1
|
Manon J, Evrard R, Maistriaux L, Fieve L, Xhema D, Heller U, Broeck LVD, Vettese J, Boisson J, Schubert T, Lengele B, Behets C, Cornu O. HLA Awareness in tissue decellularization: A paradigm shift for enhanced biocompatibility, studied on the model of the human fascia lata graft. Biomaterials 2025; 312:122741. [PMID: 39121727 DOI: 10.1016/j.biomaterials.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.
Collapse
Affiliation(s)
- Julie Manon
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium.
| | - Robin Evrard
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Louis Maistriaux
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Lies Fieve
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Daela Xhema
- UCLouvain - IREC, Transplantation and Experimental Surgery Lab (CHEX), Avenue Hippocrate 55 - B1.55.04, 1200 Brussels, Belgium
| | - Ugo Heller
- APHP, Necker Enfants Malades, Unit of Maxillofacial Surgery and Plastic Surgery, Paris, France; IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Lucien Van Den Broeck
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Julia Vettese
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium
| | - Jean Boisson
- IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Thomas Schubert
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Benoît Lengele
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Plastic and Reconstructive Surgery, Brussels 1200, Belgium
| | - Catherine Behets
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Olivier Cornu
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| |
Collapse
|
2
|
Chiang HJ, Chuang YH, Li CW, Lin CC, Eng HL, Chen CL, Cheng YF, Chou MC. Usefulness of Diffusion-Weighted Imaging in Evaluating Acute Cellular Rejection and Monitoring Treatment Response in Liver Transplant Recipients. Diagnostics (Basel) 2024; 14:807. [PMID: 38667453 PMCID: PMC11049147 DOI: 10.3390/diagnostics14080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute cellular rejection (ACR) is a significant immune issue among recipients following liver transplantation. Although diffusion-weighted magnetic resonance imaging (DWI) is widely used for diagnosing liver disease, it has not yet been utilized for monitoring ACR in patients after liver transplantation. Therefore, the aim of this study was to evaluate the efficacy of DWI in monitoring treatment response among recipients with ACR. This study enrolled 25 recipients with highly suspected ACR rejection, and all subjects underwent both biochemistry and DWI scans before and after treatment. A pathological biopsy was performed 4 to 24 h after the first MRI examination to confirm ACR and degree of rejection. All patients were followed up and underwent a repeated MRI scan when their liver function returned to the normal range. After data acquisition, the DWI data were post-processed to obtain the apparent diffusion coefficient (ADC) map on a voxel-by-voxel basis. Five regions of interest were identified on the liver parenchyma to measure the mean ADC values from each patient. Finally, the mean ADC values and biochemical markers were statistically compared between ACR and non-ACR groups. A receiver operating characteristic (ROC) curve was constructed to evaluate the performance of the ADC and biochemical data in detecting ACR, and correlation analysis was used to understand the relationship between the ADC values, biochemical markers, and the degree of rejection. The histopathologic results revealed that 20 recipients had ACR, including 10 mild, 9 moderate, and 1 severe rejection. The results demonstrated that the ACR patients had significantly lower hepatic ADC values than those in patients without ACR. After treatment, the hepatic ADC values in ACR patients significantly increased to levels similar to those in non-ACR patients with treatment. The ROC analysis showed that the sensitivity and specificity for detecting ACR were 80% and 95%, respectively. Furthermore, the correlation analysis revealed that the mean ADC value and alanine aminotransferase level had strong and moderate negative correlation with the degree of rejection, respectively (r = -0.72 and -0.47). The ADC values were useful for detecting hepatic ACR and monitoring treatment response after immunosuppressive therapy.
Collapse
Affiliation(s)
- Hsien-Jen Chiang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-J.C.); (Y.-H.C.)
- Department of Diagnostic Radiology, Kaohsiung Municipal Feng Shan Hospital—Under the Management of Chang Gung Medical Foundation, Kaohsiung 83062, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hsuan Chuang
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-J.C.); (Y.-H.C.)
| | - Chun-Wei Li
- Department of Medical Imaging and Radiological Sciences, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Chih-Che Lin
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-C.L.); (C.-L.C.)
- Department of Surgery, Kaohsiung Municipal Feng Shan Hospital—Under the Management of Chang Gung Medical Foundation, Kaohsiung 83062, Taiwan
| | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chao-Long Chen
- Liver Transplantation Center, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-C.L.); (C.-L.C.)
| | - Yu-Fan Cheng
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-J.C.); (Y.-H.C.)
| | - Ming-Chung Chou
- Department of Medical Imaging and Radiological Sciences, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Parmar M, Perrier AL. Introduction to stem cell biology and its role in treating neurologic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:3-14. [PMID: 39341661 DOI: 10.1016/b978-0-323-90120-8.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Regenerative medicine is an emerging and rapidly evolving field of research and therapeutics aimed to restore, maintain, and improve body functions. In the adult mammalian brain, very few neurons, if any, are generated after disease onset or an injury, and its ability to self-repair is therefore limited. Replacing neurons that are lost during neurodegenerative diseases or due to injury therefore represents one of the major challenges to modern medicine. In this introductory chapter, we describe the basic biology of stem cells and outline how stem cells and cell reprogramming can be utilized to create new neurons for therapeutic purposes that are discussed in detail in other chapters in this handbook.
Collapse
Affiliation(s)
- Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Anselme L Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: mécanismes, thérapies, imagerie, Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Crivello P, Arrieta-Bolaños E, He M, Wang T, Fingerson S, Gadalla SM, Paczesny S, Marsh SG, Lee SJ, Spellman SR, Bolon YT, Fleischhauer K. Impact of the HLA Immunopeptidome on Survival of Leukemia Patients After Unrelated Donor Transplantation. J Clin Oncol 2023; 41:2416-2427. [PMID: 36669145 PMCID: PMC10150892 DOI: 10.1200/jco.22.01229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/10/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Immunopeptidome divergence between mismatched HLA-DP is a determinant of T-cell alloreactivity and clinical tolerability after fully HLA-A, -B, -C, -DRB1, -DQB1 matched unrelated donor hematopoietic cell transplantation (UD-HCT). Here, we tested this concept in HLA-A, -B, and -C disparities after single class I HLA-mismatched UD-HCT. PATIENTS AND METHODS We studied 2,391 single class I HLA-mismatched and 14,426 fully HLA-matched UD-HCT performed between 2008 and 2018 for acute leukemia or myelodysplastic syndromes. Hierarchical clustering of experimentally determined peptide-binding motifs (PBM) was used as a proxy for immunopeptidome divergence of HLA-A, -B, or -C disparities, allowing us to classify 1,629/2,391 (68.1%) of the HLA-mismatched UD-HCT as PBM-matched or PBM-mismatched. Risks associated with PBM-matching status were assessed by Cox proportional hazards models, with overall survival (OS) as the primary end point. RESULTS Relative to full matches, bidirectional or unidirectional PBM mismatches in graft-versus-host (GVH) direction (PBM-GVH mismatches, 60.7%) were associated with significantly lower OS (hazard ratio [HR], 1.48; P < .0001), while unidirectional PBM mismatches in host-versus-graft direction or PBM matches (PBM-GVH matches, 39.3%) were not (HR, 1.13; P = .1017). PBM-GVH mismatches also had significantly lower OS than PBM-GVH matches in direct comparison (HR, 1.32; P = .0036). The hazards for transplant-related mortality and acute and chronic graft-versus-host disease but not relapse increased stepwise from full HLA matches to single PBM-GVH matches, and single PBM-GVH mismatches. A webtool for PBM-matching of single class I HLA-mismatched donor-recipient pairs was developed. CONCLUSION PBM-GVH mismatches inform mortality risks after single class I HLA-mismatched UD-HCT, suggesting that prospective consideration of directional PBM-matching status might improve outcome. These findings highlight immunopeptidome divergence between mismatched HLA as a driver of clinical tolerability in UD-HCT.
Collapse
Affiliation(s)
- Pietro Crivello
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
| | - Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen/Düsseldorf (DKTK), Heidelberg, Germany
| | - Meilun He
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, CIBMTR (Center for International Blood and Marrow Transplant Research), Milwaukee, WI
| | - Stephanie Fingerson
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology and Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven G.E. Marsh
- Anthony Nolan Research Institute and University College London Cancer Institute, Royal Free Campus, London, United Kingdom
| | - Stephanie J. Lee
- Department of Medicine, Medical College of Wisconsin, CIBMTR (Center for International Blood and Marrow Transplant Research), Milwaukee, WI
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stephen R. Spellman
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Yung-Tsi Bolon
- CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium, partner site Essen/Düsseldorf (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Mugaanyi J, Tong J, Lu C, Mao S, Huang J, Lu C. Risk factors for acute rejection in liver transplantation and its impact on the outcomes of recipients. Transpl Immunol 2023; 76:101767. [PMID: 36470573 DOI: 10.1016/j.trim.2022.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To determine the risk factors for acute rejection in liver transplantation and its impact on the outcomes of the recipients. METHODS Clinicopathological data of 290 patients who underwent liver transplantation from January 2012 to December 2021 at our center were retrospectively evaluated. Patients were grouped into an acute rejection (AR) group and a normal (NM) group based on the confirmed histopathological diagnosis of acute rejection. Univariate and multivariate logistic regression were used to determine the risk factors for acute rejection. RESULTS 244 patients were included in the study. Acute rejection occurred in 27 (11.1%) of the patients. Warm ischemia time (P = 0.137), cold ischemia time (P = 0.064) and chronic liver failure (P = 0.001) were potential risk factors for acute rejection. Chronic liver failure (P < 0.001, OR = 8.22, 95% CI = 2.47-27.32) was the independent risk factor. There was no significant difference in overall survival between recipients with acute rejection and those without it (P = 0.985). The 1-, 3- and 5-year overall survival in the NM group was 98.1%, 85.7% and 78.6% respectively vs 88.9%, 82.5% and 82.5% respectively in the AR group. CONCLUSION Acute rejection does not appear to affect the long-term survival of the recipients. Only chronic liver failure was an independent risk factor for acute rejection. Our findings further illustrate that contradictions still exist on which factors influence acute rejection in liver transplant recipients. SUMMARY Clinicopathological data of 290 liver transplant recipients at our center between January 2012 and December 2021 were retrospectively evaluated to determine the risk factors for acute rejection and its impact on the outcomes of the recipients. 244 patients were included in the analysis. 27 of the 244 experienced acute rejection. Propensity score matching was performed to reduce the confounding effect. Patients were assigned to an acute rejection group (n = 27) and a normal group (n = 54). Chronic liver failure (P < 0.001, OR = 8.22, 95% CI = 2.47-27.32) was the determined to be independent risk factor for acute rejection. Acute rejection did not appear to affect the long-term survival of the recipients and there was no significant difference in overall survival between the patients with acute rejection and those without it.
Collapse
Affiliation(s)
- Joseph Mugaanyi
- Medical School of Ningbo University, Ningbo, Zhejiang, China; Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Jinshu Tong
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuqi Mao
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Caide Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Center Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
7
|
Jameson G, Harmon C, Santiago RM, Houlihan DD, Gallagher TK, Lynch L, Robinson MW, O’Farrelly C. Human Hepatic CD56bright NK Cells Display a Tissue-Resident Transcriptional Profile and Enhanced Ability to Kill Allogenic CD8+ T Cells. Front Immunol 2022; 13:921212. [PMID: 35865550 PMCID: PMC9295839 DOI: 10.3389/fimmu.2022.921212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Liver-resident CD56brightCD16- natural killer (NK) cells are enriched in the human liver and are phenotypically distinct from their blood counterparts. Although these cells are capable of rapid cytotoxic effector activity, their functional role remains unclear. We hypothesise that they may contribute to immune tolerance in the liver during transplantation. RNA sequencing was carried out on FACS sorted NK cell subpopulations from liver perfusates (n=5) and healthy blood controls (n=5). Liver-resident CD56brightCD16+/- NK cells upregulate genes associated with tissue residency. They also upregulate expression of CD160 and LY9, both of which encode immune receptors capable of activating NK cells. Co-expression of CD160 and Ly9 on liver-resident NK cells was validated using flow cytometry. Hepatic NK cell cytotoxicity against allogenic T cells was tested using an in vitro co-culture system of liver perfusate-derived NK cells and blood T cells (n=10-13). In co-culture experiments, hepatic NK cells but not blood NK cells induced significant allogenic T cell death (p=0.0306). Allogenic CD8+ T cells were more susceptible to hepatic NK cytotoxicity than CD4+ T cells (p<0.0001). Stimulation of hepatic CD56bright NK cells with an anti-CD160 agonist mAb enhanced this cytotoxic response (p=0.0382). Our results highlight a role for donor liver NK cells in regulating allogenic CD8+ T cell activation, which may be important in controlling recipient CD8+ T cell-mediated rejection post liver-transplant.
Collapse
Affiliation(s)
- Gráinne Jameson
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cathal Harmon
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rhyla Mae Santiago
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
| | | | - Tom K. Gallagher
- Hepatopancreaticobiliary Group, St. Vincent’s University Hospital, Dublin, Ireland
| | - Lydia Lynch
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark W. Robinson
- Department of Biology, Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Ireland
- *Correspondence: Mark W. Robinson,
| | - Cliona O’Farrelly
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
|
9
|
Vitale G, Gitto S, Campani C, Turco L, Baldan A, Marra F, Morelli MC. Biological therapies in patients with liver disease: are they really lifesavers? Expert Opin Biol Ther 2021; 22:473-490. [PMID: 34860629 DOI: 10.1080/14712598.2022.2013799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The liver plays a key role in the setting of immune tolerance. Targeting antigens for presentation by antigen-presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or organs outside of the liver. Despite its non-conventional capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. Whereas chronic inflammation and intra-hepatic immuno-suppressive microenvironment occurring during liver fibrosis lead to hepatocellular carcinoma. Monoclonal antibodies have revolutionized the therapeutic strategies of many autoimmune diseases and some cancers. AREAS COVERED We review data from literature regarding the safety and efficacy of biologics in treating hepatobiliary autoimmune diseases and primary liver cancers. Furthermore, we describe their potential use in the setting of liver transplants and their main immune-related liver adverse events. EXPERT OPINION Biological therapies have changed the natural history of main autoimmune diseases and solid cancers. Compared to other organs and disease settings, the liver lags behind in biologics and their applications. The development of novel diagnostic and therapeutic strategies based on the immunological and antigenic characteristics of the hepatobiliary system could reduce mortality and transplant rates linked to chronic liver diseases.
Collapse
Affiliation(s)
- Giovanni Vitale
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Campani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Turco
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Anna Baldan
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Cristina Morelli
- Division of Internal Medicine for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Guo Y, Xu B, Wu Z, Bo J, Tong C, Chen D, Wang J, Wang H, Wang Y, Han W. Mutant B2M-HLA-E and B2M-HLA-G fusion proteins protects universal chimeric antigen receptor-modified T cells from allogeneic NK cell-mediated lysis. Eur J Immunol 2021; 51:2513-2521. [PMID: 34323289 PMCID: PMC9292285 DOI: 10.1002/eji.202049107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Indexed: 12/27/2022]
Abstract
Recent studies have indicated the antitumor activity and reduced allogeneic response of universal chimeric antigen receptor-modified T (UCAR T) cells lacking endogenous T cell receptors and beta-2 microglobulin (B2M) generated using gene-editing technologies. However, these cells are vulnerable to lysis by allogeneic natural killer (NK) cells due to their lack of human leukocyte antigen (HLA) class I molecule expression. Here, constitutive expression of mutant B2M-HLA-E (mBE) and B2M-HLA-G (mBG) fusion proteins in anti-CD19 UCAR T (UCAR T-19) cells was conducted to protect against allogeneic NK cell-mediated lysis. The ability of cells expressing mBE or mBG to resist NK cell-mediated lysis was observed in gene-edited Jurkat CAR19 cells. UCAR T-19 cells constitutively expressing the mBE and mBG fusion proteins were manufactured and showed effective and specific anti-tumor activity. Constitutive expression of the mBE and mBG fusion proteins in UCAR T-19 cells prevented allogeneic NK cell-mediated lysis. In addition, these cells were not recognizable by allogeneic T cells. Additional experiments, including those in animal models and clinical trials, are required to evaluate the safety and efficacy of UCAR T-19 cells that constitutively express mBE and mBG.
Collapse
MESH Headings
- Antigens, CD19/immunology
- Cytotoxicity, Immunologic/genetics
- Gene Knockout Techniques
- HLA-G Antigens/genetics
- HLA-G Antigens/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Mutation
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
- HLA-E Antigens
Collapse
Affiliation(s)
- Yelei Guo
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Beilei Xu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhiqiang Wu
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jian Bo
- Department of Hematologythe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Chuan Tong
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Deyun Chen
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jin Wang
- Department of Outpatientthe Sixth Medical CentreChinese PLA General HospitalBeijingChina
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yao Wang
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| | - Weidong Han
- Department of Bio‐therapeuticthe First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
11
|
Study of Cell Viability and Etiology of Contamination in Decalcified Bone Allograft: A Pilot Study. Indian J Orthop 2021; 56:16-23. [PMID: 35070138 PMCID: PMC8748563 DOI: 10.1007/s43465-021-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Bone allografts can elicit immune responses which is correlated with the presence of Human Leukocyte Antigen (HLA) and cellular DNA. It also has risk of causing occult infection arising out of contamination during its processing and storage. The presence of immunogenic materials like cells, cellular remnants and DNA in a decalcified bone allograft during different phases of processing has never been studied. Present study was conducted to explore- the cell viability using routine Hematoxylin and Eosin, presence of DNA using Feulgen staining and etiology of contamination in decalcified bone allograft during procurement, demineralization and ethanol preservation. METHODS The harvested bones from patients undergoing hemireplacement/THR/TKR were processed to prepare decalcified bone allografts. The samples during procurement (A), HCL treatment (B) and ethanol preservation (C) were sent for histopathological analysis (number of osteocytes in the maximum density field under 40x and the cells demonstrating presence of DNA on feulgen stain) and microbiological assessment (aerobic/anaerobic/fungal cultures). RESULTS Histopathological study demonstrated the presence of osteocytes and other cells like bone marrow, adipocytes, endothelial cells in the decal bone allograft. The average number of osteocytes gradually decreased from 55.47, 9.6, 0.86 in sample A, B, C, respectively. Feulgen staining confirmed the presence of DNA in osteocytes and other cells which decreased both qualitatively and quantitatively in subsequent stages of processing. Rate of contamination demonstrated at the procurement was 6.67% (Staphylococcus aureus). After treatment with HCl (demineralisation), 7.14% of non-contaminated allografts were found contaminated (Staphylococcus epidermidis). None of the remaining 13 non-contaminated allografts showed contamination after storage in ethanol. Overall 13% of the patients had positive cultures on microbiological assessment. CONCLUSION The population of osteocytes in the harvested bone reduced significantly after processing with HCl and ethanol preservation. Presence of DNA, demonstrated by using Feulgen staining, was observed in bone marrow cells, adipocytes along with osteocytes which showed quantitative reduction on processing. Hence, antigenicity, conferred by cells and their DNA, reduced significantly after processing of decal bone. Contamination rate of banked decalcified allograft was 13%. Thus, culture and sensitivity tests should be carried out at each step of processing of decal bone allograft.
Collapse
|
12
|
D’AMBROSIO D, TAVANO D, LATTANZI B, FRAMARINO DEI MALATESTA M, DE VILLE DE GOYET J, CORSI A, MITTERHOFER AP, GINANNI CORRADINI S, MENNINI G, ROSSI M, MERLI M. Acute rejection on immune-mediated chronic rejection after liver transplantation. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2021. [DOI: 10.23736/s0393-3660.19.04240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Meneghini M, Crespo E, Niemann M, Torija A, Lloberas N, Pernin V, Fontova P, Melilli E, Favà A, Montero N, Manonelles A, Cruzado JM, Palou E, Martorell J, Grinyó JM, Bestard O. Donor/Recipient HLA Molecular Mismatch Scores Predict Primary Humoral and Cellular Alloimmunity in Kidney Transplantation. Front Immunol 2021; 11:623276. [PMID: 33776988 PMCID: PMC7988214 DOI: 10.3389/fimmu.2020.623276] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Donor/recipient molecular human leukocyte antigen (HLA) mismatch predicts primary B-cell alloimmune activation, yet the impact on de novo donor-specific T-cell alloimmunity (dnDST) remains undetermined. The hypothesis of our study is that donor/recipient HLA mismatches assessed at the molecular level may also influence a higher susceptibility to the development of posttransplant primary T-cell alloimmunity. In this prospective observational study, 169 consecutive kidney transplant recipients without preformed donor-specific antibodies (DSA) and with high resolution donor/recipient HLA typing were evaluated for HLA molecular mismatch scores using different informatic algorithms [amino acid mismatch, eplet MM, and Predicted Indirectly Recognizable HLA Epitopes (PIRCHE-II)]. Primary donor-specific alloimmune activation over the first 2 years posttransplantation was assessed by means of both dnDSA and dnDST using single antigen bead (SAB) and IFN-γ ELISPOT assays, respectively. Also, the predominant alloantigen presenting pathway priming DST alloimmunity and the contribution of main alloreactive T-cell subsets were further characterized in vitro. Pretransplantation, 78/169 (46%) were DST+ whereas 91/169 (54%) DST−. At 2 years, 54/169 (32%) patients showed detectable DST responses: 23/54 (42%) dnDST and 31/54 (57%) persistently positive (persistDST+). 24/169 (14%) patients developed dnDSA. A strong correlation was observed between the three distinct molecular mismatch scores and they all accurately predicted dnDSA formation, in particular at the DQ locus. Likewise, HLA molecular incompatibility predicted the advent of dnDST, especially when assessed by PIRCHE-II score (OR 1.014 95% CI 1.001–1.03, p=0.04). While pretransplant DST predicted the development of posttransplant BPAR (OR 5.18, 95% CI=1.64–16.34, p=0.005) and particularly T cell mediated rejection (OR 5.33, 95% CI=1.45–19.66, p=0.012), patients developing dnDST were at significantly higher risk of subsequent dnDSA formation (HR 2.64, 95% CI=1.08–6.45, p=0.03). In vitro experiments showed that unlike preformed DST that is predominantly primed by CD8+ direct pathway T cells, posttransplant DST may also be activated by the indirect pathway of alloantigen presentation, and predominantly driven by CD4+ alloreactive T cells in an important proportion of patients. De novo donor-specific cellular alloreactivity seems to precede subsequent humoral alloimmune activation and is influenced by a poor donor/recipient HLA molecular matching.
Collapse
Affiliation(s)
- Maria Meneghini
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Elena Crespo
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Alba Torija
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Lloberas
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Vincent Pernin
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.,Institute for Regenerative Medicine & Biotherapy (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pere Fontova
- Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Edoardo Melilli
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Alexandre Favà
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Nuria Montero
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Anna Manonelles
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Josep Maria Cruzado
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Eduard Palou
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Jaume Martorell
- Laboratory of Immunology and Histocompatibility, Hospital Clinic, Barcelona, Spain
| | - Josep Maria Grinyó
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Translational Transplantation and Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
14
|
Chronic Histologic Changes Are Present Regardless of HLA Mismatches: Evidence from HLA Identical Living Donor Kidney Transplants. Transplantation 2020; 105:e244-e256. [PMID: 33315759 DOI: 10.1097/tp.0000000000003579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND At 5 and 10 years after kidney transplantation, chronic histologic changes such as arteriolar hyalinosis and mesangial expansion are common, however, determining etiology is difficult. We compared surveillance biopsies in living donor kidney transplants (LDKTx) from HLA matched siblings (termed HLA-identical (HLA-ID)) to HLA non-ID to investigate which histologic changes were likely due to alloimmune injury and which were due to non-alloimmune injury. METHODS We performed a retrospective, cohort study comparing HLA-ID sibling LDKTx (n=175) to HLA non-ID LDKTx (n=175; matched for age, sex and year of transplant +/- 2 years) performed at a single institution from 03/1999 to 11/2018. RESULTS Baseline characteristics and maintenance immunosuppression were similar. Mortality rates were similar, but in the HLA-ID group, 10-year death-censored graft survival was higher (93.8% vs 80.9% HLA non-ID LDKTx, p<0.001), rejection rates were lower (after 1 year 9.6% vs 27.1%; p<0.001) and Banff inflammation scores including glomerulitis and peritubular capillaritis were lower on surveillance biopsies at 1, 5 and 10 years. In contrast, chronic Banff scores (interstitial fibrosis, arteriolar hyalinosis, mesangial expansion, etc.) were similar in prevalence and severity on surveillance biopsies at 1, 5 and 10 years. CONCLUSIONS HLA-ID LDKTx have less inflammation and less transplant glomerulopathy, but most chronic histologic changes were similar to less-well matched LDKTx. We conclude that these types of chronic changes are not associated with HLA mismatches and may be due to non-immunologic causes (hypertension, obesity, etc.) suggesting that new management approaches to prevent these lesions may be needed.
Collapse
|
15
|
Ueta H, Xu XD, Yu B, Kitazawa Y, Yu E, Hara Y, Morita-Nakagawa M, Zhou S, Sawanobori Y, Ueha S, Rokutan K, Tanaka T, Tokuda N, Matsushima K, Matsuno K. Suppression of liver transplant rejection by anti-donor MHC antibodies via depletion of donor immunogenic dendritic cells. Int Immunol 2020; 33:261-272. [PMID: 33258927 PMCID: PMC8060989 DOI: 10.1093/intimm/dxaa076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/29/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We previously found two distinct passenger dendritic cell (DC) subsets in the rat liver that played a central role in the liver transplant rejection. In addition, a tolerance-inducing protocol, donor-specific transfusion (DST), triggered systemic polytopical production of depleting alloantibodies to donor class I MHC (MHCI) antigen (DST-antibodies). METHODS We examined the role of DST-antibodies in the trafficking of graft DC subsets and the alloresponses in a rat model. We also examined an anti-donor class II MHC (MHCII) antibody that recognizes donor DCs more selectively. RESULTS Preoperative transfer of DST-antibodies or DST pretreatment eliminated all passenger leukocytes, including both DC subsets and depleted the sessile DCs in the graft to ~20% of control. The CD172a+CD11b/c+ immunogenic subset was almost abolished. The intrahost direct or semi-direct allorecognition pathway was successfully blocked, leading to a significant suppression of the CD8+ T-cell response in the recipient lymphoid organs and the graft with delayed graft rejection. Anti-donor MHCII antibody had similar effects without temporary graft damage. Although DST pretreatment had a priming effect on the proliferative response of recipient regulatory T cells, DST-primed sera and the anti-donor MHCII antibody did not. CONCLUSION DST-antibodies and anti-donor MHCII antibodies could suppress the CD8+ T-cell-mediated liver transplant rejection by depleting donor immunogenic DCs, blocking the direct or semi-direct pathways of allorecognition. Donor MHCII-specific antibodies may be applicable as a selective suppressant of anti-donor immunity for clinical liver transplantation without the cellular damage of donor MHCII- graft cells and recipient cells.
Collapse
Affiliation(s)
- Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Xue-Dong Xu
- Department of General Surgery, Dalian Medical University, The First Affiliated Hospital, Dalian, China
| | - Bin Yu
- Department General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Enqiao Yu
- Department General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | | | | | - Shu Zhou
- Department of Obstetrics and Gynecology, Dalian Medical University, The First Affiliated Hospital, Dalian, China
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
16
|
First Human Leucocyte Antigen (HLA) Response and Safety Evaluation of Fibrous Demineralized Bone Matrix in a Critical Size Femoral Defect Model of the Sprague-Dawley Rat. MATERIALS 2020; 13:ma13143120. [PMID: 32668732 PMCID: PMC7412543 DOI: 10.3390/ma13143120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
Treatment of large bone defects is one of the great challenges in contemporary orthopedic and traumatic surgery. Grafts are necessary to support bone healing. A well-established allograft is demineralized bone matrix (DBM) prepared from donated human bone tissue. In this study, a fibrous demineralized bone matrix (f-DBM) with a high surface-to-volume ratio has been analyzed for toxicity and immunogenicity. f-DBM was transplanted to a 5-mm, plate-stabilized, femoral critical-size-bone-defect in Sprague-Dawley (SD)-rats. Healthy animals were used as controls. After two months histology, hematological analyses, immunogenicity as well as serum biochemistry were performed. Evaluation of free radical release and hematological and biochemical analyses showed no significant differences between the control group and recipients of f-DBM. Histologically, there was no evidence of damage to liver and kidney and good bone healing was observed in the f-DBM group. Reactivity against human HLA class I and class II antigens was detected with mostly low fluorescence values both in the serum of untreated and treated animals, reflecting rather a background reaction. Taken together, these results provide evidence for no systemic toxicity and the first proof of no basic immunogenic reaction to bone allograft and no sensitization of the recipient.
Collapse
|
17
|
Strategies for Genetically Engineering Hypoimmunogenic Universal Pluripotent Stem Cells. iScience 2020; 23:101162. [PMID: 32502965 PMCID: PMC7270609 DOI: 10.1016/j.isci.2020.101162] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 01/18/2023] Open
Abstract
Despite progress in developing cell therapies, such as T cell or stem cell therapies to treat diseases, immunoincompatibility remains a major barrier to clinical application. Given the fact that a host's immune system may reject allogeneic transplanted cells, methods have been developed to genetically modify patients' primary cells. To advance beyond this time-consuming and costly approach, recent research efforts focus on generating universal pluripotent stem cells to benefit a broader spectrum of patients. In this review, we first summarize current achievements to harness immunosuppressive mechanisms in cells to reduce immunogenicity. Then, we discuss several recent studies demonstrating the feasibility of genetically modifying pluripotent stem cells to escape immune attack and summarize the methods to evaluate hypoimmunogenicity. Although challenges remain, progress to develop genetically engineered universal pluripotent stem cells holds the promise of expediting their use in future gene and cell therapeutics and regenerative medicine.
Collapse
|
18
|
de Rham C, Calderin Sollet Z, Burkhard P, Villard J. Natural Killer Cell Alloreactivity Against Human Induced Pluripotent Stem Cells and Their Neuronal Derivatives into Dopaminergic Neurons. Stem Cells Dev 2020; 29:853-862. [PMID: 32245345 DOI: 10.1089/scd.2019.0201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In recent years, great hope has arisen surrounding human stem cells, particularly human induced pluripotent stem (hiPS) cells, as nearly all human tissues can be derived from hiPS cells, using a specific protocol. Therefore, hiPS cells can be a source for replacing defective tissues and make up for the lack of organ donors. However, the alloreactivity of hiPS cells and their derivatives in the context of transplantation remain unclear. Although immunosuppressive drugs can inhibit the T cell compartment, these drugs inhibit partially or not at all natural killer (NK) cells activity. Therefore, the alloreactivity of NK cells against transplanted cells remains to be established. To partially answer this question, we choose, as a model, the potential of cellular therapy for Parkinson's disease (PD). First, we established the in vitro derivation of hiPS cells into mature dopaminergic (mDOPA) neurons, going through an intermediate step called neurosphere (NS) cells. These different cells population were cultured with or without interferon gamma (IFN-γ). They were characterized phenotypically regarding their morphology, and the expression of specific ligands for NK cell receptors expressed by these cells types was investigated. NK cells were isolated from the peripheral blood of healthy donors and cultured in the presence of interleukin 15, to be activated. To test NK cell alloreactivity, a cytotoxic assay was performed with hiPS cells, NS cells, and mDOPA neurons (IFN-γ treated or not) cocultured with allogenic NK cells. Our results show that allogenic NK cells kill hiPS cells (IFN-γ treated or not), but IFN-γ-treated NS cells were protected from killing by allogenic NK cells, compared with untreated NS cells. Finally, mDOPA neurons (IFN-γ treated or not) were partially protected against allogenic NK cell killing. These results indicate that derivatives of hiPS cells, especially NS cells, could be a good product for allogenic transplantation in cellular therapy for PD.
Collapse
Affiliation(s)
- Casimir de Rham
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Pierre Burkhard
- Division of Neurology, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit, Departement of Medicine and Diagnostic, Geneva University Hospital, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
19
|
Fukasaku Y, Goto R, Ganchiku Y, Emoto S, Zaitsu M, Watanabe M, Kawamura N, Fukai M, Shimamura T, Taketomi A. Novel immunological approach to asses donor reactivity of transplant recipients using a humanized mouse model. Hum Immunol 2020; 81:342-353. [PMID: 32345498 DOI: 10.1016/j.humimm.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
In organ transplantation, a reproducible and robust immune-monitoring assay has not been established to determine individually tailored immunosuppressants (IS). We applied humanized mice reconstituted with human (hu-) peripheral blood mononuclear cells (PBMCs) obtained from living donor liver transplant recipients to evaluate their immune status. Engraftment of 2.5 × 106 hu-PBMCs from healthy volunteers and recipients in the NSG mice was achieved successfully. The reconstituted lymphocytes consisted mainly of hu-CD3+ lymphocytes with predominant CD45RA-CD62Llo TEM and CCR6-CXCR3+CD4+ Th1 cells in hu-PBMC-NSG mice. Interestingly, T cell allo-reactivity of hu-PBMC-NSG mice was amplified significantly compared with that of freshly isolated PBMCs (p < 0.05). Furthermore, magnified hu-T cell responses to donor antigens (Ag) were observed in 2/10 immunosuppressed recipients with multiple acute rejection (AR) experiences, suggesting that the immunological assay in hu-PBMC-NSG mice revealed hidden risks of allograft rejection by IS. Furthermore, donor Ag-specific hyporesponsiveness was maintained in recipients who had been completely weaned off IS (n = 4), despite homeostatic proliferation of hu-T cells in the hu-PBMC-NSG mice. The immunological assay in humanized mice provides a new tool to assess recipient immunity in the absence of IS and explore the underlying mechanisms to maintaining operational tolerance.
Collapse
Affiliation(s)
- Yasutomo Fukasaku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Shin Emoto
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Masaaki Watanabe
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Norio Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan; Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan.
| |
Collapse
|
20
|
Keshavarz Shahbaz S, Foroughi F, Soltaninezhad E, Jamialahmadi T, Penson PE, Sahebkar A. Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection. Expert Opin Drug Deliv 2020; 17:767-780. [PMID: 32223341 DOI: 10.1080/17425247.2020.1748006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Allograft transplantation is an effective end-point therapy to replace the function of an impaired organ. The main problem associated with allotransplantation is the induction of immune responses that results in acute and chronic graft rejection. To modulate the response of the immune system, transplant recipients generally take high dose immunosuppressant drugs for life. These drugs are associated with serious side effects such as infection with opportunistic pathogens and the development of neoplasia. AREAS COVERED We reviewed the obstacles to successful transplantation and PLGA-based strategies to reduce immune-mediated allograft rejection. EXPERT OPINION Biomaterial-based approaches using micro- and nanoparticles such as poly (lactic-co-glycolic acid) (PLGA) can be used to achieve controlled release of drugs. This approach decreases the required effective dose of drugs and enables local delivery of these agents to specific tissues and cells, whilst decreasing systemic effects.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences , Qazvin, Iran
| | - Ehsan Soltaninezhad
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran.,Department of Nutrition, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA , Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
21
|
Kitazawa Y, Ueta H, Sawanobori Y, Katakai T, Yoneyama H, Ueha S, Matsushima K, Tokuda N, Matsuno K. Novel Targeting to XCR1 + Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes. Front Immunol 2019; 10:1195. [PMID: 31191552 PMCID: PMC6548820 DOI: 10.3389/fimmu.2019.01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
22
|
Domanski L, Kłoda K, Patrzyk M, Wisniewska M, Safranow K, Sienko J, Sulikowski T, Staniszewska M, Pawlik A. IL17A and IL17F genes polymorphisms are associated with histopathological changes in transplanted kidney. BMC Nephrol 2019; 20:124. [PMID: 30961540 PMCID: PMC6454731 DOI: 10.1186/s12882-019-1308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin 17 is a proinflammatory cytokine involved in immune response after allograft transplantation. IL-17 family of proinflammatory cytokines includes IL-17A and IL-17F. Previous studies have demonstrated that the rs2275913 IL17A and the rs11465553 IL17F gene polymorphism are associated with kidney allograft function. Because of the association between these polymorphisms and post-transplant immune response, we assume that these single nucleotide polymorphisms may affect morphological structure of transplanted kidney. The aim of this study was to examine the association of rs2275913 IL17A and rs2397084, rs11465553 and rs763780 IL17F gene polymorphisms with histopathological changes in transplanted kidney biopsies such as: glomerulitis, tubulitis, arteritis, cell infilitration and fibrosis. Methods The study enrolled 82 patients after renal graft transplantation in whom a kidney biopsy was performed because of impaired graft function. The rs2397084 T > C (Glu126Gly), rs11465553 G > A (Val155Ile) and rs763780 T > C (His167Arg) polymorphisms within the IL17F gene and the rs2275913 A > G (− 197 A > G) polymorphism within the IL17A gene promoter were genotyped using TaqMan genotyping assays on a 7500 FAST Real-Time PCR System (Applied Biosystems, USA). Results There was a significant association between the rs2275913 IL17A gene polymorphism and the grade of tubulitis, which was more severe among patients with the A allele, compared to recipients with the GG genotype (GG vs. AG + AA, P = 0.02), and with the grade of arteriolar hyaline thickening and mesangial matrix increase, which were more severe among patients with the G allele compared to recipients with the AA genotype (AA vs. AG + GG, P = 0.01 and P = 0.04, respectively). Tubular atrophy and interstitial fibrosis were more severe among individuals with the C allele at the rs763780 IL17F gene polymorphism (TT vs. TC, P = 0.09 and P = 0.017, respectively). However, it should be taken into account that the statistical significance was achieved without correction for multiple testing, and no significant association would remain significant after such correction. Conclusions The results of this study may suggest a possible association between the rs2275913 IL17A and rs2275913 IL17A gene polymorphisms and some histopathological changes in transplanted kidney biopsies. Electronic supplementary material The online version of this article (10.1186/s12882-019-1308-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leszek Domanski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karolina Kłoda
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Patrzyk
- Department of Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Magda Wisniewska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Sienko
- Department of Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
23
|
Raafat SN. Response to: Letter to the editor: The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2019; 120:534. [PMID: 30711057 DOI: 10.1016/j.bone.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shereen N Raafat
- Department of Pharmacology and Toxicology, Faculty of Dentistry, British University in Egypt.
| |
Collapse
|
24
|
Roura S, Rudilla F, Gastelurrutia P, Enrich E, Campos E, Lupón J, Santiago-Vacas E, Querol S, Bayés-Genís A. Determination of HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in heart failure patients. ESC Heart Fail 2019; 6:388-395. [PMID: 30672659 PMCID: PMC6437550 DOI: 10.1002/ehf2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Aims Cell therapy can be used to repair functionally impaired organs and tissues in humans. Although autologous cells have an immunological advantage, it is difficult to obtain high cell numbers for therapy. Well‐characterized banks of cells with human leukocyte antigens (HLA) that are representative of a given population are thus needed. The present study investigates the HLA allele and haplotype frequencies in a cohort of heart failure (HF) patients. Methods and results We carried out the HLA typing and the allele and haplotype frequency analysis in 247 ambulatory HF patients. We determined HLA class I (A, B, and C) and class II (DRB1 and DQB1) using next‐generation sequencing technology. The allele frequencies were obtained using Python for Population Genomics (PyPop) software, and HLA haplotypes were estimated using HaploStats. A total of 30 HLA‐A, 56 HLA‐B, 23 HLA‐C, 36 HLA‐DRB1, and 15 HLA‐DQB1 distinct alleles were identified within the studied cohort. The genotype frequencies of all five HLA loci were in Hardy–Weinberg equilibrium. We detected differences in HLA allele frequencies among patients when the etiological cause of HF was considered. There were a total of 494 five‐loci haplotypes, five of which were present six or more times. Moreover, the most common estimated HLA haplotype was HLA‐A*01:01, HLA‐B*08:01, HLA‐C*07:01, HLA‐DRB1*03:01, and HLA‐DQB1*02:01 (6.07% haplotype frequency per patient). Remarkably, the 11 most frequent haplotypes would cover 31.17% of the patients of the cohort in need of allogeneic cell therapy. Conclusions Our findings could be useful for improving allogeneic cell administration outcomes without concomitant immunosuppression.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Paloma Gastelurrutia
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Enrich
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Eva Campos
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - Josep Lupón
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| | | | - Sergi Querol
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Cell Therapy Unit, Blood and Tissue Bank, Barcelona, Spain
| | - Antoni Bayés-Genís
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| |
Collapse
|
25
|
Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 2018; 53:1498-1507. [PMID: 29795435 PMCID: PMC7286200 DOI: 10.1038/s41409-018-0218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
- German Cancer Consortium, Heidelberg, Germany.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Raafat SN. WITHDRAWN: Response to letter to the editor: The sole and combined effect of simvastatin and platelet rich fibrin as a filling material in induced bone defect in tibia of albino rats. Bone 2018:S8756-3282(18)30402-2. [PMID: 30612981 DOI: 10.1016/j.bone.2018.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.bone.2019.01.007. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
|
27
|
Ensor CR, Goehring KC, Iasella CJ, Moore CA, Lendermon EA, McDyer JF, Morrell MR, Sciortino CM, Venkataramanan R, Wiland AM. Belatacept for maintenance immunosuppression in cardiothoracic transplantation: The potential frontier. Clin Transplant 2018; 32:e13363. [PMID: 30058177 DOI: 10.1111/ctr.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 01/18/2023]
Abstract
Current immunosuppressive regimens with calcineurin inhibitors have improved the management of patients after transplantation. However, their adverse effects are linked to increased morbidity and limit the long-term survival of heart and lung transplant recipients. Belatacept, a costimulation inhibitor interfering with the interaction between CD28 on T cells and the B7 ligands on antigen presenting cells, has shown success and is currently approved for use in renal transplant recipients. Furthermore, it lacks many of the cardiovascular, metabolic, neurologic, and renal adverse of effects of calcineurin inhibitors that have the largest impact on long-term survival in cardiothoracic transplant. Additionally, it requires no therapeutic drug monitoring and is only administered once a month. Limitations to belatacept use have been observed that must be considered when comparing immunosuppression options. Despite this, maintenance immunosuppression with belatacept has the potential to improve outcomes in cardiothoracic transplant recipients, as it has with kidney transplant recipients. However, no large clinical trials investigating belatacept for maintenance immunosuppression in heart and lung transplant recipients exist. There is a large need for focused research of belatacept in cardiothoracic transplantation. Belatacept is a viable treatment option for maintenance immunosuppression, and it is reasonable to pursue more evidence in cardiothoracic transplant recipients.
Collapse
Affiliation(s)
- Christopher R Ensor
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Carlo J Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Cody A Moore
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Elizabeth A Lendermon
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John F McDyer
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R Morrell
- Division of Pulmonary Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher M Sciortino
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Anne M Wiland
- Norvartis Pharmaceuticals Corporation, Baltimore, Maryland
| |
Collapse
|
28
|
Fretwurst T, Gad LM, Steinberg T, Schmal H, Zeiser R, Amler AK, Nelson K, Altmann B. Detection of major histocompatibility complex molecules in processed allogeneic bone blocks for use in alveolar ridge reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:S2212-4403(18)30054-3. [PMID: 29571656 DOI: 10.1016/j.oooo.2018.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/14/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Because processed allogenic bone blocks contain remnants of cells and other organic material, the present study examined the putative presence of major histocompatibility complex (MHC) molecules in protein extracts derived from processed allogeneic bone blocks. STUDY DESIGN Protein content and the immunogenic potential of 3 different processed allografts (Osteograft, DIZG, Berlin, Germany; Caput femoris, DIZG, Berlin, Germany; Human Spongiosa, Charité Tissue Bank, Berlin, Germany) were assessed by protein extraction and analysis of the presence of MHC class 1 and 2 molecules prior to grafting. MHC concentration was measured by using enzyme-linked immunosorbent assay. RESULTS Protein content in the allograft materials varied between 0.87 and 1.61 µg protein/mg. In the allograft Human Spongiosa, no MHC was detected, whereas in the allogeneic bone blocks Osteograft and Caput femoris MHC 1 (0.04-0.037 ng/mg graft material) and in Osteograft MHC class 2 molecules were detectable. CONCLUSIONS The results of the present study suggest that despite thorough processing, a potential antigenicity of allografts is not eliminated. MHC molecules in allografts may sensitize the immune system.
Collapse
Affiliation(s)
- Tobias Fretwurst
- Department of Oral and Craniomaxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lames M Gad
- Department of Oral and Craniomaxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense M, Denmark
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-K Amler
- Department of Oral and Craniomaxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral and Craniomaxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- Department of Oral and Craniomaxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Dixit A, Balakrishnan B, Karande AA. Immunomodulatory activity of glycodelin: implications in allograft rejection. Clin Exp Immunol 2017; 192:213-223. [PMID: 29271477 DOI: 10.1111/cei.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/01/2022] Open
Abstract
Glycodelin is an immunomodulator, indispensable for the maintenance of pregnancy in humans. The glycoprotein induces apoptosis in activated CD4+ T cells, monocytes and natural killer (NK) cells, and suppresses the activity of cytotoxic T cells, macrophages and dendritic cells. This study explores the immunosuppressive property of glycodelin for its possible use in preventing graft rejection. Because glycodelin is found only in certain primates, the hypothesis was investigated in an allograft nude mouse model. It is demonstrated that treatment of alloactivated mononuclear cells with glycodelin thwarts graft rejection. Glycodelin decreases the number of activated CD4+ and CD8+ cells and down-regulates the expression of key proteins known to be involved in graft demise such as granzyme-B, eomesodermin (EOMES), interleukin (IL)-2 and proinflammatory cytokines [tumour necrosis factor (TNF)-α and IL-6], resulting in a weakened cell-mediated immune response. Immunosuppressive drugs for treating allograft rejection are associated with severe side effects. Glycodelin, a natural immunomodulator in humans, would be an ideal alternative candidate.
Collapse
Affiliation(s)
- A Dixit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - B Balakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - A A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
30
|
Choudhary NS, Saigal S, Bansal RK, Saraf N, Gautam D, Soin AS. Acute and Chronic Rejection After Liver Transplantation: What A Clinician Needs to Know. J Clin Exp Hepatol 2017; 7:358-366. [PMID: 29234201 PMCID: PMC5715482 DOI: 10.1016/j.jceh.2017.10.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
While antibody mediated hyper-acute vasculitic rejection is rare in liver transplant recipients, acute and chronic rejection have clinical significance. The liver allograft behaves differently to other solid organ transplants as acute rejection generally does not impair graft survival and chronic rejection (CR) is uncommon. The incidence of acute and chronic rejection has declined in current era due to improved immunosuppressive regimens. Acute rejection generally improves with steroid boluses and steroid resistant rejection is uncommon. CR may improve with escalation of immunosuppression or may result in irreversible loss of graft function leading to retransplantation or death. The current review discusses diagnosis and management of acute and chronic liver allograft rejection.
Collapse
Affiliation(s)
- Narendra S. Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurugram, India
| | - Sanjiv Saigal
- Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurugram, India,Address for correspondence: Sanjiv Saigal, Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Sector 38, Gurgaon, Haryana 122001, India. Tel.: +91 9811552928.Sanjiv Saigal, Institute of Liver Transplantation and Regenerative Medicine, Medanta The MedicitySector 38GurgaonHaryana122001India
| | - Rinkesh K. Bansal
- Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurugram, India
| | - Neeraj Saraf
- Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurugram, India
| | - Dheeraj Gautam
- Department of Pathology, Medanta The Medicity, Gurugram, India
| | - Arvinder S. Soin
- Institute of Liver Transplantation and Regenerative Medicine, Medanta The Medicity, Gurugram, India
| |
Collapse
|
31
|
Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2017; 4:3658-3677. [DOI: 10.1021/acsbiomaterials.7b00514] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood 2017; 130:1089-1096. [PMID: 28667011 DOI: 10.1182/blood-2017-03-742346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
When considering HLA-matched hematopoietic cell transplantation (HCT), sibling and unrelated donors (UDs) are biologically different because UD-HCT is typically performed across HLA-DP disparities absent in sibling HCT. Mismatched HLA-DP is targeted by direct alloreactive T cell responses with important implications for graft-versus-host disease and graft-versus-leukemia. This concise review details special features of HLA-DP as model antigens for clinically permissive mismatches mediating limited T-cell alloreactivity with minimal toxicity, and describes future avenues for their exploitation in cellular immunotherapy of malignant blood disorders.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
- German Cancer Consortium, Heidelberg, Germany; and
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Froedtert & The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
33
|
Abstract
Alloimmune T cells are central mediators of rejection and graft-versus-host disease in both solid organ and hematopoietic stem cell transplantation. Unique among immune responses in terms of its strength and diversity, the T cell alloresponse reflects extensive genetic polymorphisms between allogeneic donors and recipients, most prominently within the major histocompatibility complex (MHC), which encodes human leukocyte antigens (HLAs) in humans. The repertoire of alloreactive T cell clones is distinct for every donor-recipient pair and includes potentially thousands of unique HLA/peptide specificities. The extraordinary magnitude of the primary alloresponse and diversity of the T cell population mediating it have presented technical challenges to its study in humans. High-throughput T cell receptor sequencing approaches have opened up new possibilities for tackling many fundamental questions about this important immunologic phenomenon.
Collapse
|
34
|
Abstract
Antibody-mediated rejection (AMR) in liver transplants is a field in its infancy compared with its allograft cohorts of the kidney and lung. Acute AMR is diagnosed based on specific clinical and histopathologic criteria: serum donor specific antibodies, C4d staining, histopathologic findings on liver biopsy, and exclusion of other entities. In contrast, the histologic features of chronic AMR are not as specific and it is a more challenging diagnosis to make. Treatments of acute and chronic AMR include some combination of steroids, immune-modulating agents, intravenous immunoglobulin, plasmapheresis, and proteasome inhibitors.
Collapse
Affiliation(s)
- Michael Lee
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, VC14-238, New York, NY 10032, USA.
| |
Collapse
|
35
|
Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Mol Ther 2017; 25:1117-1124. [PMID: 28456379 DOI: 10.1016/j.ymthe.2017.03.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T lymphocytes to target chosen antigens. The targeting of CD19, a cell surface molecule expressed in the vast majority of leukemias and lymphomas, has been successfully translated in the clinic, earning CAR therapy a special distinction in the selection of "cancer immunotherapy" by Science as the breakthrough of the year in 2013. CD19 CAR therapy is predicated on advances in genetic engineering, T cell biology, tumor immunology, synthetic biology, target identification, cell manufacturing sciences, and regulatory compliance-the central tenets of CAR therapy. Here, we review two of these foundations: the genetic engineering approaches and cell types to engineer.
Collapse
|
36
|
Clavien PA, Muller X, de Oliveira ML, Dutkowski P, Sanchez-Fueyo A. Can immunosuppression be stopped after liver transplantation? Lancet Gastroenterol Hepatol 2017; 2:531-537. [PMID: 28606879 DOI: 10.1016/s2468-1253(16)30208-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
Liver transplantation has improved dramatically over the past three decades, mainly as a result of advances in surgical techniques and management of post-transplant complications. The focus has now turned towards rescuing additional organs in the face of scarce organ supply, or prevention of long-term toxicity associated with immunosuppression. The liver appears to be privileged in terms of immune tolerance, with a low incidence of antibody-mediated rejection, which is in sharp contrast to other solid organ transplants, such as kidney, lung, and heart transplants. However, tolerogenic processes remain poorly understood, and strategies for complete drug withdrawal should be selected carefully to avoid graft rejection. In this Review, we summarise the current understanding of liver-specific immune responses and provide an outlook on future approaches.
Collapse
Affiliation(s)
- Pierre-Alain Clavien
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland.
| | - Xavier Muller
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Michelle L de Oliveira
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, MRC Centre for Transplantation, King's College London, London, UK
| |
Collapse
|
37
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|
38
|
Integration of a CD19 CAR into the TCR Alpha Chain Locus Streamlines Production of Allogeneic Gene-Edited CAR T Cells. Mol Ther 2017; 25:949-961. [PMID: 28237835 PMCID: PMC5383629 DOI: 10.1016/j.ymthe.2017.02.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Adoptive cellular therapy using chimeric antigen receptor (CAR) T cell therapies have produced significant objective responses in patients with CD19+ hematological malignancies, including durable complete responses. Although the majority of clinical trials to date have used autologous patient cells as the starting material to generate CAR T cells, this strategy poses significant manufacturing challenges and, for some patients, may not be feasible because of their advanced disease state or difficulty with manufacturing suitable numbers of CAR T cells. Alternatively, T cells from a healthy donor can be used to produce an allogeneic CAR T therapy, provided the cells are rendered incapable of eliciting graft versus host disease (GvHD). One approach to the production of these cells is gene editing to eliminate expression of the endogenous T cell receptor (TCR). Here we report a streamlined strategy for generating allogeneic CAR T cells by targeting the insertion of a CAR transgene directly into the native TCR locus using an engineered homing endonuclease and an AAV donor template. We demonstrate that anti-CD19 CAR T cells produced in this manner do not express the endogenous TCR, exhibit potent effector functions in vitro, and mediate clearance of CD19+ tumors in an in vivo mouse model.
Collapse
|
39
|
Guerrero-Tinoco GA, Villafañe-Bermúdez DR, Vélez-Echeverri C. Inmunosupresores y principales complicaciones en el trasplante renal pediátrico. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n1a05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Orr S, Strominger I, Eremenko E, Vinogradov E, Ruvinov E, Monsonego A, Cohen S. TGF-β affinity-bound to a macroporous alginate scaffold generates local and peripheral immunotolerant responses and improves allocell transplantation. Acta Biomater 2016; 45:196-209. [PMID: 27523029 DOI: 10.1016/j.actbio.2016.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023]
Abstract
Enhancing vascularization of cell-transplantation devices is necessary for maintaining cell viability and integration within the host, but it also increases the risk of allograft rejection. Here, we investigated the feasibility of generating an immunoregulatory environment in a highly vascularized macroporous alginate scaffold by affinity-binding of the transforming growth factor-β (TGF-β) in a manner mimicking its binding to heparan sulfate. Using this device to transplant allofibroblasts under the kidney capsule resulted in the induction of local and peripheral TGF-β-dependent immunotolerance, characterized by higher frequency of immature dendritic cells and regulatory T cells within the device and by markedly reduced allofibroblast-specific T-cell response in the spleen, thereby increasing the viability of the transplanted cells. Culturing whole splenocytes in the TGF-β-bound scaffold indicated that the regulatory function of TGF-β is IL-10-dependent. We thus demonstrate a novel platform for transplantation devices, designed to promote an immunoregulatory microenvironment suitable for cell transplantation and autoimmune regulation. STATEMENT OF SIGNIFICANCE Allogeneic cell graft transplantation is a potentially optimal treatment for many clinical deficiencies. It is yet challenging to overcome chronic rejection without compromising host immunity to pathogens. We present the features and function of a cell transplantation device designed based on the principle of affinity binding of angiogenic and immunoregulatory factors to extracellular matrix in aim to achieve sustained release of these factors. We show that presentation of these factors in such manner generates the infrastructure for device vascularization and induces profound local allocell-specific tolerance, which then evokes peripheral T-cell tolerance. The tolerance is antigen specific, does not cause immune deficits and may thus serve to improve allocell survival as well as a platform to mitigate pathogenic autoimmunity.
Collapse
Affiliation(s)
- Shira Orr
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekatrina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ekaterine Vinogradov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, and The National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
41
|
Kyluik-Price DL, Scott MD. Effects of methoxypoly (Ethylene glycol) mediated immunocamouflage on leukocyte surface marker detection, cell conjugation, activation and alloproliferation. Biomaterials 2016; 74:167-77. [PMID: 26457834 DOI: 10.1016/j.biomaterials.2015.09.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023]
Abstract
Tissue rejection occurs subsequent to the recognition of foreign antigens via receptor-ligand contacts between APC (antigen presenting cells) and T cells, resulting in initialization of signaling cascades and T cell proliferation. Bioengineering of donor cells by the covalent attachment of methoxypolyethylene glycol (mPEG) to membrane proteins (PEGylation) provides a novel means to attenuate these interactions consequent to mPEG-induced charge and steric camouflage. While previous studies demonstrated that polymer-mediated immunocamouflage decreased immune recognition both in vitro and in vivo, these studies monitored late events in immune recognition and activation such as T cell proliferation. Consequently little information has been provided concerning the early cellular events governing this response. Therefore, the effect of PEGylation was assessed by examining initial cell-cell interactions, changes to activation pathways, and apoptosis to understand the role that each may play in the decreased proliferative response observed in modified cells during the course of a mixed lymphocyte reaction (MLR). The mPEG-modified T cells resulted in significant immunocamouflage of lymphocyte surface proteins and decreased interactions with APC. Furthermore, mPEG-MLR exhibited decreased NFκB pathway activation, while exhibiting no significant differences in degree of cell death compared to the control MLR. These results suggest that PEGylation may prevent the direct recognition of foreign alloantigens by decreasing the stability and duration of initial cell-cell interactions.
Collapse
Affiliation(s)
- Dana L Kyluik-Price
- Canadian Blood Services, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine at the University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Canadian Blood Services, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine at the University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
42
|
Autoimmune Liver Disease Post-Liver Transplantation: A Summary and Proposed Areas for Future Research. Transplantation 2016; 100:515-24. [PMID: 26447505 PMCID: PMC4764021 DOI: 10.1097/tp.0000000000000922] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autoimmune liver diseases (AILD) are rare diseases with a reported prevalence of less than 50 per 100 000 population. As the research landscape and our understanding of AILDs and liver transplantation evolves, there remain areas of unmet needs. One of these areas of unmet needs is prevention of disease recurrence after liver transplantation. Disease recurrence is not an insignificant event because allograft loss with the need for retransplantation can occur. Patients transplanted for AILD are more likely to experience acute rejection compared to those transplanted for non-AILD, and the reason(s) behind this observation is unclear. Tasks for the future include a better understanding of the pathogenesis of AILD, definition of the precise pathogenetic mechanisms of recurrent AILD, and development of strategies that can identify recipients at risk for disease recurrence. Importantly, the role of crosstalk between alloimmune responses and autoimmune responses in AILD is an important area that needs further study. This article reviews the relevant literature of de novo autoimmune hepatitis, recurrent autoimmune hepatitis, recurrent primary sclerosing cholangitis, and recurrent primary biliary cirrhosis in terms of the clinical entity, the scientific advancements, and future scientific goals to enhance our understanding of these diseases. A review of the relevant literature of de novo autoimmune hepatitis, recurrent autoimmune hepatitis, recurrent primary sclerosing cholangitis, and recurrent primary biliary cirrhosis in terms of the clinical entity, the scientific advancements and future scientific goals to enhance our understanding of these diseases.
Collapse
|
43
|
Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. Int J Mol Sci 2016; 17:ijms17060958. [PMID: 27322252 PMCID: PMC4926491 DOI: 10.3390/ijms17060958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Heart transplantation (HTx) is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.
Collapse
|
44
|
He D, Yu W, Chen Z, Li L, Zhu K, Fan S. Pathogenesis of the intravertebral vacuum of Kümmell's disease. Exp Ther Med 2016; 12:879-882. [PMID: 27446290 PMCID: PMC4950591 DOI: 10.3892/etm.2016.3369] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
In this review, we explored the progress of the pathogenesis of Kümmell's disease intravertebral vacuum. Using different expressions of the same disease including 'Kümmell's disease', 'avascular necrosis after vertebral compression fracture (VCF)', 'post-traumatic vertebral osteonecrosis', 'vertebral pseudarthrosis', 'intravertebral vacuum (cleft or gas)', 'delayed vertebral collapse', 'VCF nonunion', and by conducting a search of the PubMed database, we analyzed the results to examine the pathogenesis of the intravertebral vacuum of Kümmell's disease after referring to pertinent literature on intravertebral vacuum of ischemic necrosis after VCF, and exploring the progress of pathogenesis of this disease. A number of discrepancies were identified within the pathogenesis of the intravertebral vacuum after VCF. There were statements such as avascular necrosis of the vertebral body, bone biomechanics, gas forming and other types of claims, all of which obtained clinical and biomechanical supporting evidence. Collectively, most of the researchers believe that Kümmell vertebral fracture syndrome was the comprehensive effect of multiple factors including osteoporosis, avascular necrosis of the vertebral body, and biomechanical changes following fracture. However, there are a number of discrepancies to be resolved and future studies are therefore needed.
Collapse
Affiliation(s)
- Dengwei He
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China; Department of Orthopedics, Lishui Central Hospital, Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Weiyang Yu
- Department of Orthopedics, Lishui Central Hospital, Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Zhenzhong Chen
- Department of Orthopedics, Lishui Central Hospital, Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Liangchen Li
- Department of Orthopedics, Lishui Central Hospital, Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Kejun Zhu
- Department of Orthopedics, Lishui Central Hospital, Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
45
|
Themeli M, Rivière I, Sadelain M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 2016; 16:357-66. [PMID: 25842976 DOI: 10.1016/j.stem.2015.03.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The promising clinical results obtained with engineered T cells, including chimeric antigen receptor (CAR) therapy, call for further advancements to facilitate and broaden their applicability. One potentially beneficial innovation is to exploit new T cell sources that reduce the need for autologous cell manufacturing and enable cell transfer across histocompatibility barriers. Here we review emerging T cell engineering approaches that utilize alternative T cell sources, which include virus-specific or T cell receptor-less allogeneic T cells, expanded lymphoid progenitors, and induced pluripotent stem cell (iPSC)-derived T lymphocytes. The latter offer the prospect for true off-the-shelf, genetically enhanced, histocompatible cell therapy products.
Collapse
Affiliation(s)
- Maria Themeli
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Isabelle Rivière
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michel Sadelain
- The Center for Cell Engineering, Immunology and Molecular Pharmacology and Chemistry Programs, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
46
|
Stamouli M, Gkirkas K, Tsirigotis P. Strategies for improving the efficacy of donor lymphocyte infusion following stem cell transplantation. Immunotherapy 2016; 8:57-68. [DOI: 10.2217/imt.15.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Donor lymphocyte infusion (DLI) is an effective immunotherapeutic approach with significant activity in the treatment and prevention of relapse after allogeneic stem cell transplantation. DLI is associated with significant toxicity mainly due to graft-versus-host disease. Moreover, DLI does not produce durable responses in aggressive malignancies like acute leukemia. Improvement in DLI efficacy requires dissociation of graft-versus-leukemia effect from graft-versus-host disease. Minor histocompatibility antigens with tissue restriction and leukemia or tumor-associated antigens represent ideal antigenic targets. A brief overview of the existing methods of DLI administration is the topic of this article. T cells transduced with genes encoding for T-cell receptors with reactivity against minor histocompatibility antigens or leukemia-associated antigens is a promising option.
Collapse
Affiliation(s)
- Maria Stamouli
- Second Department of Internal Medicine, ATTIKO General University Hospital, Medical School, National & Kapodistrian University of Athens, Rimini-1, Haidari, PO: 12462, Athens, Greece
| | - Konstantinos Gkirkas
- Second Department of Internal Medicine, ATTIKO General University Hospital, Medical School, National & Kapodistrian University of Athens, Rimini-1, Haidari, PO: 12462, Athens, Greece
| | - Panagiotis Tsirigotis
- Second Department of Internal Medicine, ATTIKO General University Hospital, Medical School, National & Kapodistrian University of Athens, Rimini-1, Haidari, PO: 12462, Athens, Greece
| |
Collapse
|
47
|
Chessa F, Mathow D, Wang S, Hielscher T, Atzberger A, Porubsky S, Gretz N, Burgdorf S, Gröne HJ, Popovic ZV. The renal microenvironment modifies dendritic cell phenotype. Kidney Int 2016; 89:82-94. [DOI: 10.1038/ki.2015.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 07/20/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
|
48
|
Valsami S, Dimitroulis D, Gialeraki A, Chimonidou M, Politou M. Current trends in platelet transfusions practice: The role of ABO-RhD and human leukocyte antigen incompatibility. Asian J Transfus Sci 2015; 9:117-23. [PMID: 26420927 PMCID: PMC4562128 DOI: 10.4103/0973-6247.162684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelet transfusions have contributed to the revolutionary modern treatment of hypoproliferative thrombocytopenia. Despite the long-term application of platelet transfusion in therapeutics, all aspects of their optimal use (i.e., in cases of ABO and/or Rh (D incompatibility) have not been definitively determined yet. We reviewed the available data on transfusion practices and outcome in ABO and RhD incompatibility and platelet refractoriness due to anti-human leukocyte antigen (HLA) antibodies. Transfusion of platelets with major ABO-incompatibility is related to reduced posttransfusion platelet (PLT) count increments, compared to ABO-identical and minor, but still are equally effective in preventing clinical bleeding. ABO-minor incompatible transfusions pose the risk of an acute hemolytic reaction of the recipient that is not always related to high anti-A, B donor titers. ABO-identical PLT transfusion seems to be the most effective and safest therapeutic strategy. Exclusive ABO-identical platelet transfusion policy could be feasible, but alternative approaches could facilitate platelet inventory management. Transfusion of platelets from RhD positive donors to RhD negative patients is considered to be effective and safe though is associated with low rate of anti-D alloimmunization due to contaminating red blood cells. The prevention of D alloimmunization is recommended only for women of childbearing age. HLA alloimmunization is a major cause of platelet refractoriness. Managing patients with refractoriness with cross-matched or HLA-matched platelets is the current practice although data are still lacking for the efficacy of this practice in terms of clinical outcome. Leukoreduction contributes to the reduction of both HLA and anti-D alloimmunization.
Collapse
Affiliation(s)
- Serena Valsami
- Department of Blood Transfusion, Aretaieion Hospital, Athens University Medical School, Athens, Greece
| | - Dimitrios Dimitroulis
- Department of Propedeutic Surgery, Laiko Hospital, Athens University Medical School, Athens, Greece
| | - Argyri Gialeraki
- Haematology Laboratory and Blood Bank Department, Attikon Hospital, Athens University Medical School, Athens, Greece
| | - Maria Chimonidou
- Department of Blood Transfusion, Aretaieion Hospital, Athens University Medical School, Athens, Greece
| | - Marianna Politou
- Department of Blood Transfusion, Aretaieion Hospital, Athens University Medical School, Athens, Greece
| |
Collapse
|
49
|
Nur77 is involved in graft infiltrating T lymphocyte apoptosis in rat cardiac transplantation model. Pathol Res Pract 2015; 211:633-40. [DOI: 10.1016/j.prp.2015.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
|
50
|
The Human Mesenchymal Stromal Cell-Derived Osteocyte Capacity to Modulate Dendritic Cell Functions Is Strictly Dependent on the Culture System. J Immunol Res 2015; 2015:526195. [PMID: 26247040 PMCID: PMC4515297 DOI: 10.1155/2015/526195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 01/14/2023] Open
Abstract
In vitro differentiation of mesenchymal stromal cells (MSC) into osteocytes (human differentiated osteogenic cells, hDOC) before implantation has been proposed to optimize bone regeneration. However, a deep characterization of the immunological properties of DOC, including their effect on dendritic cell (DC) function, is not available. DOC can be used either as cellular suspension (detached, Det-DOC) or as adherent cells implanted on scaffolds (adherent, Adh-DOC). By mimicking in vitro these two different routes of administration, we show that both Det-DOC and Adh-DOC can modulate DC functions. Specifically, the weak downregulation of CD80 and CD86 caused by Det-DOC on DC surface results in a weak modulation of DC functions, which indeed retain a high capacity to induce T-cell proliferation and to generate CD4+CD25+Foxp3+ T cells. Moreover, Det-DOC enhance the DC capacity to differentiate CD4+CD161+CD196+ Th17-cells by upregulating IL-6 secretion. Conversely, Adh-DOC strongly suppress DC functions by a profound downregulation of CD80 and CD86 on DC as well as by the inhibition of TGF-β production. In conclusion, we demonstrate that different types of DOC cell preparation may have a different impact on the modulation of the host immune system. This finding may have relevant implications for the design of cell-based tissue-engineering strategies.
Collapse
|