1
|
Cao M, Wang S, Zhou S, Yan M, Zou Y, Cui Y, Lou X, Gao Y, Chen Y, Han Z, Qian Y, Chen J, Li X. Development of monoclonal antibodies against P. gingivalis Mfa1 and their protective capacity in an experimental periodontitis model. mSphere 2025; 10:e0072124. [PMID: 39699191 PMCID: PMC11774036 DOI: 10.1128/msphere.00721-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), a gram-negative, black-pigmented anaerobe, is a major etiological agent and a leading cause of periodontitis. Fimbriae protein Mfa1 is a key virulence factor of P. gingivalis and plays a crucial role in bacterial adhesion, colonization, biofilm formation, and persistent inflammation, making it a promising therapeutic target. However, the role of anti-Mfa1 antibodies and the underlying protective mechanisms remain largely unexplored. Here, we developed and characterized the monoclonal antibodies (mAbs) targeting the Mfa1 protein of P. gingivalis. Function analysis showed that anti-Mfa1 mAbs mediated bacterial agglutination and inhibited P. gingivalis adhesion to saliva-coated hydroxyapatite and host cells. Notably, anti-Mfa1 mAbs significantly reduced bacterial burden and alveolar bone loss in a P. gingivalis-induced experimental periodontitis model. These results show that anti-Mfa1 mAbs can be beneficial in alleviating P. gingivalis infections, and provide important insights for the development of adequate adjuvant treatment regimens for Mfa1-targeted therapeutics. IMPORTANCE Fimbriae (pili) play an important role in bacterial adhesion, invasion of host cells and tissues, and formation of biofilms. Studies have shown that two types of fimbriae of Porphyromonas gingivalis, FimA and Mfa1, are important for colonization and infection through their binding to host tissues and other bacteria. While anti-FimA antibodies have been shown to improve periodontitis, the effect of anti-Mfa1 antibodies on P. gingivalis infection and periodontitis was previously unknown. In this study, we report for the first time that anti-Mfa1 monoclonal antibodies can reduce P. gingivalis infection and improve periodontitis. These findings suggest that Mfa1 represents a promising therapeutic target, and the development of anti-Mfa1 mAbs holds a potential as essential diagnostic and adjunctive therapeutic tools for managing P. gingivalis-related diseases.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Siyu Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Shengke Zhou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Min Yan
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yu Zou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yuan Cui
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xinyu Lou
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yichang Gao
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Zijing Han
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Yi Qian
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jingying Chen
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Feng Z, Guo FS, Wang Q, Wang M, Zhao MH, Cui Z, Lei X. Macrocarpal B blocks the binding between the phospholipase A2 receptor and its antibodies. Bioorg Med Chem 2024; 110:117793. [PMID: 38917622 DOI: 10.1016/j.bmc.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The pathogenic role of anti-phospholipase A2 receptor (PLA2R) antibodies in primary membranous nephropathy (MN) has been well-established. This study aimed to identify potential small-molecule inhibitors against the PLA2R-antibody interaction, offering potential therapeutic benefits. A comprehensive screening of over 4000 small-molecule compounds was conducted by ELISA to assess their inhibitory effects on the binding between the immobilized full-length extracellular PLA2R and its antibodies. The affinity of anti-PLA2R IgG from MN patients and the inhibitory efficacy of each compound were evaluated via surface plasmon resonance (SPR). Human podocyte injuries were analyzed using CCK-8 assay, wound healing assay, western blot analysis, and immunofluorescence, after exposure to MN plasma +/- blocking compound. Fifteen compounds were identified as potential inhibitors, demonstrating inhibition rates >20 % for the PLA2R-antibody interaction. Anti-PLA2R IgG exhibited a consistent affinity among patients (KD = 10-8 M). Macrocarpal B emerged as the most potent inhibitor, reducing the antigen-antibody interaction by nearly 30 % in a dose-dependent manner, comparable to the performance of the 31-mer peptide from the CysR domain. Macrocarpal B bound to the immobilized PLA2R with an affinity of 1.47 × 10-6 M, while showing no binding to anti-PLA2R IgG. Human podocytes exposed to MN plasma showed decreased podocin expression, impaired migration function, and reduced cell viability. Macrocarpal B inhibited the binding of anti-PLA2R IgG to podocytes and reduced the cellular injuries.
Collapse
Affiliation(s)
- Zixin Feng
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Fu-Sheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Miao Wang
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
5
|
Kumar G, Rajula MP, Rao KS, Ravishankar PL, Albar DH, Bahammam MA, Alamoudi A, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Alnfiai MM, Baeshen HA, Patil S. Antimicrobial Efficacy of Blended Essential Oil and Chlorhexidine against Periodontal Pathogen ( P.gingivalis)-An In Vitro Study. Niger J Clin Pract 2023; 26:625-629. [PMID: 37357480 DOI: 10.4103/njcp.njcp_787_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Background Essential oils (EOs) have a considerable amount of therapeutic and preventive effect in treating dental diseases due to their wider potential as antibacterial and anti-inflammatory agents. EOs like virgin coconut oil, eucalyptus oil, peppermint oil thyme oil, and clove oil, when used in combination, may further have enhanced antimicrobial effects. However, limited information exists on the synergistic effect of these oils when used in combination, especially on the primary periodontal pathogen Porphyromonas gingivalis. Aim The current study aims to compare the antimicrobial efficacy of commercially available EO on the periodontal pathogen, P. gingivalis, in comparison to chlorhexidine (CHX). Materials and Methods Antimicrobial efficacy of EO and CHX was assessed at various concentrations against the periodontal pathogen P. gingivalis, by evaluating the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results P. gingivalis was seen to be sensitive at a MIC of 100 μg/ml and 50 μg/ml concentration of the EO, which is regarded as the MIC of EO against P. gingivalis and CHX effectively inhibited microbial growth at 0.4 μg/ml. Conclusion A combination of EOs possesses a potent antibacterial activity against P. gingivalis, and the antibacterial efficacy increases with increasing concentration of EOs.
Collapse
Affiliation(s)
- G Kumar
- Department of Periodontology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kancheepuram, Tamil Nadu, India
| | - M P Rajula
- Department of Periodontology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kancheepuram, Tamil Nadu, India
| | - K S Rao
- Department of Periodontology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kancheepuram, Tamil Nadu, India
| | - P L Ravishankar
- Department of Periodontology, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kancheepuram, Tamil Nadu, India
| | - D H Albar
- Department of Preventive Dentistry, College of Dentistry, Jazan University, Saudi Arabia
| | - M A Bahammam
- Department of Periodontology, Faculty of Dentistry, King Abdulaziz University. Jeddah; Executive Presidency of Academic Affairs, Saudi Commission for Health Specialties, Riyadh, Saudi Arabia
| | - A Alamoudi
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - K J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - K F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - I F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - F M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - M M Alnfiai
- Department of Information Technology, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - H A Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulziz University, Jeddah, Saudi Arabia
| | - S Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UTAH, USA
| |
Collapse
|
6
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
7
|
Integrating Anti-Influenza Virus Activity and Chemical Pattern Recognition to Explore the Quality Evaluation Method of Lonicerae Japonicae Flos. Molecules 2022; 27:molecules27185789. [PMID: 36144525 PMCID: PMC9502701 DOI: 10.3390/molecules27185789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Lonicerae japonicae flos (LJF, Lonicera japonica Thunb.) is adopted as a core herb for preventing and treating influenza. However, the anti-influenza virus components of LJF and the impact of quality-affecting factors on the anti-influenza activity of LJF have not been systematically investigated. In this study, a strategy integrating anti-influenza virus activity, ultrahigh-performance liquid chromatography fingerprint and chemical pattern recognition was proposed for the efficacy and quality evaluation of LJF. As a result, six bioactive compounds were screened out and identified as neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, 4,5-Di-O-caffeoylquinic acid, sweroside and secoxyloganin. Based on the bioactive compounds, chemical pattern recognition models of LJF were established by a linear discriminant analysis (LDA). The results of the LDA models and anti-influenza virus activity demonstrated that cultivation pattern significantly affected the anti-influenza effect of LJF and that the neuraminidase inhibition rate of wild LJF was significantly higher than that of cultivated LJF. Moreover, the quality of LJF samples with different processing methods and geographical origins showed no obvious difference. Overall, the proposed strategy in the current study revealed the anti-influenza virus components of LJF and provided a feasible method for thequality evaluation of LJF, which has great importance for assuring the clinical effect against influenza of LJF.
Collapse
|
8
|
Faezeh Taghizadeh S, Panahi A, Esmaeilzadeh Kashi M, Kretschmer N, Asili J, Ahmad Emami S, Azizi M, Shakeri A. Structural Diversity of Complex Phloroglucinol Derivatives from Eucalyptus Species. Chem Biodivers 2022; 19:e202200025. [PMID: 35621714 DOI: 10.1002/cbdv.202200025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
Abstract
Several species of the genus Eucalyptus are used in many traditional medicine systems for the treatment of respiratory tract infections, colds, flu, sore throats, and bronchitis. The genus Eucalyptus (Myrtaceae) is a well-known natural source of bioactive phloroglucinols. These polyphenolic compounds bear an aromatic phenyl ring with three hydroxy groups (1,3,5-trihydroxybenzene) which have been exhibiting a variety of biological activities such as antimicrobial, anticancer, anti-allergic, anti-inflammatory, and antioxidant activities. This review summarizes the literature published from 1997 until the end of 2021 and addresses the structure diversity of phloroglucinols isolated from Eucalyptus species and their biological activities. Phloroglucinol-terpene adducts are the main class of compounds that have been reported in this genus.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948978, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| | - Ali Panahi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| | - Marziyeh Esmaeilzadeh Kashi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, A-8010, Graz, Austria
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| | - Majid Azizi
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948978, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, 9177897165, Mashhad, Iran
| |
Collapse
|
9
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
10
|
Müller-Heupt LK, Vierengel N, Groß J, Opatz T, Deschner J, von Loewenich FD. Antimicrobial Activity of Eucalyptus globulus, Azadirachta indica, Glycyrrhiza glabra, Rheum palmatum Extracts and Rhein against Porphyromonas gingivalis. Antibiotics (Basel) 2022; 11:186. [PMID: 35203789 PMCID: PMC8868162 DOI: 10.3390/antibiotics11020186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
Novel plant-derived antimicrobials are of interest in dentistry, especially in the treatment of periodontitis, since the use of established substances is associated with side effects and concerns of antimicrobial resistance have been raised. Thus, the present study was performed to quantify the antimicrobial efficacy of crude plant extracts against Porphyromonas gingivalis, a pathogen associated with periodontitis. The minimal inhibitory concentrations (MICs) of Eucalyptus globulus leaf, Azadirachta indica leaf, Glycyrrhiza glabra root and Rheum palmatum root extracts were determined by broth microdilution for P. gingivalis ATCC 33277 according to CLSI (Clinical and Laboratory Standards Institute). The MICs for the E. globulus, A. indica and G. glabra extracts ranged from 64 mg/L to 1024 mg/L. The lowest MIC was determined for an ethanolic R. palmatum extract with 4 mg/L. The MIC for the anthraquinone rhein was also measured, as the antimicrobial activity of P. palmatum root extracts can be partially traced back to rhein. Rhein showed a remarkably low MIC of 0.125 mg/L. However, the major compounds of the R. palmatum root extract were not further separated and purified. In conclusion, R. palmatum root extracts should be further studied for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, D-55131 Mainz, Germany
| | - Nina Vierengel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, D-55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, D-55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10–14, D-55128 Mainz, Germany; (N.V.); (J.G.); (T.O.)
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, D-55131 Mainz, Germany;
| | - Friederike D. von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstr. 67, D-55131 Mainz, Germany;
| |
Collapse
|
11
|
Comparative In Vitro Evaluation of Commercial Periodontal Gels on Antibacterial, Biocompatibility and Wound Healing Ability. Pharmaceutics 2021; 13:pharmaceutics13091502. [PMID: 34575578 PMCID: PMC8465455 DOI: 10.3390/pharmaceutics13091502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
In the last years, several studies testing commercial periodontal gels that contain chlorhexidine (CHX) or other antibacterial agents, have raised concerns regarding their cytotoxicity in periodontal tissues. We aimed at comparing the biocompatibility but also the efficacy as regards to the antibacterial and wound healing ability of different commercial periodontal gels. In vitro human gingival fibroblasts (GF) and a 3D model of human tissue equivalents of gingiva (GTE) were used under inflammatory conditions to evaluate wound closure, cytotoxicity and gene expression. Antibacterial effects were also investigated on Porphyromonas gingivalis growth, viability and gingipain activity. In GF and in the bacterial study, we found cytotoxic effects on GF and a high inhibition on bacterial growth rate in gels containing CHX, asiaticoside, enoxolone, cetylpyridinium chloride, propolis and eugenol. Of the two gels that were non-cytotoxic, Syntoss Biogel (containing chondrontin sulfate) and Emdogain (EMD, containing amelogenin and propylene glycol alginate), EMD showed the best wound closure, with no effect on P. gingivalis growth but decreased gingipain activity. On the other hand, Syntoss Biogel reduced viability and gingipain activity of P. gingivalis, but lack wound healing capacity. In the 3D GTE, Syntoss Biogel and EMD showed a good biocompatibility. Among all the tested gels, formulations containing CHX, asiaticoside, enoxolone, cetylpyridinium chloride, propolis and eugenol showed high antibacterial effect but also showed high cytotoxicity in eukaryotic cells. EMD was the one with the best biocompatibility and wound healing ability at the conditions tested.
Collapse
|
12
|
Lahiri D, Nag M, Garai S, Ray RR. The Chemistry of Antibiofilm Phytocompounds. Mini Rev Med Chem 2021; 21:1034-1047. [PMID: 32767942 DOI: 10.2174/1389557520666200807135243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Phytocompounds are long known for their therapeutic uses due to their competence as antimicrobial agents. The antimicrobial activity of these bioactive compounds manifests their ability as an antibiofilm agent and is thereby proved to be competent to treat the widespread biofilm-associated chronic infections. The rapid development of antibiotic resistance in bacteria has made the treatment of these infections almost impossible by conventional antibiotic therapy, which forced a switch-over to the use of phytocompounds. The present overview deals with the classification of a huge array of phytocompounds according to their chemical nature, detection of their target pathogen, and elucidation of their mode of action.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| |
Collapse
|
13
|
Jafari F, Ramezani M, Nomani H, Amiri MS, Moghadam AT, Sahebkar A, Emami SA, Mohammadpour AH. Therapeutic Effect, Chemical Composition, Ethnobotanical Profile of Eucalyptus globulus: A Review. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200807213043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The composition of essential oil (EO) of E. globulus is so different all over the world. The
main component of essential oil is 1,8-cineole (Compound 64), macrocarpal C (Compound 22), terpenes
(Compound 23-92), oleanolic acid (Compound 21), and tannins (Compound 93-99). We
searched in vitro and in vivo articles and reviewed botanical aspects, therapeutic activity, chemical
composition and mechanism of action of E. globulus. Essential oils and extracts of leaves, stump,
wood, root and fruits of E. globulus represented many various medicinal effects including antibacterial,
antifungal, antidiabetic, anticancer, anthelmintic, antiviral, antioxidant, anti-inflammatory, protection
against UV-B, wound healing effect and stimulating the immune response. Also, the leaf extract of eucalyptus
is used as a food additive in the industry. Eucalyptus has so many different therapeutic effects
and some of these effects were confirmed by pharmacological and clinical studies. More clinical studies
are recommended to confirm the useful pharmacological activity of E. globulus.
Collapse
Affiliation(s)
- Fatemeh Jafari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | | | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,Iran
| |
Collapse
|
14
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
15
|
Hadadi Z, Nematzadeh GA, Ghahari S. A study on the antioxidant and antimicrobial activities in the chloroformic and methanolic extracts of 6 important medicinal plants collected from North of Iran. BMC Chem 2020; 14:33. [PMID: 32355911 PMCID: PMC7183718 DOI: 10.1186/s13065-020-00683-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As possible sources of natural bioactive molecules, the plant essential oils and extracts have been used globally in new antimicrobial compounds, food preservatives, and alternatives to treat infectious disease. METHODS In this research, the antimicrobial activities of chloroformic and methanolic extracts of Sophora flavescens, Rhaponticum repens, Alhagi maurorum, Melia azedarach, Peganum harmala, and Juncus conglomeratus were evaluated against 8 bacteria (S. aureus, B. subtilis, R. toxicus, P. aeruginosa, E. coli, P. syringae, X. campestris, P. viridiflava) and 3 fungi (Pyricularia oryzae, Fusarium oxysporum and Botrytis cinerea), through disc diffusion method. Furthermore, the essential oils of plants with the highest antibacterial activity were analyzed utilizing GC/MS. Moreover, the tested plants were exposed to screening for possible antioxidant effect utilizing DPPH test, guaiacol peroxidas, and catalase enzymes. Besides, the amount of total phenol and flavonoid of these plants was measured. RESULTS Among the tested plants, methanolic and chloroformic extracts of P. harmala fruits showed the highest antibacterial activity against the tested bacteria. Besides, the investigation of free radical scavenging effects of the tested plants indicated the highest DPPH, protein, guaiacol peroxidase, and catalase in P. harmala, M. azedarach, J. conglomeratus fruits, and J. conglomeratus fruits, respectively. In addition, the phytochemical analysis demonstrated the greatest amounts of total phenolic and flavonoid compositions in J. conglomeratus and P. harmala, respectively. CONCLUSION The results indicated that these plants could act as a promising antimicrobial agent, due to their short killing time.
Collapse
Affiliation(s)
- Zahra Hadadi
- Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ghorban Ali Nematzadeh
- Sari University of Agricultural Sciences and Natural Resources, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Somayeh Ghahari
- Sari University of Agricultural Sciences and Natural Resources, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| |
Collapse
|
16
|
Dobler D, Runkel F, Schmidts T. Effect of essential oils on oral halitosis treatment: a review. Eur J Oral Sci 2020; 128:476-486. [PMID: 33200432 DOI: 10.1111/eos.12745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/09/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023]
Abstract
Halitosis is a very common condition which may affect up to 30% of the population. In about 90% of the cases, halitosis originates in the mouth due to inadequate plaque control, periodontal disease, dry mouth, faulty restorations, and in particular due to excessive bacterial growth. Oral malodor is mainly caused by a microbial degradation of amino acids into volatile, bad-smelling gases (volatile sulfur compounds - VSCs). Management of oral malodor is directed primarily at managing and reducing the VSC-producing bacteria count as well as masking the odor. Essential oils have been used for this purpose in traditional medicine for centuries. In the present review, data on the antimicrobial activity of essential oils against relevant oral VSC-producing bacteria are compiled and compared. Additionally, other positive aspects of essential oils with regard to oral odor are considered.
Collapse
Affiliation(s)
- Dorota Dobler
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| | - Frank Runkel
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| | - Thomas Schmidts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen, Germany
| |
Collapse
|
17
|
Biofilm Eradication Activity of Herb and Spice Extracts Alone and in Combination Against Oral and Food-Borne Pathogenic Bacteria. Curr Microbiol 2020; 77:2486-2495. [PMID: 32394095 DOI: 10.1007/s00284-020-02017-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to select herbs and spices with potent biofilm eradication activities. Further, the combined effects of herb and spice extracts against pathogenic biofilms were evaluated. The biofilm eradication activities of ethanol extracts of 104 herbs and spices were measured by combining a colorimetric microbial viability assay with a biofilm formation technique. Ethanol extract of clove had potent biofilm eradication activities against Escherichia coli, Porphyromonas gingivalis, and Streptococcus mutans. Ethanol extracts of eucalyptus and rosemary had potent biofilm eradication activities against P. gingivalis, Staphylococcus aureus and S. mutans. The combination of extracts of clove with eucalyptus or rosemary showed synergistic or additive effects, or both, on biofilm eradication activities. The main biofilm inhibitors in the ethanol extracts of clove, eucalyptus and rosemary were eugenol, macrocarpals and carnosic acid, respectively. The combinations of extracts of clove with eucalyptus or rosemary had potent biofilm eradication activities against oral and food-borne pathogenic bacteria. The findings of the present study reveal that specific combinations of herb and spice extracts may prevent and control biofilm-related oral diseases, food spoilage, and food poisoning.
Collapse
|
18
|
Antiplaque and antimicrobial efficacy of polyherbal mouth rinse among adult human volunteers – A short term randomized controlled trial. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Hayden HL, Rochfort SJ, Ezernieks V, Savin KW, Mele PM. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using 1H NMR and LC-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1627-1638. [PMID: 30360288 DOI: 10.1016/j.scitotenv.2018.09.249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
The suppression of soilborne crop pathogens such as Rhizoctonia solani AG8 may offer a sustainable and enduring method for disease control, though soils with these properties are difficult to identify. In this study, we analysed the soil metabolic profiles of suppressive and non-suppressive soils over 2 years of cereal production. We collected bulk and rhizosphere soil at different cropping stages and subjected soil extracts to liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) analyses. Community analyses of suppressive and non-suppressive soils using principal component analyses and predictive modelling of LC-MS and NMR datasets respectively, revealed distinct biochemical profiles for the two soil types with clustering based on suppressiveness and cropping stage. NMR spectra revealed the suppressive soils to be more abundant in sugar molecules than non-suppressive soils, which were more abundant in lipids and terpenes. LC-MS features that were significantly more abundant in the suppressive soil were identified and assessed as potential biomarkers for disease suppression. The structures of a potential class of LC-MS biomarkers were elucidated using accurate mass data and MS fragmentation spectrum information. The most abundant compound found in association with suppressive soils was confirmed to be a macrocarpal, which is an antimicrobial secondary metabolite. Our study has demonstrated the utility of environmental metabolomics for the study of disease suppressive soils, resulting in the discovery of a macrocarpal biomarker for R. solani AG8 suppressive soil which can be further studied functionally in association with suppression pot trials and microbial isolation studies.
Collapse
Affiliation(s)
- Helen L Hayden
- Agriculture Victoria Research, Department of Economic Development, Jobs, Trade and Resources, 5 Ring Rd, Bundoora, Victoria 3083, Australia.
| | - Simone J Rochfort
- Agriculture Victoria Research, Department of Economic Development, Jobs, Trade and Resources, 5 Ring Rd, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Vilnis Ezernieks
- Agriculture Victoria Research, Department of Economic Development, Jobs, Trade and Resources, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - Keith W Savin
- Agriculture Victoria Research, Department of Economic Development, Jobs, Trade and Resources, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - Pauline M Mele
- Agriculture Victoria Research, Department of Economic Development, Jobs, Trade and Resources, 5 Ring Rd, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
20
|
Singh AK, Yadav S, Sharma K, Firdaus Z, Aditi P, Neogi K, Bansal M, Gupta MK, Shanker A, Singh RK, Prakash P. Quantum curcumin mediated inhibition of gingipains and mixed-biofilm of Porphyromonas gingivalis causing chronic periodontitis. RSC Adv 2018; 8:40426-40445. [PMID: 35558224 PMCID: PMC9091477 DOI: 10.1039/c8ra08435a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/21/2018] [Accepted: 11/26/2018] [Indexed: 12/02/2022] Open
Abstract
Periodontitis is a biofilm-associated irreversible inflammation of the periodontal tissues. Reports suggest the role of Porphyromonas gingivalis specific Arg- and Lys-specific proteinases in the orchestration of the initiation and progression of periodontal diseases. These proteinases are precisely termed as gingipains R and K. Curcumin is an active polyphenol that is extracted from the rhizomes of Curcuma longa. However, the molecule curcumin owing to its high hydropathy index and poor stability has not been able to justify its role as frontline drug modality in the treatment of infectious and non-infectious diseases as claimed by several investigators. In the present study, at first, we synthesized and characterized quantum curcumin, and investigated its biocompatibility. This was subsequently followed by the evaluation of the role of quantum curcumin as an antimicrobial, anti-gingipains and antibiofilm agent against Porphyromonas gingivalis and select reference strains. We have successfully synthesized the quantum curcumin utilizing a top-down approach with the average size of 3.5 nm. Apart from its potent antimicrobial as well as antibiofilm properties, it also significantly inhibited the gingipains in a dose-dependent manner. At the minimal concentration of 17.826 μM, inhibition up to 98.7% and 89.4% was noted for gingipain R and K respectively. The data was also supported by the in silico docking experiments which revealed high exothermic enthalpies (−7.01 and −7.02 cal mol−1). Besides, the inhibition constant was found to be 7.24 μM and 7.1 μM against gingipains R and K respectively. The results suggest that quantum curcumin is a potential drug candidate which needs further clinical validation. Periodontitis is a biofilm-associated irreversible inflammation of the periodontal tissues.![]()
Collapse
|
21
|
Muniz FWMG, Friedrich SA, Silveira CF, Rösing CK. The impact of chewing gum on halitosis parameters: a systematic review. J Breath Res 2017; 11:014001. [PMID: 28212110 DOI: 10.1088/1752-7163/aa5cc2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study aimed to analyze the impact of chewing gum on halitosis parameters. Three databases were searched with the following focused question: 'Can chewing gum additionally reduce halitosis parameters, such as organoleptic scores and volatile sulfur compounds (VSC), when compared to a control treatment'? Controlled clinical trials presenting at least two halitosis measurements (organoleptic scores and/or VSC) were included. Ten studies were included, and different active ingredients were used. One study was performed using a chewing gum without any active ingredient. Chewing gum containing probiotic bacterium was shown to significantly reduce the organoleptic scores. Chewing gums containing zinc acetate and magnolia bark extract as well as allylisothiocyanate (AITC) with zinc lactate significantly reduced the levels of VSC in comparison to a placebo chewing gum. Furthermore, a sodium bicarbonate-containing chewing gum significantly reduced the VSC levels in comparison to rinsing with water. Furthermore, eucalyptus-extract chewing gum showed significant reductions in both organoleptic scores and VSC when compared with a control chewing gum. Chewing gum containing sucrose was able to reduce the VSC levels, in comparison to xylitol and zinc citrate chewing gum, but only for 5 min. It was concluded that chewing gums containing probiotics Lactobaccilus, zinc acetate and magnolia bark extract, eucalyptus-extract, and AITC with zinc lactate may be suitable for halitosis management. However, the low number of included studies and the high heterogeneity among the selected studies may limit the clinical applications of these findings.
Collapse
|
22
|
McKiernan AB, Potts BM, Brodribb TJ, Hovenden MJ, Davies NW, McAdam SAM, Ross JJ, Rodemann T, O'Reilly-Wapstra JM. Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. TREE PHYSIOLOGY 2016; 36:133-147. [PMID: 26496959 DOI: 10.1093/treephys/tpv106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Water deficit associated with drought can severely affect plants and influence ecological interactions involving plant secondary metabolites. We tested the effect of mild water deficit and rewatering on physiological, morphological and chemical traits of juvenile Eucalyptus globulus Labill. and Eucalyptus viminalis Labill. We also tested if responses of juvenile eucalypts to water deficit and rewatering varied within species using provenances across a rainfall gradient. Both species and all provenances were similarly affected by mild water deficit and rewatering, as only foliar abscisic acid levels differed among provenances during water deficit. Across species and provenances, water deficit decreased leaf water potential, above-ground biomass and formylated phloroglucinol compound concentrations, and increased condensed tannin concentrations. Rewatering reduced leaf carbon : nitrogen, and total phenolic and chlorogenic acid concentrations. Water deficit and rewatering had no effect on total oil or individual terpene concentrations. Levels of trait plasticity due to water deficit and rewatering were less than levels of constitutive trait variation among provenances. The overall uniformity of responses to the treatments regardless of native provenance indicates limited diversification of plastic responses when compared with the larger quantitative variation of constitutive traits within these species. These responses to mild water deficit may differ from responses to more extreme water deficit or to responses of juvenile/mature eucalypts growing at each locality.
Collapse
Affiliation(s)
- Adam B McKiernan
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Mark J Hovenden
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - John J Ross
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Thomas Rodemann
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - Julianne M O'Reilly-Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia National Centre for Future Forest Industries, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| |
Collapse
|
23
|
Karygianni L, Al-Ahmad A, Argyropoulou A, Hellwig E, Anderson AC, Skaltsounis AL. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front Microbiol 2016; 6:1529. [PMID: 26834707 PMCID: PMC4712263 DOI: 10.3389/fmicb.2015.01529] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/18/2015] [Indexed: 12/23/2022] Open
Abstract
Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro, ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms “(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease).” The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera, Pinus spp., Coffea canephora, Camellia sinensis, Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum, representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases.
Collapse
Affiliation(s)
- Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg Freiburg, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens Athens, Greece
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg Freiburg, Germany
| | - Annette C Anderson
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, University of Freiburg Freiburg, Germany
| | - Alexios L Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens Athens, Greece
| |
Collapse
|
24
|
Izui S, Sekine S, Maeda K, Kuboniwa M, Takada A, Amano A, Nagata H. Antibacterial Activity of Curcumin Against Periodontopathic Bacteria. J Periodontol 2016; 87:83-90. [DOI: 10.1902/jop.2015.150260] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Chandra Shekar BR, Nagarajappa R, Suma S, Thakur R. Herbal extracts in oral health care - A review of the current scenario and its future needs. Pharmacogn Rev 2015; 9:87-92. [PMID: 26392704 PMCID: PMC4557240 DOI: 10.4103/0973-7847.162101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/17/2014] [Accepted: 08/04/2015] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Oral diseases are among the major public health problems and the commonest of chronic diseases that affect mankind. The application of natural products for the control of oral diseases is considered as an interesting alternative to synthetic antimicrobials due to their lower negative impact, and for the effort to overcome primary or secondary resistance to the drug during therapy. OBJECTIVE To review the current evidence on the antimicrobial efficacy of 10 plant extracts on dental caries and plaque microorganisms. MATERIALS AND METHODS A comprehensive literature search was made by one of the authors for 2 months in PubMed, PubMed Central, MEDLINE, LILACS/BBO, Cochrane database of systematic reviews, SCIENCE DIRECT, and Google scholar databases. The results from the relevant published literatures are discussed. SUMMARY AND CONCLUSION The extracts of Azadirachta Indica, Ocimum sanctum, Murraya koenigii L., Acacia nilotica, Eucalyptus camaldulensis, Hibiscus sabdariffa, Mangifera indica, Psidium guajava, Rosa indica, and Aloe barbadensis Miller have all been found to inhibit certain dental caries and periodontal pathogens. The current evidence is on individual plant extracts against bacteria involved in either caries or periodontitis. "Herbal shotgun" or "synergistic multitarget effects" are the terms used for the strategy of combining different extracts. The research assessing the antimicrobial efficacy of a combination of these plant extracts against dental caries and periodontal pathogens is the need of the hour, and such research will aid in the development of a novel, innovative method that can simultaneously inhibit two of the most common dental diseases of mankind, besides slowing the development of drug resistance.
Collapse
Affiliation(s)
| | - Ramesh Nagarajappa
- Department of Public Health Dentistry, Rama Dental College, Uttar Pradesh, India
| | - Shankarappa Suma
- Department of Orthodontics, JSS Dental College and Hospital, JSS University, Mysore, India
| | - Rupesh Thakur
- Biochemical Research Laboratory, Center for Scientific Research and Development, People's University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
26
|
Shekar C, Nagarajappa R, Singh R, Thakur R. Antimicrobial efficacy of Acacia nilotica, Murraya koenigii L. Sprengel, Eucalyptus hybrid, and Psidium guajava on primary plaque colonizers: An in vitro comparison between hot and cold extraction process. J Indian Soc Periodontol 2015; 19:174-9. [PMID: 26015668 PMCID: PMC4439627 DOI: 10.4103/0972-124x.145814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 10/13/2014] [Indexed: 11/25/2022] Open
Abstract
Background: The potential drawbacks of the existing antiplaque agents call for innovative strategies that are safe, effective, and easily available. Objective: The objective was to assess and compare antimicrobial efficacy of four plant extracts derived using hot and cold extraction methods against Streptococcus mutans, Streptococcus sanguis, and Streptococcus salivarius. Materials and Methods: The leaves of Acacia nilotica, P. guajava, Eucalyptus hybrid, and Murraya konigii L. Sprengel were collected from the surrounding areas, identified and authenticated by a taxonomist. The leaves were washed, shade-dried, and hand crushed to obtain coarse powder. This was subsequently ground into a fine powder and extracted using ethanol by cold infusion and hot extraction process. The antimicrobial efficacy testing was done on American Type Culture Collection strains of S. mutans, S. sanguis, and S. salivarius using agar well diffusion method. 0.2% chlorhexidine and dimethyl sulfoxide were used as positive and negative controls. The mean inhibition zone using 10% concentration of these extracts was compared using independent sample t-test and one-way analysis of variance. Results: All the four plant extracts inhibited the growth of S. mutans, S. sanguis, and S. salivarius irrespective of the method of extraction. The extracts of A. nilotica, P. guajava, and E. hybrid derived from both the methods of extraction exhibited a significantly higher inhibition zone against S. mutans in comparison with Murraya koenigii L. Sprengel and chlorhexidine. The cold extracts of A. nilotica and E. hybrid exhibited higher zone of inhibition against S. sanguis while the hot extracts of M. koenigii L. Sprengel exhibited a higher zone of inhibition against S. mutans. Conclusion: All the four plant extracts derived using either hot or cold extraction were effective against these bacteria and have the potential to be used as antiplaque agents.
Collapse
Affiliation(s)
- Chandra Shekar
- Faculty of Dental Sciences, Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, India
| | - Ramesh Nagarajappa
- Department of Public Health Dentistry, Rama Dental College, Khanpur, Uttar Pradesh, India
| | - Rupal Singh
- Biochemical Research laboratory, Center for Scientific Research and Development, People's University, Bhanpur, Bhopal, Madhya Pradesh, India
| | - Rupesh Thakur
- Biochemical Research laboratory, Center for Scientific Research and Development, People's University, Bhanpur, Bhopal, Madhya Pradesh, India
| |
Collapse
|
27
|
Durán-Peña MJ, Botubol Ares JM, Hanson JR, Collado IG, Hernández-Galán R. Biological activity of natural sesquiterpenoids containing a gem-dimethylcyclopropane unit. Nat Prod Rep 2015; 32:1236-48. [DOI: 10.1039/c5np00024f] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The biological activity of sesquiterpenes containing the gem-dimethylcyclopropane unit is described.
Collapse
Affiliation(s)
| | | | | | - Isidro G. Collado
- Department of Organic Chemistry
- Faculty of Science
- University of Cádiz
- Puerto Real
- Spain
| | | |
Collapse
|
28
|
Chandra Shekar BR, Nagarajappa R, Singh R, Thaku R. Antimicrobial efficacy of the combinations of Acacia nilotica, Murraya koenigii L. sprengel, Eucalyptus hybrid and Psidium guajava on primary plaque colonizers. J Basic Clin Pharm 2014; 5:115-9. [PMID: 25316992 PMCID: PMC4194942 DOI: 10.4103/0976-0105.141954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: There is an urgent need for innovative strategies to combat the two most common dental diseases of mankind namely dental caries and periodontitis. Objective: The aim was to assess the antimicrobial efficacy of the double combinations of Acacia nilotica (AN), Murraya koenigii L. Sprengel (MKL), Eucalyptus hybrid and Psidium guajava on primary plaque colonizers. Materials and Methods: The plant extracts of AN, MKL. Sprengel, Eucalyptus hybrid and P. guajava were prepared using Soxhlet apparatus. The stock solutions of individual plant extracts (100 mg/ml) were prepared. Equal quantities of stock solutions were mixed to obtain six double combinations of herbal extracts. The antimicrobial efficacy testing was done against three primary plaque colonizers using agar well-diffusion method. 0.2% chlorhexidine and dimethyl sulfoxide were used as positive and as negative controls. The mean inhibition zone between the categories was compared using one-way Analysis of Variance and Tukey's post hoc test. Results: The combination of AN and P. guajava produced the highest mean diameter of inhibition zone (21.08 mm ± 2.11) against Streptococcus mutans. The chlorhexidine produced the least inhibition zone against S. mutans (14.50 ± 2.07). The combination of AN and P. guajava produced the maximum antimicrobial efficacy against Streptococcus sanguis (19.67 ± 1.03) and Streptococcus salivarius (20.33 ± 1.86). Conclusion: All the combinations of plant extracts have the potential to be used as antiplaque and anticaries agents. The combinations of herbal extracts offer enhanced antimicrobial efficacy due to the synergistic effects besides slowing the development of resistance.
Collapse
Affiliation(s)
- B R Chandra Shekar
- Ph.D Scholar, Faculty of Dentistry, Pacific Academy of Higher Education and Research University, Udaipur, Rajasthan, India
| | - Ramesh Nagarajappa
- Department of Public Health Dentistry, Rama Dental College, Khanpur, Uttar Pradesh, India
| | - Rupal Singh
- Scientist-In Charge, Center for Scientific Research and Development, People's University, Bhanpur, Bhopal, Madhya Pradesh, India
| | - Roopesh Thaku
- Scientist-In Charge, Center for Scientific Research and Development, People's University, Bhanpur, Bhopal, Madhya Pradesh, India
| |
Collapse
|
29
|
Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Toxicol Appl Pharmacol 2012; 263:287-95. [PMID: 22789837 DOI: 10.1016/j.taap.2012.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/29/2012] [Accepted: 06/30/2012] [Indexed: 01/01/2023]
Abstract
Platelet dysfunction is a major risk factor of cardiovascular diseases such as atherosclerosis, stroke and myocardial infarction. Many antiplatelet agents are used for prevention and treatment of these diseases. In this study, phloroglucinol (2.5-25 μM) suppressed AA-induced platelet aggregation and thromboxane B(2) (TXB(2)) production, but not U46619-induced platelet aggregation. Phloroglucinol (100-250 μM) showed little cytotoxicity to platelets. Phloroglucinol inhibited the COX-1 and COX-2 activities by 45-74% and 49-72% respectively at concentrations of 10-50 μM. At concentrations of 1 and 5 μM, phloroglucinol attenuated the AA-induced ROS production in platelets by 30% and 53%, with an IC(50) of 13.8 μM. Phloroglucinol also inhibited the PMA-stimulated ROS production in PMN. Preincubation of platelets by phloroglucinol (10-25 μM) markedly attenuated the AA-induced ERK and p38 phosphorylation. Intravenous administration of phloroglucinol (2.5 and 5 μmol/mouse) suppressed the ex vivo AA-induced platelet aggregation by 57-71%. Phloroglucinol administration also elevated the mice tail bleeding time. Moreover, phloroglucinol inhibited the IL-1β-induced PGE(2) production in pulp fibroblasts. These results indicate that antiplatelet and anti-inflammatory effects of phloroglucinol are related to inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation in platelets. Phloroglucinol further suppress PMA-induced ROS production in PMN. The antiplatelet effect of phloroglucinol was confirmed by ex vivo study. Clinically, the consumption of phloroglucinol-containing food/natural products as nutritional supplement may be helpful to cardiovascular health. Phloroglucinol has potential pharmacological use.
Collapse
|
30
|
Lau KM, Fu LH, Cheng L, Wong CW, Wong YL, Lau CP, Han SQB, Chan PKS, Fung KP, Lau CBS, Hui M, Leung PC. Two antifungal components isolated from Fructus Psoraleae and Folium Eucalypti Globuli by bioassay-guided purification. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 38:1005-14. [PMID: 20821830 DOI: 10.1142/s0192415x10008421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fructus Psoraleae and Folium Eucalypti Globuli have long been used as Chinese medicines to treat various ailments such as asthma, eczema and dermatomycosis. In previous studies, their antifungal activities were demonstrated. The aim of the present study was to isolate active antidermatophytic compounds from their ethanolic extracts by means of bioassay-guided purification. Guided by the inhibitory activities on Trichophyton mentagrophytes, Trichophyton rubrum and Paecilomyces variotii, bakuchiol was isolated from the n-hexane fraction of Fructus Psoraleae whilst macrocarpal C was isolated from the n-hexane fraction of Folium Eucalypti Globuli. Both pure compounds could effectively inhibit the growth of dermatophytes in vitro. This is the first paper to report the isolation and identification of active antidermatophytic compounds from Fructus Psoraleae and Folium Eucalypti Globuli by the bioassay-guided purification.
Collapse
Affiliation(s)
- Kit-Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Palombo EA. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:680354. [PMID: 19596745 PMCID: PMC3145422 DOI: 10.1093/ecam/nep067] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 05/28/2009] [Indexed: 11/23/2022]
Abstract
Oral diseases are major health problems with dental caries and periodontal diseases among the most important preventable global infectious diseases. Oral health influences the general quality of life and poor oral health is linked to chronic conditions and systemic diseases. The association between oral diseases and the oral microbiota is well established. Of the more than 750 species of bacteria that inhabit the oral cavity, a number are implicated in oral diseases. The development of dental caries involves acidogenic and aciduric Gram-positive bacteria (mutans streptococci, lactobacilli and actinomycetes). Periodontal diseases have been linked to anaerobic Gram-negative bacteria (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Given the incidence of oral disease, increased resistance by bacteria to antibiotics, adverse affects of some antibacterial agents currently used in dentistry and financial considerations in developing countries, there is a need for alternative prevention and treatment options that are safe, effective and economical. While several agents are commercially available, these chemicals can alter oral microbiota and have undesirable side-effects such as vomiting, diarrhea and tooth staining. Hence, the search for alternative products continues and natural phytochemicals isolated from plants used as traditional medicines are considered as good alternatives. In this review, plant extracts or phytochemicals that inhibit the growth of oral pathogens, reduce the development of biofilms and dental plaque, influence the adhesion of bacteria to surfaces and reduce the symptoms of oral diseases will be discussed further. Clinical studies that have investigated the safety and efficacy of such plant-derived medicines will also be described.
Collapse
Affiliation(s)
- Enzo A. Palombo
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn Victoria 3122, Australia
| |
Collapse
|
32
|
Tanaka M, Toe M, Nagata H, Ojima M, Kuboniwa M, Shimizu K, Osawa K, Shizukuishi S. Effect of Eucalyptus-Extract Chewing Gum on Oral Malodor: A Double-Masked, Randomized Trial. J Periodontol 2010; 81:1564-71. [DOI: 10.1902/jop.2010.100249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Rubin-Pitel SB, Luo Y, Lee JK, Zhao H. A diverse family of type III polyketide synthases in Eucalyptus species. MOLECULAR BIOSYSTEMS 2010; 6:1444-6. [DOI: 10.1039/c004992a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Nagata H, Inagaki Y, Tanaka M, Ojima M, Kataoka K, Kuboniwa M, Nishida N, Shimizu K, Osawa K, Shizukuishi S. Effect of eucalyptus extract chewing gum on periodontal health: a double-masked, randomized trial. J Periodontol 2008; 79:1378-85. [PMID: 18672986 DOI: 10.1902/jop.2008.070622] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Studies in vitro showed that eucalyptus extracts possess antibacterial activity against cariogenic and periodontopathic bacteria; however, the clinical effects with respect to periodontal health in humans remain unproven. The objective of this study was to evaluate the effect of chewing gum containing eucalyptus extract on periodontal health in a double-masked, randomized, controlled trial. METHODS Healthy humans with gingivitis but not deep periodontal pockets were randomly assigned to the following groups: high-concentration group (n=32): use of 0.6% eucalyptus extract chewing gum for 12 weeks (90 mg/day); low-concentration group (n=32): use of 0.4% eucalyptus extract chewing gum for 12 weeks (60 mg/day); and placebo group (n=33): use of chewing gum without eucalyptus extract for 12 weeks. Plaque accumulation (PLA), gingival index (GI), bleeding on probing (BOP), periodontal probing depth (PD), and clinical attachment level (CAL) were measured at weeks 0, 4, 8, 12, and 14. Significance was analyzed with repeated-measures two-way analysis of variance followed by the Games-Howell pairwise comparison test. RESULTS The interaction between the effects of eucalyptus extract chewing gum and the intake period was statistically significant for PLA, GI, BOP, and PD but not for CAL. The low- and high-concentration groups exhibited statistically significant (P <0.05) improvements compared to the placebo group for PLA, GI, BOP, and PD. CONCLUSIONS Eucalyptus extract chewing gum had a significant effect on PLA, GI, BOP, and PD. The use of eucalyptus extract chewing gum may promote periodontal health.
Collapse
Affiliation(s)
- Hideki Nagata
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|