1
|
Sun S, Gong S, Li M, Wang X, Wang F, Cai X, Liu W, Luo Y, Zhang S, Zhang R, Zhou L, Zhu Y, Ma Y, Ren Q, Zhang X, Chen J, Chen L, Wu J, Gao L, Zhou X, Li Y, Zhong L, Han X, Ji L. Clinical and genetic characteristics of CEL-MODY (MODY8): a literature review and screening in Chinese individuals diagnosed with early-onset type 2 diabetes. Endocrine 2024; 83:99-109. [PMID: 37726640 DOI: 10.1007/s12020-023-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE CEL-related maturity-onset diabetes of the young (CEL-MODY, MODY8) is a special type of monogenetic diabetes caused by mutations in the carboxyl-ester lipase (CEL) gene. This study aimed to summarize the genetic and clinical characteristics of CEL-MODY patients and to determine the prevalence of the disease among Chinese patients with early-onset type 2 diabetes (EOD). METHODS We systematically reviewed the literature associated with CEL-MODY in PubMed, Embase, Web of Science, China National Knowledge Infrastructure and Wanfang Data to analyze the features of patients with CEL-MODY. We screened and evaluated rare variants of the CEL gene in a cohort of 679 Chinese patients with EOD to estimate the prevalence of CEL-MODY in China. RESULTS In total, 21 individuals reported in previous studies were diagnosed with CEL-MODY based on the combination of diabetes and pancreatic exocrine dysfunction as well as frameshift mutations in exon 11 of the CEL gene. CEL-MODY patients were nonobese and presented with exocrine pancreatic affection (e.g., chronic pancreatitis, low fecal elastase levels, pancreas atrophy and lipomatosis) followed by insulin-dependent diabetes. No carriers of CEL missense mutations were reported with exocrine pancreatic dysfunction. Sequencing of CEL in Chinese EOD patients led to the identification of the variant p.Val736Cysfs*22 in two patients. However, these patients could not be diagnosed with CEL-MODY because there were no signs that the exocrine pancreas was afflicted. CONCLUSION CEL-MODY is a very rare disease caused by frameshift mutations affecting the proximal VNTR segments of the CEL gene. Signs of exocrine pancreatic dysfunction provide diagnostic clues for CEL-MODY, and genetic testing is vital for proper diagnosis. Further research in larger cohorts is needed to investigate the characteristics and prevalence of CEL-MODY in the Chinese population.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Meng Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xirui Wang
- Beijing Airport Hospital, No. 49, Shuangyu Street, Beijing, 101318, China
| | - Fang Wang
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Leili Gao
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yufeng Li
- Beijing Pinggu Hospital, No. 59, Xinping North Street, Beijing, 101200, China
| | - Liyong Zhong
- Capital Medical University Beijing Tiantan Hospital, No. 119, Nansihuan West Street, Beijing, 100050, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No. 11, Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
2
|
Khan E, Chakrabarty S, Shariff S, Bardhan M. Genetics and Genomics of Chronic Pancreatitis with a Focus on Disease Biology and Molecular Pathogenesis. Glob Med Genet 2023; 10:324-334. [PMID: 38025192 PMCID: PMC10665123 DOI: 10.1055/s-0043-1776981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Chronic pancreatitis is a long-term fibroinflammatory condition of the pancreas with varying incidences across countries. The recent increase in its occurrence implies the involvement of genetic, hereditary, and unconventional risk factors. However, there is a lack of updated literature on recent advances in genetic polymorphisms of chronic pancreatitis. Therefore, this review aims to present recent findings on the genetic implications of chronic pancreatitis based on individual gene mechanisms and to discuss epigenetics and epistasis involved in the disease. Four mechanisms have been implicated in the pathogenesis of chronic pancreatitis, including premature activation of proteases, endoplasmic reticulum stress, ductal pathway dysfunction, and inflammatory pathway dysfunction. These mechanisms involve genes such as PRSS1, PRSS2, SPINK, CEL, PNLIP, PNLIPRP2, CFTR, CaSR, CLDN2, Alpha 1 antitrypsin, and GGT1 . Studying genetic polymorphisms on the basis of altered genes and their products may aid clinicians in identifying predispositions in patients with and without common risk factors. Further research may also identify associations between genetic predispositions and disease staging or prognosis, leading to personalized treatment protocols and precision medicine.
Collapse
Affiliation(s)
- Erum Khan
- Department of Neurology, Alzheimer's Disease Research Center, The university of Alabama at Birmingham, Birmingham, United States
| | - Soura Chakrabarty
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, United States
| |
Collapse
|
3
|
Lindquist S, Wang Y, Andersson EL, Tsuji Grebe S, Alenius GM, Rantapää-Dahlqvist S, Lundberg L, Hernell O. Effects of bile salt-stimulated lipase on blood cells and associations with disease activity in human inflammatory joint disorders. PLoS One 2023; 18:e0289980. [PMID: 37566600 PMCID: PMC10420350 DOI: 10.1371/journal.pone.0289980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The bile salt-stimulated lipase (BSSL) was originally recognized as a lipolytic enzyme expressed by the exocrine pancreas and in some species, notably humans, the lactating mammary gland, being secreted into the duodenum and with the mother's milk, respectively. However, BSSL is also present in the blood and has been assigned additional functions, even beyond the gastrointestinal tract. Conventional BSSL knockout mice are protected from developing disease in animal models of arthritis, and antibodies directed towards BSSL prevent or mitigate disease in similar models. The aim of this study was to investigate the role of BSSL as a newly discovered player in inflammation and specifically in inflammatory joint disorders. As part of mechanism of action, we here show that BSSL is secreted by neutrophils, interacts with monocytes and stimulates their migration in vitro. An anti-BSSL antibody that blocks the human BSSL-monocyte interaction was shown to simultaneously prevent the signaling pathway by which BSSL induce cell migration. Moreover, in this cohort study we show that BSSL levels are significantly higher in blood samples from patients with rheumatoid arthritis and psoriatic arthritis compared to healthy controls. The BSSL levels in patients' blood also correlated with disease activity scores and established inflammatory markers. Hence, although the mode of action is not yet fully clarified, we conclude that BSSL could be considered a proinflammatory component in the innate immune system and thus a possible novel target for treatment of chronic inflammation.
Collapse
Affiliation(s)
- Susanne Lindquist
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
- Lipum AB, Umeå, Sweden
| | - Yuhang Wang
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Eva-Lotta Andersson
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
- Lipum AB, Umeå, Sweden
| | | | - Gerd-Marie Alenius
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | | | | | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
- Lipum AB, Umeå, Sweden
| |
Collapse
|
4
|
He X, McClorry S, Hernell O, Lönnerdal B, Slupsky CM. Digestion of human milk fat in healthy infants. Nutr Res 2020; 83:15-29. [PMID: 32987285 DOI: 10.1016/j.nutres.2020.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipid digestion is critical for infant development, and yet, the interconnection between lipid digestion and the microbiota is largely understudied. This review focuses on digestion of the human milk fat globule and summarizes the current understanding of the mechanisms underlying this process in infants. We first discuss the partial hydrolysis of milk fat in the stomach, which leads to rearrangement of lipid droplets, creating a lipid-water interface necessary for duodenal lipolysis. In the first few months of life, secretion of pancreatic triglyceride lipase, phospholipase A2, and bile salts is immature. The dominant lipases aiding fat digestion in the newborn small intestine are therefore pancreatic lipase-related protein 2 and bile salt-stimulated lipase from both the exocrine pancreas and milk. We summarize the interaction between ionic fatty acids and cations to form insoluble fatty acid soaps and how it is influenced by various factors, including cation availability, pH, and bile salt concentration, as well as saturation and chain length of fatty acids. We further argue that the formation of the soap complex does not contribute to lipid bioavailability. Next, the possible roles that the gut microbiota plays in lipid digestion and absorption are discussed. Finally, we provide a perspective on how the manufacturing process of infant formula and dairy products may alter the physical properties and structure of lipid droplets, thereby altering the rate of lipolysis.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Shannon McClorry
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 85 Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Sarmadi A, Mohammadi A, Tabatabaei F, Nouri Z, Chaleshtori MH, Tabatabaiefar MA. Molecular Genetic Study in a Cohort of Iranian Families Suspected to Maturity-Onset Diabetes of the Young, Reveals a Recurrent Mutation and a High-Risk Variant in the CEL Gene. Adv Biomed Res 2020; 9:25. [PMID: 33072637 PMCID: PMC7532821 DOI: 10.4103/abr.abr_18_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/01/2020] [Accepted: 04/07/2020] [Indexed: 01/14/2023] Open
Abstract
Background Diabetes mellitus (DM) is a group of metabolic disorders in the body, accompanied with increasing blood sugar levels. Diabetes is classified into three groups: Type 1 DM (T1DM), Type 2 DM (T2DM), and monogenic diabetes. Maturity-onset diabetes of the young (MODY) is a monogenic diabetes that is frequently mistaken for T1D or T2D. The aim of this study was to diagnose MODY and its subtype frequency in a diabetic population in Iran. Materials and Methods In this study among ten diabetic families that were highly suspected to MODY by nongenetic biomarkers and without any pathogenic mutation in GCK and HNF1A genes, two patients from two unrelated families were examined via whole-exome sequencing (WES) in order to detect the causative gene of diabetes. Co-segregation analysis of the identified variant was performed using Sanger sequencing. Results In this study, no pathogenic variant was found in GCK and HNF1A genes (MODY2 and MODY3), while these two types of MODY were introduced as the most frequent in other studies. By using WES, a pathogenic variant (p.I488T) was found in one of the patients in CEL gene causing MODY8 that its frequency is very rare in other studied populations. A high-risk variant associated with diabetes was found in another patient. Conclusion WES was applied in this study to reveal the cause of MODY in 1 family. This pathogenic mutation was previously reported as a disease causing mutation.
Collapse
Affiliation(s)
- Akram Sarmadi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Aliasgar Mohammadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Tabatabaei
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Science, Isfahan, Iran
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Hashemzadeh Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Association of a new 99-bp indel of the CEL gene promoter region with phenotypic traits in chickens. Sci Rep 2020; 10:3215. [PMID: 32081917 PMCID: PMC7035288 DOI: 10.1038/s41598-020-60168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2020] [Indexed: 02/08/2023] Open
Abstract
Carboxyl ester lipase (CEL) encodes a cholesterol ester hydrolase that is secreted into the duodenum as a component of pancreatic juice. The objective of this study was to characterize the CEL gene, investigate the association between the CEL promoter variants and chicken phenotypic traits, and explore the CEL gene regulatory mechanism. An insertion/deletion (indel) caused by a 99-bp insertion fragment was shown for the first time in the chicken CEL promoter, and large differences in allelic frequency were found among commercial breeds, indigenous and feral birds. Association analysis demonstrated that this indel site had significant effects on shank length, shank girth, chest breadth at 8 weeks (p < 0.01), evisceration weight, sebum weight, breast muscle weight, and leg weight (p < 0.05). Tissue expression profiles showed extremely high levels of the CEL gene in pancreatic tissue. Moreover, the expression levels of the genes APOB, MTTP, APOV1 and SREBF1, which are involved in lipid transport, were significantly reduced by adding a 4% oxidized soybean oil diet treatment at the individual level and transfecting the embryonic primary hepatocytes with a CEL-overexpression vector. Interestingly, the results showed that the expression level of the II homozygous genotype was significantly higher than that of the ID and DD genotypes, while individuals with DD genotypes had higher phenotypic values. Therefore, these data suggested that the CEL gene might affect body growth by participating in hepatic lipoprotein metabolism and that the 99-bp indel polymorphism could be a potentially useful genetic marker for improving the economically important traits of chickens.
Collapse
|
7
|
Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems. Adv Drug Deliv Rev 2019; 142:3-15. [PMID: 30926476 DOI: 10.1016/j.addr.2019.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The lipids and some surfactants present in oral lipid-based drug delivery systems are potential substrates for the various lipases involved in gastrointestinal (GI) lipolysis. The levels of these enzymes, together with pH and biliairy secretion, are important parameters that condition the fate of lipid-based formulations (LBF) and the dispersion, solubilization and absorption of lipophilic drugs in the GI tract. Since in vitro methods of digestion are now combined with dissolution assays for a better assessment of LBF performance, it is essential to have a basic knowledge on lipase, pH and bile acid (BA) levels in vivo to develop relevant in vitro models. While these parameters and their variations in healthy subjects are today well documented, in vivo data on specific populations (age groups, patients with various diseases, patients with treatment affecting GI tract parameters, …) are scarce and obtaining them from clinical studies is sometimes difficult due to ethical limitations. Here we collected some in vivo data already available on the levels of digestive lipases, gastric and intestinal pH, and BAs at various ages and in patients with exocrine pancreatic insufficiency, a pathological situation that leads to drastic changes in GI tract parameters and impacts pharmacological treatments.
Collapse
|
8
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
9
|
Venuti E, Shishmarev D, Kuchel PW, Dutt S, Blumenthal CS, Gaskin KJ. Bile salt stimulated lipase: Inhibition by phospholipids and relief by phospholipase A2. J Cyst Fibros 2017; 16:763-770. [DOI: 10.1016/j.jcf.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
10
|
Wang Y, Ding F, Wang T, Liu W, Lindquist S, Hernell O, Wang J, Li J, Li L, Zhao Y, Dai Y, Li N. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS One 2017; 12:e0176864. [PMID: 28475629 PMCID: PMC5419509 DOI: 10.1371/journal.pone.0176864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/18/2017] [Indexed: 01/13/2023] Open
Abstract
Bile salt-stimulated lipase (BSSL) is a lipolytic digestive enzyme with broad substrate specificity secreted from exocrine pancreas into the intestinal lumen in all species and from the lactating mammary gland into the milk of some species, notably humans but not cows. BSSL in breast milk facilitates digestion and absorption of milk fat and promotes growth of small for gestational age preterm infants. Thus, purified recombinant human BSSL (rhBSSL) can be used for treatment of patients with fat malabsorption and expressing rhBSSL in the milk of transgenic cloned cows would therefore be a mean to meet a medical need. In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently expressed active rhBSSL in milk of transgenic cloned cows to a concentration of 9.8 mg/ml. The rhBSSL purified from cow milk had the same enzymatic activity, N-terminal amino acid sequence, amino acid composition and isoelectric point and similar physicochemical characteristics as human native BSSL. Our study supports the use of transgenic cattle for the cost-competitive, large-scale production of therapeutic rhBSSL.
Collapse
Affiliation(s)
- Yuhang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Fangrong Ding
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Tao Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Wenjie Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Susanne Lindquist
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Jianwu Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Jing Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ling Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (YD); (NL)
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
- * E-mail: (YD); (NL)
| |
Collapse
|
11
|
Kamstrup D, Berthelsen R, Sassene PJ, Selen A, Müllertz A. In Vitro Model Simulating Gastro-Intestinal Digestion in the Pediatric Population (Neonates and Young Infants). AAPS PharmSciTech 2017; 18:317-329. [PMID: 27796909 DOI: 10.1208/s12249-016-0649-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023] Open
Abstract
The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.
Collapse
|
12
|
Martinez E, Crenon I, Silvy F, Del Grande J, Mougel A, Barea D, Fina F, Bernard JP, Ouaissi M, Lombardo D, Mas E. Expression of truncated bile salt-dependent lipase variant in pancreatic pre-neoplastic lesions. Oncotarget 2017; 8:536-551. [PMID: 27602750 PMCID: PMC5352176 DOI: 10.18632/oncotarget.11777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a dismal disease. The lack of specific symptoms still leads to a delay in diagnosis followed by death within months for most patients. Exon 11 of the bile salt-dependent lipase (BSDL) gene encoding variable number of tandem repeated (VNTR) sequences has been involved in pancreatic pathologies. We hypothesized that BSDL VNTR sequences may be mutated in PDAC. The amplification of BSDL VNTR from RNA extracted from pancreatic SOJ-6 cells allowed us to identify a BSDL amplicon in which a cytosine residue is inserted in a VNTR sequence. This insertion gives rise to a premature stop codon, resulting in a truncated protein and to a modification of the C-terminal amino-acid sequence; that is PRAAHG instead of PAVIRF. We produced antibodies directed against these sequences and examined pancreatic tissues from patients with PDAC and PanIN. Albeit all tissues were positive to anti-PAVIRF antibodies, 72.2% of patient tissues gave positive reaction with anti-PRAAHG antibodies, particularly in dysplastic areas of the tumor. Neoplastic cells with ductal differentiation were not reactive to anti-PRAAHG antibodies. Some 70% of PanIN tissues were also reactive to anti-PRAAHG antibodies, suggesting that the C insertion occurs early during pancreatic carcinogenesis. Data suggest that anti-PRAAHG antibodies were uniquely reactive with a short isoform of BSDL specifically expressed in pre-neoplastic lesions of the pancreas. The detection of truncated BSDL reactive to antibodies against the PRAAHG C-terminal sequence in pancreatic juice or in pancreatic biopsies may be a new tool in the early diagnosis of PDAC.
Collapse
Affiliation(s)
- Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Jean Del Grande
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service d'Anatomopathologie, Marseille, France
| | - Alice Mougel
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Dolores Barea
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Frederic Fina
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- LBM- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Service de transfert d'Oncologie Biologique, Marseille, France
| | - Jean-Paul Bernard
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Gastroentérologie 2, Marseille, France
| | - Mehdi Ouaissi
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Chirurgie Digestive et Viscérale, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| |
Collapse
|
13
|
O'Connor CJ, Cleverly DR, Butler PA, Walde P. Isolation and Characterization of Purified Bile Salt Stimulated Human Milk Lipase. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159400900104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A method has been developed for the isolation and purification of bile-salt-stimulated human milk lipase. This method yields up to six times more enzyme than other reported methods and the specific activity is compara ble. The concentration of BSSL recovered from the whole milk was 0.65 percent of the original protein content. The molecular weight of the isolated protein was 120 kDa. During the course of the purification, both protein content and specific activity were monitored and the esterase and lipase activities of the isolated product were characterized in the presence of sodium taurocholate. Five separate isolations were carried out with the introduction of minor varia tions in the procedure, but the catalytic properties of the product remain unchanged.
Collapse
Affiliation(s)
- Charmian J. O'Connor
- Department of Chemistry The University of Auckland Private Bag 92019 Auckland, New Zealand
| | - Douglas R. Cleverly
- Department of Chemistry The University of Auckland Private Bag 92019 Auckland, New Zealand
| | - Paul A.G. Butler
- Department of Chemistry The University of Auckland Private Bag 92019 Auckland, New Zealand
| | - Peter Walde
- Department of Chemistry The University of Auckland Private Bag 92019 Auckland, New Zealand
| |
Collapse
|
14
|
Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes. PLoS One 2015; 10:e0122020. [PMID: 25793526 PMCID: PMC4368515 DOI: 10.1371/journal.pone.0122020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1–3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.
Collapse
|
15
|
Fjeld K, Weiss FU, Lasher D, Rosendahl J, Chen JM, Johansson BB, Kirsten H, Ruffert C, Masson E, Steine SJ, Bugert P, Cnop M, Grützmann R, Mayerle J, Mössner J, Ringdal M, Schulz HU, Sendler M, Simon P, Sztromwasser P, Torsvik J, Scholz M, Tjora E, Férec C, Witt H, Lerch MM, Njølstad PR, Johansson S, Molven A. A recombined allele of the lipase gene CEL and its pseudogene CELP confers susceptibility to chronic pancreatitis. Nat Genet 2015; 47:518-522. [PMID: 25774637 PMCID: PMC5321495 DOI: 10.1038/ng.3249] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
Carboxyl-ester lipase is a digestive pancreatic enzyme encoded by the highly polymorphic CEL gene1. Mutations in CEL cause maturity-onset diabetes of the young (MODY) with pancreatic exocrine dysfunction2. Here we identified a hybrid allele (CEL-HYB), originating from a crossover between CEL and its neighboring pseudogene CELP. In a discovery cohort of familial chronic pancreatitis cases, the carrier frequency of CEL-HYB was 14.1% (10/71) compared with 1.0% (5/478) in controls (odds ratio [OR] = 15.5, 95% confidence interval [CI] = 5.1-46.9, P = 1.3 × 10−6). Three replication studies in non-alcoholic chronic pancreatitis cohorts identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2, 95% CI = 3.2-8.5, P = 1.2 × 10−11; formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models revealed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. The hybrid variant of CEL is the first chronic pancreatitis gene identified outside the protease/antiprotease system of pancreatic acinar cells.
Collapse
Affiliation(s)
- Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Denise Lasher
- Pediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany.,Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Freising, Germany
| | - Jonas Rosendahl
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Holger Kirsten
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Claudia Ruffert
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany.,Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany.,Integrated Research and Treatment Centre (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Solrun J Steine
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Dresden, Dresden, Germany
| | - Julia Mayerle
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Joachim Mössner
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Monika Ringdal
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hans-Ulrich Schulz
- Department of Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Sendler
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Peter Simon
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Paweł Sztromwasser
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Janniche Torsvik
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Markus Scholz
- LIFE-Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universität Leipzig, Leipzig, Germany
| | - Erling Tjora
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS)-Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Heiko Witt
- Pediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany.,Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Freising, Germany
| | - Markus M Lerch
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Xavier AAO, Mercadante AZ, Garrido-Fernández J, Pérez-Gálvez A. Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv 2012; 3:105-24. [PMID: 22833936 DOI: 10.4155/tde.11.138] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many of the compounds present in lipid-based drug-delivery systems are esters, such as acylglycerols, phospholipids, polyethyleneglycol mono- and di-esters and polysorbate, which can be hydrolyzed by the various lipolytic enzymes present in the GI tract. Lipolysis of these compounds, along with dietary fats, affects the solubility, dispersion and bioavailibity of poorly water-soluble drugs. Pharmaceutical scientists have been taking a new interest in fat digestion in this context, and several studies presenting in vitro gastrointestinal lipolysis models have been published. In most models, it is generally assumed that pancreatic lipase is the main enzyme involved in the gastrointestinal lipolysis of lipid formulations. It was established, however, that gastric lipase, pancreatic carboxyl ester hydrolaze and pancreatic lipase-related protein 2 are the major players involved in the lipolysis of lipid excipients containing acylglycerols and polyethyleneglycol esters. These findings have shown that the lipolysis of lipid excipients may actually start in the stomach and involve several lipolytic enzymes. These findings should therefore be taken into account when testing in vitro the dispersion and bioavailability of poorly water-soluble drugs formulated with lipids. In this review, we present the latest data available about the lipolytic enzymes involved in gastrointestinal lipolysis and suggest tracks for designing physiologically relevant in vitro digestion models.
Collapse
|
18
|
Comparative Structures and Evolution of Vertebrate Carboxyl Ester Lipase (CEL) Genes and Proteins with a Major Role in Reverse Cholesterol Transport. CHOLESTEROL 2011; 2011:781643. [PMID: 22162806 PMCID: PMC3227413 DOI: 10.1155/2011/781643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022]
Abstract
Bile-salt activated carboxylic ester lipase (CEL) is a major triglyceride, cholesterol ester and vitamin ester hydrolytic enzyme contained within pancreatic and lactating mammary gland secretions. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for CEL genes, and encoded proteins using data from several vertebrate genome projects. A proline-rich and O-glycosylated 11-amino acid C-terminal repeat sequence (VNTR) previously reported for human and other higher primate CEL proteins was also observed for other eutherian mammalian CEL sequences examined. In contrast, opossum CEL contained a single C-terminal copy of this sequence whereas CEL proteins from platypus, chicken, lizard, frog and several fish species lacked the VNTR sequence. Vertebrate CEL genes contained 11 coding exons. Evidence is presented for tandem duplicated CEL genes for the zebrafish genome. Vertebrate CEL protein subunits shared 53-97% sequence identities; demonstrated sequence alignments and identities for key CEL amino acid residues; and conservation of predicted secondary and tertiary structures with those previously reported for human CEL. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate CEL family of genes which were related to a nematode carboxylesterase (CES) gene and five mammalian CES gene families.
Collapse
|
19
|
Johansson BB, Torsvik J, Bjørkhaug L, Vesterhus M, Ragvin A, Tjora E, Fjeld K, Hoem D, Johansson S, Ræder H, Lindquist S, Hernell O, Cnop M, Saraste J, Flatmark T, Molven A, Njølstad PR. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): a protein misfolding disease. J Biol Chem 2011; 286:34593-605. [PMID: 21784842 PMCID: PMC3186416 DOI: 10.1074/jbc.m111.222679] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 07/15/2011] [Indexed: 01/09/2023] Open
Abstract
CEL-maturity onset diabetes of the young (MODY), diabetes with pancreatic lipomatosis and exocrine dysfunction, is due to dominant frameshift mutations in the acinar cell carboxyl ester lipase gene (CEL). As Cel knock-out mice do not express the phenotype and the mutant protein has an altered and intrinsically disordered tandem repeat domain, we hypothesized that the disease mechanism might involve a negative effect of the mutant protein. In silico analysis showed that the pI of the tandem repeat was markedly increased from pH 3.3 in wild-type (WT) to 11.8 in mutant (MUT) human CEL. By stably overexpressing CEL-WT and CEL-MUT in HEK293 cells, we found similar glycosylation, ubiquitination, constitutive secretion, and quality control of the two proteins. The CEL-MUT protein demonstrated, however, a high propensity to form aggregates found intracellularly and extracellularly. Different physicochemical properties of the intrinsically disordered tandem repeat domains of WT and MUT proteins may contribute to different short and long range interactions with the globular core domain and other macromolecules, including cell membranes. Thus, we propose that CEL-MODY is a protein misfolding disease caused by a negative gain-of-function effect of the mutant proteins in pancreatic tissues.
Collapse
Affiliation(s)
- Bente B. Johansson
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Janniche Torsvik
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Lise Bjørkhaug
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mette Vesterhus
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Anja Ragvin
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Erling Tjora
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Karianne Fjeld
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
- the Section for Pathology, the Gade Institute, University of Bergen, N-5021 Bergen, Norway
| | - Stefan Johansson
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Helge Ræder
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| | - Susanne Lindquist
- the Department of Clinical Sciences, Pediatrics, Umeå University, SE-901 87 Umeå, Sweden
| | - Olle Hernell
- the Department of Clinical Sciences, Pediatrics, Umeå University, SE-901 87 Umeå, Sweden
| | - Miriam Cnop
- the Laboratory of Experimental Medicine, Université Libre de Bruxelles, B-1070 Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, B-1070 Brussels, Belgium
| | - Jaakko Saraste
- the Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway, and
| | - Torgeir Flatmark
- the Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway, and
| | - Anders Molven
- the Section for Pathology, the Gade Institute, University of Bergen, N-5021 Bergen, Norway
- the Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Pål R. Njølstad
- From the Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
- the Departments of Pediatrics and
| |
Collapse
|
20
|
Andersson EL, Hernell O, Bläckberg L, Fält H, Lindquist S. BSSL and PLRP2: key enzymes for lipid digestion in the newborn examined using the Caco-2 cell line. J Lipid Res 2011; 52:1949-56. [PMID: 21865348 DOI: 10.1194/jlr.m015685] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rodents, bile salt-stimulated lipase (BSSL) and pancreatic lipase-related protein 2 (PLRP2) are the dominant lipases expressed in the exocrine pancreas in early life when milk is the main food. The aim of the present study was to evaluate whether BSSL and PLRP2 are also key enzymes in neonatal intestinal fat digestion. Using Caco-2 cells as a model for the small intestinal epithelium, purified human enzymes were incubated in the apical compartment with substrates, bile salt composition and concentrations physiologic to newborn infants. Both BSSL and PLRP2 hydrolyzed triglycerides (TG) to free FA and glycerol. Released FA were absorbed by the cells and reesterfied to TG. Together, BSSL and PLRP2 had a synergistic effect, increasing cellular uptake and reesterification 4-fold compared with the sum of each lipase alone. A synergistic effect was also observed with retinyl ester as a substrate. PLRP2 hydrolyzed cholesteryl ester but not as efficiently as BSSL, and the two had an additive rather than synergistic effect. We conclude the key enzymes in intestinal fat digestion are different in newborns than later in life. Further studies are needed to fully understand this difference and its implication for designing optimal neonatal nutrition.
Collapse
Affiliation(s)
- Eva-Lotta Andersson
- Department of Clinical Sciences/Pediatrics, Umeå University, S-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
21
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 321] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
22
|
La Rosa S, Vigetti D, Placidi C, Finzi G, Uccella S, Clerici M, Bartolini B, Carnevali I, Losa M, Capella C. Localization of carboxyl ester lipase in human pituitary gland and pituitary adenomas. J Histochem Cytochem 2010; 58:881-9. [PMID: 20566755 DOI: 10.1369/jhc.2010.956169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carboxyl ester lipase (CEL) is an enzyme that hydrolyzes a wide variety of lipid substrates, including ceramides, which are known to show inhibitory regulation of pituitary hormone secretion in experimental models. Because no studies on CEL expression in human pituitary and pituitary adenomas have been reported in the literature, we investigated CEL expression in 10 normal pituitary glands and 86 well-characterized pituitary adenomas [12 FSH/LH cell, 17 α-subunit/null cell, 6 TSH cell, 21 ACTH cell, 11 prolactin (PRL) cell, and 19 GH cell adenomas] using IHC, immunoelectron microscopy, Western blotting, and quantitative RT-PCR. In normal adenohypophysis, CEL was localized in GH, ACTH, and TSH cells. In adenomas, it was mainly found in functioning GH, ACTH, and TSH tumors, whereas its expression was poor in the corresponding silent adenomas and was lacking in FSH/LH cell, null cell, and PRL cell adenomas. Ultrastructurally, CEL was localized in secretory granules close to their membranes. This is the first study demonstrating CEL expression in normal human pituitary glands and in functioning GH, ACTH, and TSH adenomas. Considering that CEL hydrolyzes ceramides, inactivating their inhibitory function on pituitary hormone secretion, our findings suggest a possible role of CEL in the regulation of hormone secretion in both normal and adenomatous pituitary cells.
Collapse
Affiliation(s)
- Stefano La Rosa
- Department of Pathology, Ospedale di Circolo, Varese, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Colonic carcinoma with a pancreatic acinar cell differentiation. A case report. Virchows Arch 2009; 455:527-31. [PMID: 19908063 DOI: 10.1007/s00428-009-0852-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/23/2009] [Accepted: 10/16/2009] [Indexed: 02/08/2023]
Abstract
A case of a colonic carcinoma showing a pancreatic acinar cell differentiation is described for the first time. A 65-year-old woman underwent surgical resection for an ulcerated protruding tumour of 4 x 2.5 cm in size on the anterior wall of the sigmoid colon. Histologically, tumour cells were organized in acinar structures resembling pancreatic acini and in solid nests and ribbons or diffusely infiltrated as poorly cohesive cells. Lymph nodes and femur metastases displayed the same histological features. The ultrastructural analysis of the primary tumour indicated the presence of zymogen-like granules in the cytoplasm of tumour cells. Immunohistochemically, both acinar and diffuse patterns of growth showed an intense staining for trypsin, chymotrypsin and BCL10 and a weaker immunoreactivity for lipase and carboxyl ester hydrolase. Most tumour cells were cytokeratin 20, CDX2 and p53 positive; whereas, mucin (MUC)2 immunoreactivity was observed only in the signet ring cells present in the diffuse pattern and chromogranin A in rare isolated tumour cells. No immunoreactivity was observed for cytokeratin 7, MUC1, MUC5AC, pancreatic amylase or PDX1. There was no evidence of a pancreatic acinar cell carcinoma or of heterotopic pancreatic tissue. A colonic origin ought to be suspected when a metastatic carcinoma of unknown primary shows an acinar differentiation.
Collapse
|
24
|
Amara S, Lafont D, Fiorentino B, Boullanger P, Carrière F, De Caro A. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:983-90. [DOI: 10.1016/j.bbalip.2009.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
|
25
|
La Rosa S, Franzi F, Marchet S, Finzi G, Clerici M, Vigetti D, Chiaravalli AM, Sessa F, Capella C. The monoclonal anti-BCL10 antibody (clone 331.1) is a sensitive and specific marker of pancreatic acinar cell carcinoma and pancreatic metaplasia. Virchows Arch 2009; 454:133-42. [PMID: 19066953 DOI: 10.1007/s00428-008-0710-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/15/2008] [Accepted: 11/19/2008] [Indexed: 12/15/2022]
Abstract
Acinar cell carcinoma (ACC) is a rare pancreatic cancer which may be difficult to distinguish from other solid nonadenocarcinoma tumors. The diagnosis depends on the demonstration of acinar differentiation, obtained with antibodies recognizing various pancreatic enzymes that, although specific, show different sensitivity. The C-terminal portion of the BCL10 protein shows homology with carboxyl ester hydrolase (CEH), an enzyme produced by pancreatic acinar cells. We investigated the usefulness of a C-terminal BCL10 monoclonal antibody in the diagnosis of ACCs. We examined normal pancreases and different pancreatic tumors including ACCs, mixed acinar-endocrine carcinomas, ductal adenocarcinomas, mucinous, serous, solid pseudopapillary, and endocrine neoplasms. In addition, various normal tissues and cases of pancreatic metaplasia of the gastroesophageal mucosa, cases of ectopic pancreas, gastrointestinal endocrine tumors, salivary and breast acinic cell carcinomas, gastric adenocarcinomas with and without acinar differentiation, and hepatocellular carcinomas were studied. BCL10 immunoreactivity paralleled that of CEH and was restricted to acinar cells of normal and ectopic pancreas, of pancreatic metaplasia, and of ACCs. The anti-BCL10 antibody was more sensitive in detecting ACCs and pancreatic metaplasia than antibodies directed against other pancreatic enzymes. We suggest using BCL10 antibody for diagnosing pancreatic tumors and whenever an acinar differentiation is suspected in gastrointestinal neoplastic and metaplastic lesions.
Collapse
Affiliation(s)
- Stefano La Rosa
- Department of Pathology, Ospedale di Circolo, Viale Borri 57, 21100, Varese, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lipolysis of the semi-solid self-emulsifying excipient Gelucire® 44/14 by digestive lipases. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:367-75. [DOI: 10.1016/j.bbalip.2008.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/20/2022]
|
27
|
Kazlauskas RJ, Bornscheuer UT. Biotransformations with Lipases. BIOTECHNOLOGY 2008:36-191. [PMID: 0 DOI: 10.1002/9783527620906.ch3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
28
|
Abstract
AbstractThe ultimate goal in the design of infant formula is to achieve the outcome seen in breast fed infants. This review of lipids in infant formulas for term infants begins by referring to the lipid composition of human milk, and relates that to differences in lipid digestion and metabolism which exist between breast fed and formula fed infants and which may significantly influence fatty acid bioavailability.Recommendations are made for the lipid content and fatty acid composition of term infant formulas (especially for lauric, linoleic, α-linolenic, long chain 20 and 22C n-3 and n-6 polyunsaturated fatty acids and thetransfatty acids).Further research is required to define more clearly the long term nutritional, growth and developmental effects of structured lipids in formulas for term infants. More information is required on the differential handling of LCPUFA and other fatty acids at the organ and cellular level. There is a need for large (multi-centre) randomized studies to determine the short and long term functional effects of LCPUFA supplementation. Further research and development is required to determine a commercial source of LCPUFA which is safe, effective and economic. Further information is required on the short and long term effects of cholesterol intake during infancy, and in particular its relationship to LCPUFA metabolism. Long term studies should be initiated to determine the relationship of infant diet (especially saturated fatty acid and cholesterol intake) to the development of cardiovascular disease.
Collapse
|
29
|
Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carrière F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol®, medium chain glycerides and PEG esters. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:633-40. [PMID: 17418634 DOI: 10.1016/j.bbalip.2007.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/22/2022]
Abstract
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.
Collapse
Affiliation(s)
- Sylvie Fernandez
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS UPR 9025, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
A primary function of the pancreas is to produce digestive enzymes that are delivered to the small intestine for the hydrolysis of complex nutrients. Much of our understanding of digestive enzymes comes from studies in animals. New technologies and the availability of the sequence of the human genome allow for a critical review of older reports and assumptions based on animal studies. This report updates our understanding of human pancreatic digestive enzymes with a focus on new insights into the biology of human proteases, lipases and amylases.
Collapse
Affiliation(s)
- David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
32
|
Naarding MA, Dirac AM, Ludwig IS, Speijer D, Lindquist S, Vestman EL, Stax MJ, Geijtenbeek TBH, Pollakis G, Hernell O, Paxton WA. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrob Agents Chemother 2006; 50:3367-74. [PMID: 17005819 PMCID: PMC1610064 DOI: 10.1128/aac.00593-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs and a subset of B cells. More specifically, the interaction of the gp120 envelope protein of HIV-1 with DC-SIGN can facilitate the transfer of virus to CD4+ T lymphocytes in trans and enhance infection. We have previously demonstrated that a multimeric LeX component in human milk binds to DC-SIGN, preventing HIV-1 from interacting with this receptor. Biochemical analysis reveals that the compound is heat resistant, trypsin sensitive, and larger than 100 kDa, indicating a specific glycoprotein as the inhibitory compound. By testing human milk from three different mothers, we found the levels of DC-SIGN binding and viral inhibition to vary between samples. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and matrix-assisted laser desorption ionization analysis, we identified bile salt-stimulated lipase (BSSL), a Lewis X (LeX)-containing glycoprotein found in human milk, to be the major variant protein between the samples. BSSL isolated from human milk bound to DC-SIGN and inhibited the transfer of HIV-1 to CD4+ T lymphocytes. Two BSSL isoforms isolated from the same human milk sample showed differences in DC-SIGN binding, illustrating that alterations in the BSSL forms explain the differences observed. These results indicate that variations in BSSL lead to alterations in LeX expression by the protein, which subsequently alters the DC-SIGN binding capacity and the inhibitory effect on HIV-1 transfer. Identifying the specific molecular interaction between the different forms may aid in the future design of antimicrobial agents.
Collapse
Affiliation(s)
- Marloes A Naarding
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Milad-Kodsi E, Langston TB, Gergis MR, Grogan WM. Acidic residues emulate a phosphorylation switch to enhance the activity of rat hepatic neutral cytosolic cholesterol esterase. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:62-73. [PMID: 15866484 DOI: 10.1016/j.bbalip.2005.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/24/2005] [Accepted: 02/10/2005] [Indexed: 11/17/2022]
Abstract
Site-directed mutagenesis of rat hepatic neutral cytosolic cholesteryl ester hydrolase (rhncCEH) was used to substitute acidic, basic or neutral amino acid residues for Ser506, required for activation by protein kinase A. The substitution of acidic Asp506 resulted in esterase activities with cholesteryl oleate, p-nitrophenylcaprylate (PNPC) and p-nitrophenylacetate (PNPA) equivalent to those of native rhncCEH with Ser506. The substitution of 2 acidic residues (Asp505/506), emulating the 2 negative charges of phosphoserine, resulted in a 10-fold greater cholesterol esterase activity than that of native rhncCEH, similar to the activity of rhncCEH treated with protein kinase A. In contrast to mutants with Ser506, protein kinase A did not increase the specific activities of mutants with Asp505/506. The substitution of basic (Lys506) or neutral (Asn506) residues abolished activity with cholesteryl oleate but not PNPC or PNPA. The substitution of neutral Gln for basic residues Lys496/Arg503 also abolished cholesterol esterase activity but not PNPC- and PNPA-esterase activities. These structure-activity relationships are modeled by homology with a recently reported crystal structure for the homologous human triacylglycerol hydrolase. The results suggest that the cholesterol esterase activity of carboxylesterases is enhanced by interactions between one or more basic residues on helix alpha16 (residues 485-503) and acidic groups at residues 505-506 in the adjacent surface loop.
Collapse
Affiliation(s)
- E Milad-Kodsi
- Department of Biochemistry, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
35
|
Wu MH, Chen P, Wu X, Liu W, Strom S, Das S, Cook EH, Rosner GL, Dolan ME. Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. ACTA ACUST UNITED AC 2005; 14:595-605. [PMID: 15475733 DOI: 10.1097/00008571-200409000-00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carboxylesterases are members of the serine esterase super family important in the metabolism of a wide variety of substrates, including xenobiotics and prodrugs. There are two known carboxylesterases expressed in human liver, small intestine and other tissues, carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2). The aim of this study was to identify polymorphisms in the CES2 gene and determine whether these polymorphisms affect expression levels of CES2 or rate of metabolism of irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy-camptothecin). Microsome samples prepared from liver tissues of 78 normal individuals were used to determine the rate of hydrolysis of irinotecan and procaine (an anaesthetic hydrolysed by CES2 but not CES1). The rate of hydrolysis of irinotecan is highly variable among individuals, ranging from 2.7-138 pmol/mg protein/h (mean +/- SD 26.0 +/- 22.9). Fifteen single nucleotide polymorphisms (SNPs) were identified, one is in an exon, 9 are in introns, three are in the 3'-untranslated region (UTR), and two are in the 5'-flanking region. Eight of the 15 SNP loci have rare allele frequencies greater than 5%, of which three were greater than 20%. Genotyping of samples from the SNP Consortium demonstrated different distributions among African-Americans, Asian-Americans and European-Americans. We also analysed the haplotype structure and estimated linkage disequilibrium (LD). A SNP located in the 5'-UTR (5'-UTR-363) was found in LD with loci in intron 1 (Intron1 + 947, Intron1 + 1361, Intron1 + 1643). Haplotypes with homozygous rare alleles on these loci exhibit lower mRNA levels as determined by real time polymerase chain reaction (P < 0.01) and the incorporation of rare alleles in haplotypes correlate with reduced mRNA (P = 0.03). The 5'-UTR-363 SNP is located in one of the three promoters of CES2. However, we did not observe significant differences in CES2 activities (irinotecan and procaine hydrolysis) among individuals with different haplotypes.
Collapse
Affiliation(s)
- Michael H Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bengtsson-Ellmark SH, Nilsson J, Orho-Melander M, Dahlenborg K, Groop L, Bjursell G. Association between a polymorphism in the carboxyl ester lipase gene and serum cholesterol profile. Eur J Hum Genet 2004; 12:627-32. [PMID: 15114370 DOI: 10.1038/sj.ejhg.5201204] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Carboxyl ester lipase (CEL) is involved in the hydrolysis and absorption of dietary lipids, but it is largely unknown to what extent CEL could be involved in determining the serum lipid levels. The C-terminal part of CEL consists of a unique structure with proline-rich O-glycosylated repeats of 11 amino-acid residues each. The common variant of the human CEL gene contains 16 proline-rich repeats, but there is a high degree of polymorphism in the repeated region. While the biological function of the polymorphic repeat region is unknown, it has been suggested that it may be important for protein stability and/or secretion of the enzyme. Given that the polymorphism in the repeated region may affect the functionality of the protein, this study aimed to investigate whether the number of repeated units is correlated to serum lipid phenotype. Comparison of CEL repeat genotype and serum lipid phenotype revealed an association between the number of repeats and serum cholesterol profile. Individuals carrying at least one allele with fewer than the common 16 repeats had significantly lower total and low-density lipoprotein (LDL) cholesterol levels compared to individuals carrying two common alleles. This gives support to the notion that CEL may be involved in determining the plasma lipid composition.
Collapse
|
37
|
Heidrich JE, Contos LM, Hunsaker LA, Deck LM, Vander Jagt DL. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacol 2004; 4:5. [PMID: 15096274 PMCID: PMC406500 DOI: 10.1186/1471-2210-4-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 04/19/2004] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol. RESULTS The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cyclohexyl)-2-pyrone (figure 1, structure 1) was administered to hamsters fed a high cholesterol diet supplemented with radiolabeled cholesterol ester. Hamsters were gavage fed 3H-labeled cholesteryl oleate along with inhibitor 1, 0-200 micromoles. Twenty-four hours later, hepatic and serum radioactive cholesterol levels were determined. The ED50 of inhibitor 1 for prevention of the uptake of labeled cholesterol derived from hydrolysis of labeled cholesteryl oleate was 100 micromoles. The toxicity of inhibitor 1 was investigated in a 30 day feeding trial. Inhibitor 1, 100 micromoles or 200 micromoles per day, was added to chow supplemented with 1% cholesterol and 0.5% cholic acid. Clinical chemistry urinalysis and tissue histopathology were obtained. No toxicity differences were noted between control and inhibitor supplemented groups. CONCLUSIONS Inhibitors of cholesterol esterase may be useful therapeutics for limiting cholesterol absorption.
Collapse
Affiliation(s)
- John E Heidrich
- Albuquerque Avian, Exotic, and Small Animal Clinic, 8414 Fourth Street, NW, Albuquerque, NM 87114, USA
| | - Linda M Contos
- Albuquerque Avian, Exotic, and Small Animal Clinic, 8414 Fourth Street, NW, Albuquerque, NM 87114, USA
| | - Lucy A Hunsaker
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 78131, USA
| | - Lorraine M Deck
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | - David L Vander Jagt
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 78131, USA
| |
Collapse
|
38
|
Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y. Catalog of 680 variations among eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes in the Japanese population. J Hum Genet 2003; 48:249-270. [PMID: 12721789 DOI: 10.1007/s10038-003-0021-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 03/06/2003] [Indexed: 11/25/2022]
Abstract
We screened DNAs from 48 Japanese individuals for single-nucleotide polymorphisms (SNPs) in eight cytochrome p450 ( CYP) genes, nine esterase genes, and two other genes by directly sequencing the relevant genomic regions in their entirety except for repetitive elements. This approach identified 607 SNPs and 73 insertion/deletion polymorphisms among the 19 genes examined. Of the 607 SNPs, 284 were identified in CYP genes, 302 in esterase genes, and 21 in the other two genes ( GGT1, and TGM1); overall, 37 SNPs were located in 5' flanking regions, 496 in introns, 55 in exons, and 19 in 3' flanking regions. These variants should contribute to studies designed to investigate possible correlations between genotypes and phenotypes of disease susceptibility or responsiveness to drug therapy.
Collapse
Affiliation(s)
- Susumu Saito
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Akihiro Sekine
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Saori Kawauchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shoko Higuchi
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Ogawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Laboratory for Genotyping, SNP Research Center, Institute of Physical and Chemical Research, Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
39
|
Wu MH, Chen P, Remo BF, Cook EH, Das S, Dolan ME. Characterization of multiple promoters in the human carboxylesterase 2 gene. PHARMACOGENETICS 2003; 13:425-35. [PMID: 12835618 DOI: 10.1097/00008571-200307000-00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carboxylesterases are a broad class of enzymes important in the detoxification of many ester- or amide-bond containing xenobiotics. They also activate analgesics, anticancer prodrugs, and other biologically active compounds, such as cocaine and heroin. The objective of this work was to identify the CES2 gene structure, complex 5' untranslated regions and three potential promoters for the initiation of transcription in different human tissues. Using bioinformatics and progressive reverse transcriptase-polymerase chain reaction, we found that the 5' untranslated region is more than 1100 bases longer than previously reported. Rapid amplification of cDNA ends showed three distinctive transcription start sites at -74, -629 and -1187. DNA fragments upstream of each of the three transcription start sites were found to be transcriptionally active in HepG2 cells. The distal promoter is active in both orientations, suggesting its potential role in the transcription of another gene, CGI-128, located immediately upstream to the distal promoter in the opposite direction with respect to CES2. Hybridization analyses showed that CES2 is highly expressed in the heart, skeletal muscle, colon, spleen, kidney and liver, but considerably less expressed in fetal tissues (e.g. fetal heart, kidney, spleen, and liver) and cancer cells. It is also evident that the distal promoter is responsible for low level expression of the gene in many tissues, whereas the other two promoters are tissue specific. These findings shed some light on CES2 gene regulation, a gene important in the metabolism of many drugs.
Collapse
Affiliation(s)
- Michael H Wu
- Section of Haematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637-1470, USA
| | | | | | | | | | | |
Collapse
|
40
|
Que AH, Novotny MV. Structural characterization of neutral oligosaccharide mixtures through a combination of capillary electrochromatography and ion trap tandem mass spectrometry. Anal Bioanal Chem 2003; 375:599-608. [PMID: 12638042 DOI: 10.1007/s00216-003-1766-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 12/12/2002] [Accepted: 12/17/2002] [Indexed: 11/27/2022]
Abstract
A CEC/ESI-MS/MS combined system has been developed for the separation and on-line structural analysis of neutral oligosaccharides. Various types of isomeric oligosaccharides were first successfully separated by CEC using polar monolithic columns, while the on-line tandem mass spectrometry has been explored to differentiate and elucidate the structures of isomeric oligosaccharides. The experimentally obtained tandem spectra usually provide sequence, branching, and linkage information. Oligosaccharide isomers with a different monomeric composition and branching showed different patterns of glycosidic linkage cleavage (B- and Y-ion series), allowing us to deduce their sequence and branching points. Isomers with different linkages were distinguished by identifying cross-ring fragment ions (A-ion series). While (1-->4) linkages yielded dominant (0,2)A ions, (1-->6) linkages showed an extensive and complete cross-ring cleavage series: (0,2)A, (0,3)A, and (0,4)A ions. Although the anomeric configurations and monosaccharide identification are rarely obtained from tandem MS, the relevant mixture components can be completely resolved with high-efficiency CEC columns featuring a polar functionality.
Collapse
Affiliation(s)
- Amy H Que
- Department of Chemistry, Indiana University, Bloomington, Indiana, IN 47405, USA
| | | |
Collapse
|
41
|
Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res 2002; 43:2017-30. [PMID: 12454261 DOI: 10.1194/jlr.r200013-jlr200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Carboxyl ester lipase (CEL), previously named cholesterol esterase or bile salt-stimulated (or dependent) lipase, is a lipolytic enzyme capable of hydrolyzing cholesteryl esters, tri-, di-, and mono-acylglycerols, phospholipids, lysophospholipids, and ceramide. The active site catalytic triad of serine-histidine-aspartate is centrally located within the enzyme structure and is partially covered by a surface loop. The carboxyl terminus of the protein regulates enzymatic activity by forming hydrogen bonds with the surface loop to partially shield the active site. Bile salt binding to the loop domain frees the active site for accessibility by water-insoluble substrates. CEL is synthesized primarily in the pancreas and lactating mammary gland, but the enzyme is also expressed in liver, macrophages, and in the vessel wall. In the gastrointestinal tract, CEL serves as a compensatory protein to other lipolytic enzymes for complete digestion and absorption of lipid nutrients. Importantly, CEL also participates in chylomicron assembly and secretion, in a mechanism mediated through its ceramide hydrolytic activity. Cell culture studies suggest a role for CEL in lipoprotein metabolism and oxidized LDL-induced atherosclerosis. Thus, this enzyme, which has a wide substrate reactivity and diffuse anatomic distribution, may have multiple functions in lipid and lipoprotein metabolism, and atherosclerosis.
Collapse
Affiliation(s)
- David Y Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | |
Collapse
|
42
|
Stoddard Hatch M, Brown WM, Deck JA, Hunsaker LA, Deck LM, Vander Jagt DL. Inhibition of yeast lipase (CRL1) and cholesterol esterase (CRL3) by 6-chloro-2-pyrones: comparison with porcine cholesterol esterase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:381-91. [PMID: 12007617 DOI: 10.1016/s0167-4838(01)00304-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, it was demonstrated that pancreatic cholesterol esterase is selectively inhibited by 6-chloro-2-pyrones with cyclic aliphatic substituents in the 3-position. Inhibition is reversible and is competitive with substrate. Pancreatic cholesterol esterase is a potential target for treatment of hypercholesterolemia. In the present study, yeast cholesterol esterase from Candida cylindracea (also called C. rugosa CRL3) was compared to porcine pancreatic cholesterol esterase for inhibition by a series of 3-alkyl- or 5-alkyl-6-chloro-2-pyrones. In addition, CRL3 was compared with the related yeast lipase CRL1. Inhibition of CRL3 by substituted 6-chloro-2-pyrones was competitive with binding of the substrate p-nitrophenyl butyrate. Inhibition constants ranged from 0.2 microM to >90 microM. Small changes in the alkyl group had profound effects on binding. The pattern of inhibition of CRL3 is quite distinct from that observed with porcine cholesterol esterase. Molecular modeling studies suggest that the orientation of binding of these inhibitors at the active site of CRL3 can vary but that the pyrone ring consistently occupies a position close to the active site serine. CRL1 is highly homologous to CRL3. Nevertheless, patterns of inhibition of CRL1 by substituted 6-chloro-2-pyrones differ markedly from patterns observed with CRL3. The substituted 6-chloro-2-pyrones are slowly hydrolyzed in the presence of CRL1 and are pseudosubstrates of CRL3, but are simple reversible inhibitors of pancreatic cholesterol esterase
Collapse
Affiliation(s)
- Mary Stoddard Hatch
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lindquist S, Bläckberg L, Hernell O. Human bile salt-stimulated lipase has a high frequency of size variation due to a hypervariable region in exon 11. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:759-67. [PMID: 11846777 DOI: 10.1046/j.0014-2956.2001.02666.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apparent molecular mass of human milk bile salt-stimulated lipase (BSSL) varies between mothers. The molecular basis for this is unknown, but indirect evidence has suggested the differences to reside in a region of repeats located in the C-terminal part of the protein. We here report that a polymorphism within exon 11 of the BSSL gene is the explanation for the molecular variants of BSSL found in milk. By Southern blot hybridization we analyzed the BSSL gene from mothers known to have BSSL of different molecular masses in their milk. A polymorphism was found within exon 11, previously shown to consist of 16 near identical repeats of 33 bp each. We detected deletions or, in one case, an insertion corresponding to the variation in molecular mass of the BSSL protein found in milk from the respective woman. Furthermore, we found that 56%, out of 295 individuals studied, carry deletions or insertions within exon 11 in one or both alleles of the BSSL gene. Hence, this is a hypervariable region and the current understanding that exon 11 in the human BSSL gene encodes 16 repeats is an oversimplification and needs to be revisited. Natural variation in the molecular mass of BSSL may have clinical implications.
Collapse
Affiliation(s)
- Susanne Lindquist
- Department of Clinical Sciences, Pediatrics, Umeå University, Sweden.
| | | | | |
Collapse
|
44
|
Huang Y, Mechref Y, Novotny MV. Microscale nonreductive release of O-linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal Chem 2001; 73:6063-9. [PMID: 11791581 DOI: 10.1021/ac015534c] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new beta-elimination-based procedure has been devised for a microscale release of O-linked oligosaccharides from glycoproteins. Unlike the conventional Carlson degradation, which leads to formation of alditols, the procedure reported here renders the reducing end intact. Conversion of the liberated oligosaccharides to glycosylamines in ammonia medium is followed by the production of the reducing oligosaccharides through the addition of boric acid. The quantitatively generated oligosaccharides with the reducing end can subsequently be derivatized with a fluorophoric reagent for capillary electrophoresis or, alternatively, analyzed through MALDI mass spectrometry. The microscale version of these chemical steps permits us to investigate structurally O-linked oligosaccharides at very low levels.
Collapse
Affiliation(s)
- Y Huang
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
45
|
Wallace TJ, Kodsi EM, Langston TB, Gergis MR, Grogan WM. Mutation of residues 423 (Met/Ile), 444 (Thr/Met), and 506 (Asn/Ser) confer cholesteryl esterase activity on rat lung carboxylesterase. Ser-506 is required for activation by cAMP-dependent protein kinase. J Biol Chem 2001; 276:33165-74. [PMID: 11429416 DOI: 10.1074/jbc.m105644200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis is used to identify amino acid residues that dictate reported differences in substrate specificity between rat hepatic neutral cytosolic cholesteryl ester hydrolase (hncCEH) and rat lung carboxylesterase (LCE), proteins differing by only 4 residues in their primary sequences. Beginning with LCE, the substitution Met(423) --> Ile(423) alone or in combination with other mutations increased activity with p-nitrophenylcaprylate (PNPC) relative to more hydrophilic p-nitrophenylacetate (PNPA), typical of hncCEH. The substitution Thr(444) --> Met(444) was necessary but not sufficient for expression of cholesteryl esterase activity in COS-7 cells. The substitution Asn(506) --> Ser(506), creating a potential phosphorylation site, uniformly increased activity with both PNPA and PNPC, was necessary but not sufficient for expression of cholesteryl esterase activity and conferred susceptibility to activation by cAMP-dependent protein kinase, a property of hncCEH. The 3 mutations in combination were necessary and sufficient for expression of cholesteryl esterase activity by the mutated LCE. The substitution Gln(186) --> Arg(186) selectively reduced esterase activity with PNPA and PNPC but was not required for cholesteryl esterase activity. Homology modeling from x-ray structures of acetylcholinesterases is used to propose three-dimensional models for hncCEH and LCE that provide insight into the effects of these mutations on substrate specificity.
Collapse
Affiliation(s)
- T J Wallace
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0614, USA
| | | | | | | | | |
Collapse
|
46
|
Lombardo D. Bile salt-dependent lipase: its pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:1-28. [PMID: 11514232 DOI: 10.1016/s1388-1981(01)00130-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- D Lombardo
- INSERM Unité 559, Faculté de Médecine-Timone, 27 Blv Jean Moulin, 13385 Cedex 05, Marseille, France.
| |
Collapse
|
47
|
Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson A. Evidence for specific ceramidase present in the intestinal contents of rats and humans. Lipids 2001; 36:807-12. [PMID: 11592731 DOI: 10.1007/s11745-001-0788-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A neutral ceramidase activity stimulated by bile salt was previously identified in the intestinal content. Recently, bile salt stimulated lipase (BSSL) was found to have ceramidase activity. It is unknown whether the ceramidase activity previously found is attributable to BSSL. To address this question, we compared the behaviors of high quaternary aminoethyl (HQ) anion exchange chromatography, the distributions, the stability, and the responses to lipase inhibitor between ceramidase and pancreatic BSSL. The proteins from whole small intestinal contents of humans and rats were precipitated by acetone and dissolved in 20 mM Tris buffer pH 8.2. These proteins had neutral ceramidase activity but not BSSL activity against p-nitrophenyl acetate. When the proteins were subject to HQ chromatography, two peaks of ceramidase activity were identified, which had acid and neutral pH optima, respectively. Neither of them had BSSL activity against p-nitrophenyl acetate. Western blot using BSSL antiserum failed to identify BSSL protein in the fractions with high neutral ceramidase activity. In rat intestinal tract, pancreatic BSSL activity was high in the duodenum and declined rapidly in the small intestine, whereas neutral ceramidase activity was low in the duodenum and maintained a high level until the distal part of the small intestine. In addition, orlistat, the inhibitor of lipase, abolished human BSSL activity against p-nitrophenyl acetate and slightly reduced its activity against ceramide but had no inhibitory effect on ceramidase activity isolated by HQ chromatography. In conclusion, we provide the evidence for a specific ceramidase other than pancreatic BSSL present in the intestinal content. The enzyme may play important roles in digestion of dietary sphingolipids.
Collapse
Affiliation(s)
- R D Duan
- Department of Cell Biology B, Biomedical Center, University of Lund, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Fält H, Hernell O, Bläckberg L. Do human bile salt stimulated lipase and colipase-dependent pancreatic lipase share a common heparin-containing receptor? Arch Biochem Biophys 2001; 386:188-94. [PMID: 11368341 DOI: 10.1006/abbi.2000.2071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bile salt stimulated lipase (BSSL), a lipolytic enzyme secreted with pancreatic juice and with human milk, is in concert with colipase-dependent pancreatic lipase, important for the intestinal digestion of dietary lipids. BSSL may also facilitate uptake of free cholesterol from the intestinal lumen, while colipase-dependent lipase has a similar role for fatty acids. According to this theory, the two lipases bind to the intestinal mucosa via a common heparin-involving receptor. In the present study, binding of the two lipases to heparin was explored in vitro using purified human lipases and heparin molecules varying in both chain length and charge density. Native, but not denatured, BSSL bound avidly to heparin and several of the heparin variants. In contrast, at physiologic salt concentration, colipase-dependent lipase did not bind to heparin. Thus, our data do not support the view that the two lipases share a common intestinal heparin-like receptor. Hence, it seems unlikely that such binding could be of physiologic relevance for colipase-dependent lipase, although for BSSL the data are supportive.
Collapse
Affiliation(s)
- H Fält
- Department of Medical Biosciences, Umeå University, Sweden
| | | | | |
Collapse
|
49
|
Landberg E, Huang Y, Strömqvist M, Mechref Y, Hansson L, Lundblad A, Novotny MV, Påhlsson P. Changes in glycosylation of human bile-salt-stimulated lipase during lactation. Arch Biochem Biophys 2000; 377:246-54. [PMID: 10845701 DOI: 10.1006/abbi.2000.1778] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bile-salt-stimulated lipase (BSSL) is an enzyme in human milk, which is important for the fat digestion in the newborn infant. BSSL is highly glycosylated and includes one site for N-glycosylation and several sites for O-glycosylation. BSSL has previously been found to express Lewis a, Lewis b, and Lewis x carbohydrate antigens. In this study, glycosylation of BSSL was studied at different times during lactation. BSSL was purified from milk collected individually from four donors at several different times during the first 6 months of lactation. The BSSL glycans were characterized through monosaccharide analysis, high-pH anion-exchange chromatography, matrix-assisted laser desorption-ionization mass spectrometry, and ELISA. Both total carbohydrate content and relative amount of sialic acid were higher in BSSL from the first lactation month as compared to BSSL from milk collected later in lactation. BSSL from the first lactation month also showed a different composition of sialylated O-linked glycans and the N-linked oligosaccharides consisted of lower amounts of fucosylated structures compared to later in lactation. We also found a gradual increase in the expression of the carbohydrate epitope Lewis x on BSSL throughout the lactation period. This study shows that glycosylation of BSSL is dependent on blood group phenotype of the donor and changes substantially during the lactation period.
Collapse
Affiliation(s)
- E Landberg
- Department of Biomedicine and Surgery, Linköping University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Madeyski K, Lidberg U, Bjursell G, Nilsson J. Characterization of the gorilla carboxyl ester lipase locus, and the appearance of the carboxyl ester lipase pseudogene during primate evolution. Gene 1999; 239:273-82. [PMID: 10548728 DOI: 10.1016/s0378-1119(99)00410-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study we report on the isolation and characterization of the gorilla carboxyl ester lipase gene, CEL, and the corresponding CEL pseudogene. We also report on the age of the CEL pseudogene. The gorilla CEL gene is 10.5kb long and comprises 11exons intervened by introns similar to the situation in man, mouse and rat. The encoded protein is 998amino acids long and includes a 23amino acid-long leader peptide. Comparison of the coding sequence, excluding exon 11, of CEL from gorilla and man reveals a 97% similarity. Exon 11, which encodes the characteristic proline rich repeats, contains 39 repeated units in gorilla compared to 16 in man. A truncated CEL pseudogene, with the same organization as that found in man, is also shown to be present in the gorilla genome. The gorilla CEL pseudogene is 4.9kb in length and consists of 5exons interrupted by introns. Southern analysis of the gorilla CEL locus shows that the locus is arranged in a similar way as in man with the functional CEL gene being the most 5' one. To bring further insight to the events involved in the rearrangement of the CEL locus, genomic Southern analyses were performed across several primates; Homo sapiens, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus and Macaca arctoides. Results presented show that the CEL gene duplication occurred prior to the separation of Hominidae (man, chimpanzee, gorilla and orangutan) from Old World monkeys (macaque). The deletion of the original CEL gene giving rise to the truncated version of the CEL gene seems, however, to be restricted to man and the great apes only.
Collapse
Affiliation(s)
- K Madeyski
- Department of Cell and Molecular Biology, Göteborg Universitet, Box 462, S-413 30, Göteborg, Sweden
| | | | | | | |
Collapse
|