1
|
Beklen A, Yavuz MB, Uckan D. Interleukin-37 reduces lipopolysaccharide induced matrix metalloproteinase-9 in gingival epithelial cells. BMC Oral Health 2025; 25:637. [PMID: 40281482 PMCID: PMC12023668 DOI: 10.1186/s12903-025-06016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In periodontal diseases, the recognition of pathogen-associated molecular patterns (PAMPs) triggers signaling cascades that lead to the release of matrix metalloproteinases (MMPs). Interleukin-37 (IL-37) is recognized as a key suppressor of the immune response. This study aimed to detect the expression and distribution of IL-37 in gingival tissues and analyze its suppressor role in MMP-9 in response to lipopolysaccharide (LPS)-stimulated gingival epithelial cells. METHODS Immunohistochemistry localized IL-37 in gingival tissues from periodontitis patients and healthy controls (N = 10). The induction of IL-37 expression by LPS was analyzed using the conditioned medium of gingival epithelial cells through enzyme-linked immunosorbent assay (ELISA). To determine the relevant MMP-9 levels in epithelial cells following exposure to LPS alone or in combination with IL-37, both quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) were performed. RESULTS Cultured epithelial cells secreted significantly higher levels of IL-37 when stimulated with LPS compared to unstimulated controls. Both ELISA and qPCR showed that LPS stimulation significantly increased MMP-9 levels. However, co-culture with IL-37 markedly reduced LPS-induced MMP-9 expression at both the protein and mRNA levels. Furthermore, immunohistochemistry revealed increased IL-37 expression in periodontitis tissues, both in epithelial cells and connective tissue. CONCLUSIONS Gingival epithelial cells may contribute to tissue responses in periodontitis through the secretion of MMP-9 in response to PAMPs. Furthermore, IL-37 appears to have a potential role in modulating and reducing this response, as observed in the decreased MMP-9 expression following IL-37 co-stimulation.
Collapse
Affiliation(s)
- Arzu Beklen
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.
- Department of Periodontology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Muhammet Burak Yavuz
- Department of Periodontology, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Deniz Uckan
- Bogazici University, Medico-Social Dental Clinic, Istanbul, Turkey
| |
Collapse
|
2
|
Matsuoka M, Soria SA, Pires JR, Sant'Ana ACP, Freire M. Natural and induced immune responses in oral cavity and saliva. BMC Immunol 2025; 26:34. [PMID: 40251519 PMCID: PMC12007159 DOI: 10.1186/s12865-025-00713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
This review comprehensively explores the intricate immune responses within the oral cavity, emphasizing the pivotal role of saliva in maintaining both oral and systemic health. Saliva, a complex biofluid, functions as a dynamic barrier against pathogens, housing diverse cellular components including epithelial cells, neutrophils, monocytes, dendritic cells, and lymphocytes, which collectively contribute to robust innate and adaptive immune responses. It acts as a physical and immunological barrier, providing the first line of defense against pathogens. The multifaceted protective mechanisms of salivary proteins, cytokines, and immunoglobulins, particularly secretory IgA (SIgA), are elucidated. We explore the natural and induced immune responses in saliva, focusing on its cellular and molecular composition. In addition to saliva, we highlight the significance of a serum-like fluid, the gingival crevicular fluid (GCF), in periodontal health and disease, and its potential as a diagnostic tool. Additionally, the review delves into the impact of diseases such as periodontitis, oral cancer, type 2 diabetes, and lupus on salivary immune responses, highlighting the potential of saliva as a non-invasive diagnostic tool for both oral and systemic conditions. We describe how oral tissue and the biofluid responds to diseases, including considerations to periodontal tissue health and in disease periodontitis. By examining the interplay between oral and systemic health through the oral-systemic axis, this review underscores the significance of salivary immune mechanisms in overall well-being and disease pathogenesis, emphasizing the importance of salivary mechanisms across the body.
Collapse
Affiliation(s)
- Michele Matsuoka
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Salim Abraham Soria
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Julien Rodrigues Pires
- Department of Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901, Brazil
| | | | - Marcelo Freire
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA.
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Uçan Yarkaç F, Babayiğit O, Gokturk O. Associations between immune-inflammatory markers, age, and periodontal status: a cross-sectional study. Odontology 2024; 112:1296-1306. [PMID: 38443702 DOI: 10.1007/s10266-024-00907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
Since periodontal disease is associated with many systemic diseases, it is important to evaluate its effects on host responses in elderly individuals. To this end, this study investigated salivary interleukin (IL)-17, IL-18, toll-like receptor (TLR) 2, TLR4, and tumor necrosis factor-alpha (TNF-α) levels in patient groups with different periodontal health statuses and immunologically evaluated the relationship between age and periodontal health status. A total of 60 individuals aged 18-40 years (young individuals) and 60 individuals aged 65 years or older (elderly individuals) were included in this study. According to periodontal disease status, the patients were divided into periodontally healthy, gingivitis, and periodontitis subgroups. Clinical periodontal parameters, including probing depth (PD), clinical attachment level (CAL), plaque index (PI), and gingival index (GI), were recorded. Saliva samples were collected and analyzed using ELISA to determine the levels of IL-17, IL-18, TLR2, TLR4, and TNF-α. Higher clinical periodontal parameter (PD, CAL, PI, and GI) and inflammatory marker (IL-17, IL-18, TNF-α, TLR2, and TLR4) levels were found in patients with periodontitis than those in periodontally healthy individuals and patients with gingivitis (P < 0.05). Salivary inflammatory marker levels were significantly higher in elderly individuals than those in young individuals in all subgroups (P < 0.05). A positive correlation was found between inflammatory marker levels and clinical periodontal parameters, but there was no correlation between TLR2 and PI or GI. This study suggests a significant increase in host response to periodontal disease as the disease progresses, with the levels of cytokines and TLR expression exhibiting an increasing trend with age. Increased IL-17, IL-18, TLR2, TLR4, and TNF-α levels in elderly individuals in all periodontal health subgroups might suggest the role of these cytokines and TLR pathway in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- Fatma Uçan Yarkaç
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey
| | - Osman Babayiğit
- Department of Periodontology, Necmettin Erbakan University Faculty of Dentistry, Konya, Turkey.
| | | |
Collapse
|
4
|
Rusanen P, Marttila E, Amatya SB, Hagström J, Uittamo J, Reunanen J, Rautemaa-Richardson R, Salo T. Expression of Toll-like receptors in oral squamous cell carcinoma. PLoS One 2024; 19:e0300437. [PMID: 38593176 PMCID: PMC11003673 DOI: 10.1371/journal.pone.0300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Almost 380,000 new cases of oral cancer were reported worldwide in 2020. Oral squamous cell carcinoma (OSCC) accounts for 90% of all types of oral cancers. Emerging studies have shown association of Toll-like receptors (TLRs) in carcinogenesis. The present study aimed to investigate the expression levels and tissue localization of TRL1 to TRL10 and NF-κB between OSCC and healthy oral mucosa, as well as effect of Candida colonization in TRL expression in OSCC. Full thickness biopsies and microbial samples from 30 newly diagnosed primary OSCC patients and 26 health controls were collected. The expression of TLR1 to TLR10 and NF-κB was analyzed by immunohistochemistry. Microbial samples were collected from oral mucosa to detect Candida. OSCC epithelium showed lower staining intensity of TRL1, TRL2 TRL5, and TRL8 as compared to healthy controls. Similarly, staining intensity of TRL3, TRL4, TRL7, and TRL8 were significantly decreased in basement membrane (BM) zone. Likewise, OSCC endothelium showed lower staining intensity of TLR4, TLR7 and TLR8. Expression of NF-κB was significantly stronger in normal healthy tissue compared to OSCC sample. Positive correlation was found between the expression of NF-κB, TRL9 and TRL10 in basal layer of the infiltrative zone OSCC samples (P = 0.04 and P = 0.002, respectively). Significant increase in TRL4 was seen in BM zone of sample colonized with Candida (P = 0.01). According to the limited number of samples, our data indicates downregulation of TLRs and NF-κB in OSCC, and upregulation of TLR4 expression with presence of Candida.
Collapse
Affiliation(s)
- Peter Rusanen
- Department of Bacteriology and Immunology, Haartman institute, University of Helsinki, Helsinki, Finland
| | - Emilia Marttila
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Jaana Hagström
- Department of Bacteriology and Immunology, Haartman institute, University of Helsinki, Helsinki, Finland
| | - Johanna Uittamo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Tuula Salo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Tan L, Chan W, Zhang J, Wang J, Wang Z, Liu J, Li J, Liu X, Wang M, Hao L, Yue Y. Regulation of RIP1-Mediated necroptosis via necrostatin-1 in periodontitis. J Periodontal Res 2023; 58:919-931. [PMID: 37334934 DOI: 10.1111/jre.13150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE To explore the mechanism of receptor-interacting protein 1 (RIP1)-mediated necroptosis during periodontitis progression. BACKGROUND RIP3 and mixed lineage kinase domain-like protein (MLKL) have been detected to be upregulated in periodontitis models. Because RIP1 is involved in necroptosis, it might also play a role in the progression of periodontitis. METHODS An experimental periodontitis model in BALB/c mice was established by inducing oral bacterial infection. Western blotting and immunofluorescence analyses were used to detect RIP1 expression in the periodontal ligament. Porphyromonas gingivalis was used to stimulate L929 and MC3T3-E1. RIP1 was inhibited using small-interfering RNA. Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) analyses were used to detect the effect of necroptosis inhibition on the expression of damage-associated molecular patterns and inflammatory cytokines. Necrostatin-1 (Nec-1) was intraperitoneally injected to inhibit RIP1 expression in mice. Necroptosis activation and inflammatory cytokine expression in periodontal tissue were verified. Tartrate-resistant acid phosphatase staining was applied to observe osteoclasts in the bone tissues of different groups. RESULTS RIP1-mediated necroptosis was activated in mice with periodontitis. P. gingivalis induced RIP1-mediated necroptosis in L929 and MC3T3-E1 cells. After RIP1 inhibition, the expression levels of high mobility group protein B1 (HMGB1) and inflammatory cytokines were downregulated. After inhibiting RIP1 with Nec-1 in vivo, necroptosis was also inhibited, the expression levels of HMGB1 and inflammatory cytokines were downregulated, and osteoclast counts in the periodontal tissue decreased. CONCLUSION RIP1-mediated necroptosis plays a role in the pathological process of periodontitis in mice. Nec-1 inhibited necroptosis, alleviated inflammation in periodontal tissue, and reduced bone resorption in periodontitis.
Collapse
Affiliation(s)
- Liangyu Tan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Weicheng Chan
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zizheng Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Clinical Research Center for Oral Diseases of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Zhejiang, Hangzhou, China
| | - Jiaxin Li
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinran Liu
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Wang
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Hao
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Yue
- Department of Prosthodontics, The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
He H, Hao Y, Fan Y, Li B, Cheng L. The interaction between innate immunity and oral microbiota in oral diseases. Expert Rev Clin Immunol 2023; 19:405-415. [PMID: 36803467 DOI: 10.1080/1744666x.2023.2182291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Innate immunity serves as the frontline to combat invading pathogens. Oral microbiota is the total collection of microorganisms colonized within the oral cavity. By recognizing the resident microorganisms through pattern recognition receptors, innate immunity is capable of interacting with oral microbiota and maintaining homeostasis. Dysregulation of interaction may lead to the pathogenesis of several oral diseases. Decoding the crosstalk between oral microbiota and innate immunity may be contributory to developing novel therapies for preventing and treating oral diseases. AREAS COVERED This article reviewed pattern recognition receptors in the recognition of oral microbiota, the reciprocal interaction between innate immunity and oral microbiota, and discussed how the dysregulation of this relationship leads to the pathogenesis and development of oral diseases. EXPERT OPINION Many studies have been conducted to illustrate the relationship between oral microbiota and innate immunity and its role in the occurrence of different oral diseases. The impact and mechanisms of innate immune cells on oral microbiota and the mechanisms of dysbiotic microbiota in altering innate immunity are still needed to be investigated. Altering the oral microbiota might be a possible solution for treating and preventing oral diseases.
Collapse
Affiliation(s)
- Hongzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Bolesina N, Gatti G, López de Blanc S, Dhooge S, Rocha D, Fernandez E, Ferreyra R, Palla V, Grupe V, Morelatto R, Maccioni M. Oral squamous cell carcinoma (OSCC) tumors from heavy alcohol consumers are associated with higher levels of TLR9 and a particular immunophenotype: Impact on patient survival. Front Immunol 2022; 13:941667. [PMID: 35990685 PMCID: PMC9389540 DOI: 10.3389/fimmu.2022.941667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most frequent types of oral cancer in developing countries and its burden correlates with exposure to tobacco and excessive alcohol consumption. Toll like receptors (TLRs) are major sensors of inflammatory stimuli, from both microbial and sterile causes and as such, they have been related to tumor progression and metastasis. Here, we evaluated the expression of TLR2, 4 and 9 as well as CD3+, CD8+ and Granzyme B+ cell infiltration by immunohistochemistry in oral samples of 30 patients with OSCC, classified according to their consumption of alcohol. Our findings indicate that there is a significant association between heavy alcohol consumption and tumors with higher expression levels of TLR9. Moreover, patients with TLR9high tumors, as well as those who indicated high consumption of alcohol exhibited a diminished overall survival. TCGA data analysis indicated that TLR9high tumors express a significant increase in some genes related with the oral cavity itself, inflammation and tumor promotion. Our analysis of tumor infiltrating leukocytes demonstrated that the major differences perceived in heavy alcohol consumers was the location of CD8+ T cells infiltrating the tumor, which showed lower numbers intratumorally. Our data suggest the existence of a pathogenic loop that involves alcohol consumption, high TLR9 expression and the immunophenotype, which might have a profound impact on the progression of the disease.
Collapse
Affiliation(s)
- Nicolás Bolesina
- Departamento de Patología Oral, Cátedra de Estomatología, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gerardo Gatti
- Fundación para el Progreso de la Medicina. Laboratorio de Investigación en Cáncer, Córdoba, Argentina
| | - Silvia López de Blanc
- Departamento de Patología Oral, Cátedra de Estomatología, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sabrina Dhooge
- Fundación para el Progreso de la Medicina. Laboratorio de Investigación en Cáncer, Córdoba, Argentina
| | - Darío Rocha
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET, Universidad Católica de Córdoba; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET, Universidad Católica de Córdoba; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruth Ferreyra
- Departamento de Patología Oral, Cátedra de Estomatología, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa Palla
- Fundación para el Progreso de la Medicina. Laboratorio de Investigación en Cáncer, Córdoba, Argentina
| | - Verónica Grupe
- Fundación para el Progreso de la Medicina. Laboratorio de Investigación en Cáncer, Córdoba, Argentina
| | - Rosana Morelatto
- Departamento de Patología Oral, Cátedra de Estomatología, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Mariana Maccioni, ; Rosana Andrea Morelatto,
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Mariana Maccioni, ; Rosana Andrea Morelatto,
| |
Collapse
|
8
|
Ji L, Hao S, Wang J, Zou J, Wang Y. Roles of Toll-Like Receptors in Radiotherapy- and Chemotherapy-Induced Oral Mucositis: A Concise Review. Front Cell Infect Microbiol 2022; 12:831387. [PMID: 35719331 PMCID: PMC9201217 DOI: 10.3389/fcimb.2022.831387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy and/or chemotherapy-induced oral mucositis (RIOM/CIOM) is a common complication in cancer patients, leading to negative clinical manifestations, reduced quality of life, and impacting compliance with anticancer treatment. The composition and metabolic function of the oral microbiome, as well as the innate immune response of the oral mucosa are severely altered during chemotherapy or radiotherapy, promoting the expression of inflammatory mediators by direct and indirect mechanisms. Commensal oral bacteria-mediated innate immune signaling via Toll-like receptors (TLRs) ambiguously shapes radiotherapy- and/or chemotherapy-induced oral damage. To date, there has been no comprehensive overview of the role of TLRs in RIOM/CIOM. This review aims to provide a narrative of the involvement of TLRs, including TLR2, TLR4, TLR5, and TLR9, in RIOM/CIOM, mainly by mediating the interaction between the host and microorganisms. As such, we suggest that these TLR signaling pathways are a novel mechanism of RIOM/CIOM with considerable potential for use in therapeutic interventions. More studies are needed in the future to investigate the role of different TLRs in RIOM/CIOM to provide a reference for the precise control of RIOM/CIOM.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siyuan Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiantao Wang
- State Key Laboratory of Biotherapy and Department of Lung Cancer Center and Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yan Wang,
| |
Collapse
|
9
|
Bueno MR, Ishikawa KH, Almeida-Santos G, Ando-Suguimoto ES, Shimabukuro N, Kawamoto D, Mayer MPA. Lactobacilli Attenuate the Effect of Aggregatibacter actinomycetemcomitans Infection in Gingival Epithelial Cells. Front Microbiol 2022; 13:846192. [PMID: 35602018 PMCID: PMC9116499 DOI: 10.3389/fmicb.2022.846192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Probiotics may be considered as an additional strategy to achieve a balanced microbiome in periodontitis. However, the mechanisms underlying the use of probiotics in the prevention or control of periodontitis are still not fully elucidated. This in vitro study aimed to evaluate the effect of two commercially available strains of lactobacilli on gingival epithelial cells (GECs) challenged by Aggregatibacter actinomycetemcomitans. OBA-9 GECs were infected with A. actinomycetemcomitans strain JP2 at an MOI of 1:100 and/or co-infected with Lactobacillus acidophilus La5 (La5) or Lacticaseibacillus rhamnosus Lr32 (Lr32) at an MOI of 1:10 for 2 and 24 h. The number of adherent/internalized bacteria to GECs was determined by qPCR. Production of inflammatory mediators (CXCL-8, IL-1β, GM-CSF, and IL-10) by GECs was determined by ELISA, and the expression of genes encoding cell receptors and involved in apoptosis was determined by RT-qPCR. Apoptosis was also analyzed by Annexin V staining. There was a slight loss in OBA-9 cell viability after infection with A. actinomycetemcomitans or the tested probiotics after 2 h, which was magnified after 24-h co-infection. Adherence of A. actinomycetemcomitans to GECs was 1.8 × 107 (± 1.2 × 106) cells/well in the mono-infection but reduced to 1.2 × 107 (± 1.5 × 106) in the co-infection with Lr32 and to 6 × 106 (± 1 × 106) in the co-infection with La5 (p < 0.05). GECs mono-infected with A. actinomycetemcomitans produced CXCL-8, GM-CSF, and IL-1β, and the co-infection with both probiotic strains altered this profile. While the co-infection of A. actinomycetemcomitans with La5 resulted in reduced levels of all mediators, the co-infection with Lr32 promoted reduced levels of CXCL-8 and GM-CSF but increased the production of IL-1β. The probiotics upregulated the expression of TLR2 and downregulated TLR4 in cells co-infected with A. actinomycetemcomitans. A. actinomycetemcomitans-induced the upregulation of NRLP3 was attenuated by La5 but increased by Lr32. Furthermore, the transcription of the anti-apoptotic gene BCL-2 was upregulated, whereas the pro-apoptotic BAX was downregulated in cells co-infected with A. actinomycetemcomitans and the probiotics. Infection with A. actinomycetemcomitans induced apoptosis in GECs, whereas the co-infection with lactobacilli attenuated the apoptotic phenotype. Both tested lactobacilli may interfere in A. actinomycetemcomitans colonization of the oral cavity by reducing its ability to interact with gingival epithelial cells and modulating cells response. However, L. acidophilus La5 properties suggest that this strain has a higher potential to control A. actinomycetemcomitans-associated periodontitis than L. rhamnosus Lr32.
Collapse
Affiliation(s)
- Manuela R. Bueno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gislane Almeida-Santos
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Ceccarelli F, Saccucci M, Natalucci F, Olivieri G, Bruni E, Iacono R, Colasanti T, Di Carlo G, Alessandri C, Uccelletti D, Russo P, Pilloni A, Conti F, Polimeni A. Porphyromonas gingivalis amount in the tongue biofilm is associated with erosive arthritis in systemic lupus erythematosus. Lupus 2022; 31:921-926. [PMID: 35477339 DOI: 10.1177/09612033221098528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several data have demonstrated the occurrence of erosive arthritis in Systemic Lupus Erythematosus (SLE) patients. However, a few studies have focused on the pathogenic mechanisms involved in this feature. The implication of oral pathogens has been proved in Rheumatoid Arthritis: in particular, Porphyromonas gingivalis (Pg), by inducing citrullination, could trigger autoimmune response. Here, we evaluated amount of Pg on the tongue in a cohort of SLE patients with arthritis, focusing on the association with the erosive phenotype. METHODS SLE patients with arthritis were enrolled. DAS28 was applied to assess activity. Erosive damage was evaluated by ultrasound at level of MCP (metacarpophalangeal) and PIP (proximal interphalangeals) joints. All subjects underwent a tongue cytologic swab in order to quantify the amount of Pg (real-time PCR). The bacterium expression was obtained from the ratio between the patient's DNA amount and that obtained from healthy subjects. RESULTS 33 patients were enrolled (M/F 3/30; median age 47 years, IQR 17; median disease duration 216 months, IQR 180): 12 of them (36.4%) showed erosive damage, significantly associated with ACPA positivity (p = 0.03) and higher values of DAS28 (p = 0.01). A mean ratio of 19.7 ± 31.1 was found for Pg amount. Therefore, we used Pg mean values as threshold, identifying two groups of patients, namely, highPg and lowPg. Erosive damage was significantly more frequent in highPg patients in comparison with lowPg (60.0% vs 26.0%, p = 0.001). Furthermore, highPg patients showed higher prevalence of skin manifestations, serositis, and neurological involvement (p = 0.005, p = 0.03, p = 0.0001, respectively). CONCLUSION The possible contribution of oral microbiota in SLE erosive arthritis was here evaluated for the first time, finding a significant association between erosive damage and higher expression of Pg at tongue level.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Matteo Saccucci
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Francesco Natalucci
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Giulio Olivieri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Erika Bruni
- Department of Biology and Biotecnology Charles Darwin, 9311Sapienza University of Rome, Italy
| | - Roberta Iacono
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Tania Colasanti
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Gabriele Di Carlo
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Cristiano Alessandri
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotecnology Charles Darwin, 9311Sapienza University of Rome, Italy
| | - Paola Russo
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| | - Fabrizio Conti
- Lupus Clinic, Reumatologia, Dipartimento di Scienze Cliniche, Anestesiologiche e Cardiovascolari, Sapienza Università di Roma, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Science, 9311Sapienza University of Rome, Italy
| |
Collapse
|
11
|
Fernández A, Astorga J, Bordagaray MJ, Lira MJ, Gebicke-Haerter PJ, Hernández M. Effect of TLR9 methylation on its transcription in apical inflammation. Int Endod J 2022; 55:784-794. [PMID: 35416307 DOI: 10.1111/iej.13745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
AIM to explore the methylation pattern, its role on transcriptional regulation and potential modifiers of methylation of theTLR9 gene in chronic periapical inflammation. METHODOLOGY In this cross-sectional study, apical lesions of endodontic origin (ALEO, n=61) and healthy periodontal ligaments (HPL, n=15) were included. Products from bisulfited and PCR-amplified DNA were analyzed for their methylation profiles in the promoter region and at each CpG island. Additionally, TLR9 mRNA levels were quantified by qPCR and bivariate and multiple modelling were performed to better understand the influence of methylations on gene transcription. RESULTS TLR9 mRNA levels were upregulated in ALEO compared to HPL (p<0.001). TLR9 promoter CpG sites and CpG +2086 in the intragenic island 1 were demethylated in ALEO compared to HPL (p<0.05). Multivariate analysis, adjusted by smoking and gender, revealed that demethylation of TLR9 promoter sites enhanced transcriptional activity, specifically demethylated CpGs at positions -736 and -683, (p=0.02), which are close to CRE binding. Whereas ALEO reduced the global methylation of the gene-promoter and intragenic-island 2 (p<0.05) by -42.5 and -9.5 percentage points, respectively, age reduced the global methylation of intragenic-island 3 within the exon 2. CONCLUSIONS Demethylations of TLR9 promoter CpG sites, along with the intragenic DNA methylation status, were involved in higher transcription in ALEO. Hence, chronic periapical inflammation and aging modify the methylation status both in the gene promoter and in intragenic CpG islands.
Collapse
Affiliation(s)
- Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Jessica Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - María Jesús Lira
- Department of Orthopaedic Surgery, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Peter J Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Tominari T, Akita M, Matsumoto C, Hirata M, Yoshinouchi S, Tanaka Y, Karouji K, Itoh Y, Maruyama T, Miyaura C, Numabe Y, Inada M. Endosomal TLR3 signaling in stromal osteoblasts induces prostaglandin E 2-mediated inflammatory periodontal bone resorption. J Biol Chem 2022; 298:101603. [PMID: 35101442 PMCID: PMC8892075 DOI: 10.1016/j.jbc.2022.101603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that play a critical role in innate immune diseases. TLR3, which is localized in the endosomal compartments of hematopoietic immune cells, is able to recognize double-stranded RNA (dsRNA) derived from viruses and bacteria and thereby induce innate immune responses. Inflammatory periodontal bone resorption is caused by bacterial infections, which initially is regulated by innate immunity; however, the roles of TLR3 signaling in bone resorption are still not known. We examined the roles of TLR3 signaling in bone resorption using poly(I:C), a synthetic dsRNA analog. In cocultures of mouse bone marrow cells and stromal osteoblasts, poly(I:C) clearly induced osteoclast differentiation. In osteoblasts, poly(I:C) increased PGE2 production and upregulated the mRNA expression of PGE2-related genes, Ptgs2 and Ptges, as well as that of a gene related to osteoclast differentiation, Tnfsf11. In addition, we found that indomethacin (a COX-2 inhibitor) or an antagonist of the PGE2 receptor EP4 attenuated the poly(I:C)-induced PGE2 production and subsequent Tnfsf11 expression. Poly(I:C) also prolonged the survival of the mature osteoclasts associated with the increased mRNA expression of osteoclast marker genes, Nfatc1 and Ctsk. In ex vivo organ cultures of periodontal alveolar bone, poly(I:C) induced bone-resorbing activity in a dose-dependent manner, which was attenuated by the simultaneous administration of either indomethacin or an EP4 antagonist. These data suggest that TLR3 signaling in osteoblasts controls PGE2 production and induces the subsequent differentiation and survival of mature osteoclasts. Endogenous TLR3 in stromal osteoblasts and osteoclasts synergistically induces inflammatory alveolar bone resorption in periodontitis.
Collapse
Affiliation(s)
- Tsukasa Tominari
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Miyuki Akita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Chiho Matsumoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Michiko Hirata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Shosei Yoshinouchi
- Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuki Tanaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Kento Karouji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoshifumi Itoh
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Chisato Miyaura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, School of Dentistry, The Nippon Dental University, Chiyoda-ku, Tokyo, Japan
| | - Masaki Inada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Cooperative Major of Advanced Health Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan.
| |
Collapse
|
13
|
Chan WC, Tan L, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L, Man Y. Inhibition of Rgs10 aggravates periodontitis with collagen-induced arthritis via the NF-κB pathway. Oral Dis 2022; 29:1802-1811. [PMID: 35122384 DOI: 10.1111/odi.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the role of the Rgs10-associated nuclear factor (NF)-κB signalling pathway in periodontitis with rheumatoid arthritis. METHODS Porphyromonas gingivalis and collagen were locally applied to mice to establish in vivo periodontitis and rheumatoid arthritis models, respectively. Both agents were administered together to establish the comorbid group. All models were treated with adeno-associated virus-green fluorescent protein (AAV-GFP) or adeno-associated virus small hairpin Rgs10 (AAV-sh-Rgs10). In vivo expression of Rgs10 and inflammatory cytokines was analysed, along with exploration of the NF-κB signalling pathway in lipopolysaccharide (LPS)-stimulated mouse-derived RAW264.7 cells, with and without treatment of small interfering RNA (siRNA; Rgs10-Mus-MSS245072). RESULTS In the comorbidity mouse group (mice with both periodontitis and rheumatoid arthritis), inhibition of Rgs10 exacerbated periodontitis, along with upregulation of phospho-RelA (pP65), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression in the NF-κB signalling pathway. Similarly, treatment of LPS-stimulated RAW264.7 cells with siRNA resulted in the inhibition of Rgs10, along with upregulation of pP65, TNF-α, and IL-6 expression in vitro. CONCLUSION Inhibition of Rgs10 in mice with periodontitis and rheumatoid arthritis can promote the progression of periodontitis, indicating the potential therapeutic role of Rgs10 in this condition.
Collapse
Affiliation(s)
- Wei-Cheng Chan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liangyu Tan
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yi Man
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Kato H, Ohta K, Sakuma M, Fukada S, Naruse T, Shigeishi H, Nishi H, Takechi M. Two PARP13 isoforms are associated with induction of antiviral factors in oral mucosal cells. Mol Med Rep 2022; 25:106. [PMID: 35103291 DOI: 10.3892/mmr.2022.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Innate immune systems in the oral cavity have important roles in the host defense against viral invasion of oral mucosa. Poly(ADP‑ribose) polymerase 13 (PARP13), which has a strong antiviral ability, has been reported to possess two isoforms; a full‑length protein, zinc‑finger antiviral protein long (ZAPL), and a shorter protein (ZAPS). However, the expression and function of these two isoforms in oral mucosa remain unknown. In the present study, the expression levels of ZAPL and ZAPS induced by transfected double‑stranded (ds) RNA, Poly(I:C), and dsDNA, Poly(dA:dT), in immortalized oral keratinocytes and fibroblasts (RT7 and GT1 cell lines, respectively) were investigated. Subsequently, the effects of the knockdown of ZAPL and ZAPS on transfected nucleotide‑induced antiviral factors were examined. The results demonstrated constitutive expression of ZAPL and ZAPS in RT7 and GT1 cells, and their expression in both cell types was notably increased by transfection of Poly(I:C) and Poly(dA:dT) when compared with no transfection. Specific knockdown of ZAPL and ZAPS in RT7 cells decreased IFN‑β and C‑X‑C motif chemokine ligand 10 (CXCL10) expression induced by transfected Poly(I:C) and Poly(dA:dT). On the other hand, knockdown of ZAPL and ZAPS in GT1 cells decreased the expression of CXCL10 induced by the transfected nucleotides, whereas that had no effect on IFN‑β expression induced by Poly(dA:dT). Their knockdown was also associated with transfected nucleotides‑induced IFN regulatory factor 3 phosphorylation in both cell types. Taken together, these results indicate that ZAPL and ZAPS, isoforms of PARP13, in oral mucosal cells participate in host defense against viral infection of oral mucosa.
Collapse
Affiliation(s)
- Hiroki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Shohei Fukada
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, Minami‑Ku, Hiroshima 734‑8553, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami‑Ku, Hiroshima 734‑8553, Japan
| |
Collapse
|
15
|
Anti-Inflammatory and Protective Effects of Juncus effusus L. Water Extract on Oral Keratinocytes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9770899. [PMID: 35028318 PMCID: PMC8752227 DOI: 10.1155/2022/9770899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathogenic bacteria that form biofilms in periodontal pockets. The gingival epithelium acts as the first physical barrier in fighting attacks by periodontopathogenic pathogens, such as the primary etiological agent Porphyromonas gingivalis, and various exogenous chemicals, as well as regulates the local innate immune responses. Therefore, the development of novel oral care products to inhibit inflammatory reactions caused by bacterial infection and protect the gingival epithelium is necessary. Juncus effusus L. has generally been used as an indigenous medicine, such as a diuretic, an antipyretic, and an analgesic, in ancient practice. In this study, we examined the effects of a water extract from J. effusus L. on the inhibition of the inflammatory reaction elicited by bacterial infection and protection of the oral epithelium by chemical irritation. Pretreatment of oral epithelial cells with the water extract from J. effusus L. significantly reduced P. gingivalis or its lipopolysaccharide- (LPS-) mediated production of chemokines (interleukin-8 and C-C-chemokine ligand20) in a concentration-dependent manner with comparable to or greater effects than epigallocatechin gallate and protected oral epithelial cells from injury by chemical irritants, cetylpyridinium chloride, and benzethonium chloride. Moreover, the water extract from J. effusus L. in the presence of antimicrobial agents or antifibrinolytics already used as ingredients in mouthwash could significantly reduce the production of chemokines from P. gingivalis LPS-stimulated oral epithelial cells in a concentration-dependent manner. These findings suggest that the water extract from J. effusus L. is potentially useful for oral care to prevent oral infections, such as periodontal infections, and maintain oral epithelial function.
Collapse
|
16
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
17
|
Cimões R, Pinho RCM, Gurgel BCDV, Borges SB, Marcantonio Júnior E, Marcantonio CC, Melo MARDC, Piattelli A, Shibli JA. Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation. Braz Oral Res 2021; 35:e101. [PMID: 34586215 DOI: 10.1590/1807-3107bor-2021.vol35.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023] Open
Abstract
When periodontal disease is diagnosed, it is difficult to predict the clinical response of treatment of a tooth over time because the result of treatment is affected by several factors and will depend on the maintenance and support of periodontal treatment. Rehabilitation with removable dental prostheses, fixed prostheses, and dental implants makes it possible to restore the function and esthetics of patients with tooth loss due to periodontal disease. The predictive factors of tooth loss in periodontitis patients should be assessed by dentists to inform their clinical decision-making during dental treatment planning. This will provide detailed individualized information and level of risk of patients considered suitable for dental rehabilitation. Therefore, the aim of this article was to review the subject of "Impact of tooth loss due to periodontal disease on the prognosis of rehabilitation" and the effect of fixed, removable, and implant-supported prostheses in periodontal patients.
Collapse
Affiliation(s)
- Renata Cimões
- Universidade Federal de Pernambuco - UFPE, Health Sciences Centre, Department of Prosthesis and Oral and Maxillofacial Surgery, Recife, PE, Brazil
| | | | | | - Samuel Batista Borges
- Universidade Federal do Rio Grande do Norte - UFRN, Health Sciences Centre, Department of Dentistry, Natal, RN Brazil
| | - Elcio Marcantonio Júnior
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - Camila Chierici Marcantonio
- Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp, Faculdade de Odontologia de Araraquara, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | | | - Adriano Piattelli
- University of Chieti, Dental School, Department of Medical, Oral and Biotechnological Sciences, Chieti, Italy
| | - Jamil Awad Shibli
- Universidade de Guarulhos - UnG, Dental Research Division, Department of Periodontology and Oral Implantology, Guarulhos, SP, Brazil
| |
Collapse
|
18
|
Wang Q, Nie L, Zhao P, Zhou X, Ding Y, Chen Q, Wang Q. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. Int J Oral Sci 2021; 13:11. [PMID: 33762572 PMCID: PMC7990943 DOI: 10.1038/s41368-021-00116-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 02/09/2021] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia induces chronic low-grade inflammation (inflammaging), which is a newly identified contributor to diabetes-related tissue lesions, including the inflammatory bone loss in periodontitis. It is also a secondary senescent pattern mediated by an increased burden of senescent cells and senescence-associated secretory phenotype (SASP). Macrophage is a key SASP-spreading cell and may contribute to the maintenance of SASP response in the periodontal microenvironment. Using a transgenic diabetic model (BLKS/J-Leprdb/leprdb mice) we identified striking senescence of the periodontium in young (18-wk)-diabetic mice accompanied by amassed p16+-macrophages and enhanced early SASP response. Exposed to high glucose in vitro, bone marrow-derived macrophage (BMDM) revealed a strong GLUT1 mRNA response driving the elevated-glucose uptake. GLUT1 is a representative and facilitative glucose transporter in macrophages with potential roles in hyperglycemia-induced inflammation. In this study, both GLUT1 and the downstream GTPase Rheb expression upregulated in the gingiva of diabetic mice with impaired condition. Furthermore, SASP release and p16/p21 signaling were proven to be triggered by mTOR phosphorylation in BMDM and antagonized by restricting glucose uptake in GLUT1-/- BMDM. Taken together, our findings suggest that elevated-GLUT1 sensor responded to high glucose is important for macrophage senescence and SASP response, generated as a result of hyperglycemia, and it is a potential molecular mechanism for the exacerbation of periodontitis in diabetes.
Collapse
Affiliation(s)
- Qian Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China ,grid.13291.380000 0001 0807 1581Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Betancur D, Muñoz Grez C, Oñate A. Comparative Analysis of Cytokine Expression in Oral Keratinocytes and THP-1 Macrophages in Response to the Most Prevalent Serotypes of Aggregatibacter actinomycetemcomitans. Microorganisms 2021; 9:622. [PMID: 33802988 PMCID: PMC8002688 DOI: 10.3390/microorganisms9030622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease associated with a dysbiotic biofilm. Many pathogens have been related with its progression and severity, one of which is Aggregatibacter actinomycetemcomitans, a Gram-negative bacteria with seven serotypes (a-g) according with the structure of its LPS, with serotype b defined as the most virulent compared with the other serotypes. The aim of this study was to evaluate the response of oral keratinocytes and macrophages to A. actinomycetemcomitans. METHODS Oral keratinocytes (OKF6/TERT2) and macrophages (THP-1) were infected with A. actinomycetemcomitans serotypes a, b and c. The expression of IL-1β, IL-6, IL-8, IL-18, TNF-α, MMP-9, RANKL, TLR-2, TLR-4, TLR-6, thymic stromal lymphopoietin (TSLP), and ICAM-1 was evaluated by qPCR at 2 and 24 h after infection. RESULTS An increase in the expression of these molecules was induced by all serotypes at both times of infection, with macrophages showing higher levels of expression at 24 h compared to epithelial cells in which the highest levels were observed in the first hours after infection. CONCLUSIONS Keratinocytes and macrophages contribute to the inflammation in periodontitis from the early stages of infection, producing the first waves of cytokines, acting as the first signal for professional immune cell recruitment and modulation of more specific immune responses.
Collapse
Affiliation(s)
| | | | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (D.B.); (C.M.G.)
| |
Collapse
|
20
|
Chang AM, Kantrong N, Darveau RP. Maintaining homeostatic control of periodontal epithelial tissue. Periodontol 2000 2021; 86:188-200. [PMID: 33690934 DOI: 10.1111/prd.12369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Years of coevolution with resident microbes has made them an essential component of health. Yet, little is known about oral commensal bacteria's contribution to and role in the maintenance of oral health and homeostasis. Commensal bacteria are speculated to play a host protective role in the maintenance of health. In this review, we describe and provide examples of the coordinate regulation that occurs between oral commensal bacteria and the host innate immune response to modulate and maintain oral homeostasis.
Collapse
Affiliation(s)
- Ana M Chang
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Nutthapong Kantrong
- Department of Periodontics, University of Washington, Seattle, Washington, USA.,Oral Biology Research Unit, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Richard P Darveau
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Marttila E, Rusanen P, Uittamo J, Salaspuro M, Rautemaa-Richardson R, Salo T. Expression of p53 is associated with microbial acetaldehyde production in oralsquamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 131:527-533. [PMID: 33858805 DOI: 10.1016/j.oooo.2020.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the association between p53 expression and microbial acetaldehyde production in patients with oral squamous cell carcinoma (OSCC). STUDY DESIGN Oral mucosal biopsies from 22 patients with OSCC and 24 healthy controls (HCs) were collected. p53 expression was analyzed by immunohistochemistry. Microbial samples were collected from the mucosa and microbial acetaldehyde production from ethanol was measured by gas chromatography. RESULTS The majority of all OSCC (77%) and HC samples (67%) produced mutagenic levels of acetaldehyde (>100 µM). A significant positive correlation between microbial acetaldehyde production and p53 expression levels in OSCC samples was seen in the intermediate and superficial layers of the epithelium of the infiltrative zone (P = .0005 and P = .0004, respectively) and in the superficial layer of the healthy appearing mucosa next to the tumor (P = .0391). There was no significant correlation between acetaldehyde levels and p53 expression in HC samples. CONCLUSIONS Our results show an association between microbial acetaldehyde production and immunostaining of p53 in OSCC samples.
Collapse
Affiliation(s)
- Emilia Marttila
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Peter Rusanen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Johanna Uittamo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Mikko Salaspuro
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Tuula Salo
- Department of Oral and Maxillofacial Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; HUSLAB, Department of Pathology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
23
|
Wei W, Xue L, Tan L, Liu J, Yang Q, Wang J, Yan B, Cai Q, Yang L, Yue Y, Hao L, Wang M, Li J. Inhibition of yes-associated protein dephosphorylation prevents aggravated periodontitis with occlusal trauma. J Periodontol 2020; 92:1036-1048. [PMID: 33094479 DOI: 10.1002/jper.19-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Occlusal trauma can aggravate periodontitis, but the mechanism remains unclear. Yes-associated protein (YAP), a mechanical stressor protein, may play an important role in this process. METHODS Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect the expression of YAP and inflammatory factors in patients with periodontitis accompanied with or without occlusal trauma. Through local administration of Porphyromonas gingivalis and composite resin bonding on maxillary molars in mice, we established periodontitis and occlusal trauma models. Treatment with or without XAV939, to inhibit YAP activation, was performed in these models. Micro-computed tomography, immunofluorescence (IF), and qRT-PCR were used to explore the YAP pathway in periodontitis with occlusal trauma. Cyclic stress and lipopolysaccharide (LPS) stimuli were applied to the L929 mouse fibroblast cell line with or without XAV939. Western blot, IF, and qRT-PCR were used to verify the in vivo results. RESULTS Activated dephosphorylated YAP and increased expression of inflammatory factors were observed in patients with periodontitis accompanied with occlusal trauma. In the mouse model of periodontitis with occlusal trauma, YAP transferred into the nucleus, resulting in Jun N-terminal kinases (JNK) related pro-inflammatory pathway up-regulation. L929 cell cyclic stress and LPS stimulation results confirmed the in vivo results. Application of XAV939 inhibited YAP protein dephosphorylation and reduced JNK pro-inflammatory pathway factor expression in vivo and in vitro. CONCLUSIONS Occlusal trauma can activate YAP nuclear transfer, resulting in the up-regulation of the JNK pro-inflammatory pathway. This can be inhibited by the XAV939 YAP inhibitor.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lili Xue
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bing Yan
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qiaoling Cai
- Department of stomatology, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Li Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinle Li
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
24
|
Karlis GD, Schöningh E, Jansen IDC, Schoenmaker T, Hogervorst JMA, van Veen HA, Moonen CGJ, Łagosz-Ćwik KB, Forouzanfar T, de Vries TJ. Chronic Exposure of Gingival Fibroblasts to TLR2 or TLR4 Agonist Inhibits Osteoclastogenesis but Does Not Affect Osteogenesis. Front Immunol 2020; 11:1693. [PMID: 32793243 PMCID: PMC7390923 DOI: 10.3389/fimmu.2020.01693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to periodontopathogenic bacteria such as Porphyromonas gingivalis and the products of these bacteria that interact with the cells of the tooth surrounding tissues can ultimately result in periodontitis. This is a disease that is characterized by inflammation-related alveolar bone degradation by the bone-resorbing cells, the osteoclasts. Interactions of bacterial products with Toll-like receptors (TLRs), in particular TLR2 and TLR4, play a significant role in this chronic inflammatory reaction, which possibly affects osteoclastic activity and osteogenic capacity. Little is known about how chronic exposure to specific TLR activators affects these two antagonistic activities. Here, we studied the effect of TLR activation on gingival fibroblasts (GF), cells that are anatomically close to infiltrating bacterial products in the mouth. These were co-cultured with naive osteoclast precursor cells (i.e., monocytes), as part of the peripheral blood mononuclear cells (PBMCs). Activation of GF co-cultures (GF + PBMCs) with TLR2 or TLR4 agonists resulted in a weak reduction of the osteoclastogenic potential of these cultures, predominantly due to TLR2. Interestingly, chronic exposure, especially to TLR2 agonist, resulted in increased release of TNF-α at early time points. This effect, was reversed at later time points, thus suggesting an adaptation to chronic exposure. Monocyte cultures primed with M-CSF + RANKL, led to the formation of bone-resorbing osteoclasts, irrespective of being activated with TLR agonists. Late activation of these co-cultures with TLR2 and with TLR4 agonists led to a slight decrease in bone resorption. Activation of GF with TLR2 and TLR4 agonists did not affect the osteogenic capacity of the GF cells. In conclusion, chronic exposure leads to diverse reactions; inhibitory with naive osteoclast precursors, not effecting already formed (pre-)osteoclasts. We suggest that early encounter of naive monocytes with TLR agonists may result in differentiation toward the macrophage lineage, desirable for clearing bacterial products. Once (pre-)osteoclasts are formed, these cells may be relatively insensitive for direct TLR stimulation. Possibly, TLR activation of periodontal cells indirectly stimulates osteoclasts, by secreting osteoclastogenesis stimulating inflammatory cytokines.
Collapse
Affiliation(s)
- Gerasimos D. Karlis
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Emily Schöningh
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam University College, Amsterdam, Netherlands
| | - Ineke D. C. Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Henk A. van Veen
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Carolyn G. J. Moonen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Katarzyna B. Łagosz-Ćwik
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Amsterdam, Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
25
|
Behm C, Blufstein A, Abhari SY, Koch C, Gahn J, Schäffer C, Moritz A, Rausch-Fan X, Andrukhov O. Response of Human Mesenchymal Stromal Cells from Periodontal Tissue to LPS Depends on the Purity but Not on the LPS Source. Mediators Inflamm 2020; 2020:8704896. [PMID: 32714091 PMCID: PMC7352132 DOI: 10.1155/2020/8704896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Human periodontal ligament stromal cells (hPDLSCs) and gingival mesenchymal stromal cells (hGMSCs) are resident mesenchymal stromal cells (MSCs) of the periodontal tissue. The lipopolysaccharide (LPS) from Porphyromonas gingivalis is structurally distinct from that of other Gram-negative bacteria, and earlier studies linked this structural difference to a distinct virulence activity and the ability to activate toll-like receptor 2 (TLR-2), besides TLR-4 as commonly occurring upon LPS challenge. Later studies, in contrast, argue that TLR-2 activation by P. gingivalis LPS is due to lipoprotein contamination. In the present study, we aimed to define the influence of structure versus purity of P. gingivalis LPS on the immune response of hPDLSCs and hGMSCs. Cells were stimulated with commercially available "standard" P. gingivalis LPS, "ultrapure" P. gingivalis LPS, or "ultrapure" Escherichia coli LPS, and the expression of interleukin- (IL-) 8, IL-6, monocyte chemoattractant protein- (MCP-) 1, TLR-2, and TLR-4 was evaluated. The contribution of TLR-4 to the LPS-induced response was assessed using the specific TLR-4 inhibitor TAK-242. "Standard" P. gingivalis LPS induced significantly higher IL-8, IL-6, and MCP-1 production compared to the "ultrapure" LPS preparations, with no significant difference detectable for "ultrapure" LPS from P. gingivalis and E. coli. By using TAK-242, the response of hPDLSCs and hGMSCs to "ultrapure" LPS preparations was effectively inhibited to the levels comparable to those of nonstimulated controls. In contrast, high levels of response to "standard" LPS were observed, even in the presence of TAK-242. Our data show that the response of MSCs from periodontal tissue to LPS depends more on the purity of the LPS preparation than on the LPS source. Even a small amount of contaminating lipoproteins can drastically enhance the hPDLSCs' and hGMSCs; responsiveness to P. gingivalis LPS, which might also contribute to the progression of periodontal disease.
Collapse
Affiliation(s)
- Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Setareh Younes Abhari
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christoph Koch
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology/NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Treg and TH17 link to immune response in individuals with peri-implantitis: a preliminary report. Clin Oral Investig 2020; 25:1291-1297. [PMID: 32594309 DOI: 10.1007/s00784-020-03435-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/24/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Treg and TH17 cells influence the inflammatory process in periodontal diseases and could also play in a similar pattern, an essential role in immune-inflammatory mechanisms involved in the destruction of the peri-implant tissues, peri-implantitis. Therefore, this study evaluated the levels of RORγT and FOXP3 gene expression in subjects with peri-implantitis and healthy peri-implant tissues. METHODS A total of 35 subjects with implant-supported restorations in both diseased and healthy clinical conditions (n = 15 healthy; n = 20 peri-implantitis) were included in this study. Peri-implantitis was defined as probing depth > 5 mm, bleeding on probing and/or suppuration, and peri-implant bone loss >4 mm. Peri-implant tissue biopsies were collected for analysis of the mRNA, RORγT, and FOXP3 expression levels. The samples were submitted to total RNA extraction, treatment with DNAse, and cDNA synthesis. Subsequently, real-time PCR reaction was performed to evaluate the levels of RORγT and FOXP3 gene expression to the reference gene. These were analyzed by the non-parametric Mann-Whitney method with a level of significance of 5%. RESULTS Higher gene expression levels of the transcription factors RORγT and FOXP3 were detected in the tissues affected by peri-implantitis when compared with healthy tissues (p < 0.05). CONCLUSIONS The present study demonstrated the possible existence of a hybrid TH17-Treg profile, based on the gene expression of transcription factors inducing differentiation of these cells. Further studies must be designed to gain a better understanding of the immunological mechanisms involved in the pathogenesis of peri-implantitis. CLINICAL RELEVANCE The levels of RORγT and FOXP3 transcription factors that were linked to cells with the FOXP3+RORγT+ phenotype could be used as a predictor of peri-implantitis progression.
Collapse
|
27
|
Ramadan DE, Hariyani N, Indrawati R, Ridwan RD, Diyatri I. Cytokines and Chemokines in Periodontitis. Eur J Dent 2020; 14:483-495. [PMID: 32575137 PMCID: PMC7440949 DOI: 10.1055/s-0040-1712718] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a common inflammatory periodontal disease affecting a wide range of population all over the world. The causing bacteria releases chemicals which activate the innate immune system to release proinflammatory cytokines contributing to more progression. This activates the acquired immune system leading to more progression of periodontitis. As the immune response goes on, released cytokines and chemokines can damage the periodontal ligaments, gingiva, and alveolar bone. There are many types of cytokines and chemokines in periodontitis. Cytokines are peptide mediators who are responsible for cell signaling and communication. Chemokines are a large subfamily of cytokines having the ability to coordinate leukocyte recruitment and activation. This paper is a narrative review of the literature.This review ensures that inflammatory mediators in the case of periodontitis can cause a noticeable damage in the whole apparatus of the periodontium. It causes soft tissue inflammation and bone damage affected by the mediators of both innate and acquired immune system.The inflammatory process is accompanied by large network of cytokines and chemokines. There is high expression of proinflammatory cytokines such as interleukin (IL)-1α, IL-1β, IL-6, IL-12, tumor necrosis factor (TNF)-α, and regulatory cytokines such as IL-4, IL-1(RA) receptor antagonist, IL-10, and induced protein (IP)-10. There is also increased production of cytokines IL-10, IL-12, interferon-γ, IP-10, IL-1RA, and IL-4. Cytokines IL-17, IL-6, IL-1β, TNF-α, macrophage colony-stimulating factor, and prostaglandin E
2
trigger the osteoclast activity causing bone resorption.
Collapse
Affiliation(s)
- Doaa Elsayed Ramadan
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ninuk Hariyani
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.,Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Indonesia
| | - Retno Indrawati
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indeswati Diyatri
- Dental Health Science Postgraduate Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
28
|
|
29
|
Salivary Expression of Antimicrobial Peptide LL37 and Its Correlation with Pro-inflammatory Cytokines in Patients with Different Periodontal Treatment Needs. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10047-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
T Cell Proliferation Is Induced by Chronically TLR2-Stimulated Gingival Fibroblasts or Monocytes. Int J Mol Sci 2019; 20:ijms20246134. [PMID: 31817424 PMCID: PMC6940768 DOI: 10.3390/ijms20246134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
During inflammation of the gums, resident cells of the periodontium, gingival fibroblasts (GFs), interact with heterogeneous cell populations of the innate and adaptive immune system that play a crucial role in protecting the host from pathogenic infectious agents. We investigated the effects of chronic inflammation, by exposing peripheral blood mononuclear cells (PBMCs), peripheral blood lymphocyte (PBL) cultures, and GF–PBMC cocultures to Toll-like receptor 2 (TLR2) and TLR4 activators for 21 days and assessed whether this influenced leukocyte retention, survival, and proliferation. Chronic stimulation of PBMC–GF cocultures with TLR2 and TLR4 agonists induced a reduction of NK (CD56+CD3−), T (CD3+), and B (CD19+) cells, whereas the number of TLR-expressing monocytes were unaffected. TLR2 agonists doubled the T cell proliferation, likely of a selective population, given the net decrease of T cells. Subsequent chronic exposure experiments without GF, using PBMC and PBL cultures, showed a significantly (p < 0.0001) increased proinflammatory cytokine production of TNF-α and IL-1β up to 21 days only in TLR2-activated PBMC with concomitant T cell proliferation, suggesting a role for monocytes. In conclusion, chronic TLR activation mediates the shift in cell populations during infection. Particularly, TLR2 activators play an important role in T cell proliferation and proinflammatory cytokine production by monocytes, suggesting that TLR2 activation represents a bridge between innate and adaptive immunity.
Collapse
|
31
|
Wei W, Ren J, Yin W, Ding H, Lu Q, Tan L, Deng S, Liu J, Yang Q, Wang J, Wang M, Yue Y, Hao L. Inhibition of Ctsk modulates periodontitis with arthritis via downregulation of TLR9 and autophagy. Cell Prolif 2019; 53:e12722. [PMID: 31737959 PMCID: PMC6985664 DOI: 10.1111/cpr.12722] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives The mechanisms underlying the effects of Toll‐like receptor 9 (TLR9) and autophagy on rheumatoid arthritis (RA)‐aggravated periodontitis are unclear. We aimed to explore a novel target, cathepsin K (Ctsk)‐mediated TLR9‐related autophagy, during the progress of periodontitis with RA. Materials and Methods DBA/J1 mouse model of periodontitis with RA was created by local colonization of Porphyromonas gingivalis (Pg) and injection of collagen. The expression of Ctsk was inhibited by adeno‐associated virus (AAV). Micro‐CT, immunohistochemistry (IHC), Western blot and quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to detect the expression of TLR9‐related autophagy in periodontitis with RA. Small interfering RNA (siRNA) and CpG oligodeoxynucleotides (CpG ODN) were applied in macrophages. Western blot, immunofluorescence (IF) and qRT‐PCR were used to verify the in vivo results. Results RA can promote periodontitis bone destruction in the lesion area, while inhibiting Ctsk could effectively alleviate this effect. The infiltration of macrophages, TLR9, autophagy proteins (TFEB and LC3) and inflammatory cytokines increased in the periodontitis‐with‐RA group and was reduced by the inhibition of Ctsk in the periodontal region. Macrophage stimulation confirmed the in vivo results. With the activation of TLR9 by CpG ODN, inhibition of Ctsk could suppress both TLR9 downstream signalling proteins and autophagy‐related proteins. Conclusions This study advanced a novel role for Ctsk in TLR9 and autophagy to explain the interaction between periodontitis and RA.
Collapse
Affiliation(s)
- Wei Wei
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wuwei Yin
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liangyu Tan
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Shibing Deng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Liu
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qin Yang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jiajia Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Min Wang
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yuan Yue
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
32
|
Nii T, Yumoto H, Hirota K, Miyake Y. Anti-inflammatory effects of olanexidine gluconate on oral epithelial cells. BMC Oral Health 2019; 19:239. [PMID: 31703580 PMCID: PMC6839112 DOI: 10.1186/s12903-019-0932-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023] Open
Abstract
Background Periodontitis is a biofilm-induced chronic inflammatory condition of the periodontium. Chemokines produced by the innate and acquired immune responses play a significant role in disease progression. Reducing biofilm formation and inflammatory response caused by chemokines is vital for preventing and treating periodontitis. Previously, we observed that treatment with 0.1% olanexidine gluconate (OLG) inhibited biofilm formation on saliva-coated hydroxyapatite. This study aimed to evaluate the anti-inflammatory effect of OLG on oral epithelial cells. Methods We examined if OLG could inhibit the inflammatory responses caused by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and heat-killed P. gingivalis in immortalized human oral keratinocytes (RT7). Results Treatment of RT7 with non-cytotoxic OLG concentrations significantly inhibited the production of inflammatory chemokines such as interleukin 8 (IL-8), C-C motif ligand 20 (CCL20), and growth-related oncogene protein-α (GRO-α), which are stimulated by P. gingivalis LPS in a concentration-dependent manner. Moreover, the inhibitory effects were observed regardless of the treatment time with P. gingivalis LPS (6, 12, or 24 h). OLG also significantly inhibited chemokine production stimulated by heat-killed P. gingivalis. Conclusions The findings of this study suggest that treatment with OLG inhibits chronic inflammatory reactions in oral mucosal cells, such as periodontitis, caused by oral bacteria.
Collapse
Affiliation(s)
- Takuya Nii
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc, Takuya Nii, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima, 772-8601, Japan.
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuhiko Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences Tokushima University, Tokushima, Japan.,Present Address: Department of Medical Hygiene, Dental Hygiene Course, Kochi Gakuen College, Kochi, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences Tokushima University, Tokushima, Japan.,Present Address: Department of Oral Health Sciences, Faculty of Health and Welfare, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
33
|
Chang AM, Liu Q, Hajjar AM, Greer A, McLean JS, Darveau RP. Toll-like receptor-2 and -4 responses regulate neutrophil infiltration into the junctional epithelium and significantly contribute to the composition of the oral microbiota. J Periodontol 2019; 90:1202-1212. [PMID: 31111967 PMCID: PMC6791728 DOI: 10.1002/jper.18-0719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oral gingival tissue, especially the junctional epithelium (JE), is constantly exposed to sub-gingival plaque. A key component of gingival health is the regulation of the number of neutrophils that migrate into the gingival crevice to counteract its harmful effects. This report investigates the contribution of innate defense receptors, Toll-like receptor (TLR)2, TLR4, and both (TLR2/4) to the maintenance of neutrophil homeostasis in the JE. METHODS Bacterial composition was analyzed from whole oral swabs collected from 12- to 14-week-old TLR2, TLR4, TLR2/4 double knock-out (KO) mice using a MiSeq platform targeting the V3-V4 region of the 16S ribosomal RNA gene. Mandibles were histologically examined for quantification of neutrophils in the JE and bone loss. Lastly, total bacterial load was quantitated using quantitative real-time PCR. RESULTS Compared with wild-type, all TLR KO mice displayed significantly increased recruitment of neutrophils (P = 0.0079) into the JE. In addition, TLR4 and TLR2/4 KO mice demonstrated a significant increase in the number of bacteria (P = 0.0022 and P = 0.0152, respectively). Lastly, comparative compositional analyses of the oral microbiome revealed that each KO strain harbored unique microbial communities that are distinct from each other but maintained similar levels of alveolar bone. CONCLUSIONS Neutrophil migration into healthy mouse JE does not require TLR2 or TLR4. However, a significant increase in the number of neutrophils as well as a significant change in the oral microbial composition in both TLR2 and TLR4 KO mice demonstrate that these TLRs contribute to the homeostatic relationship between bacteria and the host in healthy mice periodontal tissue.
Collapse
Affiliation(s)
- Ana M. Chang
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195
| | - Quanhui Liu
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Ara Greer
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| | - Richard P. Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195
| |
Collapse
|
34
|
Shang L, Deng D, Buskermolen JK, Roffel S, Janus MM, Krom BP, Crielaard W, Gibbs S. Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Front Cell Infect Microbiol 2019; 9:282. [PMID: 31448244 PMCID: PMC6692492 DOI: 10.3389/fcimb.2019.00282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
The balance between the host and microbe is pivotal for oral health. A dysbiotic oral microbiome and the subsequent host inflammatory response are causes for the most common dental problems, such as periodontitis and caries. Classically, toll-like receptors (TLRs) are known to play important roles in host-microbe interactions by recognizing pathogens and activating innate immunity. However, emerging evidence suggests that commensals may also exploit TLRs to induce tolerance to the benefit of the host, especially in oral mucosa which is heavily colonized by abundant microbes. How TLRs and downstream signaling events are affected by different oral microbial communities to regulate host responses is still unknown. To compare such human host-microbe interactions in vitro, we exposed a reconstructed human gingiva (RHG) to commensal or pathogenic (gingivitis, cariogenic) multi-species oral biofilms cultured from human saliva. These biofilms contain in vivo like phylogenic numbers and typical bacterial genera. After 24 h biofilm exposure, TLR protein and gene expression of 84 TLR pathway related genes were investigated. Commensal and pathogenic biofilms differentially regulated TLR protein expression. Commensal biofilm up-regulated the transcription of a large group of key genes, which are involved in TLR signaling, including TLR7, the MyD88-dependent pathway (CD14, MyD88, TIRAP, TRAF6, IRAKs), MyD88-independent pathway (TAB1, TBK1, IRF3), and their downstream signaling pathways (NF-κB and MAPK pathways). In comparison, gingivitis biofilm activated fewer genes (e.g., TLR4) and cariogenic biofilm suppressed CD14, IRAK4, and IRF3 transcription. Fluorescence in situ hybridization staining showed the rRNA of the topically applied and invaded bacteria, and histology showed that the biofilms had no obvious detrimental effect on RHG morphology. These results show an important role of TLR signaling pathways in regulating host-microbe interactions: when a sterile gingival tissue is exposed to commensals, a strong immune activation occurs which may prime the host against potential challenges in order to maintain oral host-microbe homeostasis. In contrast, pathogenic biofilms stimulate a weaker immune response which might facilitate immune evasion thus enabling pathogens to penetrate undetected into the tissues.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kees Buskermolen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen Marga Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bastiaan Philip Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
35
|
Pan W, Yin W, Yang L, Xue L, Ren J, Wei W, Lu Q, Ding H, Liu Z, Nabar NR, Wang M, Hao L. Inhibition of Ctsk alleviates periodontitis and comorbid rheumatoid arthritis via downregulation of the TLR9 signalling pathway. J Clin Periodontol 2019; 46:286-296. [PMID: 30636333 DOI: 10.1111/jcpe.13060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
AIM In this study, we investigate the mechanistic link between rheumatoid arthritis (RA) and periodontitis to identify a novel target (cathepsin K; Ctsk) for the treatment of comorbid periodontitis and RA. METHODS An experimental model of periodontitis with arthritis was established in DBA/1 mice. We then tested the effect of BML-244, a specific inhibitor of Ctsk, by quantifying several inflammatory markers of TLR9 signalling both in vivo and in vitro. RESULTS Our results showed that periodontitis-rheumatoid arthritis comorbidity causes severer periodontal bone and joint cartilage destruction than either disease alone. Inhibition of Ctsk reduced infiltration by dendritic cells and T cells and inflammatory cytokine production; these improvements alleviated the hard-tissue erosion in periodontitis and RA as measured by bone erosion in periodontal lesions and cartilage destruction in knee joints. Inhibition of Ctsk also decreased the expression of TLR4 and TLR9 in vivo, whereas in vitro experiments indicated that Ctsk is involved specifically in the production of cytokines in response to TLR9 engagement. CONCLUSION Our data reveal that periodontitis and RA may have additive pathological effects through dysregulation of the TLR9 pathway and that Ctsk is a critical mediator of this pathway and contributes to the pathogenesis of RA and periodontitis.
Collapse
Affiliation(s)
- Weiyi Pan
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wuwei Yin
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Li Yang
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lili Xue
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jie Ren
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Wei Wei
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Qiuyu Lu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Handong Ding
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Zhaohui Liu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Neel R Nabar
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Min Wang
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liang Hao
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
36
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
37
|
AlQallaf H, Hamada Y, Blanchard S, Shin D, Gregory R, Srinivasan M. Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis. PLoS One 2018; 13:e0200231. [PMID: 30571680 PMCID: PMC6301611 DOI: 10.1371/journal.pone.0200231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 01/19/2023] Open
Abstract
Chronic periodontitis is a common inflammatory disease initiated by a complex microbial biofilm and mediated by the host response causing destruction of the supporting tissues of the teeth. Host recognition of pathogens is mediated by toll-like receptors (TLRs) that bind conserved molecular patterns shared by large groups of microorganisms. The oral epithelial cells respond to most periodontopathic bacteria via TLR-2 and TLR-4. In addition to the membrane-associated receptors, soluble forms of TLR-2 (sTLR-2) and TLR-4 (sTLR-4) have been identified and are thought to play a regulatory role by binding microbial ligands. sTLR-2 has been shown to arise from ectodomain shedding of the extracellular domain of the membrane receptor and sTLR-4 is thought to be an alternate spliced form. Many studies have previously reported the presence of elevated numbers of viable exfoliated epithelial cells in the saliva of patients with chronic periodontitis. The objective of this study was to investigate the potential value of salivary sTLR-2 and sTLR-4 together with the paired epithelial cell-associated TLR-2/4 mRNA as diagnostic markers for chronic periodontitis. Unstimulated whole saliva was collected after obtaining informed consent from 40 individuals with either periodontitis or gingivitis. The sTLR-2 and sTLR4 in saliva was measured by enzyme-linked immunosorbent assay. The TLR-2 and TLR-4 transcript in the epithelial cells in saliva was measured by real time polymerase chain reaction. While levels of sTLR-2 exhibited an inverse correlation, sTLR-4 positively correlated with clinical parameters in the gingivitis cohort. Interestingly, both correlations were lost in the periodontitis cohort indicating a dysregulated host response. On the other hand, while the sTLR-2 and the paired epithelial cell associated TLR-2 mRNA exhibited a direct correlation (r2 = 0.62), that of sTLR4 and TLR-4 mRNA exhibited an inverse correlation (r2 = 0.53) in the periodontitis cohort. Collectively, assessments of salivary sTLR2 and sTLR4 together with the respective transcripts in the epithelial cells could provide clinically relevant markers of disease progression from gingivitis to periodontitis.
Collapse
Affiliation(s)
- Hawra AlQallaf
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Yusuke Hamada
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Steven Blanchard
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Daniel Shin
- Department of Periodontics and Allied Dental Programs, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Richard Gregory
- Department of Biomedical and Applied Sciences, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Mythily Srinivasan
- Department of Oral Pathology, Medicine and Radiology, School of Dentistry, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Elmanfi S, Zhou J, Sintim HO, Könönen E, Gürsoy M, Gürsoy UK. Regulation of gingival epithelial cytokine response by bacterial cyclic dinucleotides. J Oral Microbiol 2018; 11:1538927. [PMID: 30598733 PMCID: PMC6263105 DOI: 10.1080/20002297.2018.1538927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cyclic dinucleotides (cyclic di-guanosine monophosphate (c-di-GMP) and cyclic di-adenosine monophosphate (c-di-AMP)) and lipopolysaccharides (LPS) are pathogen-associated molecular patterns (PAMPs). Individual impacts of PAMPs on immune system have been evaluated, but simultaneous actions of multiple PAMPs have not been studied. OBJECTIVE Examination the effects of cyclic dinucleotides and Porphyromonas gingivalis LPS on gingival epithelial cytokine response. METHODS Human gingival keratinocytes (HMK) were incubated with 1, 10, and 100 µM concentrations of c-di-GMP and c-di-AMP, either in the presence or absence of P. gingivalis LPS. Intra- and extracellular levels of interleukin (IL)-1β, IL-8, IL-1Ra, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF), were measured using the Luminex technique. RESULTS LPS decreased extracellular IL-8 levels, while the presence of c-di-AMP inhibited this effect. Incubating HMK cells with c-di-AMP (alone or with LPS) elevated the extracellular level of MCP-1. Extracellular VEGF level increased when cells were incubated with LPS and c-di-GMP together, or with c-di-AMP alone. LPS and c-di-AMP suppressed intracellular IL-1β levels. The c-di-AMP elevated intracellular levels of IL-1Ra. CONCLUSION c-di-AMP and, to a lesser extent, c-di-GMP regulate keratinocyte cytokine response, either as an aggregator or as a suppressor of LPS, depending on the cytokine type.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Jie Zhou
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Herman O Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Semlali A, Almutairi M, Rouabhia M, Reddy Parine N, Al Amri A, S. Al-Numair N, M. Hawsawi Y, Saud Alanazi M. Novel sequence variants in the TLR6 gene associated with advanced breast cancer risk in the Saudi Arabian population. PLoS One 2018; 13:e0203376. [PMID: 30388713 PMCID: PMC6214682 DOI: 10.1371/journal.pone.0203376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, we evaluated the association of the Toll-like receptor 6 (TLR6) single nucleotide polymorphisms (SNPs) rs3796508 (Val327Met) and rs5743810 (Ser249Pro) with breast cancer (BC) susceptibility in Saudi Arabian women, using in silico analysis. We found no significant differences in genotypic and allelic frequencies for rs3796508 between the BC patients (n = 127) and healthy individuals (n = 116). However, 86% of the BC patients, versus 98% of the healthy controls, carried the rs5743810 Pro allele (OR = 0.103, CI = 0.036–0.293, P = 0.00001). Advanced analysis based on the comparison of the estrogen receptor (ER)-positive and -negative patients with the healthy controls indicated a significant association between rs5743810 allelic frequency and BC risk protection (OR = 0.100, CI = 0.034–0.297, P = 0.00001 for ER+ BC cases; OR = 0.102, CI = 0.033–0.318, P = 0.00001 for ER−BC cases). Furthermore, rs5743810 was associated with BC risk protection at either above or below 48 years of age at diagnosis (OR = 0.101, CI = 0.022–0.455, P = 0.00037 for age ≤48 years; OR = 0.120, CI = 0.028–0.519, P = 0.00087 for age >48 years). Such associations were not found for rs3796508. In silico analysis indicated that these SNPs had neutral effects within the TLR6 structure, confirming the protective role of rs5743810. Our findings therefore suggest a strong association between rs5743810 and protection against BC risk in Saudi Arabian women. Importantly, the rs5743810 Pro allele could be a potential BC diagnostic biomarker in this ethnic population.
Collapse
Affiliation(s)
- Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Qc, Canada
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail: ,
| | - Mikhlid Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Qc, Canada
| | - Narasimha Reddy Parine
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Al Amri
- Groupe de Recherche en Écologie Buccale, Département de stomatologie, Faculté de Médecine Dentaire, Université Laval, Québec, Qc, Canada
| | - Nouf S. Al-Numair
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Yousef M. Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Saud Alanazi
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Ceccarelli F, Orrù G, Pilloni A, Bartosiewicz I, Perricone C, Martino E, Lucchetti R, Fais S, Vomero M, Olivieri M, di Franco M, Priori R, Riccieri V, Scrivo R, Shoenfeld Y, Alessandri C, Conti F, Polimeni A, Valesini G. Porphyromonas gingivalis in the tongue biofilm is associated with clinical outcome in rheumatoid arthritis patients. Clin Exp Immunol 2018; 194:244-252. [PMID: 30009382 DOI: 10.1111/cei.13184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Several studies have suggested a link between human microbiome and rheumatoid arthritis (RA) development. Porphyromonas gingivalis seems involved in RA initiation and progression, as supported by the high occurrence of periodontitis. In this case-control study, we analysed tongue P. gingivalis presence and quantification in a large healthy and RA cohort. We enrolled 143 RA patients [male/female (M/F) 32/111, mean ± standard deviation (s.d.), age 57·5 ± 19·8 years, mean ± s.d. disease duration 155·9 ± 114·7 months); 36 periodontitis patients (M/F 11/25, mean ± s.d., age 56 ± 9·9 years, mean ± s.d. disease duration 25·5 ± 20·9 months); and 57 patients (M/F 12/45, mean ± s.d., age 61·4 ± 10·9 years, mean ± s.d. disease duration 62·3 ± 66·9 months) with knee osteoarthritis or fibromyalgia. All subjects underwent a standard cytological swab to identify the rate of P. gingivalis/total bacteria by using quantitative real-time polymerase chain reaction. The prevalence of P. gingivalis resulted similarly in RA and periodontitis patients (48·9 versus 52·7%, P = not significant). Moreover, the prevalence of this pathogen was significantly higher in RA and periodontitis patients in comparison with control subjects (P = 0·01 and P = 0·003, respectively). We found a significant correlation between P. gingivalis rate in total bacteria genomes and disease activity score in 28 joints (DAS28) (erythrocyte sedimentation rate) (r = 0·4, P = 0·01). RA patients in remission showed a significantly lower prevalence of P. gingivalis in comparison with non-remission (P = 0·02). We demonstrated a significant association between the percentage of P. gingivalis on the total tongue biofilm and RA disease activity (DAS28), suggesting that the oral cavity microbiological status could play a role in the pathogenic mechanisms of inflammation, leading to more active disease.
Collapse
Affiliation(s)
- F Ceccarelli
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - G Orrù
- Molecular Biology Service, University of Cagliari 'Ospedale S. Giovanni di Dio', Cagliari, Italy
| | - A Pilloni
- Odontoiatria, Dipartimento di Scienze Odontostomatologiche e Maxillo Facciali, Sapienza Università di Roma, Rome, Italy
| | - I Bartosiewicz
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - C Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - E Martino
- Odontoiatria, Dipartimento di Scienze Odontostomatologiche e Maxillo Facciali, Sapienza Università di Roma, Rome, Italy
| | - R Lucchetti
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - S Fais
- Molecular Biology Service, University of Cagliari 'Ospedale S. Giovanni di Dio', Cagliari, Italy
| | - M Vomero
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - M Olivieri
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - M di Franco
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - R Priori
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - V Riccieri
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - R Scrivo
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - Y Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center (affiliated to Tel-Aviv University), Tel-Hashomer, Israel.,Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Israel
| | - C Alessandri
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - F Conti
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| | - A Polimeni
- Odontoiatria, Dipartimento di Scienze Odontostomatologiche e Maxillo Facciali, Sapienza Università di Roma, Rome, Italy
| | - G Valesini
- Reumatologia, Dipartimento di Medicina Interna e Specialità Medica, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
41
|
Hamonic G, Pasternak JA, Wilson HL. Recognizing conserved non-canonical localization patterns of toll-like receptors in tissues and across species. Cell Tissue Res 2018; 372:1-11. [PMID: 29330675 DOI: 10.1007/s00441-017-2767-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLR) 1, 2, 4, 5 and 6 were originally characterized as exclusively expressed on the cell surface and TLR 3, 7, 8 and 9 were said to be localized to the endosomes. However, continued research in this area shows that TLR localization may be altered across cell-types, and in response to stimulation, age or disease. Mucosal surfaces must remain tolerant to the commensal flora and thus intracellular or basal lateral localization of TLRs at mucosal surfaces may be necessary to prevent induction of an inflammatory response to commensal flora while still allowing the possibility for the receptors to prime an immune response when a pathogen has crossed the epithelial barrier. Here, we highlight the research specifying 'non-canonical' localization of TLRs in human and animal mucosal tissues and blood-derived cells, while excluding cultured polarized immortalized cells. Reports that only indicate TLR gene/protein expression and/or responsiveness to agonists have been excluded unless the report also indicates surface/intracellular distribution in the cell. Understanding the tissue- and species-specific localization of these specific pattern recognition receptors will lead to a greater appreciation of the way in which TLR ligands promote innate immunity and influence the adaptive immune response. A more comprehensive understanding of this information will potentially aid in the exploitation of the therapeutic or adjuvant potential of selectively localized TLRs and in opening new perspectives in understanding the basis of immunity.
Collapse
Affiliation(s)
- Glenn Hamonic
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada
| | - J Alex Pasternak
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine & Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr. Saskatoon, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
42
|
Narayan I, Gowda TM, Mehta DS, Kumar BT. Estimation of Toll-like receptor 9 in gingival tissues of patients with chronic periodontitis with or without hyperlipidemia and its association with the presence of Porphyromonas gingivalis. J Indian Soc Periodontol 2018; 22:298-303. [PMID: 30131620 PMCID: PMC6077972 DOI: 10.4103/jisp.jisp_124_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Recent evidence suggests the interactions between bacterial DNA and nucleic acid receptors to play a role in inflammatory tissue destruction. The current study aims to evaluate the expression of Toll-like receptor 9 (TLR9) in periodontal disease associated with or without hyperlipidemia and to associate it with the presence of Porphyromonas gingivalis. Materials and Methods: Thirty participants in the age range of 25–50 years were randomly recruited and divided into three groups, i.e., healthy (Group I), chronic periodontitis without hyperlipidemia (Group II), and chronic periodontitis with hyperlipidemia (Group III). The gingival tissue samples were analyzed for TLR9 using immunohistochemistry, and plaque samples were analyzed for P. gingivalis using polymerase chain reaction. Results: The TLR9-positive cell ratio in gingival connective tissue for Group II and Group III was 0.95 ± 0.03 and 0.94 ± 0.03, respectively, which was significantly higher than that of Group I, with P < 0.001 (0.88 ± 0.04). These groups also demonstrated significantly higher presence of P. gingivalis as compared to Group I with P < 0.001. There was a positive association between TLR9 in gingival connective tissue and presence of P. gingivalis. Conclusion: The results of this study reveal a potential role of TLR9 in chronic periodontitis, in association with P. gingivalis. Furthermore, these variables do not show an appreciable change in hyperlipidemics suggesting a weak relation between TLR9 and lipid levels.
Collapse
Affiliation(s)
- Ipshita Narayan
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | | | - Dhoom Singh Mehta
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Baron Tarun Kumar
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India.,Department of Periodontics, Bapuji Implant Center, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
43
|
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44:1215-1225. [PMID: 28727164 DOI: 10.1111/jcpe.12781] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Innate immunity rapidly defends the host against infectious insults. These reactions are of limited specificity and exhaust without providing long-term protection. Functional fluids and effector molecules contribute to the defence against infectious agents, drive the immune response, and direct the cellular players. AIM To review the literature and present a summary of current knowledge about the function of tissues, cellular players and soluble mediators of innate immunity relevant to caries and periodontitis. METHODS Historical and recent literature was critically reviewed based on publications in peer-reviewed scientific journals. RESULTS The innate immune response is vital to resistance against caries and periodontitis and rapidly attempts to protect against infectious agents in the dental hard and soft tissues. Soluble mediators include specialized proteins and lipids. They function to signal to immune and inflammatory cells, provide antimicrobial resistance, and also induce mechanisms for potential repair of damaged tissues. CONCLUSIONS Far less investigated than adaptive immunity, innate immune responses are an emerging scientific and therapeutic frontier. Soluble mediators of the innate response provide a network of signals to organize the near immediate molecular and cellular response to infection, including direct and immediate antimicrobial activity. Further studies in human disease and animal models are generally needed.
Collapse
Affiliation(s)
- Joerg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - Sabine Groeger
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEIES), University of Talca, Talca, Chile
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
44
|
Balci Yuce H, Lektemur Alpan A, Gevrek F, Toker H. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J Periodontal Res 2017; 53:131-138. [PMID: 29044575 DOI: 10.1111/jre.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Astaxanthin is a keto-carotenoid that has a strong antioxidant effect. The purpose of this study was to evaluate the effects of astaxanthin on alveolar bone loss and histopathological changes in ligature-induced periodontitis in rats. MATERIAL AND METHODS Wistar rats were divided into four experimental groups: non-ligated (C, n = 6); ligature only (L, n = 6); ligature and astaxanthin (1 mg/kg/day astaxanthin, AS1 group, n = 8); ligature and astaxanthin (5 mg/kg/day astaxanthin, AS5 group, n = 8). Silk ligatures were placed at the gingival margin of lower first molars of the mandibular quadrant. The study duration was 11 days and the animals were killed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were immunohistochemically examined, osteocalcin, bone morphogenic protein-2, inducible nitric oxide synthase, Bax and bcl-2 levels in alveolar bone and tartrate-resistant acid phosphatase-positive osteoclast cells, osteoblast and inflammatory cell counts were determined. RESULTS Alveolar bone loss was highest in the L group and the differences among the L, AS1 and AS5 groups were also significant (P < .05). Both doses of astaxanthin decreased tartrate-resistant acid phosphatase-positive+ osteoclast cell and increased osteoblast cell counts (P < .05). The inflammation in the L group was also higher than those of the C and AS1 groups were (P < .05) indicating the anti-inflammatory effect of astaxanthin. Although inducible nitric oxide synthase, osteocalcin, bone morphogenic protein-2 and bax staining percentages were all highest in the AS5 group and bcl-2 staining percentage was highest in the AS1 group, values were close to each other (P > .05). CONCLUSION Within the limits of this study, it can be suggested that astaxanthin administration may reduce alveolar bone loss by increasing osteoblastic activity and decrease osteoclastic activity in experimental periodontitis model.
Collapse
Affiliation(s)
- H Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Gaziosmanpasa University, Tokat, Turkey
| | - A Lektemur Alpan
- Department of Periodontology, Pamukkale University Faculty of Dentistry, Denizli, Turkey
| | - F Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - H Toker
- Department of Periodontology, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
45
|
Sumedha S, Kotrashetti VS, Nayak RS, Nayak A, Raikar A. Immunohistochemical localization of TLR2 and CD14 in gingival tissue of healthy individuals and patients with chronic periodontitis. Biotech Histochem 2017; 92:487-497. [PMID: 28910171 DOI: 10.1080/10520295.2017.1357192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We used immunohistochemistry to quantify and compare the expression of Toll-like receptor 2 (TLR2) and cluster of differentiation 14 (CD14) in gingival tissues of both healthy individuals and patients with chronic periodontitis. We also correlated the expression of TLR2 and CD14 with the histological grades of chronic periodontitis. We examined 30 gingival specimens from chronic periodontitis patients and 10 from healthy individuals. Tissues from both groups were immunostained with antibodies against TLR2 and CD14. TLR2 and CD14 were expressed by endothelial cells, fibroblasts, lymphocytes and plasma cells. The immunohistochemical expression of TLR2 and CD14 was significantly greater in inflammatory cells of the chronic periodontitis group than in healthy individuals. Expression of these molecules was greater in the inflammatory cells of connective tissue adjacent to pocket epithelium in both groups. The expression of TLR2 and CD14 was greatest in the periodontitis group that was classified as severe grade, followed by moderate and mild grades, which suggests a role of TLR2 and CD14 in the pathogenesis of chronic periodontitis. The positive correlation of TLR2 and CD14 expression levels with the severity grades of chronic periodontitis suggests that they are correlated also with disease severity; therefore, they may be useful for predicting disease progression. Our findings are consistent with the possibility that CD14 acts as a co-receptor for TLR2.
Collapse
Affiliation(s)
- S Sumedha
- a Departments of Oral Pathology and Microbiology
| | | | - R S Nayak
- a Departments of Oral Pathology and Microbiology
| | - A Nayak
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| | - A Raikar
- b Periodontology , Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre , Belgaum , Karnataka , India
| |
Collapse
|
46
|
Yu X, Hu Y, Freire M, Yu P, Kawai T, Han X. Role of toll-like receptor 2 in inflammation and alveolar bone loss in experimental peri-implantitis versus periodontitis. J Periodontal Res 2017; 53:98-106. [PMID: 28872184 DOI: 10.1111/jre.12492] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Peri-implantitis and periodontitis are different entities in immune characteristics even though they share similar features in clinical and radiologic signs. Toll-like receptor 2 (TLR-2), one of the key pathogen-recognition receptors in the innate immune system, plays an important role in the progression of periodontitis. However, the role of TLR-2 in peri-implantitis remains unclear. The objective of this study was to investigate the role of TLR-2 in inflammation and alveolar bone loss in a murine model of ligature-induced peri-implantitis and to compare it with ligature-induced periodontitis. MATERIAL AND METHODS Smooth-surface titanium implants were placed in the alveolar bone of the left maxillary molars of wild-type (WT) and Tlr2 knockout (Tlr2-KO) mice 6 weeks after tooth extraction. Silk ligatures were applied to the left implant fixtures and the right maxillary second molars to induce peri-implantitis and periodontitis 4 weeks after implant placement. Two weeks after ligation, bone loss around the implants and maxillary second molars was analysed by micro-computed tomography (micro-CT), and inflammation around the implants and maxillary second molars was assessed at the same time point using histology and TRAP staining, respectively. Expression of mRNA for proinflammatory cytokines (interleukin-1β [Il1β], tumor necrosis factor-α [Tnfα]), an anti-inflammatory cytokine (interleukin-10 [Il10]) and osteoclastogenesis-related cytokines (Rankl, osteoprotegerin [Opg]) were evaluated, in gingival tissue, using real-time quantitative PCR (RT-qPCR). RESULTS The success rate of implant osseointegration was significantly higher in Tlr2-KO mice (85.71%) compared with WT mice (53.66%) (P = .0125). Micro-CT revealed significantly decreased bone loss in Tlr2-KO mice compared with WT mice (P = .0094) in peri-implantitis. The levels of mRNA for Il1β (P = .0055), Tnfα (P = .01) and Il10 (P = .0019) in gingiva were significantly elevated in the peri-implantitis tissues of WT mice, but not in Tlr2-KO mice, compared with controls. However, the gingival mRNA ratios of Rankl/Opg in peri-implant tissues were significantly upregulated in both WT (P = .0488) and Tlr2-KO (P = .0314) mice. Ligature-induced periodontitis exhibited similar patterns of bone loss and inflammatory cytokine profile in both groups of mice, except that the level of Il10 was elevated (P = .0114) whereas the Rankl/Opg ratio was not elevated (P = .9755) in Tlr2-KO mice compared with control mice. Histological findings showed increased numbers of TRAP-positive cells and infiltrated inflammatory cells in ligature-induced peri-implantitis in both WT (P < .01) and Tlr2-KO mice (P < .05), and the numbers of both types of cell were significantly higher in WT mice than in Tlr2-KO mice (P < .01). CONCLUSION This study suggests that TLR-2 mediates bone loss in both peri-implantitis and periodontitis. However, different molecular features may exist in the pathogenesis of the two diseases.
Collapse
Affiliation(s)
- X Yu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, College of Stomatology, Qingdao University, Qingdao, Shandong, China.,Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Y Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - M Freire
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - P Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - X Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
47
|
Rusanen P, Marttila E, Uittamo J, Hagström J, Salo T, Rautemaa-Richardson R. TLR1-10, NF-κB and p53 expression is increased in oral lichenoid disease. PLoS One 2017; 12:e0181361. [PMID: 28715461 PMCID: PMC5513542 DOI: 10.1371/journal.pone.0181361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLRs) and nuclear factor-κB (NF-κB) in keratinocytes play an important role in dermatological autoimmune diseases. Tumour suppressor protein p53 regulates TLR expression. The aim of this study was to compare the expression of TLR1-TLR10, p53 and NF-κB in patients with oral lichenoid disease (OLD) with healthy mucosa. Oral mucosal biopsies from 24 patients with OLD and 26 healthy controls (HC) were analysed for the expression of TLR1-TLR10, NF-κB and p53 by immunohistochemistry. The expression of all TLRs was increased in OLD epithelia compared to HC samples and the difference was significant in TLR1, TLR3, TLR4, TLR5, TLR6 and TLR7. In the basement membrane zone, the immunoreactivity of TLR5 was significantly more intense in OLD compared to HC. In the intermediate layer, the immunoreactivity of NF-κB was significantly stronger in OLD, whereas the staining for p53 was more intense in all layers of OLD compared to HC samples. In OLD, a positive correlation between TLR2 and NF-κB in the basal layer and between TLR5, p53 and NF-κB in the intermediate layers was discovered. The expression of TLRs, p53 and NF-κB is increased in OLD, which may play a role in the pathogenesis of this chronic immune-mediated mucosal disease.
Collapse
Affiliation(s)
- Peter Rusanen
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Emilia Marttila
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Uittamo
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Unit on Acetaldehyde and Cancer, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, and Medical Research Centre Oulu University Hospital, Oulu, Finland
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester; and University Hospital of South Manchester, Manchester, United Kingdom
| |
Collapse
|
48
|
Bi J, Koivisto L, Pang A, Li M, Jiang G, Aurora S, Wang Z, Owen GR, Dai J, Shen Y, Grenier D, Haapasalo M, Häkkinen L, Larjava H. Suppression of αvβ6 Integrin Expression by Polymicrobial Oral Biofilms in Gingival Epithelial Cells. Sci Rep 2017; 7:4411. [PMID: 28667248 PMCID: PMC5493688 DOI: 10.1038/s41598-017-03619-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Periodontal diseases manifest by the formation of deep pockets between the gingiva and teeth where multispecies bacterial biofilms flourish, causing inflammation and bone loss. Epithelial cell receptor αvβ6 integrin that regulates inflammation by activating the anti-inflammatory cytokine transforming growth factor-β1, is highly expressed in healthy junctional epithelium that connects the gingiva to the tooth enamel. However, its expression is attenuated in human periodontal disease. Moreover, Itgb6−/− mice display increased periodontal inflammation compared to wild-type mice. We hypothesized that bacterial biofilms present in the periodontal pockets suppress αvβ6 integrin levels in periodontal disease and that this change aggravates inflammation. To this end, we generated three-week-old multi-species oral biofilms in vitro and treated cultured gingival epithelial cells (GECs) with their extracts. The biofilm extracts caused suppression of β6 integrin expression and upregulation of pro-inflammatory cytokines, including interleukin-1β and -6. Furthermore, GECs with β6 integrin siRNA knockdown showed increased interleukin-1β expression, indicating that αvβ6 integrin-deficiency is associated with pro-inflammatory cytokine responsiveness. FSL-1, a synthetic bacterial lipopeptide, also suppressed β6 integrin expression in GECs. Therefore, biofilm components, including lipopeptides, may downregulate αvβ6 integrin expression in the pocket epithelium and thus promote epithelial cell-driven pro-inflammatory response in periodontal disease.
Collapse
Affiliation(s)
- Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Aihui Pang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Li
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoqiao Jiang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Saljae Aurora
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhejun Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gethin R Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayin Dai
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ya Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Daniel Grenier
- Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Markus Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
49
|
Effect of Tobacco Smoking on The Clinical, Histopathological, and Serological Manifestations of Sjögren's Syndrome. PLoS One 2017; 12:e0170249. [PMID: 28166540 PMCID: PMC5293551 DOI: 10.1371/journal.pone.0170249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/31/2016] [Indexed: 01/11/2023] Open
Abstract
Objectives To assess the association of smoking habits with the clinical, serological, and histopathological manifestations of Sjögren’s syndrome (SS) and non-Sjögren’s sicca (non-SS sicca). Methods Cross-sectional case-control study of 1288 patients with sicca symptoms (587 SS and 701 non-SS sicca) evaluated in a multi-disciplinary research clinic. Smoking patterns were obtained from questionnaire data and disease-related clinical and laboratory data were compared between current, past, ever, and never smokers. Results Current smoking rates were 4.6% for SS patients compared to 14.1% in non-SS sicca (p = 5.17x10E-09), 18% in a local lupus cohort (p = 1.13x10E-14) and 16.8% in the community (p = 4.12x10E-15). Current smoking was protective against SS classification (OR 0.35, 95%CI 0.22–0.56, FDR q = 1.9E10-05), focal lymphocytic sialadenitis (OR 0.26, 95%CI 0.15–0.44, FDR q = 1.52x10E-06), focus score ≥1 (OR 0.22, 95%CI 0.13–0.39, FDR q = 1.43x10E-07), and anti-Ro/SSA(+) (OR 0.36, 95%CI 0.2–0.64, FDR q = 0.0009); ever smoking was protective against the same features and against anti-La/SSB(+) (OR 0.52, 95%CI 0.39–0.70, FDR q = 5.82x10E-05). Duration of smoking was inversely correlated with SS even after controlling for socioeconomic status, BMI, alcohol and caffeine consumption. Conclusions Current tobacco smoking is negatively and independently associated with SS, protecting against disease-associated humoral and cellular autoimmunity. The overall smoking rate amongst SS patients is significantly lower than in matched populations and the effects of smoking are proportional to exposure duration. In spite of the protective effects of tobacco on SS manifestations, it is associated with other serious comorbidities such as lung disease, cardiovascular risk and malignancy, and should thus be strongly discouraged in patients with sicca.
Collapse
|
50
|
Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep 2016; 6:39096. [PMID: 27974831 PMCID: PMC5156907 DOI: 10.1038/srep39096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.
Collapse
|