1
|
Diaz F, Matzkin LM. The Transcriptional Landscape of Adaptive Thermal Plasticity Within and Across Generations: The Role of Gene Expression and Alternative Splicing. Mol Ecol 2025; 34:e17715. [PMID: 40066715 DOI: 10.1111/mec.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025]
Abstract
There is increasing evidence for the co-occurrence of adaptive within-generation (WGP) and transgenerational (TGP) plasticity and the ecological scenarios driving both types of plasticity. However, some aspects of their transcriptional mechanisms, such as the role of alternative splicing and the consequences of parental acclimation across life stages, have remained elusive. We explore these fundamental questions by considering the desert endemic Drosophila mojavensis for which prior evidence indicates adaptive thermal acclimation within and across generations. We implement a full factorial design to estimate genome-wide patterns of differential gene expression (DE) and alternative splicing (AS) in response to acclimation treatments performed in the parental and offspring generations, as well as considering larval and adult stages. Our results demonstrate that mechanisms of alternative splicing represent a substantial difference between WGP and TGP. These mechanisms contribute substantially to transcriptional plasticity within generations but not across generations. We found a great number of genes associated with transcriptional TGP, which is exclusive to larval stages and not adult samples. Finally, we provide evidence demonstrating opposing transcriptional trajectories in differential gene expression between WGP and TGP. Thus, parental acclimation appears to up-regulate genes that are down-regulated during offspring acclimation. This pattern suggests a possible hypothesis for the mechanisms explaining the compensatory effect of parental acclimation in the offspring generation.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Mack KL, Landino NP, Tertyshnaia M, Longo TC, Vera SA, Crew LA, McDonald K, Phifer-Rixey M. Gene-by-environment Interactions and Adaptive Body Size Variation in Mice From the Americas. Mol Biol Evol 2025; 42:msaf078. [PMID: 40172935 PMCID: PMC12015161 DOI: 10.1093/molbev/msaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
The relationship between genotype and phenotype is often mediated by the environment. Moreover, gene-by-environment (GxE) interactions can contribute to variation in phenotypes and fitness. In the last 500 yr, house mice have invaded the Americas. Despite their short residence time, there is evidence of rapid climate adaptation, including shifts in body size and aspects of metabolism with latitude. Previous selection scans have identified candidate genes for metabolic adaptation. However, environmental variation in diet as well as GxE interactions likely impact body mass variation in wild populations. Here, we investigated the role of the environment and GxE interactions in shaping adaptive phenotypic variation. Using new locally adapted inbred strains from North and South America, we evaluated response to a high-fat diet, finding that sex, strain, diet, and the interaction between strain and diet contributed significantly to variation in body size. We also found that the transcriptional response to diet is largely strain-specific, indicating that GxE interactions affecting gene expression are pervasive. Next, we used crosses between strains from contrasting climates to characterize gene expression regulatory divergence on a standard diet and on a high-fat diet. We found that gene regulatory divergence is often condition-specific, particularly for trans-acting changes. Finally, we found evidence for lineage-specific selection on cis-regulatory variation involved in diverse processes, including lipid metabolism. Overlap with scans for selection identified candidate genes for environmental adaptation with diet-specific effects. Together, our results underscore the importance of environmental variation and GxE interactions in shaping adaptive variation in complex traits.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Nico P Landino
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | | | - Tiffany C Longo
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Sebastian A Vera
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Lilia A Crew
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Kristi McDonald
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ishikawa A, Gotoh H, Ogawa K, Kanbe T, Akimoto SI, Miura T. Loss of Photoperiodic Control of Juvenile-Hormone Signaling Pathway Underlying the Evolution of Obligate Parthenogenesis in the Pea Aphid. Zoolog Sci 2025; 42:186-195. [PMID: 40184197 DOI: 10.2108/zs240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 04/05/2025]
Abstract
Phenotypic plasticity, the ability of organisms to change their phenotype depending on external stimuli, enables their survival in fluctuating environments. An extreme example is polyphenism, in which a single genotype produces discrete phenotypes in response to external cues. However, under persistent environmental conditions, natural selection would favor reduced plasticity. This study focused on the loss of reproductive polyphenism and revealed the underlying mechanism in the pea aphid Acyrthosiphon pisum. Although most populations exhibit reproductive polyphenism, known as cyclical parthenogenesis, with a seasonal shift between parthenogenesis and sexual reproduction, some exhibit obligate parthenogenesis. To investigate the potential role of changes in the environmental sensitivity of the juvenile hormone (JH) pathway during this evolutionary shift, we analyzed the expression of genes involved in JH synthesis and degradation. We found that five of seven JH-related genes exhibited photoperiodic responses in one cyclical-parthenogenetic strain, whereas none of them responded to photoperiod in the two obligate-parthenogenetic strains. Notably, CYP15A and JHEH genes, which are involved in the final step of JH synthesis and in the initiation of JH degradation, respectively, showed strong photoperiodic responses in the cyclical-parthenogenetic strain but showed no responses in the obligate-parthenogenetic strains. Acetone treatment induces male production in obligate-parthenogenetic strains, suggesting that the developmental pathway for male production remains functional in these strains. These results suggest that the loss of the photoperiodic response in both JH synthesis and degradation pathways is a key mechanism underlying the elimination of the sexual phase, resulting in the loss of reproductive polyphenism in aphids.
Collapse
Affiliation(s)
- Asano Ishikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan,
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroki Gotoh
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kota Ogawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Biosystematics Laboratory, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Science and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Takashi Kanbe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Shin-Ichi Akimoto
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Tokyo 238-0225, Japan
| |
Collapse
|
4
|
Zhang VY, Kenagy GJ, de la Iglesia HO. Daytime aversive stimuli do not phase shift behavioral rhythms under light-dark cycles in a strictly diurnal rodent. J Biol Rhythms 2025:7487304251321214. [PMID: 40145492 DOI: 10.1177/07487304251321214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Recent studies have shown that cyclic aversive stimuli (time-specific footshocks) act as a nonphotic zeitgeber, shifting circadian behaviors to the daytime in nocturnal rodents through entrainment. It has remained untested whether diurnal species exhibit similar plasticity in behavioral timing. This study investigated whether antelope ground squirrels (Ammospermophilus leucurus, AGS), naturally diurnal rodents, shift activity timing in response to cyclic aversive stimuli delivered at specific phases of the light-dark (LD) cycle. We conducted two experiments with 20 AGS housed in custom cages featuring a safe nesting area and a separate foraging area rendered potentially aversive by unsignaled time-specific footshocks. In Experiment 1, animals were subjected to a 12:12 LD cycle. One group was exposed to a foraging area that produced footshocks during the light phase, and a control group with footshocks during the dark phase. In Experiment 2, under a 16:8 LD cycle, animals were divided into three groups, with footshock exposure either during the first or second half of the light phase or during the dark phase. Following treatments, animals were released into constant darkness (DD) to assess free-running rhythms. Contrary to findings in nocturnal rodents, AGS did not exhibit consistent complementary shifts to nocturnal activity as an avoidance of footshocks received during daytime. Most animals maintained diurnal activity, showing minor, and inconsistent phase adjustments. In Experiment 2, animals exposed to footshocks during part of the light phase also failed to reliably shift activity to the "safe" portion of the light phase. These findings show AGS do not substantially shift activity patterns in response to cyclic aversive stimuli and that a 24-h cyclic fear stimulus fails to override the LD cycle as a zeitgeber. This suggests a lack of plasticity in circadian behavior and highlights the importance of species-specific differences in response to potential nonphotic zeitgebers.
Collapse
Affiliation(s)
- Victor Y Zhang
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - G J Kenagy
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Calandriello DC, Cunha VA, Batista D, Genevcius BC. Genetic architecture of morphological adaptation and plasticity in insects: gaps, biases, and future directions. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101362. [PMID: 40089149 DOI: 10.1016/j.cois.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Insects exhibit a vast array of morphological specializations. Recent eco-evo-devo studies have provided a fresh perspective into how insect morphology can respond to the environment, both plastically and adaptively. Here, we performed a systematic literature analysis to identify biases and gaps in research on the molecular mechanisms underlying insect morphological adaptation and plasticity. We found that plasticity studies are increasingly present in the literature, while adaptation studies lag behind. Additionally, we observed a disproportionate focus on a few insect orders and specific traits like wings and body size. We highlight the need to explore the broader insect diversity, including understudied groups and unexplored traits like reproductive organs, as well as utilize advanced methods to capture subtle morphological variation. Studying a wider range of species with diverse morphologies and ecological features, as well as implementing modern genome-wide tools, can reveal the full spectrum of mechanisms underlying morphological adaptation and plasticity in insects.
Collapse
Affiliation(s)
- Denis C Calandriello
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
| | - Vanessa As Cunha
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
| | - Daniel Batista
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil; University of São Paulo, Institute of Biosciences, Department of Zoology, São Paulo, SP, Brazil
| | - Bruno C Genevcius
- University of São Paulo, Institute of Biosciences, Department of Zoology, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Stewart KA, Smallegange IM. Developmental Plasticity and the Evolutionary Rescue of a Colonizing Mite. Evol Dev 2025; 27:e70002. [PMID: 39963932 PMCID: PMC11833757 DOI: 10.1111/ede.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Plasticity, especially in small newly founded populations, can expose genetic variation to selection during the evolutionary rescue of populations, allowing individuals to achieve a phenotype with which they can survive. However, developmental plasticity can also enable organisms to accommodate perturbations, generating new phenotypic variation. We explored whether, at the start of a colonization event, phenotype dynamics follow a "selective" process in which plasticity fuels evolutionary rescue or whether they are due to developmental plasticity in a "generative" process. We investigated this using the bulb mite Rhizoglyphus robini, which expresses a facultative, juvenile dispersal phenotype (deutonymph) under unfavorable conditions and shows alternative adult male phenotypes: competitive fighters or benign scramblers that are expressed to mitigate food stress and which have higher levels of genetic heterozygosity than fighters. Mimicking colonization dynamics, we founded small, medium and large populations from deutonymphs on low or high food to test if scramblers were expressed earliest postcolonization within (i) the smallest founder populations to alleviate inbreeding (selective hypothesis), or (ii) the largest founder populations as a direct consequence of food stress is highest due to higher food competition (generative hypothesis). In line with the generative hypothesis under both food environments, scramblers were expressed at the earliest in the largest founder populations, which also tended to show the lowest growth at the start of the experiment and had the lowest ultimate population size. Our findings highlight the necessity to seek explanations of how developmental pathways likely influence evolutionary rescue patterns, starting with how resource limitation (stress) shapes adaptive responses during colonization.
Collapse
Affiliation(s)
- Kathryn A. Stewart
- Institute of Environmental Sciences (CML)Leiden UniversityLeidenthe Netherlands
| | - Isabel M. Smallegange
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
7
|
Aneja P, Sanyal R, Ranjan A. Leaf growth in third dimension: a perspective of leaf thickness from genetic regulation to ecophysiology. THE NEW PHYTOLOGIST 2025; 245:989-999. [PMID: 39511951 DOI: 10.1111/nph.20246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Leaf thickness, the leaf growth in the third dimension as quantified by the distance between the adaxial and abaxial surface, is an indispensable aspect of leaf development. The fitness of a plant is strongly influenced by leaf thickness via modulation of major physiological processes, including photosynthesis and water use efficiency. The cellular basis of leaf thickness by alterations in either cell size or the number of cell layers is envisaged using Arabidopsis leaf thickness mutants, such as angustifolia (an) and rotundifolia (rot). Environmental factors coordinate with endogenous signaling mechanisms to exhibit leaf thickness plasticity. Plants growing in different ecological and environmental regimes show different leaf thickness attributes. However, genetic and molecular understandings of leaf thickness regulation remain largely limited. In this review, we highlight how cellular growth is transposed to fine-tune the leaf thickness via the integration of potential cues and molecular players. We further discuss the physiological significance of leaf thickness plasticity to the environmental cues that might serve as ecological adaptation enabling the plants to withstand future climatic conditions. Taken together, we seek to bridge the genetics and molecular biology of leaf thickness to its physiological significance so that leaf thickness can be systemically targeted in crop improvement programs.
Collapse
Affiliation(s)
- Prakshi Aneja
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rajarshi Sanyal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
8
|
Chevin LM, Bridle J. Impacts of limits to adaptation on population and community persistence in a changing environment. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230322. [PMID: 39780591 PMCID: PMC11712278 DOI: 10.1098/rstb.2023.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/11/2025] Open
Abstract
A key issue in predicting how ecosystems will respond to environmental change is understanding why populations and communities are able to live and reproduce in some parts of ecological and geographical space, but not in others. The limits to adaptation that cause ecological niches to vary in position and width across taxa and environmental contexts determine how communities and ecosystems emerge from selection on phenotypes and genomes. Ecological trade-offs mean that phenotypes can only be optimal in some environments unless these trade-offs can be reshaped through evolution. However, the amount and rate of evolution are limited by genetic architectures, developmental systems (including phenotypic plasticity) and the legacies of recent evolutionary history. Here, we summarize adaptive limits and their ecological consequences in time (evolutionary rescue) and space (species' range limits), relating theoretical predictions to empirical tests. We then highlight key avenues for future research in this area, from better connections between evolution and demography to analysing the genomic architecture of adaptation, the dynamics of plasticity and interactions between the biotic and abiotic environment. Progress on these questions will help us understand when and where evolution and phenotypic plasticity will allow species and communities to persist in the face of rapid environmental change.This article is part of the discussion meeting issue 'Bending the curve towards nature recovery: building on Georgina Mace's legacy for a biodiverse future'.
Collapse
Affiliation(s)
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
9
|
Little AG, Seebacher F. A review of the empirical evidence for costs of plasticity in ectothermic animals. J Exp Biol 2025; 228:jeb249226. [PMID: 39783040 DOI: 10.1242/jeb.249226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Phenotypic plasticity can represent a vital adaptive response to environmental stressors, including those associated with climate change. Despite its evolutionary advantages, the expression of plasticity varies significantly within and among species, and is likely to be influenced by local environmental conditions. This variability in plasticity has important implications for evolutionary biology and conservation physiology. Theoretical models suggest that plasticity might incur intrinsic fitness costs, although the empirical evidence is inconsistent and there is ambiguity in the term 'cost of plasticity'. Here, we systematically review the literature to investigate the prevalence of costs associated with phenotypic plasticity in ectothermic animals. We categorized studies into those assessing 'costs of phenotype' (trade-offs between different plastic trait values) and 'costs of plasticity' (intrinsic costs of the capacity for plasticity). Importantly, the experimental designs required to detect costs of plasticity are inherently more complex and onerous than those required to detect costs of phenotype. Accordingly, our findings reveal a significant focus on costs of phenotype over costs of plasticity, with the former more frequently detecting costs. Contrary to theoretical expectations, our analysis suggests that costs of plasticity are neither universal nor widespread. This raises questions about the evolutionary dynamics of plasticity, particularly in stable environments. Our analysis underscores the need for precise terminology and methodology in researching costs of plasticity, to avoid conflating costs associated with plastic traits with costs more intrinsic to plasticity. Understanding these nuances is crucial for predicting how species might adapt to rapidly changing environments.
Collapse
Affiliation(s)
- Alexander G Little
- Department of Biology, Life Sciences Building, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Frank Seebacher
- School of Life and Environmental Sciences, A08 , University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Chaturvedi N, Chatterjee P. Evolutionary Adaptation in Heterogeneous and Changing Environments. Evolution 2024; 79:119-133. [PMID: 39382343 DOI: 10.1093/evolut/qpae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Organisms that are adapting to long-term environmental change almost always deal with multiple environments and trade-offs that affect their optimal phenotypic strategy. Here, we combine the idea of repeated variation or heterogeneity, like seasonal shifts, with long-term directional dynamics. Using the framework of fitness sets, we determine the dynamics of the optimal phenotype in two competing environments encountered with different frequencies, one of which changes with time. When such an optimal strategy is selected for in simulations of evolving populations, we observe rich behavior that is qualitatively different from and more complex than adaptation to long-term change in a single environment. The probability of survival and the critical rate of environmental change above which populations go extinct depend crucially on the relative frequency of the two environments and the strength and asymmetry of their selection pressures. We identify a critical frequency for the stationary environment, above which populations can escape the pressure to constantly evolve by adapting to the stationary optimum. In the neighborhood of this critical frequency, we also find the counter-intuitive possibility of a lower bound on the rate of environmental change, below which populations go extinct, and above which a process of evolutionary rescue is possible.
Collapse
Affiliation(s)
- Nandita Chaturvedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Purba Chatterjee
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
11
|
Blake C, Barber JN, Connallon T, McDonald MJ. Evolutionary shift of a tipping point can precipitate, or forestall, collapse in a microbial community. Nat Ecol Evol 2024; 8:2325-2335. [PMID: 39294402 DOI: 10.1038/s41559-024-02543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Global ecosystems are rapidly approaching tipping points, where minute shifts can lead to drastic ecological changes. Theory predicts that evolution can shape a system's tipping point behaviour, but direct experimental support is lacking. Here we investigate the power of evolutionary processes to alter these critical thresholds and protect an ecological community from collapse. To do this, we propagate a two-species microbial system composed of Escherichia coli and baker's yeast, Saccharomyces cerevisiae, for over 4,000 generations, and map ecological stability before and after coevolution. Our results reveal that tipping points-and other geometric properties of ecological communities-can evolve to alter the range of conditions under which our microbial community can flourish. We develop a mathematical model to illustrate how evolutionary changes in parameters such as growth rate, carrying capacity and resistance to environmental change affect ecological resilience. Our study shows that adaptation of key species can shift an ecological community's tipping point, potentially promoting ecological stability or accelerating collapse.
Collapse
Affiliation(s)
- Christopher Blake
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jake N Barber
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Su R, Chen F, Zhang X, Qin Y, Zhang Y, Zhang W. Immune defense adaptation of Strauchbufo raddei population in heavy metal polluted area: Insights from developmental and environmental perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123126. [PMID: 39500166 DOI: 10.1016/j.jenvman.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024]
Abstract
The adjustment of immune defense mechanisms is a crucial aspect of biological adaptation to stressful environments. Amphibians, with their unique metamorphic process, experience distinct life stages and exhibit diverse immune defense components. While previous studies have focused on specific immune changes during particular life stages under stress, this research addresses a critical gap by exploring the adaptive immune defense strategies of Strauchbufo raddei in heavy metal-polluted environments. We conducted laboratory experiments, exposing offspring from both polluted and unpolluted areas to control and heavy metal treatments, while continuously monitoring changes in immune components during key metamorphic stages. Notably, we examined the role of the skin microbiome, a crucial but often overlooked barrier against pathogens. The results indicated that individuals from polluted areas exhibited some tolerance to heavy metal exposure, though overall immune function remained diminished. During metamorphosis, when immune defenses are most vulnerable, the skin microbiome rapidly enriched beneficial bacteria, preventing pathogenic colonization and playing a pivotal role in maintaining immune defense in contaminated environments. Moreover, our research highlights energy allocation strategies involving corticosterone and body fat content, enabling populations to maintain development despite immune compromise. The immune adaptations observed may be fixed through genetic assimilation, suggesting a rapid evolutionary response to environmental stress. However, this reduces phenotypic plasticity, making populations more vulnerable to future environmental changes. This study provides key insights into the survival strategies of amphibian populations in heavy metal-contaminated areas, laying the foundation for future research on molecular and evolutionary adaptations.
Collapse
Affiliation(s)
- Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Fanrui Chen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Xueying Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yuting Qin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Siddiq MA, Duveau F, Wittkopp PJ. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. Nat Ecol Evol 2024; 8:2184-2194. [PMID: 39537896 PMCID: PMC11618099 DOI: 10.1038/s41559-024-02582-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. Here, to better understand this dual role of environment in the production and selection of phenotypic variation, we determined genotype-phenotype-fitness relationships for mutant strains of Saccharomyces cerevisiae in four environments. Specifically, we measured how promoter mutations of the metabolic gene TDH3 modified expression level and affected growth for four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Mutations with similar effects on expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. We also found that mutations disrupting binding sites for transcription factors had more variable effects on expression among environments than those disrupting the TATA box, which is part of the core promoter. However, mutations with the most environmentally variable effects on fitness were located in the TATA box, because of both the lack of plasticity of TATA box mutations and environment-specific fitness functions. This observation suggests that mutations affecting different molecular mechanisms contribute unequally to regulatory sequence evolution in changing environments.
Collapse
Affiliation(s)
- Mohammad A Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, Lyon, France
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Thomas LG, Prunier R. Local adaptation and phenotypic plasticity drive leaf trait variation in the California endemic toyon (Heteromeles arbutifolia). AMERICAN JOURNAL OF BOTANY 2024; 111:e16430. [PMID: 39506271 PMCID: PMC11584042 DOI: 10.1002/ajb2.16430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
PREMISE To survive climate change and habitat loss, plants must rely on phenotypic changes in response to the environment, local adaptation, or migration. Understanding the drivers of intraspecific variation is critical to anticipate how plant species will respond to climate change and to inform conservation decisions. Here we explored the extent of local adaptation and phenotypic plasticity in Heteromeles arbutifolia, toyon, a species endemic to the California Floristic Province. METHODS We collected leaves from 286 individuals across toyon's range and used seeds from 37 individuals to establish experimental gardens in the northern and southern parts of toyon's range. We measured leaf functional traits of the wild-collected leaves and functional and fitness traits of the offspring grown in the experimental gardens. We then investigated the relationships between traits and source environment. RESULTS Most traits we investigated responded plastically to the environment, and some traits in young seedlings were influenced by maternal effects. We found strong evidence that variation in leaf margins is a result of local adaptation to variation in temperature and temperature range. However, the source environment was not related to fitness traits or survival in the experimental gardens. CONCLUSIONS Our findings reiterate the adaptive role of toothed leaf margins in colder and more seasonally variable environments. Additionally, we provide evidence that fitness of toyon is not dependent on where they are sourced, and thus toyon can be sourced across its range for restoration purposes.
Collapse
Affiliation(s)
- Laurel G Thomas
- Institute of the Environment and Sustainability, University of California Los Angeles, 619 Charles E. Young Dr., Los Angeles, 90024, CA, USA
| | - Rachel Prunier
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Storrs, 06269, CT, USA
| |
Collapse
|
15
|
Khare SB, Holt RD, Scheiner SM. The genetics of phenotypic plasticity. XVIII. Developmental limits restrict adaptive plasticity. Evolution 2024; 78:1761-1773. [PMID: 39097782 DOI: 10.1093/evolut/qpae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
After environmental change, the trait evolution needed to rescue a population depends on the functional form of the plastic change (reaction norm) of that trait. Nearly all previous models of plasticity evolution for continuous traits have assumed that the functional form is linear, that is, no limits on the range of plasticity. This paper examines the effect of developmental limits, modeled as a sigmoidal reaction norm, on evolutionary rescue after an abrupt environmental change and the subsequent evolution of plasticity, including genetic assimilation. We examined four different scenarios: (1) developmental limits only, (2) developmental limits plus a cost of plasticity, (3) developmental limits with developmental noise, and (4) developmental limits plus environmental variation. The probability of evolutionary rescue increased with an increase in phenotypic variation allowed by plastic development. With a smaller limit to the range of the plastic phenotype, the evolution of adaptive plasticity was limited, meaning the evolution of non-plastic genes was necessary. The addition of developmental constraints to the model did not speed up genetic assimilation, suggesting a new theory is needed to understand empirical observations. The modeling framework presented here could be extended to different ecological and evolutionary conditions, alternative reaction norm shapes, the evolution of additional reaction norm parameters such as the range or the location of the inflection point on the environmental axis, or other function-valued traits.
Collapse
Affiliation(s)
- Sikander B Khare
- Department of Biology, University of Florida, Gainesville, United States
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, United States
| | - Samuel M Scheiner
- Division of Environmental Biology, National Science Foundation, Arlington, United States
| |
Collapse
|
16
|
Mattila ALK, Opedal ØH, Hällfors MH, Pietikäinen L, Koivusaari SHM, Hyvärinen MT. The potential for evolutionary rescue in an Arctic seashore plant threatened by climate change. Proc Biol Sci 2024; 291:20241351. [PMID: 39355964 PMCID: PMC11445713 DOI: 10.1098/rspb.2024.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
The impacts of climate change may be particularly severe for geographically isolated populations, which must adjust through plastic responses or evolve. Here, we study an endangered Arctic plant, Primula nutans ssp. finmarchica, confined to Fennoscandian seashores and showing indications of maladaptation to warming climate. We evaluate the potential of these populations to evolve to facilitate survival in the rapidly warming Arctic (i.e. evolutionary rescue) by utilizing manual crossing experiments in a nested half-sibling breeding design. We estimate G-matrices, evolvability and genetic constraints in traits with potentially conflicting selection pressures. To explicitly evaluate the potential for climate change adaptation, we infer the expected time to evolve from a northern to a southern phenotype under different selection scenarios, using demographic and climatic data to relate expected evolutionary rates to projected rates of climate change. Our results indicate that, given the nearly 10-fold greater evolvability of vegetative than of floral traits, adaptation in these traits may take place nearly in concert with changing climate, given effective climate mitigation. However, the comparatively slow expected evolutionary modification of floral traits may hamper the evolution of floral traits to track climate-induced changes in pollination environment, compromising sexual reproduction and thus reducing the likelihood of evolutionary rescue.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| | | | - Maria H Hällfors
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki , Helsinki, Finland
- Nature Solutions, Finnish Environment Institute (Syke) , Helsinki, Finland
| | - Laura Pietikäinen
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| | - Susanna H M Koivusaari
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki , Helsinki, Finland
| | - Marko-Tapio Hyvärinen
- Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki , Helsinki, Finland
| |
Collapse
|
17
|
Gomez Isaza DF, Rodgers EM. Upper thermal limits are 'hard-wired' across body mass but not populations of an estuarine fish. J Therm Biol 2024; 125:103970. [PMID: 39312817 DOI: 10.1016/j.jtherbio.2024.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024]
Abstract
Climate warming is seeing temperatures breach exceptional thresholds as the frequency and intensity of heat waves increase. Efforts to forecast species vulnerability to climate warming often focus on upper thermal limits threatening survival, overlooking the role of intraspecific variation in determining vulnerability. Using an estuarine fish (black bream, Acanthopagrus butcheri) as a model, we explore how intraspecific variation in body mass and among populations affects upper thermal tolerance. Upper thermal limits were quantified using critical thermal maxima (CTmax) of wild fish. We used a ∼500 g (mean = 52.4 g, range = 0.57-541 g) mass range to test the relationship between body mass and thermal tolerance. Four distinct black bream populations were chosen along a 5° latitudinal cline to explore population differences in thermal limits. Contrary to expectations, there was no effect of body mass on upper thermal limits. However, significant population differences in thermal tolerance were observed that correlate with mean habitat temperatures. Specifically, the southern population had a significantly lower CTmax (35.57 ± 0.43 °C) compared to northern (36.32 ± 0.70 °C) and mid-latitude (36.36 ± 1.15 °C) populations. These data underscore the importance of observing intraspecific variation in thermal limits to reveal the capabilities of individuals within a species to cope with climate warming and improve the management of at-risk life stages and populations.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Essie M Rodgers
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia; School of Environmental and Conservation Sciences, College of Environmental and Life Sciences, Murdoch University, Western Australia, 6150, Australia
| |
Collapse
|
18
|
Lucu Č, Turner LM. Ionic regulatory strategies of crabs: the transition from water to land. Front Physiol 2024; 15:1399194. [PMID: 39397859 PMCID: PMC11467477 DOI: 10.3389/fphys.2024.1399194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024] Open
Abstract
Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.
Collapse
Affiliation(s)
- Čedomil Lucu
- Croatian Academy of Sciences and Arts, Department of Natural Sciences, Zagreb, Croatia
| | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
19
|
Cheptou PO. [Evolution of plant mating systems in the face of global change]. C R Biol 2024; 347:95-107. [PMID: 39308328 DOI: 10.5802/crbiol.160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 03/26/2025]
Abstract
Beyond species extinction, it is likely that global change modifies selection regimes in natural populations. Whereas the classical Darwinian paradigm considers evolution as a slow process, it is now accepted that populations can evolve rapidly, in a few dozen generations. Plant-pollinator relationship is a central relationship in terrestrial ecosystems and the current pollinator decline can potentially disrupt this relationship. In this paper, we explore the possibility that reproductive systems in plants evolve in the face of pollinator decline. Using the case of a recent resurrection ecology study in Viola arvensis, the field pansy, we show that the evolution of a self-fertilization syndrome, and thus the breakdown of the plant-pollinator interaction, is in progress. Beyond the species itself, the evolution of reproductive regimes in plants involves relationships between species (pollinators and higher trophic levels). Thus, this example illustrates that global change is likely to affect biodiversity at different scales: from populations (Darwinian evolution) to ecosystem functions (relationships between species). This study shows that evolutionary processes modify the functioning of ecological systems and, where applicable, the related ecosystem services.
Collapse
|
20
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 PMCID: PMC11979766 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
21
|
Le Roux R, Colmonero-Costeira I, Deikumah JP, Thompson LJ, Russo IRM, Jansen van Vuuren B, Willows-Munro S. High conservation importance of range-edge populations of Hooded Vultures (Necrosyrtes monachus). Sci Rep 2024; 14:18040. [PMID: 39098950 PMCID: PMC11298522 DOI: 10.1038/s41598-024-68756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Critically endangered Hooded Vultures (Necrosyrtes monachus Temminck, 1823), like many vulture species globally, are experiencing rapid population declines due to anthropogenic factors such as poisonings, human persecution, trading for belief-based use, and habitat loss/degradation. The Hooded Vulture is widespread across sub-Saharan Africa. Although it is considered one of the most abundant vultures in West Africa, this vulture species is less common in East and southern Africa, with the population at the southern-most edge of the distribution (in South Africa and Eswatini) estimated at only 100-200 mature individuals. The distribution of Hooded Vultures has contracted dramatically in southern Africa, with breeding populations largely confined to protected areas such as the Greater Kruger National Park. This study aimed to investigate the genetic diversity of the southern African range-edge population and assess if the recent contraction in the distribution has resulted in the population experiencing a genetic bottleneck. Sixteen microsatellite loci were amplified for samples collected along the Olifants River in the Greater Kruger National Park (n = 30). The genetic diversity in the South African population was compared to samples (n = 30) collected in Ghana, where Hooded Vultures are more abundant. Contrary to expectations, the South African peripheral Hooded Vulture population showed higher levels of heterozygosity (HO = 0.495) than the Ghanaian population (HO = 0.315). Neither population showed signs of recent bottleneck events when tested using demographic modelling and Approximate Bayesian computation (ABC). However, both populations showed high levels of inbreeding and relatedness. Our results suggest that despite being a small peripheral population, the South African Hooded Vulture population showed a similar level of genetic diversity as individuals sampled from a core population within the species distribution (in Ghana). This study supports the need for Hooded Vulture conservation efforts in the southern African region and highlights the evolutionary importance of range-edge populations.
Collapse
Affiliation(s)
- Rynhardt Le Roux
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Ivo Colmonero-Costeira
- ONE, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, The Museum Ave, Cardiff, CF10 3AX, UK
- Department of Life Sciences, CIAS, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Justus P Deikumah
- Department of Conservation Biology and Entomology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Lindy J Thompson
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa
- Southern African Wildlife College, Private Bag X3015, Hoedspruit, 1380, South Africa
| | - Isa-Rita M Russo
- ONE, Organisms and Environment Division, School of Biosciences, Cardiff University, Sir Martin Evans Building, The Museum Ave, Cardiff, CF10 3AX, UK
| | - Bettine Jansen van Vuuren
- Department of Zoology, Centre for Ecological and Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Sandi Willows-Munro
- Centre for Functional Biodiversity, School of Life Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
22
|
Romero-Mujalli D, Fuchs LIR, Haase M, Hildebrandt JP, Weissing FJ, Revilla TA. Emergence of phenotypic plasticity through epigenetic mechanisms. Evol Lett 2024; 8:561-574. [PMID: 39100234 PMCID: PMC11291936 DOI: 10.1093/evlett/qrae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 08/06/2024] Open
Abstract
Plasticity is found in all domains of life and is particularly relevant when populations experience variable environmental conditions. Traditionally, evolutionary models of plasticity are non-mechanistic: they typically view reactions norms as the target of selection, without considering the underlying genetics explicitly. Consequently, there have been difficulties in understanding the emergence of plasticity, and in explaining its limits and costs. In this paper, we offer a novel mechanistic approximation for the emergence and evolution of plasticity. We simulate random "epigenetic mutations" in the genotype-phenotype mapping, of the kind enabled by DNA-methylations/demethylations. The frequency of epigenetic mutations at loci affecting the phenotype is sensitive to organism stress (trait-environment mismatch), but is also genetically determined and evolvable. Thus, the "random motion" of epigenetic markers enables developmental learning-like behaviors that can improve adaptation within the limits imposed by the genotypes. However, with random motion being "goal-less," this mechanism is also vulnerable to developmental noise leading to maladaptation. Our individual-based simulations show that epigenetic mutations can hide alleles that are temporarily unfavorable, thus enabling cryptic genetic variation. These alleles can be advantageous at later times, under regimes of environmental change, in spite of the accumulation of genetic loads. Simulations also demonstrate that plasticity is favored by natural selection in constant environments, but more under periodic environmental change. Plasticity also evolves under directional environmental change as long as the pace of change is not too fast and costs are low.
Collapse
Affiliation(s)
- Daniel Romero-Mujalli
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Laura I R Fuchs
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Martin Haase
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tomás A Revilla
- Department of Mathematics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Popp TE, Hermet S, Fredette-Roman J, McKeel E, Zozaya W, Baumlin C, Charmantier G, Lee CE, Lorin-Nebel C. Evolution of ion transporter Na +/K +-ATPase expression in the osmoregulatory maxillary glands of an invasive copepod. iScience 2024; 27:110278. [PMID: 39055944 PMCID: PMC11269808 DOI: 10.1016/j.isci.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
While many freshwater invaders originate from saline habitats, the physiological mechanisms involved are poorly understood. We investigated the evolution of ion transporter Na+/K+-ATPase (NKA) protein expression between ancestral saline and freshwater invading populations of the copepod Eurytemora carolleae (Atlantic clade of the E. affinis complex). We compared in situ NKA expression between populations under common-garden conditions at three salinities in the maxillary glands. We found the evolution of reduced NKA expression in the freshwater population under freshwater conditions and reduced plasticity (canalization) across salinities, relative to the saline population. Our results support the hypothesis that maxillary glands are involved in ion reabsorption from excretory fluids at low-salinity conditions in the saline population. However, mechanisms of freshwater adaptation, such as increased ion uptake from the environment, might reduce the need for ion reabsorption in the freshwater population. These patterns of ion transporter expression contribute insights into the evolution of ionic regulation during habitat change.
Collapse
Affiliation(s)
- Teresa E. Popp
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sophie Hermet
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Jacob Fredette-Roman
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Emma McKeel
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - William Zozaya
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Corentin Baumlin
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
| | - Carol Eunmi Lee
- MARBEC, Univ Montpellier, CNRS, IRD, Ifremer, Montpellier, France
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | | |
Collapse
|
24
|
Choy YMM, Walter GM, Mirth CK, Sgrò CM. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. J Evol Biol 2024; 37:717-731. [PMID: 38757509 DOI: 10.1093/jeb/voae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess the plasticity of egg-to-adult viability and sex-specific body size for combinations of 2 temperatures (25 °C or 28 °C) and 3 diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Furthermore, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.
Collapse
Affiliation(s)
- Yeuk Man Movis Choy
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Greg M Walter
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Travis J, Trexler JC. Phenotypic plasticity in the sailfin molly III: Geographic variation in reaction norms of growth and maturation to temperature and salinity. Ecol Evol 2024; 14:e11482. [PMID: 38826157 PMCID: PMC11140554 DOI: 10.1002/ece3.11482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Phenotypic plasticity, the ability of a single genotype to produce different phenotypes under different environmental conditions, plays a profound role in several areas of evolutionary biology. One important role is as an adaptation to a variable environment. While plasticity is extremely well documented in response to many environmental factors, there is controversy over how much of that plasticity is adaptive. Evidence is also mixed over how often conspecific populations display qualitative differences in the nature of plasticity. We present data on the reaction norms of growth and maturation to variation in temperature and salinity in male and female sailfin mollies (Poecilia latipinna) from three locally adjacent populations from South Carolina (SC). We compare these reaction norms to those previously reported in locally adjacent populations from north Florida (NF). In general, patterns of plasticity in fish from SC were similar to those in fish from NF. The magnitude of plasticity differed; fish from SC displayed less plasticity than fish from NF. This was because SC fish grew faster and matured earlier at the lower temperatures and salinities compared to NF fish. This is a countergradient pattern of variation, in which SC fish grew faster and matured earlier in conditions that would otherwise slow growth and delay maturity. Among fish from both regions, males were much less plastic than females, especially for length at maturity. While there was no detectable heterogeneity among populations from NF, males from one of the SC populations, which is furthest from the other two, displayed a qualitatively different response in age at maturity to temperature variation than did males from the other two SC populations. The pattern of population variation in plasticity within and among regions suggests that gene flow, which diminishes with distance in sailfin mollies, plays a critical role in constraining divergence in norms of reaction.
Collapse
Affiliation(s)
- Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Joel C. Trexler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
26
|
Jacob S, Dupont L, Haegeman B, Thierry M, Campana JLM, Legrand D, Cote J, Raffard A. Phenotypic plasticity and the effects of thermal fluctuations on specialists and generalists. Proc Biol Sci 2024; 291:20240256. [PMID: 38889786 DOI: 10.1098/rspb.2024.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024] Open
Abstract
Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.
Collapse
Affiliation(s)
- Staffan Jacob
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Léonard Dupont
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Bart Haegeman
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls-sur-Mer, France
| | - Mélanie Thierry
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julie L M Campana
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Delphine Legrand
- Station d'Écologie Théorique et Expérimentale, UAR2029, CNRS, Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, CNRS-IRD-TINP-UT3, Toulouse 31062 Cedex 9, France
| | - Allan Raffard
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Verble KM, Keaveny EC, Rahman SR, Jenny MJ, Dillon ME, Lozier JD. A rapid return to normal: temporal gene expression patterns following cold exposure in the bumble bee Bombus impatiens. J Exp Biol 2024; 227:jeb247040. [PMID: 38629177 DOI: 10.1242/jeb.247040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.
Collapse
Affiliation(s)
- Kelton M Verble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Ellen C Keaveny
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | | | - Matthew J Jenny
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82072, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
28
|
Zheng Y, Xue J, Lv Y, Zhang C, Wang R. Plant mass variations of Leymus chinensis (Poaceae) and their relationships with environmental factors on a large-scale gradient, northeastern China. Ecol Evol 2024; 14:e11215. [PMID: 38751822 PMCID: PMC11094518 DOI: 10.1002/ece3.11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Body size (or mass) variations and their relationships with environmental variability have been well documented for many species at the local scale, while the effects of climate, combined with soil nutrients, on plant mass in large-scale gradient remain unclear. Herein, detailed surveys were conducted to investigate plant mass (PM, aboveground mass per plant) variations of Leymus chinensis and their relationship with environmental factors (e.g., climate, soil nutrient, and microbial diversity) at 18 wild sites along a large-scale gradient from 114 to 124° E in northeastern China. Based on site-by-site analyses, the plant mass of the species varied significantly from east to west along the gradient. It initially increased, peaking at middle sites, and then dropped with the increase of drought in both dry and rainy seasons. Plant mass at the eastern end was almost equal to that at the western end and was equivalent to 1/2 and 1/3 of middle sites. The average plant mass in the rainy season was about 50% greater than that in the dry season (F 1,1078 = 489.80, p < .001). The effects of environmental variables on plant mass differed in dry and rainy seasons. Mean annual temperature and temperature seasonality were the critical restrictions of plant mass in the dry season, while temperature and precipitation seasonality and soil resources (total C, Mn, Zn) had significant impacts in the rainy season (p < .05). In general, plant mass had not dropped linearly with the increase of drought along large-scale gradient, suggesting that precipitation decrease was not the critical restriction regulating the growth and settlement of the species.
Collapse
Affiliation(s)
- Yuebin Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijngChina
- University of Chinese Academy of SciencesBeijngChina
| | - Jing Xue
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijngChina
- University of Chinese Academy of SciencesBeijngChina
| | - Yixia Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijngChina
| | - Chaoxue Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijngChina
| | - Renzhong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botanythe Chinese Academy of SciencesBeijngChina
- University of Chinese Academy of SciencesBeijngChina
| |
Collapse
|
29
|
Snir O, Elgart M, Gnainsky Y, Goldsmith M, Ciabrelli F, Dagan S, Aviezer I, Stoops E, Cavalli G, Soen Y. Organ transformation by environmental disruption of protein integrity and epigenetic memory in Drosophila. PLoS Biol 2024; 22:e3002629. [PMID: 38805504 PMCID: PMC11161060 DOI: 10.1371/journal.pbio.3002629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/07/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in understanding epigenetic reprogramming of cells, the mechanistic basis of "organ reprogramming" by (epi-)gene-environment interactions remained largely obscure. Here, we use the ether-induced haltere-to-wing transformations in Drosophila as a model for epigenetic "reprogramming" at the whole organism level. Our findings support a mechanistic chain of events explaining why and how brief embryonic exposure to ether leads to haltere-to-wing transformations manifested at the larval stage and on. We show that ether interferes with protein integrity in the egg, leading to altered deployment of Hsp90 and widespread repression of Trithorax-mediated establishment of active H3K4me3 chromatin marks throughout the genome. Despite this global reduction, Ubx targets and wing development genes preferentially retain higher levels of H3K4me3 that predispose these genes for later up-regulation in the larval haltere disc, hence the wing-like outcome. Consistent with compromised protein integrity during the exposure, the penetrance of bithorax transformations increases by genetic or chemical reduction of Hsp90 function. Moreover, joint reduction in Hsp90 and trx gene dosage can cause bithorax transformations without exposure to ether, supporting an underlying epistasis between Hsp90 and trx loss-of-functions. These findings implicate environmental disruption of protein integrity at the onset of histone methylation with altered epigenetic regulation of developmental patterning genes. The emerging picture provides a unique example wherein the alleviation of the Hsp90 "capacitor function" by the environment drives a morphogenetic shift towards an ancestral-like body plan. The morphogenetic impact of chaperone response during a major setup of epigenetic patterns may be a general scheme for organ transformation by environmental cues.
Collapse
Affiliation(s)
- Orli Snir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elgart
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Gnainsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Filippo Ciabrelli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Shlomi Dagan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, University of Montpellier, Montpellier, France
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Siddiq MA, Duveau F, Wittkopp PJ. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589130. [PMID: 38659876 PMCID: PMC11042213 DOI: 10.1101/2024.04.12.589130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phenotypic evolution is shaped by interactions between organisms and their environments. The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. To better understand this dual role of the environment in the production and selection of phenotypic variation, we empirically determined and compared the genotype-phenotype-fitness relationship for mutant strains of the budding yeast Saccharomyces cerevisiae in four environments. Specifically, we measured how mutations in the promoter of the metabolic gene TDH3 modified its expression level and affected its growth on media with four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Genetic variants with similar effects on TDH3 expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. The set of mutants we examined also allowed us to compare the effects of mutations disrupting binding sites for key transcriptional regulators and the TATA box, which is part of the core promoter sequence. Mutations disrupting the binding sites for the transcription factors had more variable effects on expression among environments than mutations disrupting the TATA box, yet mutations with the most environmentally variable effects on fitness were located in the TATA box. This observation suggests that mutations affecting different molecular mechanisms are likely to contribute unequally to regulatory sequence evolution in changing environments.
Collapse
Affiliation(s)
- Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Authors contributed equally to this work
| | - Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, France
- Authors contributed equally to this work
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan
| |
Collapse
|
31
|
Ng ET, Kinjo AR. Plasticity-led and mutation-led evolutions are different modes of the same developmental gene regulatory network. PeerJ 2024; 12:e17102. [PMID: 38560475 PMCID: PMC10979742 DOI: 10.7717/peerj.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
The standard theory of evolution proposes that mutations cause heritable variations, which are naturally selected, leading to evolution. However, this mutation-led evolution (MLE) is being questioned by an alternative theory called plasticity-led evolution (PLE). PLE suggests that an environmental change induces adaptive phenotypes, which are later genetically accommodated. According to PLE, developmental systems should be able to respond to environmental changes adaptively. However, developmental systems are known to be robust against environmental and mutational perturbations. Thus, we expect a transition from a robust state to a plastic one. To test this hypothesis, we constructed a gene regulatory network (GRN) model that integrates developmental processes, hierarchical regulation, and environmental cues. We then simulated its evolution over different magnitudes of environmental changes. Our findings indicate that this GRN model exhibits PLE under large environmental changes and MLE under small environmental changes. Furthermore, we observed that the GRN model is susceptible to environmental or genetic fluctuations under large environmental changes but is robust under small environmental changes. This indicates a breakdown of robustness due to large environmental changes. Before the breakdown of robustness, the distribution of phenotypes is biased and aligned to the environmental changes, which would facilitate rapid adaptation should a large environmental change occur. These observations suggest that the evolutionary transition from mutation-led to plasticity-led evolution is due to a developmental transition from robust to susceptible regimes over increasing magnitudes of environmental change. Thus, the GRN model can reconcile these conflicting theories of evolution.
Collapse
Affiliation(s)
- Eden T.H. Ng
- Department of Mathematics, Universiti Brunei Darussalam, Gadong, Brunei
| | - Akira R. Kinjo
- Department of Mathematics, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
32
|
She H, Hao Y, Song G, Luo X, Lei F, Zhai W, Qu Y. Gene expression plasticity followed by genetic change during colonization in a high-elevation environment. eLife 2024; 12:RP86687. [PMID: 38470231 DOI: 10.7554/elife.86687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Phenotypic plasticity facilitates organismal invasion of novel environments, and the resultant phenotypic change may later be modified by genetic change, so called 'plasticity first.' Herein, we quantify gene expression plasticity and regulatory adaptation in a wild bird (Eurasian Tree Sparrow) from its original lowland (ancestral stage), experimentally implemented hypoxia acclimation (plastic stage), and colonized highland (colonized stage). Using a group of co-expressed genes from the cardiac and flight muscles, respectively, we demonstrate that gene expression plasticity to hypoxia tolerance is more often reversed than reinforced at the colonized stage. By correlating gene expression change with muscle phenotypes, we show that colonized tree sparrows reduce maladaptive plasticity that largely associated with decreased hypoxia tolerance. Conversely, adaptive plasticity that is congruent with increased hypoxia tolerance is often reinforced in the colonized tree sparrows. Genes displaying large levels of reinforcement or reversion plasticity (i.e. 200% of original level) show greater genetic divergence between ancestral and colonized populations. Overall, our work demonstrates that gene expression plasticity at the initial stage of high-elevation colonization can be reversed or reinforced through selection-driven adaptive modification.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Faculty of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Narayan VP, Wasana N, Wilson AJ, Chenoweth SF. Misalignment of plastic and evolutionary responses of lifespan to novel carbohydrate diets. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231732. [PMID: 38234441 PMCID: PMC10791524 DOI: 10.1098/rsos.231732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Diet elicits varied effects on longevity across a wide range of animal species where dietary discordance between an organisms' evolutionary and developmental dietary history is increasingly recognized to play a critical role in shaping lifespan. However, whether such changes, predominantly assessed in a single generation, lead to evolutionary shifts in lifespan remains unclear. In this study, we used an experimental evolution approach to test whether changes in an organisms' evolutionary and developmental dietary history, specifically carbohydrate content, causes lifespan evolution in Drosophila serrata. After 30 generations, we investigated the evolutionary potential of lifespan in response to four novel diets that varied systematically in their ratio of carbohydrate-protein content. We also examined developmental plasticity effects using a set of control populations that were raised on the four novel environments allowing us to assess the extent to which plastic responses of lifespan mirrored adaptive responses observed following experimental evolution. Both high- and low-carbohydrate diets elicited plastic effects on lifespan; however, the plastic responses for lifespan to developmental diets bore little resemblance to the evolved responses on evolutionary diets. Understanding the dietary conditions regulating the match/mismatch of plastic and evolved responses will be important in determining whether a particular match/mismatch combination is adaptive for lifespan. While the differences in evolutionary diet by developmental diet interactions are only beginning to be elucidated, this study lays the foundation for future investigations of carbohydrate contributions to evolved and plastic effects on health and lifespan.
Collapse
Affiliation(s)
- Vikram P. Narayan
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Nidarshani Wasana
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Alastair J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Stephen F. Chenoweth
- School of the Environment, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
35
|
Kulbaba MW, Yoko Z, Hamilton JA. Chasing the fitness optimum: temporal variation in the genetic and environmental expression of life-history traits for a perennial plant. ANNALS OF BOTANY 2023; 132:1191-1204. [PMID: 37493041 PMCID: PMC10902883 DOI: 10.1093/aob/mcad100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND AIMS The ability of plants to track shifting fitness optima is crucial within the context of global change, where increasing environmental extremes may have dramatic consequences for life history, fitness, and ultimately population persistence. However, tracking changing conditions relies on the relationship between genetic and environmental variance, where selection may favour plasticity, the evolution of genetic differences, or both depending on the spatial and temporal scale of environmental heterogeneity. METHODS Over three years, we compared the genetic and environmental components of phenological and life-history variation in a common environment for the spring perennial Geum triflorum. Populations were sourced from alvar habitats that exhibit extreme but predictable annual flood-desiccation cycles and prairie habitats that exhibit similar but less predictable variation in water availability. KEY RESULTS Heritability was generally higher for early life-history (emergence probability) relative to later life-history traits (total seed mass), indicating that traits associated with establishment are under stronger genetic control relative to later life-history fitness expressions, where plasticity may play a larger role. This pattern was particularly notable in seeds sourced from environmentally extreme but predictable alvar habitats relative to less predictable prairie environments. Fitness landscapes based on seed source origin, largely characterized by varying water availability and flower production, described selection as the degree of maladaptation of seed source environment relative to the prairie common garden environment. Plants from alvar populations were consistently closer to the fitness optimum across all years. Annually, the breadth of the fitness optimum expanded primarily along a moisture gradient, with inclusion of more populations onto the expanding optimum. CONCLUSIONS These results highlight the importance of temporally and spatially varying selection in life-history evolution, indicating plasticity may become a primary mechanism needed to track fitness for later life-history events within perennial systems.
Collapse
Affiliation(s)
- Mason W Kulbaba
- Our Lady of the Lake University, Department of Mathematics and Science, San Antonio, TX 78207, USA
- St Mary’s University, Biology Area, 14500 Bannister Road SE, Calgary, Alberta, Canada, T2X 1Z4
| | - Zebadiah Yoko
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
| | - Jill A Hamilton
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA 16801, USA
| |
Collapse
|
36
|
Montgomery BL. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integr Comp Biol 2023; 63:1391-1398. [PMID: 37604783 PMCID: PMC10755201 DOI: 10.1093/icb/icad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023] Open
Abstract
The means by which plants and other organisms exist in and respond to dynamic environments to support their thriving as individuals and in communities provide lessons for humans on sustainable and resilient thriving. First examined in my book, Lessons from Plants (Harvard University Press, 2021), I explore herein the following question: "How can plants teach us to be better humans?" I consider how insights gathered from plant physiology, phenotypic plasticity, and other plant growth phenomena can help us improve our lives and our society, with a focus on highlighting academic and scientific environments. Genetically identical plants can have very different appearances, metabolisms, and behaviors if the external environments in which they are growing differ in light or nutrient availability, among other environmental differences. Plants are even capable of transformative behaviors that enable them to maximize their chances of survival in dynamic and sometimes unfriendly environments, while also transforming the environment in which they exist in the process. Highlighting examples from research on, for instance, plants' responses to light and nutrient cues, I focus on insights for humans derived from lessons from plants. These lessons focus on how plants achieve their own purposes by following common principles of the universe on thriving and resilience as individuals and in communities.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Biology, Grinnell College, 1121 Park Street, Grinnell, IA 50112, USA
| |
Collapse
|
37
|
Raju A, Xue B, Leibler S. A theoretical perspective on Waddington's genetic assimilation experiments. Proc Natl Acad Sci U S A 2023; 120:e2309760120. [PMID: 38091287 PMCID: PMC10743363 DOI: 10.1073/pnas.2309760120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington's original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington's picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon-Waddington's, expressed in terms of an individual organism's developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - BingKan Xue
- Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL32611
| | - Stanislas Leibler
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY01065
| |
Collapse
|
38
|
Levis NA, Ragsdale EJ. A histone demethylase links the loss of plasticity to nongenetic inheritance and morphological change. Nat Commun 2023; 14:8439. [PMID: 38114491 PMCID: PMC10730525 DOI: 10.1038/s41467-023-44306-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Plasticity is a widespread feature of development, enabling phenotypic change based on the environment. Although the evolutionary loss of plasticity has been linked both theoretically and empirically to increased rates of phenotypic diversification, molecular insights into how this process might unfold are generally lacking. Here, we show that a regulator of nongenetic inheritance links evolutionary loss of plasticity in nature to changes in plasticity and morphology as selected in the laboratory. Across nematodes of Diplogastridae, which ancestrally had a polyphenism, or discrete plasticity, in their feeding morphology, we use molecular evolutionary analyses to screen for change associated with independent losses of plasticity. Having inferred a set of ancestrally polyphenism-biased genes from phylogenetically informed gene-knockouts and gene-expression comparisons, selection signatures associated with plasticity's loss identify the histone H3K4 di/monodemethylase gene spr-5/LSD1/KDM1A. Manipulations of this gene affect both sensitivity and variation in plastic morphologies, and artificial selection of manipulated lines drive multigenerational shifts in these phenotypes. Our findings thus give mechanistic insight into how traits are modified as they traverse the continuum of greater to lesser environmental sensitivity.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
39
|
Ng ETH, Kinjo AR. Plasticity-led evolution as an intrinsic property of developmental gene regulatory networks. Sci Rep 2023; 13:19830. [PMID: 37963964 PMCID: PMC10645858 DOI: 10.1038/s41598-023-47165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
The modern evolutionary synthesis seemingly fails to explain how a population can survive a large environmental change: the pre-existence of heritable variants adapted to the novel environment is too opportunistic, whereas the search for new adaptive mutations after the environmental change is so slow that the population may go extinct. Plasticity-led evolution, the initial environmental induction of a novel adaptive phenotype followed by genetic accommodation, has been proposed to solve this problem. However, the mechanism enabling plasticity-led evolution remains unclear. Here, we present computational models that exhibit behaviors compatible with plasticity-led evolution by extending the Wagner model of gene regulatory networks. The models show adaptive plastic response and the uncovering of cryptic mutations under large environmental changes, followed by genetic accommodation. Moreover, these behaviors are consistently observed over distinct novel environments. We further show that environmental cues, developmental processes, and hierarchical regulation cooperatively amplify the above behaviors and accelerate evolution. These observations suggest plasticity-led evolution is a universal property of complex developmental systems independent of particular mutations.
Collapse
Affiliation(s)
- Eden Tian Hwa Ng
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Akira R Kinjo
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
40
|
Promy NT, Newberry M, Gulisija D. Rapid evolution of phenotypic plasticity in patchy habitats. Sci Rep 2023; 13:19158. [PMID: 37932330 PMCID: PMC10628295 DOI: 10.1038/s41598-023-45912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Phenotypic plasticity may evolve rapidly, enabling a population's persistence in the face of sudden environmental change. Rapid evolution can occur when there is considerable genetic polymorphism at selected loci. We propose that balancing selection could be one of the mechanisms that sustain such polymorphism for plasticity. We use stochastic Monte Carlo simulations and deterministic analysis to investigate the evolution of a plasticity modifier locus in structured populations inhabiting favorable and adverse environments, i.e. patchy habitats. We survey a wide range of parameters including selective pressures on a target (structural) locus, plasticity effects, population sizes, and migration patterns between demes including periodic or continuous bidirectional and source-sink dynamics. We find that polymorphism in phenotypic plasticity can be maintained under a wide range of environmental scenarios in both favorable and adverse environments due to the balancing effect of population structure in patchy habitats. This effect offers a new plausible explanation for the rapid evolution of plasticity in nature: Phenotypic plasticity may rapidly evolve from genetic variation maintained by balancing selection if the population has experienced immigration from populations under different selection regimes.
Collapse
Affiliation(s)
- Nawsheen T Promy
- Department of Computer Science, University of New Mexico, Albuquerque, USA
| | - Mitchell Newberry
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, USA
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA
| | - Davorka Gulisija
- Department of Computer Science, University of New Mexico, Albuquerque, USA.
- Department of Biology, University of New Mexico, 219 Yale Boulevard NE, 3566 Castetter Hall, Albuquerque, NM, 87131, USA.
| |
Collapse
|
41
|
Snell-Rood EC, Ehlman SM. Developing the genotype-to-phenotype relationship in evolutionary theory: A primer of developmental features. Evol Dev 2023; 25:393-409. [PMID: 37026670 DOI: 10.1111/ede.12434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
For decades, there have been repeated calls for more integration across evolutionary and developmental biology. However, critiques in the literature and recent funding initiatives suggest this integration remains incomplete. We suggest one way forward is to consider how we elaborate the most basic concept of development, the relationship between genotype and phenotype, in traditional models of evolutionary processes. For some questions, when more complex features of development are accounted for, predictions of evolutionary processes shift. We present a primer on concepts of development to clarify confusion in the literature and fuel new questions and approaches. The basic features of development involve expanding a base model of genotype-to-phenotype to include the genome, space, and time. A layer of complexity is added by incorporating developmental systems, including signal-response systems and networks of interactions. The developmental emergence of function, which captures developmental feedbacks and phenotypic performance, offers further model elaborations that explicitly link fitness with developmental systems. Finally, developmental features such as plasticity and developmental niche construction conceptualize the link between a developing phenotype and the external environment, allowing for a fuller inclusion of ecology in evolutionary models. Incorporating aspects of developmental complexity into evolutionary models also accommodates a more pluralistic focus on the causal importance of developmental systems, individual organisms, or agents in generating evolutionary patterns. Thus, by laying out existing concepts of development, and considering how they are used across different fields, we can gain clarity in existing debates around the extended evolutionary synthesis and pursue new directions in evolutionary developmental biology. Finally, we consider how nesting developmental features in traditional models of evolution can highlight areas of evolutionary biology that need more theoretical attention.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
| | - Sean M Ehlman
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, Minnesota, USA
- SCIoI Excellence Cluster, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Humboldt University, Berlin, Germany
| |
Collapse
|
42
|
Prigent I, Mullon C. The molding of intraspecific trait variation by selection under ecological inheritance. Evolution 2023; 77:2144-2161. [PMID: 37459126 DOI: 10.1093/evolut/qpad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 10/05/2023]
Abstract
Organisms continuously modify their environment, often impacting the fitness of future conspecifics due to ecological inheritance. When this inheritance is biased toward kin, selection favors modifications that increase the fitness of downstream individuals. How such selection shapes trait variation within populations remains poorly understood. Using mathematical modelling, we investigate the coevolution of multiple traits in a group-structured population when these traits affect the group environment, which is then bequeathed to future generations. We examine when such coevolution favors polymorphism as well as the resulting associations among traits. We find in particular that two traits become associated when one trait affects the environment while the other influences the likelihood that future kin experience this environment. To illustrate this, we model the coevolution of (a) the attack rate on a local renewable resource, which deteriorates environmental conditions, with (b) dispersal between groups, which reduces the likelihood that kin suffers from such deterioration. We show this often leads to the emergence of two highly differentiated morphs: one that readily disperses and depletes local resources, and another that maintains these resources and tends to remain philopatric. More broadly, we suggest that ecological inheritance can contribute to phenotypic diversity and lead to complex polymorphism.
Collapse
Affiliation(s)
- Iris Prigent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Xu K, Vision TJ, Servedio MR. Evolutionary rescue under demographic and environmental stochasticity. J Evol Biol 2023; 36:1525-1538. [PMID: 37776088 DOI: 10.1111/jeb.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd J Vision
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Batabyal A. Predator-prey systems as models for integrative research in biology: the value of a non-consumptive effects framework. J Exp Biol 2023; 226:jeb245851. [PMID: 37772622 DOI: 10.1242/jeb.245851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Predator-prey interactions are a cornerstone of many ecological and evolutionary processes that influence various levels of biological organization, from individuals to ecosystems. Predators play a crucial role in shaping ecosystems through the consumption of prey species and non-consumptive effects. Non-consumptive effects (NCEs) can induce changes in prey behavior, including altered foraging strategies, habitat selection, life history and anti-predator responses. These defensive strategies have physiological consequences for prey, affecting their growth, reproduction and immune function to name a few. Numerous experimental studies have incorporated NCEs in investigating predator-prey dynamics in the past decade. Interestingly, predator-prey systems can also be used as experimental models to answer physiology, cognition and adaptability questions. In this Commentary, I highlight research that uses NCEs in predator-prey systems to provide novel insights into cognition, adaptation, epigenetic inheritance and aging. I discuss the evolution of instinct, anxiety and other cognitive disorders, the shaping of brain connectomes, stress-induced aging and the development of behavioral coping styles. I outline how studies can integrate the investigation of NCEs with advanced behavioral, genomic and neurological tools to provide novel insights into physiological and cognitive health.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| |
Collapse
|
45
|
Chen P, Zhang J. Transcriptomic analysis reveals the rareness of genetic assimilation of gene expression in environmental adaptations. SCIENCE ADVANCES 2023; 9:eadi3053. [PMID: 37756399 PMCID: PMC10530075 DOI: 10.1126/sciadv.adi3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Genetic assimilation is the evolutionary process by which an environmentally induced phenotype becomes genetically encoded and constitutive. Genetic assimilation has been proposed as a concluding step in environmental adaptation, but its prevalence has not been systematically investigated. Analyzing transcriptomic data collected upon reciprocal transplant, we address this question in the experimental evolution, domestication, or natural evolution of seven diverse species. We find that genetic assimilation of environment-induced gene expression is the exception rather than the rule and that substantially more genes retain than lose their expression plasticity upon organismal adaptations to new environments. The probability of genetic assimilation of gene expression decreases with the expression level and number of transcription factors controlling the gene, suggesting that genetic assimilation results primarily from passive losses of gene regulations that are not mutationally robust. Hence, for gene expression, our findings argue against the purported generality or importance of genetic assimilation to environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
46
|
Tesfay YB, Blaschke A, Ashley N, Portillo L, Scalisi A, Adli B, Kreyling J. Increased Plasticity in Invasive Populations of a Globally Invasive Cactus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3287. [PMID: 37765451 PMCID: PMC10536680 DOI: 10.3390/plants12183287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Biological invasions pose global threats to biodiversity and ecosystem functions. Invasive species often display a high degree of phenotypic plasticity, enabling them to adapt to new environments. This study examines plasticity to water stress in native and invasive Opuntia ficus-indica populations, a prevalent invader in arid and semi-arid ecosystems. Through controlled greenhouse experiments, we evaluated three native and nine invasive populations. While all plants survived the dry treatment, natives exhibited lower plasticity to high water availability with only a 36% aboveground biomass increase compared to the invasives with a greater increase of 94%. In terms of belowground biomass, there was no significant response to increased water availability for native populations, but plants from the invasive populations showed a 75% increase from the dry to the wet treatment. Enhanced phenotypic plasticity observed in invasive populations of O. ficus-indica is likely a significant driver of their success and invasiveness across different regions, particularly with a clear environmental preference towards less arid conditions. Climate change is expected to amplify the invasion success due to the expansion of arid areas and desertification. Opuntia ficus-indica adapts to diverse environments, survives dry spells, and grows rapidly in times of high-water supply, making it a candidate for increased invasion potential with climate change.
Collapse
Affiliation(s)
- Yohannes B. Tesfay
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Annika Blaschke
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Nathan Ashley
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Liberato Portillo
- Department of Botany and Zoology, University of Guadalajara, Guadalajara 44100, Mexico
| | - Alessio Scalisi
- Department of Energy, Environment and Climate Action, Agriculture, Agriculture Victoria Research, Tatura, VIC 3616, Australia
| | - Benziane Adli
- Department of Biology, Faculty of Nature and Life Sciences, University of Djelfa, Djelfa 17000, Algeria
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
47
|
Xu K. Population Rescue through an Increase in the Selfing Rate under Pollen Limitation: Plasticity versus Evolution. Am Nat 2023; 202:337-350. [PMID: 37606947 DOI: 10.1086/725425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.
Collapse
|
48
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
49
|
Szukala A, Bertel C, Frajman B, Schönswetter P, Paun O. Parallel adaptation to lower altitudes is associated with enhanced plasticity in Heliosperma pusillum (Caryophyllaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1619-1632. [PMID: 37277969 PMCID: PMC10952512 DOI: 10.1111/tpj.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
High levels of phenotypic plasticity are thought to be inherently costly in stable or extreme environments, but enhanced plasticity may evolve as a response to new environments and foster novel phenotypes. Heliosperma pusillum forms glabrous alpine and pubescent montane ecotypes that diverged recurrently and polytopically (parallel evolution) and can serve as evolutionary replicates. The specific alpine and montane localities are characterized by distinct temperature conditions, available moisture, and light. Noteworthy, the ecotypes show a home-site fitness advantage in reciprocal transplantations. To disentangle the relative contribution of constitutive versus plastic gene expression to altitudinal divergence, we analyze the transcriptomic profiles of two parallely evolved ecotype pairs, grown in reciprocal transplantations at native altitudinal sites. In this incipient stage of divergence, only a minor proportion of genes appear constitutively differentially expressed between the ecotypes in both pairs, regardless of the growing environment. Both derived, montane populations bear comparatively higher plasticity of gene expression than the alpine populations. Genes that change expression plastically or constitutively underlie similar ecologically relevant pathways, related to response to drought and trichome formation. Other relevant processes, such as photosynthesis, rely mainly on plastic changes. The enhanced plasticity consistently observed in the montane ecotype likely evolved as a response to the newly colonized, drier, and warmer niche. We report a striking parallelism of directional changes in gene expression plasticity. Thus, plasticity appears to be a key mechanism shaping the initial stages of phenotypic evolution, likely fostering adaptation to novel environments.
Collapse
Affiliation(s)
- Aglaia Szukala
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
- Austrian Federal Research Centre for Forests (BFW)Unit of Ecological GeneticsSeckendorff‐Gudent‐Weg 8A‐1131ViennaAustria
| | - Clara Bertel
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Božo Frajman
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14A‐1030ViennaAustria
| |
Collapse
|
50
|
Usui T, Lerner D, Eckert I, Angert AL, Garroway CJ, Hargreaves A, Lancaster LT, Lessard JP, Riva F, Schmidt C, van der Burg K, Marshall KE. The evolution of plasticity at geographic range edges. Trends Ecol Evol 2023; 38:831-842. [PMID: 37183152 DOI: 10.1016/j.tree.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.
Collapse
Affiliation(s)
- Takuji Usui
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| | - David Lerner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Isaac Eckert
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Amy L Angert
- Department of Botany, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Hargreaves
- Department of Biology, McGill University, Montreal, QC, Canada
| | | | | | - Federico Riva
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Chloé Schmidt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-, Leipzig, Germany
| | - Karin van der Burg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Katie E Marshall
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|