionary advantages to land plants. First, flavonoids are antioxidants and thus defend plants against those adverse conditions that lead to the overproduction of reactive oxygen species. Second, flavonoids aid in protecting plants against water and nutrient deficiency by modulating root development and establishing symbiotic relations with beneficial soil fungi and bacteria. Here, we review different aspects of the relationships between the auxin/cytokinin module and flavonoids. The current body of knowledge suggests that whereas both auxin and cytokinin regulate flavonoid biosynthesis, flavonoids act to fine-tune only auxin, which in turn regulates cytokinin action. This conclusion agrees with the established master regulatory function of auxin in controlling the shoot/root growth ratio.
Collapse
Affiliation(s)
| | | | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
22
|
Berrabah F, Bernal G, Elhosseyn AS, El Kassis C, L’Horset R, Benaceur F, Wen J, Mysore KS, Garmier M, Gourion B, Ratet P, Gruber V. Insight into the control of nodule immunity and senescence during Medicago truncatula symbiosis. PLANT PHYSIOLOGY 2023; 191:729-746. [PMID: 36305683 PMCID: PMC9806560 DOI: 10.1093/plphys/kiac505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Medicago (Medicago truncatula) establishes a symbiosis with the rhizobia Sinorhizobium sp, resulting in the formation of nodules where the bacteria fix atmospheric nitrogen. The loss of immunity repression or early senescence activation compromises symbiont survival and leads to the formation of nonfunctional nodules (fix-). Despite many studies exploring an overlap between immunity and senescence responses outside the nodule context, the relationship between these processes in the nodule remains poorly understood. To investigate this phenomenon, we selected and characterized three Medicago mutants developing fix- nodules and showing senescence responses. Analysis of specific defense (PATHOGENESIS-RELATED PROTEIN) or senescence (CYSTEINE PROTEASE) marker expression demonstrated that senescence and immunity seem to be antagonistic in fix- nodules. The growth of senescence mutants on non-sterile (sand/perlite) substrate instead of sterile in vitro conditions decreased nodule senescence and enhanced defense, indicating that environment can affect the immunity/senescence balance. The application of wounding stress on wild-type (WT) fix+ nodules led to the death of intracellular rhizobia and associated with co-stimulation of defense and senescence markers, indicating that in fix+ nodules the relationship between the two processes switches from opposite to synergistic to control symbiont survival during response to the stress. Our data show that the immune response in stressed WT nodules is linked to the repression of DEFECTIVE IN NITROGEN FIXATION 2 (DNF2), Symbiotic CYSTEINE-RICH RECEPTOR-LIKE KINASE (SymCRK), and REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD), key genes involved in symbiotic immunity suppression. This study provides insight to understand the links between senescence and immunity in Medicago nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Gautier Bernal
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Ait-Salem Elhosseyn
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Cyrille El Kassis
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Roxane L’Horset
- Pôle de Protection des Plantes, UMR PVBMT, 97410 Saint-Pierre, Réunion, France
| | - Farouk Benaceur
- Faculty of Sciences, Department of Biology, Amar Telidji University, 03000 Laghouat, Algeria
- Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Jiangqi Wen
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- The Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, 31320 Castanet-Tolosan, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
23
|
Fang D, Zhang W, Ye Z, Hu F, Cheng X, Cao J. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:685-695. [PMID: 36565613 DOI: 10.1016/j.plaphy.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Plant specific SHORT INTERNODES/STYLISH (SHI/STY) protein is a transcription factor involved in the formation and development of early lateral organs in plants. However, research on the SHI/STY protein family is not focused enough. In this article, we review recent studies on SHI/STY genes and explore the evolution and structure of SHI/STY. The biological functions of SHI/STYs are discussed in detail in this review, and the application of each biological function to modern agriculture is discussed. All SHI/STY proteins contain typical conserved RING-like zinc finger domain and IGGH domain. SHI/STYs are involved in the formation and development of lateral root, stem extension, leaf morphogenesis, and root nodule development. They are also involved in the regulation of pistil and stamen development and flowering time. At the same time, the regulation of some GA, JA, and auxin signals also involves these family proteins. For each aspect, unanswered or poorly understood questions were identified to help define future research areas. This review will provide a basis for further functional study of this gene family.
Collapse
Affiliation(s)
- Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
24
|
Kuzina E, Mukhamatdyarova S, Sharipova Y, Makhmutov A, Belan L, Korshunova T. Influence of Bacteria of the Genus Pseudomonas on Leguminous Plants and Their Joint Application for Bioremediation of Oil Contaminated Soils. PLANTS (BASEL, SWITZERLAND) 2022; 11:3396. [PMID: 36501436 PMCID: PMC9737819 DOI: 10.3390/plants11233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The modern approach to the creation of biological products to stimulate plant growth is based on the study of specific inter-bacterial interactions. This study describes the impact that the introduction of strains of the genus Pseudomonas has on annual and perennial leguminous plants and the ecosystem of the leguminous plant-the indigenous microbial community. The objects of research under the conditions of vegetation experiments were plants of field peas (Pisum sativum L.), white lupine (Lupinus albus L.), chickpea (Cicer arietinum L.), alfalfa (Medicago sativa subsp. varia (Martyn) Arcang.), and white sweet clover (Melilotus albus Medik.). For the treatment of plant seeds, a liquid culture of strains of growth-stimulating bacteria Pseudomonas koreensis IB-4, and P. laurentiana ANT 17 was used. The positive effect of the studied strains on the germination, growth and development of plants was established. There was no inhibitory effect of inoculants on rhizobia; on the contrary, an increase in nodule formation was observed. The possibility of recultivation of oil-contaminated soil using chickpea and alfalfa as phytomeliorants and growth-stimulating strains P. koreensis IB-4, P. laurentiana ANT 17 as inoculants was evaluated. It is proved that seed treatment improved the morphological parameters of plants, as well as the efficiency of oil destruction.
Collapse
Affiliation(s)
- Elena Kuzina
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Svetlana Mukhamatdyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Yuliyana Sharipova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Ainur Makhmutov
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Larisa Belan
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| | - Tatyana Korshunova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Environmental Protection and Prudent Exploitation of Natural Resources, Ufa State Petroleum Technological University, 450044 Ufa, Russia
| |
Collapse
|
25
|
Cervantes-Pérez SA, Thibivilliers S, Laffont C, Farmer AD, Frugier F, Libault M. Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume. MOLECULAR PLANT 2022; 15:1868-1888. [PMID: 36321199 DOI: 10.1016/j.molp.2022.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Medicago truncatula is a model legume species that has been studied for decades to understand the symbiotic relationship between legumes and soil bacteria collectively named rhizobia. This symbiosis called nodulation is initiated in roots with the infection of root hair cells by the bacteria, as well as the initiation of nodule primordia from root cortical, endodermal, and pericycle cells, leading to the development of a new root organ, the nodule, where bacteria fix and assimilate the atmospheric dinitrogen for the benefit of the plant. Here, we report the isolation and use of the nuclei from mock and rhizobia-inoculated roots for the single nuclei RNA-seq (sNucRNA-seq) profiling to gain a deeper understanding of early responses to rhizobial infection in Medicago roots. A gene expression map of the Medicago root was generated, comprising 25 clusters, which were annotated as specific cell types using 119 Medicago marker genes and orthologs to Arabidopsis cell-type marker genes. A focus on root hair, cortex, endodermis, and pericycle cell types, showing the strongest differential regulation in response to a short-term (48 h) rhizobium inoculation, revealed not only known genes and functional pathways, validating the sNucRNA-seq approach, but also numerous novel genes and pathways, allowing a comprehensive analysis of early root symbiotic responses at a cell type-specific level.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sandra Thibivilliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Paris-Cité, Université d'Evry, 91190 Gif-sur-Yvette, France
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68503, USA; Single Cell Genomics Core Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
26
|
Chakraborty S, Valdés-López O, Stonoha-Arther C, Ané JM. Transcription Factors Controlling the Rhizobium-Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. PLANT & CELL PHYSIOLOGY 2022; 63:1326-1343. [PMID: 35552446 DOI: 10.1093/pcp/pcac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, México
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
27
|
Sauviac L, Rémy A, Huault E, Dalmasso M, Kazmierczak T, Jardinaud MF, Legrand L, Moreau C, Ruiz B, Cazalé AC, Valière S, Gourion B, Dupont L, Gruber V, Boncompagni E, Meilhoc E, Frendo P, Frugier F, Bruand C. A dual legume-rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses. PLANT, CELL & ENVIRONMENT 2022; 45:3100-3121. [PMID: 35781677 DOI: 10.1111/pce.14389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.
Collapse
Affiliation(s)
- Laurent Sauviac
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Antoine Rémy
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Emeline Huault
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | | | - Théophile Kazmierczak
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Ludovic Legrand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Corentin Moreau
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Anne-Claire Cazalé
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | | | - Benjamin Gourion
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | | | - Véronique Gruber
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | | | - Eliane Meilhoc
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Nice, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Paris-Saclay University, CNRS, INRAE, Université de Paris, Gif-sur-Yvette, France
| | - Claude Bruand
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, INPT-ENSAT, INSA, Castanet-Tolosan, France
| |
Collapse
|
28
|
Velandia K, Reid JB, Foo E. Right time, right place: The dynamic role of hormones in rhizobial infection and nodulation of legumes. PLANT COMMUNICATIONS 2022; 3:100327. [PMID: 35605199 PMCID: PMC9482984 DOI: 10.1016/j.xplc.2022.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.
Collapse
Affiliation(s)
- Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
29
|
Jardinaud MF, Fromentin J, Auriac MC, Moreau S, Pecrix Y, Taconnat L, Cottret L, Aubert G, Balzergue S, Burstin J, Carrere S, Gamas P. MtEFD and MtEFD2: Two transcription factors with distinct neofunctionalization in symbiotic nodule development. PLANT PHYSIOLOGY 2022; 189:1587-1607. [PMID: 35471237 PMCID: PMC9237690 DOI: 10.1093/plphys/kiac177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.
Collapse
Affiliation(s)
| | | | | | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
30
|
Pereira WJ, Knaack S, Chakraborty S, Conde D, Folk RA, Triozzi PM, Balmant KM, Dervinis C, Schmidt HW, Ané J, Roy S, Kirst M. Functional and comparative genomics reveals conserved noncoding sequences in the nitrogen-fixing clade. THE NEW PHYTOLOGIST 2022; 234:634-649. [PMID: 35092309 PMCID: PMC9302667 DOI: 10.1111/nph.18006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen is one of the most inaccessible plant nutrients, but certain species have overcome this limitation by establishing symbiotic interactions with nitrogen-fixing bacteria in the root nodule. This root-nodule symbiosis (RNS) is restricted to species within a single clade of angiosperms, suggesting a critical, but undetermined, evolutionary event at the base of this clade. To identify putative regulatory sequences implicated in the evolution of RNS, we evaluated the genomes of 25 species capable of nodulation and identified 3091 conserved noncoding sequences (CNS) in the nitrogen-fixing clade (NFC). We show that the chromatin accessibility of 452 CNS correlates significantly with the regulation of genes responding to lipochitooligosaccharides in Medicago truncatula. These included 38 CNS in proximity to 19 known genes involved in RNS. Five such regions are upstream of MtCRE1, Cytokinin Response Element 1, required to activate a suite of downstream transcription factors necessary for nodulation in M. truncatula. Genetic complementation of an Mtcre1 mutant showed a significant decrease of nodulation in the absence of the five CNS, when they are driving the expression of a functional copy of MtCRE1. CNS identified in the NFC may harbor elements required for the regulation of genes controlling RNS in M. truncatula.
Collapse
Affiliation(s)
- Wendell J. Pereira
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Sara Knaack
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWI53715USA
| | | | - Daniel Conde
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Ryan A. Folk
- Department of Biological SciencesMississippi State UniversityStarkvilleMS39762USA
| | - Paolo M. Triozzi
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Kelly M. Balmant
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Henry W. Schmidt
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
| | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Sushmita Roy
- Wisconsin Institute for DiscoveryUniversity of Wisconsin‐MadisonMadisonWI53715USA
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin‐MadisonMadisonWI53715USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics SciencesUniversity of FloridaGainesvilleFL32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL32611USA
| |
Collapse
|
31
|
Triozzi PM, Irving TB, Schmidt HW, Keyser ZP, Chakraborty S, Balmant K, Pereira WJ, Dervinis C, Mysore KS, Wen J, Ané JM, Kirst M, Conde D. Spatiotemporal cytokinin response imaging and ISOPENTENYLTRANSFERASE 3 function in Medicago nodule development. PLANT PHYSIOLOGY 2022; 188:560-575. [PMID: 34599592 PMCID: PMC8774767 DOI: 10.1093/plphys/kiab447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Zachary P Keyser
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kelly Balmant
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Wendell J Pereira
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Christopher Dervinis
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | - Jiangqi Wen
- Noble Research Institute, Ardmore, Oklahoma 73401, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
32
|
Wang C, Li M, Zhao Y, Liang N, Li H, Li P, Yang L, Xu M, Bian X, Wang M, Wu S, Niu X, Wang M, Li X, Sang Y, Dong W, Wang E, Gallagher KL, Wu S. SHORT-ROOT paralogs mediate feedforward regulation of D-type cyclin to promote nodule formation in soybean. Proc Natl Acad Sci U S A 2022; 119:e2108641119. [PMID: 35022232 PMCID: PMC8784155 DOI: 10.1073/pnas.2108641119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nengsong Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiyang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liling Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Bian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Sang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wentao Dong
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Rudaya ES, Kozyulina PY, Pavlova OA, Dolgikh AV, Ivanova AN, Dolgikh EA. Regulation of the Later Stages of Nodulation Stimulated by IPD3/CYCLOPS Transcription Factor and Cytokinin in Pea Pisum sativum L. PLANTS (BASEL, SWITZERLAND) 2021; 11:56. [PMID: 35009060 PMCID: PMC8747635 DOI: 10.3390/plants11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The IPD3/CYCLOPS transcription factor was shown to be involved in the regulation of nodule primordia development and subsequent stages of nodule differentiation. In contrast to early stages, the stages related to nodule differentiation remain less studied. Recently, we have shown that the accumulation of cytokinin at later stages may significantly impact nodule development. This conclusion was based on a comparative analysis of cytokinin localization between pea wild type and ipd3/cyclops mutants. However, the role of cytokinin at these later stages of nodulation is still far from understood. To determine a set of genes involved in the regulation of later stages of nodule development connected with infection progress, intracellular accommodation, as well as plant tissue and bacteroid differentiation, the RNA-seq analysis of pea mutant SGEFix--2 (sym33) nodules impaired in these processes compared to wild type SGE nodules was performed. To verify cytokinin's influence on late nodule development stages, the comparative RNA-seq analysis of SGEFix--2 (sym33) mutant plants treated with cytokinin was also conducted. Findings suggest a significant role of cytokinin in the regulation of later stages of nodule development.
Collapse
Affiliation(s)
- Elizaveta S. Rudaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Polina Yu. Kozyulina
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Olga A. Pavlova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| | - Alexandra N. Ivanova
- Komarov Botanical Institute RAS, Prof. Popov St., 2, 197376 St. Petersburg, Russia;
- Faculty of Biology, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, 196608 St. Petersburg, Russia; (E.S.R.); (P.Y.K.); (O.A.P.); (A.V.D.)
| |
Collapse
|
34
|
Kovacs S, Fodor L, Domonkos A, Ayaydin F, Laczi K, Rákhely G, Kalo P. Amino Acid Polymorphisms in the VHIID Conserved Motif of Nodulation Signaling Pathways 2 Distinctly Modulate Symbiotic Signaling and Nodule Morphogenesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:709857. [PMID: 34966395 PMCID: PMC8711286 DOI: 10.3389/fpls.2021.709857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Legumes establish an endosymbiotic association with nitrogen-fixing soil bacteria. Following the mutual recognition of the symbiotic partner, the infection process is controlled by the induction of the signaling pathway and subsequent activation of symbiosis-related host genes. One of the protein complexes regulating nitrogen-fixing root nodule symbiosis is formed by GRAS domain regulatory proteins Nodulation Signaling Pathways 1 and 2 (NSP1 and NSP2) that control the expression of several early nodulation genes. Here, we report on a novel point mutant allele (nsp2-6) affecting the function of the NSP2 gene and compared the mutant with the formerly identified nsp2-3 mutant. Both mutants carry a single amino acid substitution in the VHIID motif of the NSP2 protein. We found that the two mutant alleles show dissimilar root hair response to bacterial infection. Although the nsp2-3 mutant developed aberrant infection threads, rhizobia were able to colonize nodule cells in this mutant. The encoded NSP2 proteins of the nsp2-3 and the novel nsp2 mutants interact with NSP1 diversely and, as a consequence, the activation of early nodulin genes and nodule organogenesis are arrested in the new nsp2 allele. The novel mutant with amino acid substitution D244H in NSP2 shows similar defects in symbiotic responses as a formerly identified nsp2-2 mutant carrying a deletion in the NSP2 gene. Additionally, we found that rhizobial strains induce delayed nodule formation on the roots of the ns2-3 weak allele. Our study highlights the importance of a conserved Asp residue in the VHIID motif of NSP2 that is required for the formation of a functional NSP1-NSP2 signaling module. Furthermore, our results imply the involvement of NSP2 during differentiation of symbiotic nodule cells.
Collapse
Affiliation(s)
- Szilárd Kovacs
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Lili Fodor
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| | - Agota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Szeged, Hungary
- Cellular Imaging Laboratory, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Krisztián Laczi
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Biophysics, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - Péter Kalo
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| |
Collapse
|
35
|
Tiwari M, Yadav M, Singh B, Pandey V, Nawaz K, Bhatia S. Evolutionary and functional analysis of two-component system in chickpea reveals CaRR13, a TypeB RR, as positive regulator of symbiosis. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2415-2427. [PMID: 34146435 PMCID: PMC8633487 DOI: 10.1111/pbi.13649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 05/19/2023]
Abstract
The critical role of cytokinin in early nodulation in legumes is well known. In our study, exogenous cytokinin application to roots of the important crop legume, chickpea (Cicer arietinum L.), led to the formation of pseudo-nodules even in the absence of rhizobia. Hence, a genome-wide analysis of the cytokinin signalling, two-component system (TCS) genes, was conducted in chickpea, Medicago and Cajanus cajan. The integrated phylogenetic, evolutionary and expression analysis of the TCS genes was carried out, which revealed that histidine kinases (HKs) were highly conserved, whereas there was diversification leading to neofunctionalization at the level of response regulators (RRs) especially the TypeB RRs. Further, the functional role of the CaHKs in nodulation was established by complementation of the sln1Δ mutant of yeast and cre1 mutants of (Medicago) which led to restoration of the nodule-deficient phenotype. Additionally, the highest expressing TypeB RR of chickpea, CaRR13, was functionally characterized. Its localization in the nucleus and its Y1H assay-based interaction with the promoter of the early nodulation gene CaNSP2 indicated its role as a transcription factor regulating early nodulation. Overexpression, RNAi lines and complementation of cre1 mutants with CaRR13 revealed its critical involvement as an important signalling molecule regulating early events of nodule organogenesis in chickpea.
Collapse
Affiliation(s)
- Manish Tiwari
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Manisha Yadav
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Vimal Pandey
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Kashif Nawaz
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | |
Collapse
|
36
|
Mamenko TP. Regulation of Legume-Rhizobial Symbiosis: Molecular Genetic Aspects and Participation of Reactive Oxygen Species. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Gühl K, Holmer R, Xiao TT, Shen D, Wardhani TAK, Geurts R, van Zeijl A, Kohlen W. The Effect of Exogenous Nitrate on LCO Signalling, Cytokinin Accumulation, and Nodule Initiation in Medicago truncatula. Genes (Basel) 2021; 12:genes12070988. [PMID: 34203444 PMCID: PMC8305252 DOI: 10.3390/genes12070988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Nitrogen fixation by rhizobia is a highly energy-demanding process. Therefore, nodule initiation in legumes is tightly regulated. Environmental nitrate is a potent inhibitor of nodulation. However, the precise mechanism by which this agent (co)regulates the inhibition of nodulation is not fully understood. Here, we demonstrate that in Medicago truncatula the lipo-chitooligosaccharide-induced accumulation of cytokinins is reduced in response to the application of exogenous nitrate. Under permissive nitrate conditions, perception of rhizobia-secreted signalling molecules leads to an increase in the level of four cytokinins (i.e., iP, iPR, tZ, and tZR). However, under high-nitrate conditions, this increase in cytokinins is reduced. The ethylene-insensitive mutant Mtein2/sickle, as well as wild-type plants grown in the presence of the ethylene biosynthesis inhibitor 2-aminoethoxyvinyl glycine (AVG), is resistant to the inhibition of nodulation by nitrate. This demonstrates that ethylene biosynthesis and perception are required to inhibit nodule organogenesis under high-nitrate conditions.
Collapse
Affiliation(s)
- Kerstin Gühl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Rens Holmer
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ting Ting Xiao
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Defeng Shen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Titis A. K. Wardhani
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - René Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Arjan van Zeijl
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (K.G.); (R.H.); (T.T.X.); (D.S.); (T.A.K.W.); (R.G.); (A.v.Z.)
- Correspondence:
| |
Collapse
|
38
|
Tiwari M, Pandey V, Singh B, Bhatia S. Dynamics of miRNA mediated regulation of legume symbiosis. PLANT, CELL & ENVIRONMENT 2021; 44:1279-1291. [PMID: 33347631 DOI: 10.1111/pce.13983] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Symbiotic nitrogen fixation in legume nodules is important in soils with low nitrogen availability. The initiation and sustainability of symbiosis require cellular reprogramming that involves the miRNA-mediated inhibition or activation of specific nodulation genes. The high-throughput sequencing of small RNA libraries has identified miRNAs and their targets, which are the major players in the post-transcriptional gene regulation (PTGS) of the different stages of legume-rhizobia symbiosis ranging from bacterial colonization and organogenesis to symbiotic nitrogen fixation. Here, we present an overview of information obtained from the miRNA libraries from nodulating tissues that have been sequenced to date. The functional analysis of miRNAs has revealed roles in phytohormone homeostasis and spatio-temporal regulation, as well as the mobility of miRNAs and their functions in shoot to root signalling that affects diverse functions, including bacterial entry, meristem division and differentiation, nitrogen fixation and senescence. Furthermore, small RNA fragments of rhizobial origin repress complementary plant mRNAs. We also consider the roles of miRNAs in determinate or indeterminate nodules. Taken together, this overview confirms that miRNAs are master regulators of the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Manish Tiwari
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Vimal Pandey
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Baljinder Singh
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Sabhyata Bhatia
- Legume Genomics Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
39
|
Costa SR, Ng JLP, Mathesius U. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:470-490. [PMID: 33471549 DOI: 10.1094/mpmi-12-20-0350-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Legumes form two types of root organs in response to signals from microbes, namely, nodules and root galls. In the field, these interactions occur concurrently and often interact with each other. The outcomes of these interactions vary and can depend on natural variation in rhizobia and nematode populations in the soil as well as abiotic conditions. While rhizobia are symbionts that contribute fixed nitrogen to their hosts, parasitic root-knot nematodes (RKN) cause galls as feeding structures that consume plant resources without a contribution to the plant. Yet, the two interactions share similarities, including rhizosphere signaling, repression of host defense responses, activation of host cell division, and differentiation, nutrient exchange, and alteration of root architecture. Rhizobia activate changes in defense and development through Nod factor signaling, with additional functions of effector proteins and exopolysaccharides. RKN inject large numbers of protein effectors into plant cells that directly suppress immune signaling and manipulate developmental pathways. This review examines the molecular control of legume interactions with rhizobia and RKN to elucidate shared and distinct mechanisms of these root-microbe interactions. Many of the molecular pathways targeted by both organisms overlap, yet recent discoveries have singled out differences in the spatial control of expression of developmental regulators that may have enabled activation of cortical cell division during nodulation in legumes. The interaction of legumes with symbionts and parasites highlights the importance of a comprehensive view of root-microbe interactions for future crop management and breeding strategies.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sofia R Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jason Liang Pin Ng
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
40
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
41
|
Mens C, Hastwell AH, Su H, Gresshoff PM, Mathesius U, Ferguson BJ. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. THE NEW PHYTOLOGIST 2021; 229:2525-2534. [PMID: 33067828 DOI: 10.1111/nph.17010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 05/25/2023]
Abstract
Legumes form a symbiosis with atmospheric nitrogen (N2 )-fixing soil rhizobia, resulting in new root organs called nodules that enable N2 -fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.
Collapse
Affiliation(s)
- Celine Mens
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Huanan Su
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
- National Navel Orange Engineering Research Center, School of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Peter M Gresshoff
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| |
Collapse
|
42
|
Quilbé J, Arrighi JF. NSP2, a key symbiotic regulator in the spotlight. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:959-963. [PMID: 33626152 DOI: 10.1093/jxb/eraa540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on:Peng Z, Chen H, Tan L, Shu H, Varshney R.K., Zhou Z, Zhao Z, Luo Z, Chitikineni A, Wang L, Maku J, López Y, Gallo M, Zhou H, Wang J. 2021. Natural polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. Journal of Experimental Botany 72, 1104–1118.
Collapse
Affiliation(s)
- Johan Quilbé
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | | |
Collapse
|
43
|
Soyano T, Liu M, Kawaguchi M, Hayashi M. Leguminous nodule symbiosis involves recruitment of factors contributing to lateral root development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:102000. [PMID: 33454544 DOI: 10.1016/j.pbi.2020.102000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 05/27/2023]
Abstract
Legumes and several plant species in the monophyletic nitrogen-fixing clade produce root nodules that function as symbiotic organs and establish mutualistic relationships with nitrogen-fixing bacteria. The modes of nodule organogenesis are distinct from those of lateral root development and also differ among different types of nodules formed in legumes and actinorhizal plants. It is considered that the evolution of new organs occurs through rearrangement of molecular networks interposed by certain neo-functionalized factors. Accumulating evidence has suggested that root nodule organogenesis involves root or lateral root developmental pathways. This review describes the current knowledge about the factors/pathways acquired by the common ancestor of the nitrogen-fixing clade in order to control nodule organogenesis.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| | - Meng Liu
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (the Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, 230-0045 Kanagawa, Japan
| |
Collapse
|
44
|
Shrestha A, Zhong S, Therrien J, Huebert T, Sato S, Mun T, Andersen SU, Stougaard J, Lepage A, Niebel A, Ross L, Szczyglowski K. Lotus japonicus Nuclear Factor YA1, a nodule emergence stage-specific regulator of auxin signalling. THE NEW PHYTOLOGIST 2021; 229:1535-1552. [PMID: 32978812 PMCID: PMC7984406 DOI: 10.1111/nph.16950] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/05/2020] [Indexed: 05/07/2023]
Abstract
Organogenesis of legume root nodules begins with the nodulation factor-dependent stimulation of compatible root cells to initiate divisions, signifying an early nodule primordium formation event. This is followed by cellular differentiation, including cell expansion and vascular bundle formation, and we previously showed that Lotus japonicus NF-YA1 is essential for this process, presumably by regulating three members of the SHORT INTERNODES/STYLISH (STY) transcription factor gene family. In this study, we used combined genetics, genomics and cell biology approaches to characterize the role of STY genes during root nodule formation and to test a hypothesis that they mediate nodule development by stimulating auxin signalling. We show here that L. japonicus STYs are required for nodule emergence. This is attributed to the NF-YA1-dependent regulatory cascade, comprising STY genes and their downstream targets, YUCCA1 and YUCCA11, involved in a local auxin biosynthesis at the post-initial cell division stage. An analogous NF-YA1/STY regulatory module seems to operate in Medicago truncatula in association with the indeterminate nodule patterning. Our data define L. japonicus and M. truncatula NF-YA1 genes as important nodule emergence stage-specific regulators of auxin signalling while indicating that the inductive stage and subsequent formation of early nodule primordia are mediated through an independent mechanism(s).
Collapse
Affiliation(s)
- Arina Shrestha
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Sihui Zhong
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Jasmine Therrien
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| | - Terry Huebert
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Shusei Sato
- Graduate School of Life SciencesTohoku University2‐1‐1 KatahiraSendai980‐8577Japan
| | - Terry Mun
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDK‐8000Denmark
| | - Agnes Lepage
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes‐Microorganismes (LIPM)Université de Toulouse, Institut National de la Recherche pour l’Agriculturel’Alimentation et l’Environnement (INRAE)Centre National de la Recherche Scientifique (CNRS)Castanet‐Tolosan31326France
| | - Loretta Ross
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri‐Food CanadaLondon Research and Development CentreLondonONN5V 4T3Canada
- Department of BiologyUniversity of Western OntarioLondonONN6A 5BFCanada
| |
Collapse
|
45
|
Chaulagain D, Frugoli J. The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways. Int J Mol Sci 2021; 22:1117. [PMID: 33498783 PMCID: PMC7866212 DOI: 10.3390/ijms22031117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant's response to rhizobia.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
46
|
Xu S, Song S, Dong X, Wang X, Wu J, Ren Z, Wu X, Lu J, Yuan H, Wu X, Li X, Wang Z. GmbZIP1 negatively regulates ABA-induced inhibition of nodulation by targeting GmENOD40-1 in soybean. BMC PLANT BIOLOGY 2021; 21:35. [PMID: 33421994 PMCID: PMC7796624 DOI: 10.1186/s12870-020-02810-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Abscisic acid (ABA) plays an important role in plant growth and adaptation through the ABA signaling pathway. The ABA-responsive element binding (AREB/ABF) family transcriptional factors are central regulators that integrate ABA signaling with various signaling pathways. It has long been known that ABA inhibits rhizobial infection and nodule formation in legumes, but the underlying molecular mechanisms remain elusive. RESULTS Here, we show that nodulation is very sensitive to ABA and exogenous ABA dramatically inhibits rhizobial infection and nodule formation in soybean. In addition, we proved that GmbZIP1, an AREB/ABF transcription factor, is a major regulator in both nodulation and plant response to ABA in soybean. GmbZIP1 was specifically expressed during nodule formation and development. Overexpression of GmbZIP1 resulted in reduced rhizobial infection and decreased nodule number. Furthermore, GmbZIP1 is responsive to ABA, and ectopic overexpression of GmbZIP1 increased sensitivity of Arabidopsis plants to ABA during seed germination and postgerminative growth, and conferred enhanced drought tolerance of plants. Remarkably, we found that GmbZIP1 directly binds to the promoter of GmENOD40-1, a marker gene for nodule formation, to repress its expression. CONCLUSION Our results identified GmbZIP1 as a node regulator that integrates ABA signaling with nodulation signaling to negatively regulate nodule formation.
Collapse
Affiliation(s)
- Shimin Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Shanshan Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xiaoxu Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jun Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Huifang Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xinying Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China.
| |
Collapse
|
47
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
48
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
49
|
Costa SR, Chin S, Mathesius U. Infection of Medicago truncatula by the Root-Knot Nematode Meloidogyne javanica Does Not Require Early Nodulation Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:1050. [PMID: 32733526 PMCID: PMC7363973 DOI: 10.3389/fpls.2020.01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 05/27/2023]
Abstract
Because of the developmental similarities between root nodules induced by symbiotic rhizobia and root galls formed by parasitic nematodes, we investigated the involvement of nodulation genes in the infection of Medicago truncatula by the root knot nematode (RKN), Meloidogyne javanica. We found that gall formation, including giant cell formation, pericycle and cortical cell division, as well as egg laying, occurred successfully in the non-nodulating mutants nfp1 (nod factor perception1), nin1 (nodule inception1) and nsp2 (nodulation signaling pathway2) and the cytokinin perception mutant cre1 (cytokinin receptor1). Gall and egg formation were significantly reduced in the ethylene insensitive, hypernodulating mutant skl (sickle), and to a lesser extent, in the low nodulation, abscisic acid insensitive mutant latd/nip (lateral root-organ defective/numerous infections and polyphenolics). Despite its supernodulation phenotype, the sunn4 (super numeric nodules4) mutant, which has lost the ability to autoregulate nodule numbers, did not form excessive numbers of galls. Co-inoculation of roots with nematodes and rhizobia significantly reduced nodule numbers compared to rhizobia-only inoculated roots, but only in the hypernodulation mutant skl. Thus, this effect is likely to be influenced by ethylene signaling, but is not likely explained by resource competition between galls and nodules. Co-inoculation with rhizobia also reduced gall numbers compared to nematode-only infected roots, but only in the wild type. Therefore, the protective effect of rhizobia on nematode infection does not clearly depend on nodule number or on Nod factor signaling. Our study demonstrates that early nodulation genes that are essential for successful nodule development are not necessary for nematode-induced gall formation, that gall formation is not under autoregulation of nodulation control, and that ethylene signaling plays a positive role in successful RKN parasitism in M. truncatula.
Collapse
Affiliation(s)
- Sofia R. Costa
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CBMA—Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Sabrina Chin
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
50
|
Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. THE NEW PHYTOLOGIST 2020; 227:84-98. [PMID: 32003030 PMCID: PMC7317445 DOI: 10.1111/nph.16462] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 05/04/2023]
Abstract
In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen-fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little-known. We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post-inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1-NO couple in the symbiosis. Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1-NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb-NO respiration to maintain the energetic state. This work highlights the regulatory role played by Phytogb1.1-NO couple in the successive stages of symbiosis.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Sophie Guinand
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alexandre Boscari
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alain Puppo
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Renaud Brouquisse
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| |
Collapse
|