1
|
WANG M, ZHANG W, WANG N. Covalent flavoproteins: types, occurrence, biogenesis and catalytic mechanisms. Chin J Nat Med 2022; 20:749-760. [DOI: 10.1016/s1875-5364(22)60194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Indexed: 11/03/2022]
|
2
|
How an assembly factor enhances covalent FAD attachment to the flavoprotein subunit of complex II. J Biol Chem 2022; 298:102472. [PMID: 36089066 PMCID: PMC9557727 DOI: 10.1016/j.jbc.2022.102472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
The membrane-bound complex II family of proteins is composed of enzymes that catalyze succinate and fumarate interconversion coupled with reduction or oxidation of quinones within the membrane domain. The majority of complex II enzymes are protein heterotetramers with the different subunits harboring a variety of redox centers. These redox centers are used to transfer electrons between the site of succinate-fumarate oxidation/reduction and the membrane domain harboring the quinone. A covalently bound FAD cofactor is present in the flavoprotein subunit, and the covalent flavin linkage is absolutely required to enable the enzyme to oxidize succinate. Assembly of the covalent flavin linkage in eukaryotic cells and many bacteria requires additional protein assembly factors. Here, we provide mechanistic details for how the assembly factors work to enhance covalent flavinylation. Both prokaryotic SdhE and mammalian SDHAF2 enhance FAD binding to their respective apoprotein of complex II. These assembly factors also increase the affinity for dicarboxylates to the apoprotein-noncovalent FAD complex and stabilize the preassembly complex. These findings are corroborated by previous investigations of the roles of SdhE in enhancing covalent flavinylation in both bacterial succinate dehydrogenase and fumarate reductase flavoprotein subunits and of SDHAF2 in performing the same function for the human mitochondrial succinate dehydrogenase flavoprotein. In conclusion, we provide further insight into assembly factor involvement in building complex II flavoprotein subunit active site required for succinate oxidation.
Collapse
|
3
|
Mouli MSSV, Mishra AK. Synthesis, characterization and photophysical studies of the flavopeptide conjugates as model for the covalently linked flavoenzymes. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
The roles of SDHAF2 and dicarboxylate in covalent flavinylation of SDHA, the human complex II flavoprotein. Proc Natl Acad Sci U S A 2020; 117:23548-23556. [PMID: 32887801 DOI: 10.1073/pnas.2007391117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial complex II, also known as succinate dehydrogenase (SDH), is an integral-membrane heterotetramer (SDHABCD) that links two essential energy-producing processes, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. A significant amount of information is available on the structure and function of mature complex II from a range of organisms. However, there is a gap in our understanding of how the enzyme assembles into a functional complex, and disease-associated complex II insufficiency may result from incorrect function of the mature enzyme or from assembly defects. Here, we investigate the assembly of human complex II by combining a biochemical reconstructionist approach with structural studies. We report an X-ray structure of human SDHA and its dedicated assembly factor SDHAF2. Importantly, we also identify a small molecule dicarboxylate that acts as an essential cofactor in this process and works in synergy with SDHAF2 to properly orient the flavin and capping domains of SDHA. This reorganizes the active site, which is located at the interface of these domains, and adjusts the pKa of SDHAR451 so that covalent attachment of the flavin adenine dinucleotide (FAD) cofactor is supported. We analyze the impact of disease-associated SDHA mutations on assembly and identify four distinct conformational forms of the complex II flavoprotein that we assign to roles in assembly and catalysis.
Collapse
|
5
|
Moosavi B, Berry EA, Zhu XL, Yang WC, Yang GF. The assembly of succinate dehydrogenase: a key enzyme in bioenergetics. Cell Mol Life Sci 2019; 76:4023-4042. [PMID: 31236625 PMCID: PMC11105593 DOI: 10.1007/s00018-019-03200-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Succinate dehydrogenase (SDH) also known as complex II or succinate:quinone oxidoreductase is an enzyme involved in both oxidative phosphorylation and tricarboxylic acid cycle; the processes that generate energy. SDH is a multi-subunit enzyme which requires a series of proteins for its proper assembly at several steps. This enzyme has medical significance as there is a broad range of human diseases from cancers to neurodegeneration related to SDH malfunction. Some of these disorders have recently been linked to defective assembly factors, reinvigorating further research in this area. Apart from that this enzyme has agricultural importance as many fungicides have been/will be designed targeting specifically this enzyme in plant fungal pathogens. In addition, we speculate it might be possible to design novel fungicides specifically targeting fungal assembly factors. Considering the medical and agricultural implications of SDH, the aim of this review is an overview of the SDH assembly factors and critical analysis of controversial issues around them.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Edward A Berry
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
6
|
Sharma P, Maklashina E, Cecchini G, Iverson TM. Maturation of the respiratory complex II flavoprotein. Curr Opin Struct Biol 2019; 59:38-46. [PMID: 30851631 DOI: 10.1016/j.sbi.2019.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
Respiratory complexes are complicated multi-subunit cofactor-containing machines that allow cells to harvest energy from the environment. Maturation of these complexes requires protein folding, cofactor insertion, and assembly of multiple subunits into a final, functional complex. Because the intermediate states in complex maturation are transitory, these processes are poorly understood. This review gives an overview of the process of maturation in respiratory complex II with a focus on recent structural studies on intermediates formed during covalent flavinylation of the catalytic subunit, SDHA. Covalent flavinylation has an evolutionary significance because variants of complex II enzymes with the covalent ligand removed by mutagenesis cannot oxidize succinate, but can still perform the reverse reaction and reduce fumarate. Since succinate oxidation is a key step of aerobic respiration, the covalent bond of complex II appears to be important for aerobic life.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, United States; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA 94121, United States; Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, United States.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
7
|
Crystal structure of bacterial succinate:quinone oxidoreductase flavoprotein SdhA in complex with its assembly factor SdhE. Proc Natl Acad Sci U S A 2018. [PMID: 29514959 DOI: 10.1073/pnas.1800195115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Succinate:quinone oxidoreductase (SQR) functions in energy metabolism, coupling the tricarboxylic acid cycle and electron transport chain in bacteria and mitochondria. The biogenesis of flavinylated SdhA, the catalytic subunit of SQR, is assisted by a highly conserved assembly factor termed SdhE in bacteria via an unknown mechanism. By using X-ray crystallography, we have solved the structure of Escherichia coli SdhE in complex with SdhA to 2.15-Å resolution. Our structure shows that SdhE makes a direct interaction with the flavin adenine dinucleotide-linked residue His45 in SdhA and maintains the capping domain of SdhA in an "open" conformation. This displaces the catalytic residues of the succinate dehydrogenase active site by as much as 9.0 Å compared with SdhA in the assembled SQR complex. These data suggest that bacterial SdhE proteins, and their mitochondrial homologs, are assembly chaperones that constrain the conformation of SdhA to facilitate efficient flavinylation while regulating succinate dehydrogenase activity for productive biogenesis of SQR.
Collapse
|
8
|
Sharma P, Maklashina E, Cecchini G, Iverson TM. Crystal structure of an assembly intermediate of respiratory Complex II. Nat Commun 2018; 9:274. [PMID: 29348404 PMCID: PMC5773532 DOI: 10.1038/s41467-017-02713-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Flavin is covalently attached to the protein scaffold in ~10% of flavoenzymes. However, the mechanism of covalent modification is unclear, due in part to challenges in stabilizing assembly intermediates. Here, we capture the structure of an assembly intermediate of the Escherichiacoli Complex II (quinol:fumarate reductase (FrdABCD)). The structure contains the E. coli FrdA subunit bound to covalent FAD and crosslinked with its assembly factor, SdhE. The structure contains two global conformational changes as compared to prior structures of the mature protein: the rotation of a domain within the FrdA subunit, and the destabilization of two large loops of the FrdA subunit, which may create a tunnel to the active site. We infer a mechanism for covalent flavinylation. As supported by spectroscopic and kinetic analyses, we suggest that SdhE shifts the conformational equilibrium of the FrdA active site to disfavor succinate/fumarate interconversion and enhance covalent flavinylation. The mechanism for covalent flavinylation of flavoenzymes is still unclear. Here, the authors propose a mechanism based on the crystal structure of a flavinylation assembly intermediate of the E. coli respiratory Complex II comprising the E. coli FrdA subunit bound to covalent FAD and crosslinked with its assembly factor SdhE.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Elena Maklashina
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA.,Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, CA, 94121, USA. .,Department of Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA. .,Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Starbird CA, Maklashina E, Sharma P, Qualls-Histed S, Cecchini G, Iverson TM. Structural and biochemical analyses reveal insights into covalent flavinylation of the Escherichia coli Complex II homolog quinol:fumarate reductase. J Biol Chem 2017; 292:12921-12933. [PMID: 28615448 DOI: 10.1074/jbc.m117.795120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/07/2017] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli Complex II homolog quinol:fumarate reductase (QFR, FrdABCD) catalyzes the interconversion of fumarate and succinate at a covalently attached FAD within the FrdA subunit. The SdhE assembly factor enhances covalent flavinylation of Complex II homologs, but the mechanisms underlying the covalent attachment of FAD remain to be fully elucidated. Here, we explored the mechanisms of covalent flavinylation of the E. coli QFR FrdA subunit. Using a ΔsdhE E. coli strain, we show that the requirement for the assembly factor depends on the cellular redox environment. We next identified residues important for the covalent attachment and selected the FrdAE245 residue, which contributes to proton shuttling during fumarate reduction, for detailed biophysical and structural characterization. We found that QFR complexes containing FrdAE245Q have a structure similar to that of the WT flavoprotein, but lack detectable substrate binding and turnover. In the context of the isolated FrdA subunit, the anticipated assembly intermediate during covalent flavinylation, FrdAE245 variants had stability similar to that of WT FrdA, contained noncovalent FAD, and displayed a reduced capacity to interact with SdhE. However, small-angle X-ray scattering (SAXS) analysis of WT FrdA cross-linked to SdhE suggested that the FrdAE245 residue is unlikely to contribute directly to the FrdA-SdhE protein-protein interface. We also found that no auxiliary factor is absolutely required for flavinylation, indicating that the covalent flavinylation is autocatalytic. We propose that multiple factors, including the SdhE assembly factor and bound dicarboxylates, stimulate covalent flavinylation by preorganizing the active site to stabilize the quinone-methide intermediate.
Collapse
Affiliation(s)
- C A Starbird
- Graduate Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Elena Maklashina
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Susan Qualls-Histed
- Departments of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Gary Cecchini
- Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121; Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158.
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232.
| |
Collapse
|
10
|
Zafreen L, Walker-Kopp N, Huang LS, Berry E. In-vitro, SDH5-dependent flavinylation of immobilized human respiratory complex II flavoprotein. Arch Biochem Biophys 2016; 604:47-56. [PMID: 27296776 DOI: 10.1016/j.abb.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Mitochondrial Complex II (Succinate: ubiquinone oxidoreductase) has a covalently bound FAD cofactor in its largest subunit (SDHA), which accepts electrons from oxidation of succinate during catalysis. The mechanism of flavin attachment, and factors involved, have not been fully elucidated. The recent report of an assembly factor SDH5 (SDHAF2, SDHE) required for flavinylation (Hao et al., 2009 Science 325, 1139-1142) raises the prospect of achieving flavinylation in a completely defined system, which would facilitate elucidation of the precise role played by SDH5 and other factors. At this time that goal has not been achieved, and the actual function of SDH5 is still unknown. We have developed a procedure for in-vitro flavinylation of recombinant human apo-SDHA, immobilized on Ni-IMAC resin by a His tag, in a chemically defined medium. In this system flavinylation has a pH optimum of 6.5 and is completely dependent on added SDH5. The results suggest that FAD interacts noncovalently with SDHA in the absence of SDH5. This system will be useful in understanding the process of flavinylation of SDHA and the role of SDH5 in this process.
Collapse
Affiliation(s)
- Lala Zafreen
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nancy Walker-Kopp
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Shar Huang
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Edward Berry
- Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Uropathogenic Escherichia coli Metabolite-Dependent Quiescence and Persistence May Explain Antibiotic Tolerance during Urinary Tract Infection. mSphere 2016; 1:mSphere00055-15. [PMID: 27303698 PMCID: PMC4863606 DOI: 10.1128/msphere.00055-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022] Open
Abstract
In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤10(6) CFU. The cells on glucose plates appear to be in a "quiescent" state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E. coli phylogenetic group B2 multilocus sequence type 73 strains, as well as 22.5% of randomly selected UPEC strains isolated from community-acquired urinary tract infections in Denmark. In addition, E. coli CFT073 quiescence is not limited to glucose but occurs on agar plates containing a number of other sugars and acetate as sole carbon sources. It is also shown that a number of E. coli CFT073 mini-Tn5 metabolic mutants (gnd, gdhA, pykF, sdhA, and zwf) are nonquiescent on glucose M9 minimal agar plates and that quiescence requires a complete oxidative tricarboxylic acid (TCA) cycle. In addition, evidence is presented that, although E. coli CFT073 quiescence and persistence in the presence of ampicillin are alike in that both require a complete oxidative TCA cycle and each can be prevented by amino acids, E. coli CFT073 quiescence occurs in the presence or absence of a functional rpoS gene, whereas maximal persistence requires a nonfunctional rpoS. Our results suggest that interventions targeting specific central metabolic pathways may mitigate UPEC infections by interfering with quiescence and persistence. IMPORTANCE Recurrent urinary tract infections (UTIs) affect 10 to 40% of women. In up to 77% of those cases, the recurrent infections are caused by the same uropathogenic E. coli (UPEC) strain that caused the initial infection. Upon infection of urothelial transitional cells in the bladder, UPEC appear to enter a nongrowing quiescent intracellular state that is thought to serve as a reservoir responsible for recurrent UTIs. Here, we report that many UPEC strains enter a quiescent state when ≤10(6) CFU are seeded on glucose M9 minimal medium agar plates and show that mutations in several genes involved in central carbon metabolism prevent quiescence, as well as persistence, possibly identifying metabolic pathways involved in UPEC quiescence and persistence in vivo.
Collapse
|
12
|
Maklashina E, Rajagukguk S, Starbird CA, McDonald WH, Koganitsky A, Eisenbach M, Iverson TM, Cecchini G. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II. J Biol Chem 2015; 291:2904-16. [PMID: 26644464 DOI: 10.1074/jbc.m115.690396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.
Collapse
Affiliation(s)
- Elena Maklashina
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158
| | - Sany Rajagukguk
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121
| | | | - W Hayes McDonald
- the Department of Biochemistry and Mass Spectrometry Research Center
| | - Anna Koganitsky
- the Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Eisenbach
- the Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tina M Iverson
- the Department of Biochemistry and Mass Spectrometry Research Center, the Department of Pharmacology, the Center for Structural Biology, and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Gary Cecchini
- From the Molecular Biology Division, Veterans Affairs Medical Center, San Francisco, California 94121, the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158,
| |
Collapse
|
13
|
Van Vranken JG, Na U, Winge DR, Rutter J. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit Rev Biochem Mol Biol 2014; 50:168-80. [PMID: 25488574 DOI: 10.3109/10409238.2014.990556] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Succinate dehydrogenase (or complex II; SDH) is a heterotetrameric protein complex that links the tribarboxylic acid cycle with the electron transport chain. SDH is composed of four nuclear-encoded subunits that must translocate independently to the mitochondria and assemble into a mature protein complex embedded in the inner mitochondrial membrane. Recently, it has become clear that failure to assemble functional SDH complexes can result in cancer and neurodegenerative syndromes. The effort to thoroughly elucidate the SDH assembly pathway has resulted in the discovery of four subunit-specific assembly factors that aid in the maturation of individual subunits and support the assembly of the intact complex. This review will focus on these assembly factors and assess the contribution of each factor to the assembly of SDH. Finally, we propose a model of the SDH assembly pathway that incorporates all extant data.
Collapse
|
14
|
Centeno-Leija S, Utrilla J, Flores N, Rodriguez A, Gosset G, Martinez A. Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Antonie van Leeuwenhoek 2013; 104:913-24. [PMID: 23989925 DOI: 10.1007/s10482-013-0010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/17/2013] [Indexed: 11/26/2022]
Abstract
The NAD(+)-dependent glyceraldehyde-3-phosphate-dehydrogenase (NAD(+)-GAPDH) is a key enzyme to sustain the glycolytic function in Escherichia coli and to generate NADH. In the absence of NAD(+)-GAPDH activity, the glycolytic function can be restored through NADP(+)-dependent GAPDH heterologous expression. Here, some metabolic and transcriptional effects are described when the NAD(+)-GAPDH gene from E. coli (gapA) is replaced with the NADP(+)-GAPDH gene from Streptococcus mutans (gapN). Expression of gapN was controlled by the native gapA promoter (E. coliΔgapA::gapN) or by the constitutive trc promoter in a multicopy plasmid (E. coliΔgapA::gapN/pTrcgapN). The specific NADP(+)-GAPDH activity was 4.7 times higher in E. coliΔgapA::gapN/pTrcgapN than E. coliΔgapA::gapN. Growth, glucose consumption and acetic acid production rates increased in agreement with the NADP(+)-GAPDH activity level. Analysis of E. coliΔgapA::gapN/pTrcgapN showed that although gapN expression complemented NAD(+)-GAPDH activity, the resulting low NADH levels decreased the expression of the respiratory chain and oxidative phosphorylation genes (ndh, cydA, cyoB and atpA). In comparison with the wild type strain, E. coliΔgapA::gapN/pTrcgapN decreased the percentage of mole of oxygen consumed per mole of glucose metabolized by 40 % with a concomitant reduction of 54 % in the ATP/ADP ratio. The cellular response to avoid NADPH excess led to the overexpression of the transhydrogenase coded by udhA and the down-regulation of the pentose-phosphate and Krebs cycle genes, which reduced the CO2 production and increased the acetic acid synthesis. The E. coli strains obtained in this work can be useful for future metabolic engineering efforts aiming for the production of metabolites which biosynthesis depends on NADPH.
Collapse
Affiliation(s)
- Sara Centeno-Leija
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado postal 510-3, 62210, Cuernavaca, MOR, Mexico
| | | | | | | | | | | |
Collapse
|
15
|
Kim HJ, Winge DR. Emerging concepts in the flavinylation of succinate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:627-36. [PMID: 23380393 DOI: 10.1016/j.bbabio.2013.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
The Succinate Dehydrogenase (SDH) heterotetrameric complex catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and in the aerobic respiratory chains of eukaryotes and bacteria. Essential in this catalysis is the covalently-linked cofactor flavin adenine dinucleotide (FAD) in subunit1 (Sdh1) of the SDH enzyme complex. The mechanism of FAD insertion and covalent attachment to Sdh1 is unknown. Our working concept of this flavinylation process has relied mostly on foundational works from the 1990s and by applying the principles learned from other enzymes containing a similarly linked FAD. The discovery of the flavinylation factor Sdh5, however, has provided new insight into the possible mechanism associated with Sdh1 flavinylation. This review focuses on encapsulating prior and recent advances towards understanding the mechanism associated with flavinylation of Sdh1 and how this flavinylation process affects the overall assembly of SDH. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
16
|
Prokaryotic assembly factors for the attachment of flavin to complex II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:637-47. [PMID: 22985599 DOI: 10.1016/j.bbabio.2012.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023]
Abstract
Complex II (also known as Succinate dehydrogenase or Succinate-ubiquinone oxidoreductase) is an important respiratory enzyme that participates in both the tricarboxylic acid cycle and electron transport chain. Complex II consists of four subunits including a catalytic flavoprotein (SdhA), an iron-sulphur subunit (SdhB) and two hydrophobic membrane anchors (SdhC and SdhD). Complex II also contains a number of redox cofactors including haem, Fe-S clusters and FAD, which mediate electron transfer from succinate oxidation to the reduction of the mobile electron carrier ubiquinone. The flavin cofactor FAD is an important redox cofactor found in many proteins that participate in oxidation/reduction reactions. FAD is predominantly bound non-covalently to flavoproteins, with only a small percentage of flavoproteins, such as complex II, binding FAD covalently. Aside from a few examples, the mechanisms of flavin attachment have been a relatively unexplored area. This review will discuss the FAD cofactor and the mechanisms used by flavoproteins to covalently bind FAD. Particular focus is placed on the attachment of FAD to complex II with an emphasis on SdhE (a DUF339/SDH5 protein previously termed YgfY), the first protein identified as an assembly factor for FAD attachment to flavoproteins in prokaryotes. The molecular details of SdhE-dependent flavinylation of complex II are discussed and comparisons are made to known cofactor chaperones. Furthermore, an evolutionary hypothesis is proposed to explain the distribution of SdhE homologues in bacterial and eukaryotic species. Mechanisms for regulating SdhE function and how this may be linked to complex II function in different bacterial species are also discussed. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
|
17
|
McNeil MB, Clulow JS, Wilf NM, Salmond GPC, Fineran PC. SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria. J Biol Chem 2012; 287:18418-28. [PMID: 22474332 DOI: 10.1074/jbc.m111.293803] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conserved uncharacterized genes account for ~30% of genes in both eukaryotic and bacterial genomes and are predicted to encode what are often termed "conserved hypothetical proteins." Many of these proteins have a wide phylogenetic distribution and might play important roles in conserved cellular pathways. Using the bacterium Serratia as a model system, we have investigated two conserved uncharacterized proteins, YgfY (a DUF339 protein, renamed SdhE; succinate dehydrogenase protein E) and YgfX (a DUF1434 protein). SdhE was required for growth on succinate as a sole carbon source and for the function, but not stability, of succinate dehydrogenase, an important component of the electron transport chain and the tricarboxylic acid cycle. SdhE interacted with the flavoprotein SdhA, directly bound the flavin adenine dinucleotide co-factor, and was required for the flavinylation of SdhA. This is the first demonstration of a protein required for FAD incorporation in bacteria. Furthermore, the loss of SdhE was highly pleiotropic, suggesting that SdhE might flavinylate other flavoproteins. Our findings are of wide importance to central metabolism because SdhE homologues are present in α-, β-, and γ-proteobacteria and multiple eukaryotes, including humans and yeast.
Collapse
Affiliation(s)
- Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
18
|
Sevilla A, Schmid JW, Mauch K, Iborra JL, Reuss M, Cánovas M. Model of central and trimethylammonium metabolism for optimizing l-carnitine production by E. coli. Metab Eng 2005; 7:401-25. [PMID: 16098782 DOI: 10.1016/j.ymben.2005.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/27/2005] [Accepted: 06/13/2005] [Indexed: 11/23/2022]
Abstract
The application of metabolic engineering principles to the rational design of microbial production processes crucially depends on the ability to make quantitative descriptions of the systemic ability of the central carbon metabolism to redirect fluxes to the product-forming pathways. The aim of this work was to further our understanding of the steps controlling the biotransformation of trimethylammonium compounds into L-carnitine by Escherichia coli. Despite the importance of L-carnitine production processes, development of a model of the central carbon metabolism linked to the secondary carnitine metabolism of E. coli has been severely hampered by the lack of stoichiometric information on the metabolic reactions taking place in the carnitine metabolism. Here we present the design and experimental validation of a model which, for the first time, links the carnitine metabolism with the reactions of glycolysis, the tricarboxylic acid cycle and the pentose-phosphate pathway. The results demonstrate a need for a high production rate of ATP to be devoted to the biotransformation process. The results demonstrate that ATP is used up in a futile cycle, since both trimethylammonium compound carriers CaiT and ProU operate simultaneously. To improve the biotransformation process, resting processes as well as CaiT or ProU knock out mutants would yield a more efficient system for producing L-carnitine from crotonobetaine or D-carnitine.
Collapse
Affiliation(s)
- Angel Sevilla
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, Apdo. Correos 4021, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Cecchini G, Schröder I, Gunsalus RP, Maklashina E. Succinate dehydrogenase and fumarate reductase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:140-57. [PMID: 11803023 DOI: 10.1016/s0005-2728(01)00238-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
20
|
Edmondson DE, Newton-Vinson P. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction. Antioxid Redox Signal 2001; 3:789-806. [PMID: 11761328 DOI: 10.1089/15230860152664984] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of flavoenzymes in which the flavin coenzyme redox cofactor is covalently attached to the protein through an amino acid side chain is covered in this review. Flavin-protein covalent linkages have been shown to exist through each of five known linkages: (a) 8alpha-N(3)-histidyl, (b) 8alpha-N(1)-histidyl, (c) 8alpha-S-cysteinyl, (d) 8alpha-O-tyrosyl, or (e) 6-S-cysteinyl with the flavin existing at either the flavin mononucleotide or flavin adenine dinucleotide (FAD) levels. This class of enzymes is widely distributed in diverse biological systems and catalyzes a variety of enzymatic reactions. Current knowledge on the mechanism of covalent flavin attachment is discussed based on studies on the 8alpha-S-cysteinylFAD of monoamine oxidases A and B, as well as studies on other flavoenzymes. The evidence supports an autocatalytic quinone-methide mechanism of protein flavinylation. Proposals to explain the structural and mechanistic advantages of a covalent flavin linkage in flavoenzymes are presented. It is concluded that multiple factors are involved and include: (a) stabilization of the apoenzyme structure, (b) steric alignment of the cofactor in the active site to facilitate catalysis, and (c) modulation of the redox potential of the covalent flavin through electronic effects of 8alpha-substitution.
Collapse
Affiliation(s)
- D E Edmondson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
21
|
Abstract
Complex II (succinate:quinone oxidoreductase) of aerobic respiratory chains oxidizes succinate to fumarate and passes the electrons directly into the quinone pool. It serves as the only direct link between activity in the citric acid cycle and electron transport in the membrane. Finer details of these reactions and interactions are but poorly understood. However, complex II has extremely similar structural and catalytic properties to quinol:fumarate oxidoreductases of anaerobic organisms, for which X-ray structures have recently become available. These offer new insights into structure-function relationships of this class of flavoenzymes, including evidence favoring protein movement during catalysis.
Collapse
Affiliation(s)
- B A Ackrell
- Molecular Biology Division, D.V.A. Medical Center and Department of Biochemistry and Biophysics, University of California, 4150 Clement Street, San Francisco, CA, USA.
| |
Collapse
|
22
|
Trickey P, Wagner MA, Jorns MS, Mathews FS. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 1999; 7:331-45. [PMID: 10368302 DOI: 10.1016/s0969-2126(99)80043-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Monomeric sarcosine oxidases (MSOXs) are among the simplest members of a recently recognized family of eukaryotic and prokaryotic enzymes that catalyze similar oxidative reactions with various secondary or tertiary amino acids and contain covalently bound flavins. Other members of this family include heterotetrameric sarcosine oxidase, N-methyltryptophan oxidase and pipecolate oxidase. Mammalian sarcosine dehydrogenase and dimethylglycine dehydrogenase may be more distantly related family members. RESULTS The X-ray crystal structure of MSOX from Bacillus sp. B-0618, expressed in Escherichia coli, has been solved at 2.0 A resolution by multiwavelength anomalous dispersion (MAD) from crystals of the selenomethionine-substituted enzyme. Fourteen selenium sites, belonging to two MSOX molecules in the asymmetric unit, were used for MAD phasing and to define the local twofold symmetry axis for electron-density averaging. The structures of the native enzyme and of two enzyme-inhibitor complexes were also determined. CONCLUSIONS MSOX is a two-domain protein with an overall topology most similar to that of D-amino acid oxidase, with which it shares 14% sequence identity. The flavin ring is located in a very basic environment, making contact with sidechains of arginine, lysine, histidine and the N-terminal end of a helix dipole. The flavin is covalently attached through an 8alpha-S-cysteinyl linkage to Cys315 of the catalytic domain. Covalent attachment is probably self-catalyzed through interactions with the positive sidechains and the helix dipole. Substrate binding is probably stabilized by hydrogen bonds between the substrate carboxylate and two basic sidechains, Arg52 and Lys348, located above the re face of the flavin ring.
Collapse
Affiliation(s)
- P Trickey
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
23
|
Mortarino M, Negri A, Tedeschi G, Simonic T, Duga S, Gassen HG, Ronchi S. L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:418-26. [PMID: 8706749 DOI: 10.1111/j.1432-1033.1996.0418u.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper reports the biochemical characterization of the flavoprotein L-aspartate oxidase from Escherichia coli. Modification of a previously published procedure allowed overexpression of the holoenzyme in an unproteolysed form. L-Aspartate oxidase is a monomer of 60 kDa containing 1 mol of noncovalently bound FAD/mol protein. A polarographic and two spectrophotometric coupled assays have been set up to monitor the enzymatic activity continuously. L-Aspartate oxidase was subjected to product inhibition since iminoaspartate, which results from the oxidation of L-aspartate, binds to the enzyme with a dissociation constant (Kd) equal to 1.4 microM. The enzyme binds FAD by a simple second-order process with Kd 0.67 microM. Site-directed mutagenesis of the residues E43, G44, S45, F47 and Y48 located in the putative binding site of the isoallossazinic portion of FAD reduces the affinity for the coenzyme.
Collapse
Affiliation(s)
- M Mortarino
- Istituto di Fisiologia Veterinaria e Biochimica, Università di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Robinson KM, Lemire BD. A requirement for matrix processing peptidase but not for mitochondrial chaperonin in the covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein. J Biol Chem 1996; 271:4061-7. [PMID: 8626740 DOI: 10.1074/jbc.271.8.4061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Succinate dehydrogenase (EC 1.3.99.1) in the yeast Saccharomyces cerevisiae is a mitochondrial heterotetramer containing a flavoprotein subunit with an 8alpha-N(3)-histidyl-linked FAD cofactor. The covalent linkage of the FAD is necessary for activity. We have developed an in vitro assay that measures the flavinylation of the flavoprotein precursor in mitochondrial matrix fractions. Flavoprotein modification does not depend on translocation across a membrane, but it does require proteolytic processing by the mitochondrial processing peptidase prior to flavin attachment. Since ATP depletion, N-ethylmaleimide, or proteinase treatments of matrix fractions inhibit flavoprotein modification, at least one additional matrix protein component appears to be required. Having previously suggested that the flavoprotein begins folding before FAD attachment occurs, we tested whether the mitochondrial chaperonin, heat shock protein 60, might be necessary. Co-immunoprecipitation of the flavoprotein and the chaperonin demonstrate that the proteins do indeed interact. However, immunodepletion of the chaperonin from matrix fractions does not inhibit FAD attachment. Nonprotein components are also required for flavoprotein modification. In addition to ATP, effector molecules such as succinate, fumarate, or malate also stimulate modification. Together, these results suggest that FAD addition is an early event in succinate dehydrogenase assembly.
Collapse
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
25
|
Robinson KM, Lemire BD. Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding. J Biol Chem 1996; 271:4055-60. [PMID: 8626739 DOI: 10.1074/jbc.271.8.4055] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Succinate dehydrogenase (EC 1.3.99.1) in the yeast Saccharomyces cerevisiae is a mitochondrial respiratory chain enzyme that utilizes the cofactor, FAD, to catalyze the oxidation of succinate and the reduction of ubiqinone. The succinate dehydrogenase enzyme is a heterotetramer composed of a flavoprotein, an iron-sulfur protein, and two hydrophobic subunits. The FAD is covalently attached to a histidine residue near the amino terminus of the flavoprotein. In this study, we have investigated the attachment of the FAD cofactor with the use of an antiserum that specifically recognizes FAD and hence, can discriminate between apo- and holoflavoproteins. Cofactor attachment, both in vivo and in vitro, occurs within the mitochondrial matrix once the presequence has been cleaved. FAD attachment is stimulated by, but not dependent upon, the presence of the iron-sulfur subunit and citric acid cycle intermediates such as succinate, malate, or fumarate. Furthermore, this modification does not occur with C-terminally truncated flavoprotein subunits that are fully competent for import. Taken together, these data suggest that cofactor addition occurs to an imported protein that has folded sufficiently to recognize both FAD and its substrate.
Collapse
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
26
|
Kim J, Fuller JH, Kuusk V, Cunane L, Chen ZW, Mathews FS, McIntire WS. The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase. J Biol Chem 1995; 270:31202-9. [PMID: 8537385 DOI: 10.1074/jbc.270.52.31202] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
When p-cresol methylhydroxylase (PCMH) is expressed in its natural host Pseudomonas putida, or when the genes of the alpha and beta subunits of the enzyme are expressed together in the heterologous host Escherichia coli, flavin-adenine dinucleotide (FAD) is covalently attached to Tyr384 of the alpha subunit and the correct alpha 2 beta 2 form of the enzyme is assembled. The apoflavoprotein has been expressed in E. coli in the absence of the beta cytochrome c subunit and purified. While noncovalent FAD binding to apoflavoprotein in the absence of the cytochrome subunit could not be directly demonstrated, circumstantial evidence suggests that this indeed occurs. Covalent flavinylation requires one molecule each of FAD and cytochrome for each flavoprotein subunit. The flavinylation process leads to the 2-electron-reduced form of covalently bound FAD, and the resulting alpha 2 beta 2 enzyme is identical to wild-type PCMH. This work presents clear evidence that covalent flavinylation occurs by a self-catalytic mechanism; an external enzyme or chaperon is not required, nor is prior chemical activation of FAD or of the protein. This work is the first to define the basic chemistry of covalent flavinylation of an enzyme to produce the normal, active species, and confirms a long standing, postulated chemical mechanism of this process. It also demonstrates, for the first time, the absolute requirement for a partner subunit in the post-translational modification of a protein. It is proposed that the covalent FAD bond to Tyr384 and the phenolic portion of this Tyr are part of the essential electron transfer path from FAD to heme.
Collapse
Affiliation(s)
- J Kim
- Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of biogenic and xenobiotic amines. The oxidative step is coupled to the reduction of an obligatory cofactor, FAD, which is covalently linked to the enzyme at Cys397. In this study, we developed a novel riboflavin-depleted (Rib-) COS-7 cell line to study the flavinylation of MAO B. ApoMAO B can be obtained by expressing MAO B cDNA in these cells. We found that MAO B is expressed equally in the presence or absence of FAD and that apoMAO B can be inserted into the outer mitochondrial membrane. Flavinylation of MAO B was achieved by introducing MAO B cDNA and different flavin derivatives simultaneously into Rib- COS-7 cells via electroporation. Since the addition of riboflavin, FMN, or FAD resulted in equal levels of MAO B activity, we conclude that the flavin which initially binds to apoMAO B is FAD. In our previous work, we used site-directed mutagenesis to show that Glu34 in the dinucleotide-binding motif of MAO B is essential for MAO B activity, and we postulated that this residue is involved in FAD binding. In this study, we tested the role of residue 34 in flavin binding by expressing wild-type or mutant MAO B cDNA in Rib- COS-7 cells with the addition of [14C]FAD. We found that Glu34 is essential for both FAD binding and catalytic activity. Thus, FAD binds to MAO B in a dual manner at Glu34 noncovalently and Cys397 covalently. We conclude that Glu34 is critical for the initial non-covalent binding of FAD and is instrumental in delivering FAD to the covalent attachment site at Cys397.
Collapse
Affiliation(s)
- B P Zhou
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas, Austin 78712-1074, USA
| | | | | | | |
Collapse
|
28
|
Stoltz M, Rysavy P, Kalousek F, Brandsch R. Folding, flavinylation, and mitochondrial import of 6-hydroxy-D-nicotine oxidase fused to the presequence of rat dimethylglycine dehydrogenase. J Biol Chem 1995; 270:8016-22. [PMID: 7713902 DOI: 10.1074/jbc.270.14.8016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We analyzed the folding, covalent flavinylation, and mitochondrial import of the rabbit reticulocyte lysate-translated bacterial 6-hydroxy-D-nicotine oxidase (6-HDNO) fused to the mitochondrial targeting sequence of rat liver dimethylglycine dehydrogenase. Translation of 6-HDNO in FAD-supplemented reticulocyte lysate resulted in a protein that contained covalently incorporated FAD, exhibited enzyme activity, and was trypsin-resistant, a characteristic of the tight conformation of the holoenzyme. The attached mitochondrial presequence did not prevent folding, binding of FAD, or enzyme activity of the 6-HDNO moiety of the fusion protein (pre-6-HDNO). Pre-6-HDNO was imported into rat liver mitochondria and processed by the mitochondrial processing peptidase. Incubation of the trypsin-resistant pre-holo-6-HDNO protein with deenergized rat liver mitochondria demonstrated that upon contact with mitochondria, the protein was unfolded and became trypsin sensitive. Mitochondrial import assays showed that the unfolded pre-holo-6-HDNO with covalently attached FAD was imported into rat liver mitochondria. Inside the mitochondrion the holo-6-HDNO was refolded into the trypsin-resistant conformation. However, when pre-apo-6-HDNO was imported only part of the protein became trypsin resistant (approximately 20%). Addition of FAD and the allosteric effector glycerol 3-phosphate to apo-6-HDNO containing mitochondrial matrix was required to transform the protein into the trypsin-resistant conformation characteristic of holo-6-HDNO.
Collapse
Affiliation(s)
- M Stoltz
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
29
|
Robinson KM, Lemire BD. Flavinylation of succinate: ubiquinone oxidoreductase from Saccharomyces cerevisiae. Methods Enzymol 1995; 260:34-51. [PMID: 8592458 DOI: 10.1016/0076-6879(95)60128-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K M Robinson
- Medical Research Council of Canada Group in the Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
30
|
The fumarate and dimethylsulphoxide reductases of anaerobic electron transport inEscherichia coli: current status and future perspectives. World J Microbiol Biotechnol 1992; 8 Suppl 1:102-6. [DOI: 10.1007/bf02421508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Brandsch R, Bichler V, Schmidt M, Buchner J. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D-nicotine oxidase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36765-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
32
|
Chapter 7 Progress in succinate:quinone oxidoreductase research. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
33
|
|
34
|
Lang H, Polster M, Brandsch R. Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:793-9. [PMID: 1710985 DOI: 10.1111/j.1432-1033.1991.tb16083.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dimethylglycine dehydrogenase (Me2GlyDH), an enzyme of choline catabolism specifically expressed in the mammalian liver, was analyzed in rat hepatocytes in culture. This mitochondrial enzyme carries the FAD cofactor covalently attached to the polypeptide chain by its riboflavin 8 alpha position to N pi of histidine [Cook, R., Misono, K.S. & Wagner, C. (1980) J. Biol. Chem. 259, 12475-12480]. Subcellular fractionation of [14C]riboflavin-labelled hepatocytes and immunoprecipitation with Me2GlyDH-specific antiserum identified a [14C]riboflavin-labelled polypeptide of the size of mature Me2GlyDH only in the mitochondrial fraction. Immunoprecipitation of extracts from [35S]Met-labelled hepatocytes revealed a putative precursor protein to the mature Me2GlyDH in the cytoplasmic fraction. These Me2GlyDH polypeptides were not expressed in cells of the rat hepatoma cell line FAO. A Me2GlyDH cDNA clone of apparent full length was isolated from a rat liver cDNA bank constructed in the plasmid vector pcD-X [Okayama, H., Kawaichi, M., Brownstein, M., Lee, F., Yokota, T. & Arai, K. (1987) Methods Enzymol. 154, 3-28]. The nucleotide sequence of the cDNA contains an open reading frame encoding a protein of 96059 Da. This molecular mass agrees well with the migration on SDS/PAGE of the assumed Me2GlyDH precursor immunoprecipitated from the cytoplasm of [35S]Met-labelled cells. Proteolytic cleavage at the putative mitochondrial processing protease-recognition site Arg(-2)-Ala(-1)-Glu(+1) would lead to the formation of a protein of 91391 Da, which is in good agreement with the estimated 90 kDa of mature Me2GlyDH [Wittwer, A.J. & Wagner, C. (1981) J. Biol. Chem. 256, 4102-4108], and a 43-amino-acid leader peptide. The N-terminus of Me2GlyDH contains a conserved amino acid sequence which forms the dinucleotide-binding site in many enzymes with noncovalently bound FAD. Close to the modified histidine there is an amino acid sequence resembling a sequence conserved in thymidylate synthases and shown in these enzymes to be involved in the binding of the pteroyl polyglutamate cofactor.
Collapse
Affiliation(s)
- H Lang
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Weyler W, Titlow CC, Salach JI. Catalytically active monoamine oxidase type A from human liver expressed in Saccharomyces cerevisiae contains covalent FAD. Biochem Biophys Res Commun 1990; 173:1205-11. [PMID: 2125217 DOI: 10.1016/s0006-291x(05)80914-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monoamine oxidase type A from human liver cDNA was expressed in Saccharomyces cerevisiae. This enzyme's properties with respect to Km and Ki values for kynuramine and amphetamine, respectively, were similar to values for human placental enzyme. As expected, clorgyline inhibited the yeast enzyme at lower concentrations than deprenyl. Interestingly, the FAD cofactor was covalently attached and fluorescence properties of the enzyme bound prosthetic group indicate that it is attached to a cysteine residue, the same linkage observed in other monoamine oxidases. The yield of expressed enzyme is about 15 mg/l of culture with an A600 of 15. It is suggested that covalent flavin attachment proceeds by an autoflavination mechanism.
Collapse
Affiliation(s)
- W Weyler
- Department of Veterans Affairs Medical Center, Molecular Biology, San Francisco, CA 94121
| | | | | |
Collapse
|
36
|
Brandsch R, Bichler V. Riboflavin-dependent expression of flavoenzymes of the nicotine regulon of Arthrobacter oxidans. Biochem J 1990; 270:673-8. [PMID: 1700696 PMCID: PMC1131784 DOI: 10.1042/bj2700673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cells of an Arthrobacter oxidans riboflavin-dependent mutant the specific activity of the DL-nicotine-inducible nicregulon enzymes nicotine dehydrogenase (NDH, EC 1.5.99.4), 6-hydroxy-L-nicotine oxidase (6-HLNO, EC 1.5.3.5) and 6-hydroxy-D-nicotine oxidase (6-HDNO, EC 1.5.3.6) was shown to be dependent on the supply of the vitamin in the growth medium. Experiments designed to identify at which level riboflavin directs the biosynthesis of these flavoenzymes revealed that the steady-state levels of enzyme protein analysed on Western blots correlated directly with riboflavin supply from the minimal concentration of 0.5 microns-riboflavin required for growth up to 8 microns-riboflavin. Mutant cells grown at the higher riboflavin concentration showed on dot-blots increased levels of RNA which hybridized to 32P-labelled probes derived from the nic-regulon genes. When cells grown at 2 microns-riboflavin were shifted to 8 microns-riboflavin, 6-HDNO expression increased as indicated by elevated enzyme and RNA levels. When the rates of synthesis of the 6-HDNO and 6-HLNO polypeptides after DL-nicotine induction was analysed in cells grown at 0.5 microns and 8 microns-riboflavin, only cells grown at the higher riboflavin concentration showed on Western blots an accumulation of the polypeptides. No 6-HDNO or 6-HLNO polypeptide was identified in cell extracts from cells grown on 0.5 microns-riboflavin. Pulse-chase experiments with [35S]methionine showed that 6-HDNO- and 6-HLNO synthesis was prevented in cells grown at the low riboflavin concentration. The absence of detectable enzyme levels seemed not to be caused by proteolytic breakdown. Incubation in vitro of apo-6HDNO with low- or high-riboflavin-grown-cell extracts showed no increased proteolytic activity in 0.5 microns-riboflavin-grown cells. From these results it is concluded that riboflavin supply co-regulates the expression of the nicregulon genes at the level of transcription and/or mRNA turnover.
Collapse
Affiliation(s)
- R Brandsch
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | |
Collapse
|
37
|
Lysine can replace arginine 67 in the mediation of covalent attachment of FAD to histidine 71 of 6-hydroxy-D-nicotine oxidase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38220-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Mauch L, Bichler V, Brandsch R. Site-directed mutagenesis of the FAD-binding histidine of 6-hydroxy-D-nicotine oxidase. Consequences on flavinylation and enzyme activity. FEBS Lett 1989; 257:86-8. [PMID: 2680607 DOI: 10.1016/0014-5793(89)81792-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In 6-hydroxy-D-nicotine oxidase (6-HDNO) FAD is covalently bound to His71 of the polypeptide chain by an 8 alpha-(N3-histidyl)-riboflavin linkage. The FAD-binding histidine was exchanged by site-directed mutagenesis to either a Cys- or Tyr-residue, two amino acids known to be involved in covalent binding of FAD in other enzymes, or to a Ser-residue. None of the amino acid replacements for His71 allowed covalent FAD incorporation into the 6-HDNO polypeptide. Thus, the amino acid residues involved in covalent FAD-binding require a specific polypeptide surrounding in order for this modification to proceed and cannot be replaced with each other. Enzyme activity was completely abolished with Tyr in place of His71. 6-HDNO activity with non-covalently bound FAD was found with 6-HDNO-Cys and to a lesser extent also with 6-HDNO-Ser. However, the Km values for 6-HDNO-Cys and 6-HDNO-Ser were increased approximately 20-fold as compared to 6-HDNO-His. Both mutant enzymes, in contrast to the wild-type enzyme, needed additional FAD in the enzymatic assay (50 microM for 6-HDNO-Ser and 10 microM for 6-HDNO-Cys) for maximal enzyme activity.
Collapse
Affiliation(s)
- L Mauch
- Biochemisches Institut, Universität Freiburg, FRG
| | | | | |
Collapse
|