1
|
Ishiguro S, Taniguchi S, Schmidt N, Jost M, Wanke S, Heitkam T, Ohmido N. Repeatome landscapes and cytogenetics of hortensias provide a framework to trace Hydrangea evolution and domestication. ANNALS OF BOTANY 2025; 135:549-564. [PMID: 39847477 PMCID: PMC11897596 DOI: 10.1093/aob/mcae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND AND AIMS Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe. The phenotypic diversity of hortensia cultivars, hybrids and wild relatives is mirrored by their genomic variation, with differences in genome size, base chromosome numbers and ploidy level. We aim to understand the genomic and chromosomal basis of hortensia genome variation. Therefore, we analysed six hortensias with different origins and chromosomal setups for repeatome divergence, the genome fraction with the highest sequence turnover. This holds information from the hortensias' evolutionary paths and can guide breeding initiatives. METHODS We compiled a hortensia genotype panel representing members of the sections Macrophyllae, Hydrangea, Asperae and Heteromallae and reconstructed a plastome-based phylogenetic hypothesis as the evolutionary basis for all our analyses. We comprehensively characterized the repeatomes by whole-genome sequencing and comparative repeat clustering. Major tandem repeats were localized by multicolour FISH. KEY RESULTS The Hydrangea species show differing repeat profiles reflecting their separation into the two major Hydrangea clades: diploid Hydrangea species from Japan show a conserved repeat profile, distinguishing them from Japanese polyploids as well as Chinese and American hortensias. These results are in line with plastome-based phylogenies. The presence of specific repeats indicates that H. paniculata was not polyploidized directly from the common ancestor of Japanese Hydrangea species, but evolved from a distinct progenitor. Major satellite DNAs were detected over all H. macrophylla chromosomes. CONCLUSIONS Repeat composition among the Hydrangea species varies in congruence with their origins and phylogeny. Identified species-specific satDNAs may be used as cytogenetic markers to identify Hydrangea species and cultivars, and to infer parental species of old Hydrangea varieties. This repeatome and cytogenetics information helps to expand the genetic toolbox for tracing hortensia evolution and guiding future hortensia breeding.
Collapse
Affiliation(s)
- Sara Ishiguro
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Shota Taniguchi
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthias Jost
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Abteilung Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| | - Stefan Wanke
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Abteilung Botanik und Molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan
| |
Collapse
|
2
|
Yurkevich OY, Samatadze TE, Zoshchuk SA, Amosova AV, Muravenko OV. Species of the Sections Hedysarum and Multicaulia of the Genus Hedysarum (Fabaceae): Taxonomy, Distribution, Chromosomes, Genomes, and Phylogeny. Int J Mol Sci 2024; 25:8489. [PMID: 39126057 PMCID: PMC11312482 DOI: 10.3390/ijms25158489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The genus Hedysarum L. (Fabaceae) includes about 200 species of annual and perennial herbs distributed in Asia, Europe, North Africa, and North America. Many species of this genus are valuable medicinal, melliferous, and forage resources. In this review, we consider the taxonomic history of the genus Hedysarum, the chromosomal organization of the species from the sections Hedysarum and Multicaulia, as well as phylogenetic relationships between these sections. According to morphological, genetic, and phylogenetic data, the genus Hedysarum is divided into three main sections: Hedysarum (= syn. Gamotion), Multicaulia, and Stracheya. In species of this genus, two basic chromosome numbers, x = 7 (section Hedysarum) and x = 8 (sections Multicaulia and Stracheya), were determined. The systematic positions of some species within the sections are still uncertain due to their morphological similarities. The patterns of distribution of molecular chromosomal markers (45S rDNA, 5S rDNA, and different satellite DNAs) in karyotypes of various Hedysarum species made it possible to determine their ploidy status and also specify genomic relationships within the sections Hedysarum and Multicaulia. Recent molecular phylogenetic studies clarified significantly the taxonomy and evolutionary development of the genus Hedysarum.
Collapse
Affiliation(s)
| | | | | | | | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St, 119991 Moscow, Russia
| |
Collapse
|
3
|
Meyer E, Saldivar EV, Kokot M, Xue B, Deorowicz S, Rhee SY, Salzman J. A reference-free algorithm discovers regulation in the plant transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595613. [PMID: 38826472 PMCID: PMC11142198 DOI: 10.1101/2024.05.23.595613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Most plant genomes and their regulation remain unknown. We used SPLASH - a new, reference-genome free sequence variation detection algorithm - to analyze transcriptional and post-transcriptional regulation from RNA-seq data. We discovered differential homolog expression during maize pollen development, and imbibition-dependent cryptic splicing in Arabidopsis seeds. SPLASH enables discovery of novel regulatory mechanisms, including differential regulation of genes from hybrid parental haplotypes, without the use of alignment to a reference genome.
Collapse
Affiliation(s)
- Elisabeth Meyer
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Evan V Saldivar
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Marek Kokot
- Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland
| | - Bo Xue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Plant Resilience Institute, Departments of Biochemistry and Molecular Biology, Plant Biology, and Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Sebastian Deorowicz
- Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Plant Resilience Institute, Departments of Biochemistry and Molecular Biology, Plant Biology, and Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
- Department of Statistics (by courtesy), Stanford University, Stanford, CA 94305, USA
- Department of Biology (by courtesy), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Mann L, Balasch K, Schmidt N, Heitkam T. High-fidelity (repeat) consensus sequences from short reads using combined read clustering and assembly. BMC Genomics 2024; 25:109. [PMID: 38267856 PMCID: PMC10809544 DOI: 10.1186/s12864-023-09948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Despite the many cheap and fast ways to generate genomic data, good and exact genome assembly is still a problem, with especially the repeats being vastly underrepresented and often misassembled. As short reads in low coverage are already sufficient to represent the repeat landscape of any given genome, many read cluster algorithms were brought forward that provide repeat identification and classification. But how can trustworthy, reliable and representative repeat consensuses be derived from unassembled genomes? RESULTS Here, we combine methods from repeat identification and genome assembly to derive these robust consensuses. We test several use cases, such as (1) consensus building from clustered short reads of non-model genomes, (2) from genome-wide amplification setups, and (3) specific repeat-centred questions, such as the linked vs. unlinked arrangement of ribosomal genes. In all our use cases, the derived consensuses are robust and representative. To evaluate overall performance, we compare our high-fidelity repeat consensuses to RepeatExplorer2-derived contigs and check, if they represent real transposable elements as found in long reads. Our results demonstrate that it is possible to generate useful, reliable and trustworthy consensuses from short reads by a combination from read cluster and genome assembly methods in an automatable way. CONCLUSION We anticipate that our workflow opens the way towards more efficient and less manual repeat characterization and annotation, benefitting all genome studies, but especially those of non-model organisms.
Collapse
Affiliation(s)
- Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Kristin Balasch
- Faculty of Biology, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069, Dresden, Germany.
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, Graz, A-8010, Austria.
| |
Collapse
|
5
|
Islam-Faridi N, Hodnett GL, Zhebentyayeva T, Georgi LL, Sisco PH, Hebard FV, Nelson CD. Cyto-molecular characterization of rDNA and chromatin composition in the NOR-associated satellite in Chestnut (Castanea spp.). Sci Rep 2024; 14:980. [PMID: 38225361 PMCID: PMC10789788 DOI: 10.1038/s41598-023-45879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
The American chestnut (Castanea dentata, 2n = 2x = 24), once known as the "King of the Appalachian Forest", was decimated by chestnut blight during the first half of the twentieth century by an invasive fungus (Cryphonectria parasitica). The Chinese chestnut (C. mollissima, 2n = 2x = 24), in contrast to American chestnut, is resistant to this blight. Efforts are being made to transfer this resistance to American chestnut through backcross breeding and genetic engineering. Both chestnut genomes have been genetically mapped and recently sequenced to facilitate gene discovery efforts aimed at assisting molecular breeding and genetic engineering. To complement and extend this genomic work, we analyzed the distribution and organization of their ribosomal DNAs (35S and 5S rDNA), and the chromatin composition of the nucleolus organizing region (NOR)-associated satellites. Using fluorescent in situ hybridization (FISH), we have identified two 35S (one major and one minor) and one 5S rDNA sites. The major 35S rDNA sites are terminal and sub-terminal in American and Chinese chestnuts, respectively, originating at the end of the short arm of the chromosome, extending through the secondary constriction and into the satellites. An additional 5S locus was identified in certain Chinese chestnut accessions, and it was linked distally to the major 35S site. The NOR-associated satellite in Chinese chestnut was found to comprise a proximal region packed with 35S rDNA and a distinct distal heterochromatic region. In contrast, the American chestnut satellite was relatively small and devoid of the distal heterochromatic region.
Collapse
Affiliation(s)
- Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, Southern Institute of Forest Genetics, USDA Forest Service, Southern Research Station, Texas A&M University, College Station, TX, 77843, USA.
| | - George L Hodnett
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Tetyana Zhebentyayeva
- The Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, 40546, USA
| | - Laura L Georgi
- Meadowview Research Farms, The American Chestnut Foundation, 29010 Hawthorne Drive, Meadowview, VA, 24361, USA
| | - Paul H Sisco
- The American Chestnut Foundation, 50 North Merrimon Ave., Suite 115, Asheville, NC, 28804, USA
| | - Frederick V Hebard
- Meadowview Research Farms, The American Chestnut Foundation, 29010 Hawthorne Drive, Meadowview, VA, 24361, USA
| | - C Dana Nelson
- USDA Forest Service, Southern Research Station, Forest Health Research and Education Center, Lexington, KY, 40546, USA
- USDA Forest Service, Southern Institute of Forest Genetics, Harrison Experimental Forest, 23332 Success Road, Saucier, MS, 39574, USA
| |
Collapse
|
6
|
Liu Q, Ye L, Li M, Wang Z, Xiong G, Ye Y, Tu T, Schwarzacher T, Heslop-Harrison JSP. Genome-wide expansion and reorganization during grass evolution: from 30 Mb chromosomes in rice and Brachypodium to 550 Mb in Avena. BMC PLANT BIOLOGY 2023; 23:627. [PMID: 38062402 PMCID: PMC10704644 DOI: 10.1186/s12870-023-04644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Lyuhan Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd, Guangzhou, 510663, China
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushi Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
7
|
Alisawi O, Richert-Pöggeler KR, Heslop-Harrison J(P, Schwarzacher T. The nature and organization of satellite DNAs in Petunia hybrida, related, and ancestral genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232588. [PMID: 37868307 PMCID: PMC10587573 DOI: 10.3389/fpls.2023.1232588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Introduction The garden petunia, Petunia hybrida (Solanaceae) is a fertile, diploid, annual hybrid species (2n=14) originating from P. axillaris and P. inflata 200 years ago. To understand the recent evolution of the P. hybrida genome, we examined tandemly repeated or satellite sequences using bioinformatic and molecular cytogenetic analysis. Methods Raw reads from available genomic assemblies and survey sequences of P. axillaris N (PaxiN), P. inflata S6, (PinfS6), P. hybrida (PhybR27) and the here sequenced P. parodii S7 (PparS7) were used for graph and k-mer based cluster analysis of TAREAN and RepeatExplorer. Analysis of repeat specific monomer lengths and sequence heterogeneity of the major tandem repeat families with more than 0.01% genome proportion were complemented by fluorescent in situ hybridization (FISH) using consensus sequences as probes to chromosomes of all four species. Results Seven repeat families, PSAT1, PSAT3, PSAT4, PSAT5 PSAT6, PSAT7 and PSAT8, shared high consensus sequence similarity and organisation between the four genomes. Additionally, many degenerate copies were present. FISH in P. hybrida and in the three wild petunias confirmed the bioinformatics data and gave corresponding signals on all or some chromosomes. PSAT1 is located at the ends of all chromosomes except the 45S rDNA bearing short arms of chromosomes II and III, and we classify it as a telomere associated sequence (TAS). It is the most abundant satellite repeat with over 300,000 copies, 0.2% of the genomes. PSAT3 and the variant PSAT7 are located adjacent to the centromere or mid-arm of one to three chromosome pairs. PSAT5 has a strong signal at the end of the short arm of chromosome III in P. axillaris and P.inflata, while in P. hybrida additional interstitial sites were present. PSAT6 is located at the centromeres of chromosomes II and III. PSAT4 and PSAT8 were found with only short arrays. Discussion These results demonstrate that (i) repeat families occupy distinct niches within chromosomes, (ii) they differ in the copy number, cluster organization and homogenization events, and that (iii) the recent genome hybridization in breeding P. hybrida preserved the chromosomal position of repeats but affected the copy number of repetitive DNA.
Collapse
Affiliation(s)
- Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
| | - Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J.S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Johann To Berens P, Golebiewska K, Peter J, Staerck S, Molinier J. UV-B-induced modulation of constitutive heterochromatin content in Arabidopsis thaliana. Photochem Photobiol Sci 2023; 22:2153-2166. [PMID: 37225911 DOI: 10.1007/s43630-023-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Philippe Johann To Berens
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Kinga Golebiewska
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jackson Peter
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Sébastien Staerck
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
9
|
Turco A, Albano A, Medagli P, Wagensommer RP, D’Emerico S. Comparative Cytogenetic of the 36-Chromosomes Genera of Orchidinae Subtribe (Orchidaceae) in the Mediterranean Region: A Summary and New Data. PLANTS (BASEL, SWITZERLAND) 2023; 12:2798. [PMID: 37570952 PMCID: PMC10421308 DOI: 10.3390/plants12152798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
This article provides a summary of the current knowledge on the cytogenetics of four genera, which are all composed of 36 chromosomes, within the Orchidinae subtribe (Orchidaceae). Previous classical studies have revealed differences in karyomorphology among these genera, indicating genomic diversity. The current study includes an analysis of the current knowledge with an update of the karyotype of 47 species with 36 chromosomes from the genera Anacamptis, Serapias, Himantoglossum, and Ophrys. The study discusses comparisons of karyotypes among these genera that used traditional techniques as well as karyotype asymmetry relationships with various asymmetry indices. Additionally, the study reports new findings on polyploidy in Anacamptis pyramidalis and Serapias lingua, which were observed through karyotype and meiotic metaphase analyses in EMC. Moreover, the study detected B chromosomes for the first time in A. papilionacea and A. palustris. The article also describes the use of fluorescent in situ hybridization in some specimens of A. papilionacea and A. collina to locate different sites of the 18S-5.8S-25S rDNA and 5S rDNA ribosomal complexes on chromosomes. The information derived from these cytogenetic analyses was used to refine the classification of these orchids and identify evolutionary relationships among different species and genera.
Collapse
Affiliation(s)
- Alessio Turco
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100 Lecce, Italy; (A.T.); (A.A.); (P.M.)
| | - Antonella Albano
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100 Lecce, Italy; (A.T.); (A.A.); (P.M.)
| | - Pietro Medagli
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100 Lecce, Italy; (A.T.); (A.A.); (P.M.)
| | | | | |
Collapse
|
10
|
Samanta T, Jha TB, Ray S, Jha S. Comparative Cytogenetics and Fluorescent Chromosome Banding in Five Indian Species of Dipcadi Medik. PLANTS (BASEL, SWITZERLAND) 2023; 12:2534. [PMID: 37447096 DOI: 10.3390/plants12132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The genus Dipcadi Medik. (Subfamily: Scilloideae) has a narrow distribution in India and several overlapping morphological traits make the genus taxonomically challenging at the species level. Cytogenetic characterization can provide additional taxonomic data and can be used to evaluate genetic diversity at the species level. We have accomplished comparative karyotype analysis and fluorescence banding patterns using 4'-6-Diamidino-2-phenylindole (DAPI) and Chromomycin A3 (CMA) in five Indian species for the first time. The karyotypes of D. concanense and D. goaense exhibited similar fluorochrome banding profiles. However, D. montanum, D. ursulae and D. erythraeum differ distinctly in their karyotypes. In all taxa, CMA+ve/DAPI-ve or DAPI0 (GC-rich) constitutive heterochromatin was located at the constriction region or terminal satellite of the nucleolar chromosome. DAPI+ve/CMA-ve or CMA0 (AT-rich) heterochromatin dominates in D. montanum, D. ursulae and D. erythraeum. However, D. erythraeum shows a distinct variation in fluorochrome banding pattern from all other species. The distribution of CMA and DAPI bands is a reflection of heterochromatin composition and variations acquired by different species. This characterization can be used to assess phylogenetic relationships in the understudied genus Dipcadi and may serve as a basis for other genomic analyses and evolutionary studies.
Collapse
Affiliation(s)
- Tundra Samanta
- Department of Botany, Calcutta University, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Timir B Jha
- Department of Botany, Maulana Azad College, Kolkata 700013, India
| | - Sudipta Ray
- Department of Botany, Calcutta University, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Sumita Jha
- Department of Botany, Calcutta University, 35, Ballygunge Circular Road, Kolkata 700019, India
| |
Collapse
|
11
|
Joshi P, Ansari H, Dickson R, Ellison NW, Skema C, Tate JA. Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis. ANNALS OF BOTANY 2023; 131:33-44. [PMID: 35390127 PMCID: PMC9904340 DOI: 10.1093/aob/mcac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand. METHODS We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy. KEY RESULTS The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies. CONCLUSIONS Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.
Collapse
Affiliation(s)
- Prashant Joshi
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helal Ansari
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Rowan Dickson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Cynthia Skema
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Morris Arboretum of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Tomaszewska P, Vorontsova MS, Renvoize SA, Ficinski SZ, Tohme J, Schwarzacher T, Castiblanco V, de Vega JJ, Mitchell RAC, Heslop-Harrison JS(P. Complex polyploid and hybrid species in an apomictic and sexual tropical forage grass group: genomic composition and evolution in Urochloa (Brachiaria) species. ANNALS OF BOTANY 2023; 131:87-108. [PMID: 34874999 PMCID: PMC9904353 DOI: 10.1093/aob/mcab147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/06/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Tohme
- International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | - J S (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Zhang F, Chen F, Schwarzacher T, Heslop-Harrison JS, Teng N. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. ANNALS OF BOTANY 2023; 131:215-228. [PMID: 35639931 PMCID: PMC9904347 DOI: 10.1093/aob/mcac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Tandemly repeated DNA and transposable elements represent most of the DNA in higher plant genomes. High-throughput sequencing allows a survey of the DNA in a genome, but whole-genome assembly can miss a substantial fraction of highly repeated sequence motifs. Chrysanthemum nankingense (2n = 2x = 18; genome size = 3.07 Gb; Asteraceae), a diploid reference for the many auto- and allopolyploids in the genus, was considered as an ancestral species and serves as an ornamental plant and high-value food. We aimed to characterize the major repetitive DNA motifs, understand their structure and identify key features that are shaped by genome and sequence evolution. METHODS Graph-based clustering with RepeatExplorer was used to identify and classify repetitive motifs in 2.14 millions of 250-bp paired-end Illumina reads from total genomic DNA of C. nankingense. Independently, the frequency of all canonical motifs k-bases long was counted in the raw read data and abundant k-mers (16, 21, 32, 64 and 128) were extracted and assembled to generate longer contigs for repetitive motif identification. For comparison, long terminal repeat retrotransposons were checked in the published C. nankingense reference genome. Fluorescent in situ hybridization was performed to show the chromosomal distribution of the main types of repetitive motifs. KEY RESULTS Apart from rDNA (0.86 % of the total genome), a few microsatellites (0.16 %), and telomeric sequences, no highly abundant tandem repeats were identified. There were many transposable elements: 40 % of the genome had sequences with recognizable domains related to transposable elements. Long terminal repeat retrotransposons showed widespread distribution over chromosomes, although different sequence families had characteristic features such as abundance at or exclusion from centromeric or subtelomeric regions. Another group of very abundant repetitive motifs, including those most identified as low-complexity sequences (9.07 %) in the genome, showed no similarity to known sequence motifs or tandemly repeated elements. CONCLUSIONS The Chrysanthemum genome has an unusual structure with a very low proportion of tandemly repeated sequences (~1.02 %) in the genome, and a high proportion of low-complexity sequences, most likely degenerated remains of transposable elements. Identifying the presence, nature and genomic organization of major genome fractions enables inference of the evolutionary history of sequences, including degeneration and loss, critical to understanding biodiversity and diversification processes in the genomes of diploid and polyploid Chrysanthemum, Asteraceae and plants more widely.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | | |
Collapse
|
14
|
Mahmoudi S, Mirzaghaderi G. Tools for Drawing Informative Idiograms. Methods Mol Biol 2023; 2672:515-527. [PMID: 37335497 DOI: 10.1007/978-1-0716-3226-0_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Each species has a typical karyotype, which represents the phenotypic appearance of the somatic chromosomes including number, size, and morphology. An idiogram is a diagrammatic representation of the chromosomes showing their relative size, homologous groups, and different cytogenetic landmarks. Chromosomal analysis of cytological preparations is an essential component of many investigations, which involves the calculation of karyotypic parameters and the generation of idiograms. Although various tools are available for karyotype analysis, here we demonstrate karyotype analysis using our recently developed tool named KaryoMeasure. KaryoMeasure is a semi-automated free and user-friendly karyotype analysis software that facilitates data collection from different digital images of metaphase chromosome spreads and calculates a wide variety of chromosomal and karyotypic parameters along with the related standard errors. KaryoMeasure draws idiograms of both diploid and allopolyploid species into a vector-based SVG or PDF image file.
Collapse
Affiliation(s)
- Shoaeib Mahmoudi
- Office of Research Affairs, University of Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
15
|
Schwarzacher T, Liu Q, Pat Heslop-Harrison JS. Plant Cytogenetics: From Chromosomes to Cytogenomics. Methods Mol Biol 2023; 2672:3-21. [PMID: 37335467 DOI: 10.1007/978-1-0716-3226-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chromosomes have been studied since the late nineteenth century in the disciplines of cytology and cytogenetics. Analyzing their numbers, features, and dynamics has been tightly linked to the technical development of preparation methods, microscopes, and chemicals to stain them, with latest continuing developments described in this volume. At the end of the twentieth and beginning of the twenty-first centuries, DNA technology, genome sequencing, and bioinformatics have revolutionized how we see, use, and analyze chromosomes. The advent of in situ hybridization has shaped our understanding of genome organization and behavior by linking molecular sequence information with the physical location along chromosomes and genomes. Microscopy is the best technique to accurately determine chromosome number. Many features of chromosomes in interphase nuclei or pairing and disjunction at meiosis, involving physical movement of chromosomes, can only be studied by microscopy. In situ hybridization is the method of choice to characterize the abundance and chromosomal distribution of repetitive sequences that make up the majority of most plant genomes. These most variable components of a genome are found to be species- and occasionally chromosome-specific and give information about evolution and phylogeny. Multicolor fluorescence hybridization and large pools of BAC or synthetic probes can paint chromosomes and we can follow them through evolution involving hybridization, polyploidization, and rearrangements, important at a time when structural variations in the genome are being increasingly recognized. This volume discusses many of the most recent developments in the field of plant cytogenetics and gives carefully compiled protocols and useful resources.
Collapse
Affiliation(s)
- Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
- South China National Botanical Garden, Guangzhou, China.
| | - Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - J S Pat Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization / Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
16
|
Wang Y, Chen Y, Wei Q, Chen X, Wan H, Sun C. Characterization of repetitive sequences in Dendrobium officinale and comparative chromosomal structures in Dendrobium species using FISH. Gene 2022; 846:146869. [PMID: 36075328 DOI: 10.1016/j.gene.2022.146869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Tandem repeats are one of the most conserved features in the eukaryote genomes. Dendrobium is the third largest genus in family Orchidaceae compromising over 1,200 species. However, the organization of repetitive sequences in Dendrobium species remains unclear. In this study, we performed the identification and characterization of the tandem repeats in D. officinale genome using graph-based clustering and Fluorescence in situ hybridization (FISH). Six major clusters including five satellite DNAs (DofSat1-5) and one 5S rDNA repeat (Dof5S) were identified as tandem repeats. The tandem organization of DofSat5 was verified by PCR amplification and southern blotting. The chromosomal locations of the repetitive DNAs in D. officinale were investigated by FISH using the tandem repeats and oligos probes. The results showed that each of the DofSat5, 5S and 45S rDNA had one pair of strong signals on D. officinale chromosomes. The distribution of repetitive DNAs along chromosomes was also investigated based on genomic in situ hybridization (GISH) among four Dendrobium species. The results suggested complex chromosomal fusion/segmentation and rearrangements during the evolution of Dendrobium species. In conclusion, the present study provides new landmarks for unequival differentiation of the Dendrobium chromosomes and facilitate the understanding the chromosome evolution in Dendrobium speceis.
Collapse
Affiliation(s)
- Yunzhu Wang
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yue Chen
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaoyang Chen
- Seed Management Terminal of Zhejiang, Hangzhou 310021, China.
| | - Hongjian Wan
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chongbo Sun
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
17
|
Makai D, Cseh A, Sepsi A, Makai S. A Multigraph-Based Representation of Hi-C Data. Genes (Basel) 2022; 13:genes13122189. [PMID: 36553456 PMCID: PMC9778156 DOI: 10.3390/genes13122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Chromatin-chromatin interactions and three-dimensional (3D) spatial structures are involved in transcriptional regulation and have a decisive role in DNA replication and repair. To understand how individual genes and their regulatory elements function within the larger genomic context, and how the genome reacts to environmental stimuli, the linear sequence information needs to be interpreted in three-dimensional space, which is still a challenging task. Here, we propose a novel, heuristic approach to represent Hi-C datasets by a whole-genomic pseudo-structure in 3D space. The baseline of our approach is the construction of a multigraph from genomic-sequence data and Hi-C interaction data, then applying a modified force-directed layout algorithm. The resulting layout is a pseudo-structure. While pseudo-structures are not based on direct observation and their details are inherent to settings, surprisingly, they demonstrate interesting, overall similarities of known genome structures of both barley and rice, namely, the Rabl and Rosette-like conformation. It has an exciting potential to be extended by additional omics data (RNA-seq, Chip-seq, etc.), allowing to visualize the dynamics of the pseudo-structures across various tissues or developmental stages. Furthermore, this novel method would make it possible to revisit most Hi-C data accumulated in the public domain in the last decade.
Collapse
Affiliation(s)
- Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
| | - Szabolcs Makai
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
- Department of Cereal Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, 2462 Martonvásár, Hungary
- Correspondence:
| |
Collapse
|
18
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Vozárová R, Wang W, Lunerová J, Shao F, Pellicer J, Leitch IJ, Leitch AR, Kovařík A. Mega-sized pericentromeric blocks of simple telomeric repeats and their variants reveal patterns of chromosome evolution in ancient Cycadales genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:646-663. [PMID: 36065632 PMCID: PMC9827991 DOI: 10.1111/tpj.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Simple telomeric repeats composed of six to seven iterating nucleotide units are important sequences typically found at the ends of chromosomes. Here we analyzed their abundance and homogeneity in 42 gymnosperm (29 newly sequenced), 29 angiosperm (one newly sequenced), and eight bryophytes using bioinformatics, conventional cytogenetic and molecular biology approaches to explore their diversity across land plants. We found more than 10 000-fold variation in the amounts of telomeric repeats among the investigated taxa. Repeat abundance was positively correlated with increasing intragenomic sequence heterogeneity and occurrence at non-telomeric positions, but there was no correlation with genome size. The highest abundance/heterogeneity was found in the gymnosperm genus Cycas (Cycadaceae), in which megabase-sized blocks of telomeric repeats (i.e., billions of copies) were identified. Fluorescent in situ hybridization experiments using variant-specific probes revealed canonical Arabidopsis-type telomeric TTTAGGG repeats at chromosome ends, while pericentromeric blocks comprised at least four major telomeric variants with decreasing abundance: TTTAGGG>TTCAGGG >TTTAAGG>TTCAAGG. Such a diversity of repeats was not found in the sister cycad family Zamiaceae or in any other species analyzed. Using immunocytochemistry, we showed that the pericentromeric blocks of telomeric repeats overlapped with histone H3 serine 10 phosphorylation signals. We show that species of Cycas have amplified their telomeric repeats in centromeric and telomeric positions on telocentric chromosomes to extraordinary high levels. The ancestral chromosome number reconstruction suggests their occurrence is unlikely to be the product of ancient Robertsonian chromosome fusions. We speculate as to how the observed chromosome dynamics may be associated with the diversification of cycads.
Collapse
Affiliation(s)
- Radka Vozárová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
- Department of Experimental Biology, Faculty of ScienceMasaryk University611 37BrnoCzech Republic
| | - Wencai Wang
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jana Lunerová
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| | - Fengqing Shao
- Science and Technology Innovation CentreGuangzhou University of Chinese MedicineGuangzhou510405China
| | - Jaume Pellicer
- Royal Botanic GardensKew, RichmondSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | | | - Andrew R. Leitch
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonE1 4NSUK
| | - Aleš Kovařík
- Department of Molecular EpigeneticsInstitute of Biophysics, Czech Academy of Sciencesv.v.i., Královopolská 135612 65BrnoCzech Republic
| |
Collapse
|
20
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
21
|
Rathore P, Schwarzacher T, Heslop-Harrison JS, Bhat V, Tomaszewska P. The repetitive DNA sequence landscape and DNA methylation in chromosomes of an apomictic tropical forage grass, Cenchrus ciliaris. FRONTIERS IN PLANT SCIENCE 2022; 13:952968. [PMID: 36186069 PMCID: PMC9521199 DOI: 10.3389/fpls.2022.952968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Cenchrus ciliaris is an apomictic, allotetraploid pasture grass widely distributed in the tropical and subtropical regions of Africa and Asia. In this study, we aimed to investigate the genomic organization and characterize some of the repetitive DNA sequences in this species. Due to the apomictic propagation, various aneuploid genotypes are found, and here, we analyzed a 2n = 4x + 3 = 39 accession. The physical mapping of Ty1-copia and Ty3-gypsy retroelements through fluorescence in situ hybridization with a global assessment of 5-methylcytosine DNA methylation through immunostaining revealed the genome-wide distribution pattern of retroelements and their association with DNA methylation. Approximately one-third of Ty1-copia sites overlapped or spanned centromeric DAPI-positive heterochromatin, while the centromeric regions and arms of some chromosomes were labeled with Ty3-gypsy. Most of the retroelement sites overlapped with 5-methylcytosine signals, except for some Ty3-gypsy on the arms of chromosomes, which did not overlap with anti-5-mC signals. Universal retrotransposon probes did not distinguish genomes of C. ciliaris showing signals in pericentromeric regions of all 39 chromosomes, unlike highly abundant repetitive DNA motifs found in survey genome sequences of C. ciliaris using graph-based clustering. The probes developed from RepeatExplorer clusters gave strong in situ hybridization signals, mostly in pericentromeric regions of about half of the chromosomes, and we suggested that they differentiate the two ancestral genomes in the allotetraploid C. ciliaris, likely having different repeat sequence variants amplified before the genomes came together in the tetraploid.
Collapse
Affiliation(s)
- Priyanka Rathore
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangzhou, China
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangzhou, China
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Vishnu Bhat
- Department of Botany, Faculty of Science, University of Delhi, New Delhi, India
| | - Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
22
|
Wu J, Zhang M, Liu J, Huang Y, Xu L, Deng Z, Zhao X. Efficient Anchoring of Erianthus arundinaceus Chromatin Introgressed into Sugarcane by Specific Molecular Markers. Int J Mol Sci 2022; 23:ijms23169435. [PMID: 36012702 PMCID: PMC9408830 DOI: 10.3390/ijms23169435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Erianthus arundinaceus is a valuable gene reservoir for sugarcane improvement. However, insufficient molecular markers for high-accuracy identification and tracking of the introgression status of E. arundinaceus chromatin impede sugarcane breeding. Fortunately, suppression subtractive hybridization (SSH) technology provides an excellent opportunity for the development of high-throughput E. arundinaceus-specific molecular markers at a reasonable cost. In this study, we constructed a SSH library of E. arundinaceus. In total, 288 clones of E. arundinaceus-specific repetitive sequences were screened out and their distribution patterns on chromosomes were characterized by fluorescence in situ hybridization (FISH). A subtelomeric repetitive sequence Ea086 and a diffusive repetitive sequence Ea009, plus 45S rDNA-bearing E. arundinaceus chromosome repetitive sequence EaITS were developed as E. arundinaceus-specific molecular markers, namely, Ea086-128, Ea009-257, and EaITS-278, covering all the E. arundinaceus chromosomes for high-accuracy identification of putative progeny. Both Ea086-128 and Ea009-257 were successfully applied to identify the authenticity of F1, BC1, BC2, BC3, and BC4 progeny between sugarcane and E. arundinaceus. In addition, EaITS-278 was a 45S rDNA-bearing E. arundinaceus chromosome-specific molecular marker for rapid tracking of the inherited status of this chromosome in a sugarcane background. Three BC3 progeny had apparently lost the 45S rDNA-bearing E. arundinaceus chromosome. We reported herein a highly effective and reliable SSH-based technology for discovery of high-throughput E. arundinaceus-specific sequences bearing high potential as molecular markers. Given its reliability and savings in time and efforts, the method is also suitable for development of species-specific molecular markers for other important wild relatives to accelerate introgression of wild relatives into sugarcane.
Collapse
Affiliation(s)
- Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Mingxiao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Liu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| |
Collapse
|
23
|
Becher H, Sampson J, Twyford AD. Measuring the Invisible: The Sequences Causal of Genome Size Differences in Eyebrights ( Euphrasia) Revealed by k-mers. FRONTIERS IN PLANT SCIENCE 2022; 13:818410. [PMID: 35968114 PMCID: PMC9372453 DOI: 10.3389/fpls.2022.818410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Genome size variation within plant taxa is due to presence/absence variation, which may affect low-copy sequences or genomic repeats of various frequency classes. However, identifying the sequences underpinning genome size variation is challenging because genome assemblies commonly contain collapsed representations of repetitive sequences and because genome skimming studies by design miss low-copy number sequences. Here, we take a novel approach based on k-mers, short sub-sequences of equal length k, generated from whole-genome sequencing data of diploid eyebrights (Euphrasia), a group of plants that have considerable genome size variation within a ploidy level. We compare k-mer inventories within and between closely related species, and quantify the contribution of different copy number classes to genome size differences. We further match high-copy number k-mers to specific repeat types as retrieved from the RepeatExplorer2 pipeline. We find genome size differences of up to 230Mbp, equivalent to more than 20% genome size variation. The largest contributions to these differences come from rDNA sequences, a 145-nt genomic satellite and a repeat associated with an Angela transposable element. We also find size differences in the low-copy number class (copy number ≤ 10×) of up to 27 Mbp, possibly indicating differences in gene space between our samples. We demonstrate that it is possible to pinpoint the sequences causing genome size variation within species without the use of a reference genome. Such sequences can serve as targets for future cytogenetic studies. We also show that studies of genome size variation should go beyond repeats if they aim to characterise the full range of genomic variants. To allow future work with other taxonomic groups, we share our k-mer analysis pipeline, which is straightforward to run, relying largely on standard GNU command line tools.
Collapse
Affiliation(s)
- Hannes Becher
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacob Sampson
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex D. Twyford
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Wang Z, Rouard M, Biswas MK, Droc G, Cui D, Roux N, Baurens FC, Ge XJ, Schwarzacher T, Heslop-Harrison P(JS, Liu Q. A chromosome-level reference genome of Ensete glaucum gives insight into diversity and chromosomal and repetitive sequence evolution in the Musaceae. Gigascience 2022; 11:giac027. [PMID: 35488861 PMCID: PMC9055855 DOI: 10.1093/gigascience/giac027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gaetan Droc
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Dongli Cui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Pat (J S) Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
25
|
He Z, Zhang W, Luo X, Huan J. Five Fabaceae Karyotype and Phylogenetic Relationship Analysis Based on Oligo-FISH for 5S rDNA and (AG3T3)3. Genes (Basel) 2022; 13:genes13050768. [PMID: 35627153 PMCID: PMC9141082 DOI: 10.3390/genes13050768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Most Fabaceae have nitrogen fixation abilities and are valuable forage and medicinal resources. However, cytogenetic data of many Fabaceae species are unclear. Karyotypes reveal cytological characteristics and are crucial to understanding the organization and evolution of chromosomes in species. Oligo-FISH can reveal genetic composition and karyotype variation patterns with rapid and efficient results. Karyotype analysis of five Fabaceae species by oligonucleotide probes showed that: Robinia pseudoacacia, karyotype formula 2n = 2x = 20m + 2sm, cytotype 2B, arm ratio 3.4821, eight chromosomes distributed 5S rDNA signal. The karyotype formula of Robinia pseudoacacia ‘idaho’ was 2n = 2x = 20m + 2sm, cytotype 1A, arm ratio 1.8997, and 5S rDNA signal was distributed on six chromosomes. Karyotype of Robinia pseudoacacia f. decaisneana 2n = 2x = 20m + 2sm, cytotype 1B, arm ratio 2.0787, the distribution of eight chromosomes with 5S rDNA signal. Karyotype formula of Styphnolobium japonicum 2n = 2x = 14m + 12sm + 2st, cytotype 2B, arm ratio 2.6847, two chromosomes have 5S rDNA signal. Amorpha fruticose karyotype 2n = 2x = 38m + 2sm, cytotype 1B, arm ratio 3.2058, four chromosomes possessed 5S rDNA signal. Both ends of all species’ chromosomes have (AG3T3)3 signals. The results of this study provide chromosome numbers and a physical map, contributing to the construction of the Oligo-FISH barcode and providing molecular cytogenetics data for Fabaceae.
Collapse
|
26
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
27
|
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M, Ashraf HJ, Khurshid A, Zhang K, Zhang Q, Liu C. Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life (Basel) 2022; 12:521. [PMID: 35455012 PMCID: PMC9026859 DOI: 10.3390/life12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Majid Muhammad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Asim Abbasi
- Department of Zoology, Bahawalpur Campus, University of Central Punjab, Bahawalpur 63100, Pakistan;
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hafiza Javaria Ashraf
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| |
Collapse
|
28
|
Ibiapino A, Báez M, García MA, Costea M, Stefanović S, Pedrosa-Harand A. Karyotype asymmetry in Cuscuta L. subgenus Pachystigma reflects its repeat DNA composition. Chromosome Res 2022; 30:91-107. [PMID: 35089455 DOI: 10.1007/s10577-021-09683-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
Abstract
Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 127-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.
Collapse
Affiliation(s)
- Amalia Ibiapino
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.,Plant Breeding Department, University of Bonn, Bonn, Germany
| | | | - Mihai Costea
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
29
|
Deanna R, Acosta MC, Scaldaferro M, Chiarini F. Chromosome Evolution in the Family Solanaceae. FRONTIERS IN PLANT SCIENCE 2022; 12:787590. [PMID: 35154179 PMCID: PMC8832121 DOI: 10.3389/fpls.2021.787590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
This review summarizes and discusses the knowledge of cytogenetics in Solanaceae, the tomato family, its current applications, and prospects for making progress in fundamental systematic botany and plant evolution. We compile information on basic chromosome features (number, size, morphology) and molecular cytogenetics (chromosome banding and rDNA patterns). These data were mapped onto the Solanaceae family tree to better visualize the changes in chromosome features and evaluate them in a phylogenetic context. We conclude that chromosomal features are important in understanding the evolution of the family, especially in delimiting clades, and therefore it is necessary to continue producing this type of data. The potential for future applications in plant biology is outlined. Finally, we provide insights into understanding the mechanisms underlying Solanaceae's diversification that could substantially contribute to developing new approaches for future research.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| | | | - Marisel Scaldaferro
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - Franco Chiarini
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
30
|
Rosselló JA, Maravilla AJ, Rosato M. The Nuclear 35S rDNA World in Plant Systematics and Evolution: A Primer of Cautions and Common Misconceptions in Cytogenetic Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:788911. [PMID: 35283933 PMCID: PMC8908318 DOI: 10.3389/fpls.2022.788911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
The ubiquitous presence of rRNA genes in nuclear, plastid, and mitochondrial genomes has provided an opportunity to use genomic markers to infer patterns of molecular and organismic evolution as well as to assess systematic issues throughout the tree of life. The number, size, location, and activity of the 35S rDNA cistrons in plant karyotypes have been used as conventional cytogenetic landmarks. Their scrutiny has been useful to infer patterns of chromosomal evolution and the data have been used as a proxy for assessing species discrimination, population differentiation and evolutionary relationships. The correct interpretation of rDNA markers in plant taxonomy and evolution is not free of drawbacks given the complexities derived from the lability of the genetic architecture, the diverse patterns of molecular change, and the fate and evolutionary dynamics of the rDNA units in hybrids and polyploid species. In addition, the terminology used by independent authors is somewhat vague, which often complicates comparisons. To date, no efforts have been reported addressing the potential problems and limitations involved in generating, utilizing, and interpreting the data from the 35S rDNA in cytogenetics. This review discusses the main technical and conceptual limitations of these rDNA markers obtained by cytological and karyological experimental work, in order to clarify biological and evolutionary inferences postulated in a systematic and phylogenetic context. Also, we provide clarification for some ambiguity and misconceptions in terminology usually found in published work that may help to improve the usage of the 35S ribosomal world in plant evolution.
Collapse
|
31
|
Ibiapino A, García MA, Amorim B, Baez M, Costea M, Stefanović S, Pedrosa-Harand A. The Evolution of Cytogenetic Traits in Cuscuta (Convolvulaceae), the Genus With the Most Diverse Chromosomes in Angiosperms. FRONTIERS IN PLANT SCIENCE 2022; 13:842260. [PMID: 35432411 PMCID: PMC9011109 DOI: 10.3389/fpls.2022.842260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Karyotypes are characterized by traits such as chromosome number, which can change through whole-genome duplication and dysploidy. In the parasitic plant genus Cuscuta (Convolvulaceae), chromosome numbers vary more than 18-fold. In addition, species of this group show the highest diversity in terms of genome size among angiosperms, as well as a wide variation in the number and distribution of 5S and 35S ribosomal DNA (rDNA) sites. To understand its karyotypic evolution, ancestral character state reconstructions were performed for chromosome number, genome size, and position of 5S and 35S rDNA sites. Previous cytogenetic data were reviewed and complemented with original chromosome counts, genome size estimates, and rDNA distribution assessed via fluorescence in situ hybridization (FISH), for two, seven, and 10 species, respectively. Starting from an ancestral chromosome number of x = 15, duplications were inferred as the prevalent evolutionary process. However, in holocentric clade (subgenus Cuscuta), dysploidy was identified as the main evolutionary mechanism, typical of holocentric karyotypes. The ancestral genome size of Cuscuta was inferred as approximately 1C = 12 Gbp, with an average genome size of 1C = 2.8 Gbp. This indicates an expansion of the genome size relative to other Convolvulaceae, which may be linked to the parasitic lifestyle of Cuscuta. Finally, the position of rDNA sites varied mostly in species with multiple sites in the same karyotype. This feature may be related to the amplification of rDNA sites in association to other repeats present in the heterochromatin. The data suggest that different mechanisms acted in different subgenera, generating the exceptional diversity of karyotypes in Cuscuta.
Collapse
Affiliation(s)
- Amalia Ibiapino
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | | | - Bruno Amorim
- Postgraduate Program of Biotechnology and Natural Resources of the Amazonia (PPGMBT), State University of Amazonas, Manaus, Brazil
| | - Mariana Baez
- Plant Breeding Department, University of Bonn, Bonn, Germany
| | - Mihai Costea
- Department of Biology, University of Wilfrid Laurier, Waterloo, ON, Canada
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
- *Correspondence: Miguel A. García,
| |
Collapse
|
32
|
Lukjanová E, Řepková J. Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:2518. [PMID: 34834880 PMCID: PMC8621578 DOI: 10.3390/plants10112518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.
Collapse
Affiliation(s)
| | - Jana Řepková
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 611 37 Brno, Czech Republic;
| |
Collapse
|
33
|
Cintra LA, Souza TBD, Parteka LM, Barreto LM, Pereira LFP, Gaeta ML, Guyot R, Vanzela ALL. An 82 bp tandem repeat family typical of 3' non-coding end of Gypsy/TAT LTR retrotransposons is conserved in Coffea spp. pericentromeres. Genome 2021; 65:137-151. [PMID: 34727516 DOI: 10.1139/gen-2021-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coffea spp. chromosomes are very small and accumulate a variety of repetitive DNA families around the centromeres. However, the proximal regions of Coffea chromosomes remain poorly understood, especially regarding the nature and organisation of the sequences. Taking advantage of the genome sequences of C. arabica (2n = 44), C. canephora, and C. eugenioides (C. arabica progenitors with 2n = 22) and good coverage genome sequencing of dozens of other wild Coffea spp., repetitive DNA sequences were identified, and the genomes were compared to decipher particularities of pericentromeric structures. The searches revealed a short tandem repeat (82 bp length) typical of Gypsy/TAT LTR retrotransposons, named Coffea_sat11. This repeat organises clusters with fragments of other transposable elements, comprising regions of non-coding RNA production. Cytogenomic analyses showed that Coffea_sat11 extends from the pericentromeres towards the middle of the chromosomal arms. This arrangement was observed in the allotetraploid C. arabica chromosomes, as well as in its progenitors. This study improves our understanding of the role of the Gypsy/TAT LTR retrotransposon lineage in the organisation of Coffea pericentromeres, as well as the conservation of Coffea_sat11 within the genus. The relationships between fragments of other transposable elements and the functional aspects of these sequences on the pericentromere chromatin were also evaluated. Highlights: A scattered short tandem repeat, typical of Gypsy/TAT LTR retrotransposons, associated with several fragments of other transposable elements, accumulates in the pericentromeres of Coffea chromosomes. This arrangement is preserved in all clades of the genus and appears to have a strong regulatory role in the organisation of chromatin around centromeres.
Collapse
Affiliation(s)
- Leonardo Adabo Cintra
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| | - Thaíssa Boldieri de Souza
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| | - Letícia Maria Parteka
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| | - Lucas Mesquita Barreto
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil.,Programa de Pós-graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| | | | - Marcos Letaif Gaeta
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| | - Romain Guyot
- Institut de Recherche pour le Développement, CIRAD, Université Montpellier, 34394, Montpellier, France.,Department of Electronics and Automation, Universidad Autónoma de Manizales, 170002, Manizales, Caldas, Colombia
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, 86097-570, Paraná, Brazil
| |
Collapse
|
34
|
Molecular Karyotyping on Populus simonii × P. nigra and the Derived Doubled Haploid. Int J Mol Sci 2021; 22:ijms222111424. [PMID: 34768855 PMCID: PMC8584087 DOI: 10.3390/ijms222111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular karyotype could represent the basic genetic make-up in a cell nucleus of an organism or species. A doubled haploid (DH) is a genotype formed from the chromosome doubling of haploid cells. In the present study, molecular karyotype analysis of the poplar hybrid Populus simonii × P. nigra (P. xiaohei) and the derived doubled haploids was carried out with labeled telomeres, rDNA, and two newly repetitive sequences as probes by fluorescence in situ hybridization (FISH). The tandem repeats, pPC349_XHY and pPD284_XHY, with high-sequence homology were used, and the results showed that they presented the colocalized distribution signal in chromosomes. For P. xiaohei, pPD284_XHY produced hybridizations in chromosomes 1, 5, 8, and 9 in the hybrid. The combination of pPD284_XHY, 45S rDNA, and 5S rDNA distinctly distinguished six pairs of chromosomes, and the three pairs of chromosomes showed a significant difference in the hybridization between homologous chromosomes. The repeat probes used produced similar FISH hybridizations in the DH; nevertheless, pPD284_XHY generated an additional hybridization site in the telomere region of chromosome 14. Moreover, two pairs of chromosomes showed differential hybridization distributions between homologous chromosomes. Comparisons of the distinguished chromosomes between hybrid and DH poplar showed that three pairs of chromosomes in the DH presented hybridization patterns that varied from those of the hybrid. The No. 8 chromosome in DH and one of the homologous chromosomes in P. xiaohei shared highly similar FISH patterns, which suggested the possibility of intact or mostly partial transfer of the chromosome between the hybrid and DH. Our study will contribute to understanding the genetic mechanism of chromosomal variation in P. xiaohei and derived DH plants.
Collapse
|
35
|
Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, Zulkifli MA, Heslop-Harrison JSP. Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species. Chromosome Res 2021; 29:373-390. [PMID: 34657216 DOI: 10.1007/s10577-021-09675-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.
Collapse
Affiliation(s)
- Noorhariza Mohd Zaki
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | | | - Rajinder Singh
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nordiana Hanim Mohd Nor
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Azwan Zulkifli
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | |
Collapse
|
36
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
37
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
38
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
39
|
Abstract
Hibiscus exhibits high variation in chromosome number both within and among species. The Hibiscus mutabilis L. karyotype was analyzed in detail using fluorescence in situ hybridization (FISH) with oligonucleotide probes for (AG3T3)3 and 5S rDNA, which were tested here for the first time. In total, 90 chromosomes were counted in prometaphase and metaphase, and all exhibited similarly intense (AG3T3)3 signals at both ends. (AG3T3)3 showed little variation and thus did not allow discrimination among H. mutabilis chromosomes, but its location at both ends confirmed the integrity of each chromosome, thus contributing to accurate counting of the numerous, small chromosomes. Oligo-5S rDNA marked the proximal/distal regions of six chromosomes: weak signals on chromosomes 7 and 8, slightly stronger signals on chromosomes 15 and 16, and very strong signals on chromosomes 17 and 18. Therefore, 5S rDNA could assist in chromosome identification in H. mutabilis. Metaphase chromosome lengths ranged from 3.00 to 1.18 μm, indicating small chromosomes. The ratios of longest to shortest chromosome length in prometaphase and metaphase were 2.58 and 2.54, respectively, indicating karyotype asymmetry in H. mutabilis. These results provide an exact chromosome number and a physical map, which will be useful for genome assembly and contribute to molecular cytogenetics in the genus Hibiscus.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| | - Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China.,College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, China
| |
Collapse
|
40
|
Sader M, Vaio M, Cauz-Santos LA, Dornelas MC, Vieira MLC, Melo N, Pedrosa-Harand A. Large vs small genomes in Passiflora: the influence of the mobilome and the satellitome. PLANTA 2021; 253:86. [PMID: 33792791 DOI: 10.1007/s00425-021-03598-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
While two lineages of retrotransposons were more abundant in larger Passiflora genomes, the satellitome was more diverse and abundant in the smallest genome analysed. Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within Passiflora genus, a tenfold variation in genome size, not attributed to polyploidy, is known. Here, we applied a combined in silico and cytological approach to study the organization and diversification of repetitive elements in three species of this genus representing its known range in genome size variation. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons as the most abundant elements in the three genomes, showing a considerable variation among species. Satellite DNAs (satDNAs) were less representative, but highly diverse between subgenera. Our results clearly confirm that the largest genome species (Passiflora quadrangularis) presents a higher accumulation of repetitive DNA sequences, specially Angela and Tekay elements, making up most of its genome. Passiflora cincinnata, with intermediate genome and from the same subgenus, showed similarity with P. quadrangularis regarding the families of repetitive DNA sequences, but in different proportions. On the other hand, Passiflora organensis, the smallest genome, from a different subgenus, presented greater diversity and the highest proportion of satDNA. Altogether, our data indicates that while large genomes evolved by an accumulation of retrotransposons, the smallest genome known for the genus has evolved by diversification of different repeat types, particularly satDNAs.
Collapse
Affiliation(s)
- Mariela Sader
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Luiz Augusto Cauz-Santos
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | | | - Maria Lucia Carneiro Vieira
- Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Natoniel Melo
- Laboratory of Biotechnology, Embrapa Semiarid, Petrolina, Pernambuco, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
41
|
Dai Y, Huang S, Sun G, Li H, Chen S, Gao Y, Chen J. Origins and chromosome differentiation of Thinopyrum elongatum revealed by PepC and Pgk1 genes and ND-FISH. Genome 2021; 64:901-913. [PMID: 33596125 DOI: 10.1139/gen-2019-0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thinopyrum elongatum is an important gene pool for wheat genetic improvement. However, the origins of the Thinopyrum genomes and the nature of the genus' intraspecific relationships are still controversial. In this study, we used single-copy nuclear genes and non-denaturing fluorescence in situ hybridization (ND-FISH) to characterize genome constitution and chromosome differentiation in Th. elongatum. According to phylogenetic analyses based on PepC and Pgk1 genes, there was an E genome with three versions (Ee, Eb, Ex) and St genomes in the polyploid Th. elongatum. The ND-FISH results of pSc119.2 and pAs1 revealed that the karyotypes of diploid Th. elongatum and Th. bessarabicum were different, and the chromosome differentiation occurred among accessions of the diploid Th. elongatum. In addition, the tetraploid Th. elongatum has two groups of ND-FISH karyotype, indicating that the tetraploid Th. elongatum might be a segmental allotetraploid. In summary, our results suggested that the diploid Th. elongatum, Th. Bessarabicum, and Pseudoroegneria were the donors of the Ee, Eb, and St genomes to the polyploid Th. elongatum, respectively.
Collapse
Affiliation(s)
- Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.,Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shuai Huang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Haifeng Li
- Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Shiqiang Chen
- Institute of Agricultural Sciences, Lixia River Region, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, Stelmach K, Koblížková A, Doležel J, Macas J. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. THE NEW PHYTOLOGIST 2021; 229:2365-2377. [PMID: 33090498 DOI: 10.1111/nph.17003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
The parasitic genus Cuscuta (Convolvulaceae) is exceptional among plants with respect to centromere organization, including both monocentric and holocentric chromosomes, and substantial variation in genome size and chromosome number. We investigated 12 species representing the diversity of the genus in a phylogenetic context to reveal the molecular and evolutionary processes leading to diversification of their genomes. We measured genome sizes and investigated karyotypes and centromere organization using molecular cytogenetic techniques. We also performed low-pass whole genome sequencing and comparative analysis of repetitive DNA composition. A remarkable 102-fold variation in genome sizes (342-34 734 Mbp/1C) was detected for monocentric Cuscuta species, while genomes of holocentric species were of moderate sizes (533-1545 Mbp/1C). The genome size variation was primarily driven by the differential accumulation of LTR-retrotransposons and satellite DNA. The transition to holocentric chromosomes in the subgenus Cuscuta was associated with loss of histone H2A phosphorylation and elimination of centromeric retrotransposons. In addition, basic chromosome number of holocentric species (x = 7) was smaller than in monocentrics (x = 15 or 16). We demonstrated that the transition to holocentricity in Cuscuta was accompanied by significant changes in epigenetic marks, chromosome number and the repetitive DNA sequence composition.
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Ludmila Oliveira
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Tae-Soo Jang
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Petr Novák
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Katarzyna Stelmach
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 29 Listopada 54, Krakow, 31-425, Poland
| | - Andrea Koblížková
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, CZ-779 00, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
43
|
Chromosome change and karyotype differentiation–implications in speciation and plant systematics. THE NUCLEUS 2021. [DOI: 10.1007/s13237-020-00343-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Richert-Pöggeler KR, Vijverberg K, Alisawi O, Chofong GN, Heslop-Harrison JS(P, Schwarzacher T. Participation of Multifunctional RNA in Replication, Recombination and Regulation of Endogenous Plant Pararetroviruses (EPRVs). FRONTIERS IN PLANT SCIENCE 2021; 12:689307. [PMID: 34234799 PMCID: PMC8256270 DOI: 10.3389/fpls.2021.689307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 05/11/2023]
Abstract
Pararetroviruses, taxon Caulimoviridae, are typical of retroelements with reverse transcriptase and share a common origin with retroviruses and LTR retrotransposons, presumably dating back 1.6 billion years and illustrating the transition from an RNA to a DNA world. After transcription of the viral genome in the host nucleus, viral DNA synthesis occurs in the cytoplasm on the generated terminally redundant RNA including inter- and intra-molecule recombination steps rather than relying on nuclear DNA replication. RNA recombination events between an ancestral genomic retroelement with exogenous RNA viruses were seminal in pararetrovirus evolution resulting in horizontal transmission and episomal replication. Instead of active integration, pararetroviruses use the host DNA repair machinery to prevail in genomes of angiosperms, gymnosperms and ferns. Pararetrovirus integration - leading to Endogenous ParaRetroViruses, EPRVs - by illegitimate recombination can happen if their sequences instead of homologous host genomic sequences on the sister chromatid (during mitosis) or homologous chromosome (during meiosis) are used as template. Multiple layers of RNA interference exist regulating episomal and chromosomal forms of the pararetrovirus. Pararetroviruses have evolved suppressors against this plant defense in the arms race during co-evolution which can result in deregulation of plant genes. Small RNAs serve as signaling molecules for Transcriptional and Post-Transcriptional Gene Silencing (TGS, PTGS) pathways. Different populations of small RNAs comprising 21-24 nt and 18-30 nt in length have been reported for Citrus, Fritillaria, Musa, Petunia, Solanum and Beta. Recombination and RNA interference are driving forces for evolution and regulation of EPRVs.
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- *Correspondence: Katja R. Richert-Pöggeler,
| | - Kitty Vijverberg
- Naturalis Biodiversity Center, Evolutionary Ecology Group, Leiden, Netherlands
- Radboud University, Institute for Water and Wetland Research (IWWR), Nijmegen, Netherlands
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | - Gilbert N. Chofong
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
45
|
Wei L, Liu B, Zhang C, Yu Y, Yang X, Dou Q, Dong Q. Identification and characterization of satellite DNAs in Poa L. Mol Cytogenet 2020; 13:47. [PMID: 33292401 PMCID: PMC7670724 DOI: 10.1186/s13039-020-00518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poa L. is a large genus of grass in Gramineae, among which P. pratensis is widely cultivated as turf and forage. Satellite DNA is the main components of the plant genome. Information of satellites will helpful for dissection the genome composition and definition of the phylogeny relationship of these species. However, the knowledge about the satellites in genus Poa is still limited. RESULTS Four satellite DNAs were identified using the Repeat Explorer pipeline in HiSeq Illumina reads from diploid plants in P. malaca (2n = 26). Two satellites showed high similarity with the previously identified PpTr-1 and PpTr-3, whereas two others are newly identified with the monomer of 326 bp (Poa-326) and 353 bp (Poa-353) respectively. The clone DNAs of PpTr-1 and PpTr-3, and oligonucleotides designed representing satellites Poa-326 and Poa-353 were probed to test on chromosomes across 13 Poa speceis with different polyploidy level by fluorescent in situ hybridization (FISH). PpTr-1, PpTr-3, and Poa-362 were stably positioned in the subtelomeric regions in nearly all species with the variation of hybridization sites number. However, Poa-353 showed different FISH patterns of multiple regions with the variation of hybridization intensity and distribution sites across species. In addition, 5S rDNA and 45S rDNA were used to characterize the genome of the Poa species. Four rDNA FISH patterns were revealed in the tested species. CONCLUSION Four identified satellite were high conservable across Poa species. Genome distribution of these satellites can be characterized by FISH. The variation of satellite DNAs and rDNA chromosomal distributions between species provide useful information for phylogenetic analysis in genus Poa.
Collapse
Affiliation(s)
- Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Bo Liu
- Key Laboratory of Crop Molecular Breeding Qinghai Province, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, 810008, Qinghai Province, China
| | - Chunping Zhang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Yang Yu
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Xiaoxia Yang
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China
| | - Quanwen Dou
- Key Laboratory of Crop Molecular Breeding Qinghai Province, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, 810008, Qinghai Province, China.
| | - Quanmin Dong
- State Key Laboratory of Plateau Ecology and Agriculture in the Three River Head Waters Region, Qinghai Academy of Animal and Veterinary Science, Xining, 810001, Qinghai Province, China.
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, No. 1 of Weier Road in Shengwuyuan District of Xining City, Xining, 810016, Qinghai Province, China.
| |
Collapse
|
46
|
Ali HBM, Osman SA. Ribosomal DNA localization on Lathyrus species chromosomes by FISH. J Genet Eng Biotechnol 2020; 18:63. [PMID: 33079306 PMCID: PMC7575666 DOI: 10.1186/s43141-020-00075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart, Lathyrus nissolia L., and Lathyrus articulates L. RESULTS The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L. amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed the loci of the two types of rDNA on different chromosomes. CONCLUSION The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.
Collapse
Affiliation(s)
- Hoda B. M. Ali
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| | - Samira A. Osman
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, P.O. 12622 Egypt
| |
Collapse
|
47
|
Mata-Sucre Y, Sader M, Van-Lume B, Gagnon E, Pedrosa-Harand A, Leitch IJ, Lewis GP, Souza G. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). PLANTA 2020; 252:49. [PMID: 32918627 DOI: 10.1007/s00425-020-03453-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 05/25/2023]
Abstract
Cytogenomic characterization of Erythrostemon hughesii reveals a heterogeneity of repeats in its subtelomeric heterochromatin. Comparative analyses with other Caesalpinia group species reveal a significant reduction in the abundance of Ty3-gypsy/Chromovirus Tekay retrotransposons during its evolution. In numerically stable karyotypes, repetitive DNA variability is one of the main causes of genome and chromosome variation and evolution. Species from the Caesalpinia group (Leguminosae) are karyotypically characterized by 2n = 24, with small chromosomes and highly variable CMA+ heterochromatin banding patterns that correlate with environmental variables. Erythrostemon hughesii differs from other species of the group examined to date for having subtelomeric CMA+ bands; this contrasts with most species in the group which have proximal bands. Here we analyse the repeatome of E. hughesii using genome skimming and chromosomal mapping approaches to characterize the identity of the most abundant repetitive elements and their physical location. The repetitive fraction of E. hughesii comprises 28.73% of the genome. The most abundant elements were retrotransposons (RT) with long terminal repeats (LTR-RT; 9.76%) and satellite DNAs (7.83%). Within the LTR-RTs, the most abundant lineages were: Ty1/copia-Ale (1%), Ty3/gypsy CRM (0.88%) and Ty3/gypsy Athila (0.75%). Using fluorescent in situ hybridization four satellite DNAs and several LTR-RT elements were shown to be present in most subtelomeric CMA+ bands. These results highlight how the repeatome in E. hughesii, a species from Oaxaca state in Mexico, is clearly distinct from Northeast Brazilian species of the Caesalpinia group, mainly due to its high diversity of repeats in its subtelomeric heterochromatic bands and low amount of LTR-RT Ty3/gypsy-Tekay elements. Comparative sequence analysis of Tekay elements from different species is congruent with a clade-specific origin of this LTR-RT after the divergence of the Caesalpinia group. We hypothesize that repeat-rich heterochromatin may play a role in leading to faster genomic divergence between individuals, increasing speciation and diversification.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Mariela Sader
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Edeline Gagnon
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5NZ, UK
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Ilia J Leitch
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UK
| | - Gwilym P Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
48
|
Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z. Comparative Chromosomal Localization of 45S and 5S rDNA Sites in 76 Purple-Fleshed Sweet Potato Cultivars. PLANTS 2020; 9:plants9070865. [PMID: 32650507 PMCID: PMC7412053 DOI: 10.3390/plants9070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.
Collapse
Affiliation(s)
- Dan Su
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Lei Chen
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Jianying Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Luyue Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Runfei Gao
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Qiang Li
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Yonghua Han
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| |
Collapse
|
49
|
Heitkam T, Weber B, Walter I, Liedtke S, Ost C, Schmidt T. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:32-52. [PMID: 31981259 DOI: 10.1111/tpj.14705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/10/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co-evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn-over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3-6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.
Collapse
Affiliation(s)
- Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ines Walter
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Susan Liedtke
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Charlotte Ost
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Thomas Schmidt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
50
|
She CW, Mao Y, Jiang XH, He CP. Comparative molecular cytogenetic characterization of five wild Vigna species (Fabaceae). COMPARATIVE CYTOGENETICS 2020; 14:243-264. [PMID: 32676173 PMCID: PMC7334243 DOI: 10.3897/compcytogen.v14i2.51154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
To extend our knowledge on karyotype variation of the genus Vigna Savi, 1824, the chromosomal organization of rRNA genes and fluorochrome banding patterns of five wild Vigna species were studied. Sequential combined PI (propidium iodide) and DAPI (4',6-diamidino-2-phenylindole) (CPD) staining and fluorescence in situ hybridization (FISH) with 5S and 45S rDNA probes were used to analyze the karyotypes of V. luteola (Jacquin, 1771) Bentham, 1959, V. vexillata (Linnaeus, 1753) A. Richard, 1845, V. minima (Roxburgh, 1832) Ohwi & H. Ohashi, 1969, V. trilobata (Linnaeus, 1753) Verdcourt, 1968, and V. caracalla (Linnaeus, 1753) Verdcourt,1970. For further phylogenetic analysis, genomic in situ hybridization (GISH) with the genomic DNA of V. umbellata (Thunberg, 1794) Ohwi & H.Ohashi, 1969 onto the chromosomes of five wild Vigna species was also performed. Detailed karyotypes were established for the first time using chromosome measurements, fluorochrome bands, and rDNA-FISH signals. All species had chromosome number 2n = 2x = 22, and symmetrical karyotypes that composed of only metacentric or metacentric and submetacentric chromosomes. CPD staining revealed all 45S rDNA sites in the five species analyzed, (peri)centromeric GC-rich heterochromatin in V. luteola, V. trilobata and V. caracalla, interstitial GC-rich and pericentromeric AT-rich heterochromatin in V. caracalla. rDNA-FISH revealed two 5S loci in V. caracalla and one 5S locus in the other four species; one 45S locus in V. luteola and V. caracalla, two 45S loci in V. vexillata and V. trilobata, and five 45S loci in V. minima. The karyotypes of the studied species could be clearly distinguished by the karyotypic parameters, and the patterns of the fluorochrome bands and the rDNA sites, which revealed high interspecific variation among the five species. The V. umbellata genomic DNA probe produced weak signals in all proximal regions of V. luteola and all (peri)centromeric regions of V. trilobata. The combined data demonstrate that distinct genome differentiation has occurred among the five species during evolution. The phylogenetic relationships between the five wild species and related cultivated species of Vigna are discussed based on our present and previous molecular cytogenetic data.
Collapse
Affiliation(s)
- Chao-Wen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Ying Mao
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Xiang-Hui Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- Key Laboratory of Xiangxi Medicinal Plant and Ethnobotany of Hunan Higher Education, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
- College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| | - Chun-Ping He
- College of Chemistry and Material Engineering, Huaihua University, Huaihua, Hunan, 418008, ChinaHuaihua UniversityHuaihuaChina
| |
Collapse
|