1
|
Zhou Y, Chen J, Pu W, Cai N, Che B, Yang J, Wang M, Zhong S, Zuo X, Wang D, Wang Y, Zheng P, Sun J. Development of a growth-coupled selection platform for directed evolution of heme biosynthetic enzymes in Corynebacterium glutamicum. Front Bioeng Biotechnol 2023; 11:1236118. [PMID: 37654705 PMCID: PMC10465345 DOI: 10.3389/fbioe.2023.1236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Heme is an important tetrapyrrole compound, and has been widely applied in food and medicine industries. Although microbial production of heme has been developed with metabolic engineering strategies during the past 20 years, the production levels are relatively low due to the multistep enzymatic processes and complicated regulatory mechanisms of microbes. Previous studies mainly adopted the strategies of strengthening precursor supply and product transportation to engineer microbes for improving heme biosynthesis. Few studies focused on the engineering and screening of efficient enzymes involved in heme biosynthesis. Herein, a growth-coupled, high-throughput selection platform based on the detoxification of Zinc-protoporphyrin IX (an analogue of heme) was developed and applied to directed evolution of coproporphyrin ferrochelatase, catalyzing the insertion of metal ions into porphyrin ring to generate heme or other tetrapyrrole compounds. A mutant with 3.03-fold increase in k cat/K M was selected. Finally, growth-coupled directed evolution of another three key enzymes involved in heme biosynthesis was tested by using this selection platform. The growth-coupled selection platform developed here can be a simple and effective strategy for directed evolution of the enzymes involved in the biosynthesis of heme or other tetrapyrrole compounds.
Collapse
Affiliation(s)
- Yingyu Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jinxing Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mengmeng Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shasha Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xingtao Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
2
|
Zamarreño Beas J, Videira MAM, Karavaeva V, Lourenço FM, Almeida MR, Sousa F, Saraiva LM. In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase. Front Genet 2023; 14:1199357. [PMID: 37415606 PMCID: PMC10320005 DOI: 10.3389/fgene.2023.1199357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.
Collapse
Affiliation(s)
- Jordi Zamarreño Beas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Frederico M. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda R. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipa Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
3
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Ferrochelatase π-helix: Implications from examining the role of the conserved π-helix glutamates in porphyrin metalation and product release. Arch Biochem Biophys 2018; 644:37-46. [PMID: 29481781 DOI: 10.1016/j.abb.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 11/23/2022]
Abstract
Protoporphyrin ferrochelatase catalyzes the insertion of Fe2+ into protoporphyrin IX to form heme. To determine whether a conserved, active site π-helix contributes to the translocation of the metal ion substrate to the ferrochelatase-bound porphyrin substrate, the invariant π-helix glutamates were replaced with amino acids with non-negatively charged side chains, and the kinetic mechanisms of the generated variants were examined. Analysis of yeast wild-type ferrochelatase-, E314Q- and E318Q-catalyzed reactions, under multi- and single-turnover conditions, demonstrated that the mutations of the π-helix glutamates hindered both protoporphyrin metalation and release of the metalated porphyrin, by slowing each step by approximately 30-50%. Protoporphyrin metalation occurred with an apparent pKa of 7.3 ± 0.1, which was assigned to binding of Fe2+ by deprotonated Glu-314 and Glu-314-assisted Fe2+ insertion into the porphyrin ring. We propose that unwinding of the π-helix concomitant with the adoption of a protein open conformation positions the deprotonated Glu-314 to bind Fe2+ from the surface of the enzyme. Transition to the closed conformation, with π-helix winding, brings Glu-314-bound Fe2+ to the active site for incorporation into protoporphyrin.
Collapse
|
5
|
The coproporphyrin ferrochelatase of Staphylococcus aureus: mechanistic insights into a regulatory iron-binding site. Biochem J 2017; 474:3513-3522. [PMID: 28864672 PMCID: PMC5633918 DOI: 10.1042/bcj20170362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022]
Abstract
The majority of characterised ferrochelatase enzymes catalyse the final step of classical haem synthesis, inserting ferrous iron into protoporphyrin IX. However, for the recently discovered coproporphyrin-dependent pathway, ferrochelatase catalyses the penultimate reaction where ferrous iron is inserted into coproporphyrin III. Ferrochelatase enzymes from the bacterial phyla Firmicutes and Actinobacteria have previously been shown to insert iron into coproporphyrin, and those from Bacillus subtilis and Staphylococcus aureus are known to be inhibited by elevated iron concentrations. The work herein reports a Km (coproporphyrin III) for S. aureus ferrochelatase of 1.5 µM and it is shown that elevating the iron concentration increases the Km for coproporphyrin III, providing a potential explanation for the observed iron-mediated substrate inhibition. Together, structural modelling, site-directed mutagenesis, and kinetic analyses confirm residue Glu271 as being essential for the binding of iron to the inhibitory regulatory site on S. aureus ferrochelatase, providing a molecular explanation for the observed substrate inhibition patterns. This work therefore has implications for how haem biosynthesis in S. aureus is regulated by iron availability.
Collapse
|
6
|
De Maere H, Fraeye I, De Mey E, Dewulf L, Michiels C, Paelinck H, Chollet S. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages. Meat Sci 2015; 114:1-7. [PMID: 26686009 DOI: 10.1016/j.meatsci.2015.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
This study investigates the potential of producing red coloured dry fermented sausages without the addition of nitrite and/or nitrate. Therefore, the formation of zinc protoporphyrin IX (Zn(II)PPIX) as naturally occurring pigment, and the interrelated protoporphyrin IX (PPIX) and heme content were evaluated during nitrite-free dry fermented sausage production at different pH conditions. Zn(II)PPIX was only able to form in dry fermented sausages at pH conditions higher than approximately 4.9. Additionally, the presence of Zn(II)PPIX increased drastically at the later phase of the production process (up to day 177), confirming that in addition to pH, time is also a crucial factor for its formation. Similarly, PPIX also accumulated in the meat products at increased pH conditions and production times. In contrast, a breakdown of heme was observed. This breakdown was more gradual and independent of pH and showed no clear relationship with the formed amounts of Zn(II)PPIX and PPIX. A statistically significant relationship between Zn(II)PPIX formation and product redness was established.
Collapse
Affiliation(s)
- Hannelore De Maere
- Research Group for Technology and Quality of Animal Products, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium; Groupe ISA, Food Quality Laboratory, Boulevard Vauban 48, F-59046 Lille Cedex, France.
| | - Ilse Fraeye
- Research Group for Technology and Quality of Animal Products, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Eveline De Mey
- Research Group for Technology and Quality of Animal Products, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Lore Dewulf
- Research Group for Technology and Quality of Animal Products, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Chris Michiels
- Centre for Food and Microbial Technology, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 23 box 2457, B-3001 Leuven, Belgium
| | - Hubert Paelinck
- Research Group for Technology and Quality of Animal Products, Department M(2)S, member of Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Gebroeders De Smetstraat 1, B-9000 Ghent, Belgium
| | - Sylvie Chollet
- Groupe ISA, Food Quality Laboratory, Boulevard Vauban 48, F-59046 Lille Cedex, France
| |
Collapse
|
7
|
Mielcarek A, Blauenburg B, Miethke M, Marahiel MA. Molecular insights into frataxin-mediated iron supply for heme biosynthesis in Bacillus subtilis. PLoS One 2015; 10:e0122538. [PMID: 25826316 PMCID: PMC4380498 DOI: 10.1371/journal.pone.0122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.
Collapse
Affiliation(s)
- Andreas Mielcarek
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| | - Bastian Blauenburg
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| | - Marcus Miethke
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mohamed A. Marahiel
- Philipps-University Marburg, Department of Chemistry/Biochemistry, Marburg, Germany
| |
Collapse
|
8
|
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc Natl Acad Sci U S A 2015; 112:2210-5. [PMID: 25646457 DOI: 10.1073/pnas.1416285112] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.
Collapse
|
9
|
Bali S, Palmer DJ, Schroeder S, Ferguson SJ, Warren MJ. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1. Cell Mol Life Sci 2014; 71:2837-63. [PMID: 24515122 PMCID: PMC11113276 DOI: 10.1007/s00018-014-1563-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/19/2013] [Accepted: 01/10/2014] [Indexed: 02/05/2023]
Abstract
Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the "classical" route and instead use an "alternative" pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.
Collapse
Affiliation(s)
- Shilpa Bali
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Palmer
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| | - Stuart J. Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Martin J. Warren
- School of Biosciences, University of Kent, Kent, Canterbury, CT2 7NZ UK
| |
Collapse
|
10
|
Bali S, Rollauer S, Roversi P, Raux-Deery E, Lea SM, Warren MJ, Ferguson SJ. Identification and characterization of the 'missing' terminal enzyme for siroheme biosynthesis in α-proteobacteria. Mol Microbiol 2014; 92:153-63. [PMID: 24673795 PMCID: PMC4063343 DOI: 10.1111/mmi.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 11/27/2022]
Abstract
It has recently been shown that the biosynthetic route for both the d1 -haem cofactor of dissimilatory cd1 nitrite reductases and haem, via the novel alternative-haem-synthesis pathway, involves siroheme as an intermediate, which was previously thought to occur only as a cofactor in assimilatory sulphite/nitrite reductases. In many denitrifiers (which require d1 -haem), the pathway to make siroheme remained to be identified. Here we identify and characterize a sirohydrochlorin-ferrochelatase from Paracoccus pantotrophus that catalyses the last step of siroheme synthesis. It is encoded by a gene annotated as cbiX that was previously assumed to be encoding a cobaltochelatase, acting on sirohydrochlorin. Expressing this chelatase from a plasmid restored the wild-type phenotype of an Escherichia coli mutant-strain lacking sirohydrochlorin-ferrochelatase activity, showing that this chelatase can act in the in vivo siroheme synthesis. A ΔcbiX mutant in P. denitrificans was unable to respire anaerobically on nitrate, proving the role of siroheme as a precursor to another cofactor. We report the 1.9 Å crystal structure of this ferrochelatase. In vivo analysis of single amino acid variants of this chelatase suggests that two histidines, His127 and His187, are essential for siroheme synthesis. This CbiX can generally be identified in α-proteobacteria as the terminal enzyme of siroheme biosynthesis.
Collapse
Affiliation(s)
- Shilpa Bali
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford, OX1 3QU, UK
| | - Sarah Rollauer
- Sir William Dunn School of Pathology, University of OxfordSouth Parks Road, Oxford, OX1 3RE, UK
| | - Pietro Roversi
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford, OX1 3QU, UK
- Sir William Dunn School of Pathology, University of OxfordSouth Parks Road, Oxford, OX1 3RE, UK
| | | | - Susan M Lea
- Sir William Dunn School of Pathology, University of OxfordSouth Parks Road, Oxford, OX1 3RE, UK
| | - Martin J Warren
- School of Biosciences, University of KentCanterbury, Kent, CT2 7NJ, UK
| | - Stuart J Ferguson
- Department of Biochemistry, University of OxfordSouth Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
11
|
Hansson MD, Karlberg T, Söderberg CAG, Rajan S, Warren MJ, Al-Karadaghi S, Rigby SEJ, Hansson M. Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase. J Biol Inorg Chem 2010; 16:235-42. [DOI: 10.1007/s00775-010-0720-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
|
12
|
Layer G, Reichelt J, Jahn D, Heinz DW. Structure and function of enzymes in heme biosynthesis. Protein Sci 2010; 19:1137-61. [PMID: 20506125 DOI: 10.1002/pro.405] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tetrapyrroles like hemes, chlorophylls, and cobalamin are complex macrocycles which play essential roles in almost all living organisms. Heme serves as prosthetic group of many proteins involved in fundamental biological processes like respiration, photosynthesis, and the metabolism and transport of oxygen. Further, enzymes such as catalases, peroxidases, or cytochromes P450 rely on heme as essential cofactors. Heme is synthesized in most organisms via a highly conserved biosynthetic route. In humans, defects in heme biosynthesis lead to severe metabolic disorders called porphyrias. The elucidation of the 3D structures for all heme biosynthetic enzymes over the last decade provided new insights into their function and elucidated the structural basis of many known diseases. In terms of structure and function several rather unique proteins were revealed such as the V-shaped glutamyl-tRNA reductase, the dipyrromethane cofactor containing porphobilinogen deaminase, or the "Radical SAM enzyme" coproporphyrinogen III dehydrogenase. This review summarizes the current understanding of the structure-function relationship for all heme biosynthetic enzymes and their potential interactions in the cell.
Collapse
Affiliation(s)
- Gunhild Layer
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | | | | | | |
Collapse
|
13
|
Dailey TA, Boynton TO, Albetel AN, Gerdes S, Johnson MK, Dailey HA. Discovery and Characterization of HemQ: an essential heme biosynthetic pathway component. J Biol Chem 2010; 285:25978-86. [PMID: 20543190 DOI: 10.1074/jbc.m110.142604] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we identify a previously undescribed protein, HemQ, that is required for heme synthesis in Gram-positive bacteria. We have characterized HemQ from Bacillus subtilis and a number of Actinobacteria. HemQ is a multimeric heme-binding protein. Spectroscopic studies indicate that this heme is high spin ferric iron and is ligated by a conserved histidine with the sixth coordination site available for binding a small molecule. The presence of HemQ along with the terminal two pathway enzymes, protoporphyrinogen oxidase (HemY) and ferrochelatase, is required to synthesize heme in vivo and in vitro. Although the exact role played by HemQ remains to be characterized, to be fully functional in vitro it requires the presence of a bound heme. HemQ possesses minimal peroxidase activity, but as a catalase it has a turnover of over 10(4) min(-1). We propose that this activity may be required to eliminate hydrogen peroxide that is generated by each turnover of HemY. Given the essential nature of heme synthesis and the restricted distribution of HemQ, this protein is a potential antimicrobial target for pathogens such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tamara A Dailey
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
14
|
Davidson RE, Chesters CJ, Reid JD. Metal ion selectivity and substrate inhibition in the metal ion chelation catalyzed by human ferrochelatase. J Biol Chem 2009; 284:33795-9. [PMID: 19767646 DOI: 10.1074/jbc.m109.030205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protoporphyrin IX ferrochelatase (EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX. Ferrochelatase shows specificity, in vitro, for multiple metal ion substrates and exhibits substrate inhibition in the case of zinc, copper, cobalt, and nickel. Zinc is the most biologically significant of these; when iron is depleted, zinc porphyrins are formed physiologically. Examining the k(cat)/K(m)(app) ratios for zinc and iron reveals that, in vitro, zinc is the preferred substrate at all concentrations of porphyrin. This is not the observed biological specificity, where zinc porphyrins are abnormal; these data argue for the existence of a specific iron delivery mechanism in vivo. We demonstrate that zinc acts as an uncompetitive substrate inhibitor, suggesting that ferrochelatase acts via an ordered pathway. Steady-state characterization demonstrates that the apparent k(cat) depends on zinc and shows substrate inhibition. Although porphyrin substrate is not inhibitory, zinc inhibition is enhanced by increasing porphyrin concentration. This indicates that zinc inhibits by binding to an enzyme-product complex (EZnD(IX)) and is likely to be the second substrate in an ordered mechanism. Our analysis shows that substrate inhibition by zinc is not a mechanism that can promote specificity for iron over zinc, but is instead one that will reduce the production of all metalloporphyrins in the presence of high concentrations of zinc.
Collapse
Affiliation(s)
- Ruth E Davidson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
15
|
Hunter GA, Sampson MP, Ferreira GC. Metal ion substrate inhibition of ferrochelatase. J Biol Chem 2008; 283:23685-91. [PMID: 18593702 DOI: 10.1074/jbc.m803372200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferrochelatase catalyzes the insertion of ferrous iron into protoporphyrin IX to form heme. Robust kinetic analyses of the reaction mechanism are complicated by the instability of ferrous iron in aqueous solution, particularly at alkaline pH values. At pH 7.00 the half-life for spontaneous oxidation of ferrous ion is approximately 2 min in the absence of metal complexing additives, which is sufficient for direct comparisons of alternative metal ion substrates with iron. These analyses reveal that purified recombinant ferrochelatase from both murine and yeast sources inserts not only ferrous iron but also divalent cobalt, zinc, nickel, and copper into protoporphyrin IX to form the corresponding metalloporphyrins but with considerable mechanistic variability. Ferrous iron is the preferred metal ion substrate in terms of apparent k(cat) and is also the only metal ion substrate not subject to severe substrate inhibition. Substrate inhibition occurs in the order Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) and can be alleviated by the addition of metal complexing agents such as beta-mercaptoethanol or imidazole to the reaction buffer. These data indicate the presence of two catalytically significant metal ion binding sites that may coordinately regulate a selective processivity for the various potential metal ion substrates.
Collapse
Affiliation(s)
- Gregory A Hunter
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
16
|
Taketani S, Ishigaki M, Mizutani A, Uebayashi M, Numata M, Ohgari Y, Kitajima S. Heme Synthase (Ferrochelatase) Catalyzes the Removal of Iron from Heme and Demetalation of Metalloporphyrins. Biochemistry 2007; 46:15054-61. [DOI: 10.1021/bi701460x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shigeru Taketani
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Mutsumi Ishigaki
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Atsushi Mizutani
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Masashi Uebayashi
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Masahiro Numata
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Yoshiko Ohgari
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| | - Sakihito Kitajima
- Department of Biotechnology and Insect Biomedical Center, Kyoto Institute of Technology, Kyoto 606-8585, and Ito Ham Inc., Ibaraki 302-0104, Japan
| |
Collapse
|
17
|
Hansson MD, Karlberg T, Rahardja MA, Al-Karadaghi S, Hansson M. Amino Acid Residues His183 and Glu264 in Bacillus subtilis Ferrochelatase Direct and Facilitate the Insertion of Metal Ion into Protoporphyrin IX,. Biochemistry 2006; 46:87-94. [PMID: 17198378 DOI: 10.1021/bi061760a] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferrochelatase catalyzes the terminal step in the heme biosynthetic pathway, i.e., the incorporation of Fe(II) into protoporphyrin IX. Various biochemical and biophysical methods have been used to probe the enzyme for metal binding residues and the location of the active site. However, the location of the metal binding site and the path of the metal into the porphyrin are still disputed. Using site-directed mutagenesis on Bacillus subtilis ferrochelatase we demonstrate that exchange of the conserved residues His183 and Glu264 affects the metal affinity of the enzyme. We also present the first X-ray crystal structure of ferrochelatase with iron. Only a single iron was found in the active site, coordinated in a square pyramidal fashion by two amino acid residues, His183 and Glu264, and three water molecules. This iron was not present in the structure of a His183Ala modified ferrochelatase. The results strongly suggest that the insertion of a metal ion into protoporphyrin IX by ferrochelatase occurs from a metal binding site represented by His183 and Glu264.
Collapse
Affiliation(s)
- Mattias D Hansson
- Department of Biochemistry and Department of Molecular Biophysics, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC. Chelatases: distort to select? Trends Biochem Sci 2006; 31:135-42. [PMID: 16469498 PMCID: PMC2997100 DOI: 10.1016/j.tibs.2006.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/06/2005] [Accepted: 01/24/2006] [Indexed: 02/07/2023]
Abstract
Chelatases catalyze the insertion of a specific metal ion into porphyrins, a key step in the synthesis of metalated tetrapyrroles that are essential for many cellular processes. Despite apparent common structural features among chelatases, no general reaction mechanism accounting for metal ion specificity has been established. We propose that chelatase-induced distortion of the porphyrin substrate not only enhances the reaction rate by decreasing the activation energy of the reaction but also modulates which divalent metal ion is incorporated into the porphyrin ring. We evaluate the recently recognized interaction between ferrochelatase and frataxin as a way to regulate iron delivery to ferrochelatase, and thus iron and heme metabolism. We postulate that the ferrochelatase-frataxin interaction controls the type of metal ion that is delivered to ferrochelatase.
Collapse
Affiliation(s)
- Salam Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC. Chelatases: distort to select? Trends Biochem Sci 2006. [PMID: 16469498 DOI: 10.1016/j.tibs.2006.01.001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chelatases catalyze the insertion of a specific metal ion into porphyrins, a key step in the synthesis of metalated tetrapyrroles that are essential for many cellular processes. Despite apparent common structural features among chelatases, no general reaction mechanism accounting for metal ion specificity has been established. We propose that chelatase-induced distortion of the porphyrin substrate not only enhances the reaction rate by decreasing the activation energy of the reaction but also modulates which divalent metal ion is incorporated into the porphyrin ring. We evaluate the recently recognized interaction between ferrochelatase and frataxin as a way to regulate iron delivery to ferrochelatase, and thus iron and heme metabolism. We postulate that the ferrochelatase-frataxin interaction controls the type of metal ion that is delivered to ferrochelatase.
Collapse
Affiliation(s)
- Salam Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Hansson MD, Lindstam M, Hansson M. Crosstalk between metal ions in Bacillus subtilis ferrochelatase. J Biol Inorg Chem 2006; 11:325-33. [PMID: 16453119 DOI: 10.1007/s00775-006-0080-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Ferrochelatase (EC 4.99.1.1), the terminal enzyme in the heme biosynthetic pathway, catalyzes the insertion of Fe2+ into protoporphyrin IX, generating heme. In vitro assays have shown that all characterized ferrochelatases can also incorporate Zn2+ into protoporphyrin IX. Previously Zn2+ has been observed at an inner metal binding site close to the porphyrin binding site. Mg2+, which stimulates Zn2+ insertion by Bacillus subtilis ferrochelatase, has been observed at an outer metal binding site. Exchange of Glu272 to a serine eliminated the stimulative effect of Mg2+. We found that Zn2+ quenched the fluorescence of B. subtilis ferrochelatase and this quenching was used to estimate the metal affinity. Trp230 was identified as the intrinsic fluorophore responsible for the observed quenching pattern. The affinity for Zn2+ could be increased by incubating the ferrochelatase with the transition state analogue N-methyl mesoporphyrin IX, which reflected a close collaborative arrangement between the two substrates in the active site. We also showed that the affinity for Zn2+ was lowered in the presence of Mg2+ and that bound Zn2+ was released upon binding of Mg2+. In the ferrochelatase with a Glu272Ser modification, the interaction between Zn2+ and Mg2+ was abolished. It could thereby be demonstrated that the presence of a metal at one metal binding site affected the metal affinity of another, providing the enzyme with a site that regulates the enzymatic activity.
Collapse
Affiliation(s)
- Mattias D Hansson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | | | | |
Collapse
|
22
|
Shipovskov S, Karlberg T, Fodje M, Hansson MD, Ferreira GC, Hansson M, Reimann CT, Al-Karadaghi S. Metallation of the Transition-state Inhibitor N-methyl Mesoporphyrin by Ferrochelatase: Implications for the Catalytic Reaction Mechanism. J Mol Biol 2005; 352:1081-90. [PMID: 16140324 DOI: 10.1016/j.jmb.2005.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/27/2005] [Accepted: 08/03/2005] [Indexed: 11/20/2022]
Abstract
Insertion of metals into various tetrapyrroles is catalysed by a group of enzymes called chelatases, e.g. nickel, cobalt, magnesium and ferro-chelatase. It has been proposed that catalytic metallation includes distorting the porphyrin substrate by the enzyme towards a transition state-like geometry in which at least one of the pyrrole rings will be available for metal chelation. Here, we present a study of metal insertion into the transition-state inhibitor of protoporphyrin IX ferrochelatase, N-methyl mesoporphyrin (N-MeMP), by time-resolved crystallography and mass spectrometry with and without the presence of ferrochelatase. The results show that metallation of N-MeMP has a very limited effect on the conformation of the residues that participate in porphyrin and metal binding. These findings support theoretical data, which indicate that product release is controlled largely by the strain created by metal insertion into the distorted porphyrin. The results suggest that, similar to non-catalytic metallation of N-MeMP, the ferrochelatase-assisted metallation depends on the ligand exchange rate for the respective metal. Moreover, ferrochelatase catalyses insertion of Cu(II) and Zn(II) into N-MeMP with a rate that is about 20 times faster than non-enzymatic metallation in solution, suggesting that the catalytic strategy of ferrochelatase includes a stage of acceleration of the rate of ligand exchange for the metal substrate. The greater efficiency of N-MeMP metallation by Cu(II), as compared to Zn(II), contrasts with the K(m) values for Zn(II) (17 microM) and Cu(II) (170 microM) obtained for metallation of protoporphyrin IX. We suggest that this difference in metal specificity depends on the type of distortion imposed by the enzyme on protoporphyrin IX, which is different from the intrinsic non-planar distortion of N-MeMP. A mechanism of control of metal specificity by porphyrin distortion may be general for different chelatases, and may have common features with the mechanism of metal specificity in crown ethers.
Collapse
Affiliation(s)
- Stepan Shipovskov
- Department of Molecular Biophysics, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kwon SJ, Petri R, DeBoer AL, Schmidt-Dannert C. A High-Throughput Screen for Porphyrin Metal Chelatases: Application to the Directed Evolution of Ferrochelatases for Metalloporphyrin Biosynthesis. Chembiochem 2004; 5:1069-74. [PMID: 15300829 DOI: 10.1002/cbic.200400051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Porphyrins are of particular interest in a variety of applications ranging from biocatalysis and chemical synthesis to biosensor and electronic technologies as well as cancer treatment. Recently, we have developed a versatile system for the high-level production of porphyrins in engineered E. coli cells with the aim of diversifying substitution patterns and accessing porphyrin systems not readily available through chemical synthesis. However, this approach failed to produce significant amounts of the metalloporphyrin in vivo from overproduced protoporphyrin due to insufficient metal insertion. Therefore, we systematically assessed the activity of the B. subtilis ferrochelatase in vivo and in vitro. A true high-throughput-screening approach based on catalytic in vivo ferrochelatase activity was developed by using fluorescence-activated cell sorting (FACS). This assay was used to screen a library of 2.4 x 10(6) ferrochelatase mutants expressed in protoporphyrin-overproducing recombinant E. coli cells. Several selected protein variants were purified, and their improved catalytic activity was confirmed in vitro. In addition to ferrochelatase activity, metal transport into E. coli was identified as another limitation for in vivo heme overproduction. Overexpression of the metal transporter zupT as part of the assembled pathway increased the overall metalloporphyrin production twofold. This report represents the most exhaustive in vitro evolution study of a ferrochelatase and demonstrates the effectiveness of our novel high-throughput-screening system for directed evolution of ferrochelatases based on their catalytic activity.
Collapse
Affiliation(s)
- Seok Joon Kwon
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
24
|
Kwon SJ, de Boer AL, Petri R, Schmidt-Dannert C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl Environ Microbiol 2003; 69:4875-83. [PMID: 12902282 PMCID: PMC169110 DOI: 10.1128/aem.69.8.4875-4883.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to their spectroscopic properties porphyrins are of special interest for a variety of applications, ranging from drug development or targeting to material sciences and chemical and biological sensors. Since chemical syntheses are limited in terms of regio- and stereoselective functionalization of porphyrins, a biosynthetic approach with tailored enzyme catalysts offers a promising alternative. In this paper, we describe assembly of the entire heme biosynthetic pathway in a three-plasmid system and overexpression of the corresponding genes with Escherichia coli as a host. Without further optimization, this approach yielded remarkable porphyrin production levels, up to 90 micro mol/liter, which is close to industrial vitamin B(12) production levels. Different combinations of the genes were used to produce all major porphyrins that occur as intermediates in heme biosynthesis. All these porphyrin intermediates were obtained in high yields. The product spectrum was analyzed and quantified by using high-performance liquid chromatography. Intriguingly, although protoporphyrin IX could be produced at high levels, overexpressed Bacillus subtilis ferrochelatase could not convert this substrate appreciably into heme. However, further investigation clearly revealed a high level of expression of the ferrochelatase and a high level of activity in vitro. These results may indicate that heme has a regulatory impact on the iron uptake of E. coli or that the ferrochelatase is inactive in vivo due to an incompatible enzyme interaction.
Collapse
Affiliation(s)
- Seok Joon Kwon
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
25
|
Guégan R, Camadro JM, Saint Girons I, Picardeau M. Leptospira spp. possess a complete haem biosynthetic pathway and are able to use exogenous haem sources. Mol Microbiol 2003; 49:745-54. [PMID: 12864856 DOI: 10.1046/j.1365-2958.2003.03589.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unlike the spirochetes Borrelia burgdorferi and Treponema pallidum, Leptospira spp. contain genes encoding the enzymes for most biosynthetic pathways. In this study, we describe the first haem biosynthetic pathway genes in the order Spirochaetales. Sequence analysis of the L. interrogans genome shows that all haem biosynthetic genes (hemA, heml, hemB, hemC, hemE, hemN, hemY and hemH) are clustered in a 15 kb region of the CII secondary chromosome. Although no hemD homologue (encoding uroporphyrinogen III synthase) was found in the genome, the L. interrogans hemC gene (encoding porphobilinogen deaminase) was able to restore uroporphyrinogen III synthase activity in an Escherichia coli Delta hemD mutant, suggesting that the L. interrogans hemC gene encodes a bifunctional enzyme. Similarly, we show that the L. interrogans hemH gene (encoding ferrochelatase, the terminal enzyme of the haem biosynthetic pathway) is able to complement a ferrochelatase-defective E. coli Delta hemH mutant. Further investigation of ferrochelatases was undertaken in both saprophytic and pathogenic species of Leptospira. Ferrochelatase activity of 2.3 +/- 0.1 nmol h-1 mg-1 (in comparison with 0.25 +/- 0.02 nmol h-1 mg-1 in E. coli) was found in membrane fractions of pathogenic and saprophytic species, suggesting that ferrochelatase is a membrane-associated protein. Leptospira biflexa allelic exchange mutants containing an inactivated hemH gene were recovered only when exogenous haemin was present. The results indicate that haem is an essential growth factor for Leptospira, and that these spirochetes are capable of both de novo synthesis or uptake of haem. This may have implications in a better understanding of the pathogenesis of Leptospira.
Collapse
Affiliation(s)
- Rozenn Guégan
- Unité de Bactériologie Moléculaire et Médicale, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
26
|
Sato S, Wilson RJM. Proteobacteria-like ferrochelatase in the malaria parasite. Curr Genet 2003; 42:292-300. [PMID: 12589469 DOI: 10.1007/s00294-002-0360-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Revised: 11/26/2002] [Accepted: 11/27/2002] [Indexed: 10/25/2022]
Abstract
A gene encoding the heme biosynthetic enzyme ferrochelatase (FC) was found in the genomic DNA databases of Plasmodium spp. The predicted amino acid sequence of malarial FC is highly conserved and fairly well conserved by comparison with other orthologues. The FC genes of P. falciparum and P. yoelii are transcribed and the mRNAs are processed to encode polypeptides of the expected amino acid sequence. The cloned cDNA for the FC of P. falciparum successfully rescued a FC-null mutant of Escherichia coli, indicating that it encodes an active enzyme. Unlike eukaryotic FCs, the malarial enzyme lacks a characteristic extension at the C-terminus. In addition, the sequence of the malarial FC resembles proteobacterial orthologues rather than eukaryotic enzymes. Strikingly, the malarial FC lacks a bipartite presequence at its N-terminus, unlike delta-aminolevulinic acid dehydratase of the same organism. This suggests an unusual intracellular distribution of heme biosynthetic enzymes, involving multiple subcellular compartments.
Collapse
Affiliation(s)
- Shigeharu Sato
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, NW7 1AA, London, UK.
| | | |
Collapse
|
27
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
28
|
Abstract
Enterococcus faecalis cells cannot synthesize porphyrins and do not rely on heme for growth but can take up heme and use it to synthesize heme proteins. We recently described a cytochrome bd in E. faecalis strain V583 and here report the identification of a chromosomal gene, katA, encoding a heme-containing cytoplasmic catalase. The 54-kDa KatA polypeptide shows sequence similarity to members of the family of monofunctional catalases. A hexahistidyl-tagged version of the catalase was purified, and major characteristics of the enzyme were determined. It contains one protoheme IX group per KatA polypeptide. Catalase activity was detected only in E. faecalis cells grown in the presence of heme in the medium; about 2 and 10 micro M hemin was required for half-maximal and maximal production of catalase, respectively. Our finding of a catalase whose synthesis is dependent on the acquisition of heme in the opportunistic pathogen E. faecalis might be of clinical importance. Studies of cellular heme transport and heme protein assembly and in vivo synthesis of metalloprotein analogs for biotechnological applications are impeded by the lack of experimental systems. We conclude that the E. faecalis cell potentially provides such a desired system.
Collapse
Affiliation(s)
- Lena Frankenberg
- Department of Cell and Organism Biology, Lund University, Sweden.
| | | | | |
Collapse
|
29
|
Olsson U, Billberg A, Sjövall S, Al-Karadaghi S, Hansson M. In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway. J Bacteriol 2002; 184:4018-24. [PMID: 12081974 PMCID: PMC135158 DOI: 10.1128/jb.184.14.4018-4024.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Accepted: 04/26/2002] [Indexed: 11/20/2022] Open
Abstract
Ferrochelatase (EC 4.99.1.1) catalyzes the last reaction in the heme biosynthetic pathway. The enzyme was studied in the bacterium Bacillus subtilis, for which the ferrochelatase three-dimensional structure is known. Two conserved amino acid residues, S54 and Q63, were changed to alanine by site-directed mutagenesis in order to detect any function they might have. The effects of these changes were studied in vivo and in vitro. S54 and Q63 are both located at helix alpha3. The functional group of S54 points out from the enzyme, while Q63 is located in the interior of the structure. None of these residues interact with any other amino acid residues in the ferrochelatase and their function is not understood from the three-dimensional structure. The exchange S54A, but not Q63A, reduced the growth rate of B. subtilis and resulted in the accumulation of coproporphyrin III in the growth medium. This was in contrast to the in vitro activity measurements with the purified enzymes. The ferrochelatase with the exchange S54A was as active as wild-type ferrochelatase, whereas the exchange Q63A caused a 16-fold reduction in V(max). The function of Q63 remains unclear, but it is suggested that S54 is involved in substrate reception or delivery of the enzymatic product.
Collapse
Affiliation(s)
- Ulf Olsson
- Department of Biochemistry, Lund University, Sweden
| | | | | | | | | |
Collapse
|
30
|
Abstract
The terminal enzyme of heme biosynthesis, ferrochelatase (EC 4.99.1.1), catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme. Prior to the present work, [2Fe-2S] clusters have been identified and characterized in animal ferrochelatases but not in plant or prokaryotic ferrochelatases. Herein we present evidence that ferrochelatases from the bacteria Caulobacter crescentus and Mycobacterium tuberculosis possess [2Fe-2S] clusters. The enzyme from C. crescentus is a homodimeric, membrane-associated protein while the enzyme from M. tuberculosis is monomeric and soluble. The clusters of the C. crescentus and M. tuberculosis ferrochelatases are ligated by four cysteines but possess ligand spacings that are unlike those of any previously characterized [2Fe-2S] cluster-containing protein, including the ferrochelatase of the yeast Schizosaccharomyces pombe. Thus, the microbial ferrochelatases represent a new group of [2Fe-2S] cluster-containing proteins.
Collapse
Affiliation(s)
- Tamara A Dailey
- Department of Microbiology, Center for Metalloenzyme Studies, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602-7229, USA
| | | |
Collapse
|
31
|
Grzybowska E, Góra M, Plochocka D, Rytka J. Saccharomyces cerevisiae ferrochelatase forms a homodimer. Arch Biochem Biophys 2002; 398:170-8. [PMID: 11831847 DOI: 10.1006/abbi.2001.2730] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferrochelatase, the last enzyme of the heme biosynthetic pathway, has for years been considered to be active as a monomer. The crystal structure of Bacillus subtilis ferrochelatase confirmed its monomeric structure. However, animal ferrochelatase was found to form a functional dimer. Data presented here indicate that ferrochelatase from the yeast Saccharomyces cerevisiae is also dimeric. Following two-hybrid studies that had shown an interaction of two ferrochelatase molecules, we employed several different, complementary approaches, such as chemical crosslinking, affinity chromatography, and complementation analysis, to prove that in the yeast cells ferrochelatase forms an active dimer. We have isolated a double mutant, hem15D246V/Y248F, which is probably dimerization-defective. We propose a structural model of yeast ferrochelatase, based on the known structure of the human enzyme, which helps us to understand the differences in dimerization between the wild-type and mutant proteins.
Collapse
Affiliation(s)
- Ewa Grzybowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, Warsaw, 02-106, Poland
| | | | | | | |
Collapse
|
32
|
Almirón M, Martínez M, Sanjuan N, Ugalde RA. Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun 2001; 69:6225-30. [PMID: 11553564 PMCID: PMC98755 DOI: 10.1128/iai.69.10.6225-6230.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2001] [Accepted: 06/25/2001] [Indexed: 11/20/2022] Open
Abstract
Brucella spp. are pathogenic bacteria that cause brucellosis, an animal disease which can also affect humans. Although understanding the pathogenesis is important for the health of animals and humans, little is known about virulence factors associated with it. In order for chronic disease to be established, Brucella spp. have developed the ability to survive inside phagocytes by evading cell defenses. It hides inside vacuoles, where it then replicates, indicating that it has an active metabolism. The purpose of this work was to obtain better insight into the intracellular metabolism of Brucella abortus. During a B. abortus genomic sequencing project, a clone coding a putative gene homologous to hemH was identified and sequenced. The amino acid sequence revealed high homology to members of the ferrochelatase family. A knockout mutant displayed auxotrophy for hemin, defective intracellular survival inside J774 and HeLa cells, and lack of virulence in BALB/c mice. This phenotype was overcome by complementing the mutant strain with a plasmid harboring wild-type hemH. These data demonstrate that B. abortus synthesizes its own heme and also has the ability to use an external source of heme; however, inside cells, there is not enough available heme to support its intracellular metabolism. It is concluded that ferrochelatase is essential for the multiplication and intracellular survival of B. abortus and thus for the establishment of chronic disease as well.
Collapse
Affiliation(s)
- M Almirón
- Instituto de Investigaciones Biotecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Sellers VM, Wu CK, Dailey TA, Dailey HA. Human ferrochelatase: characterization of substrate-iron binding and proton-abstracting residues. Biochemistry 2001; 40:9821-7. [PMID: 11502175 DOI: 10.1021/bi010012c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.
Collapse
Affiliation(s)
- V M Sellers
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | |
Collapse
|
34
|
Wang KF, Dailey TA, Dailey HA. Expression and characterization of the terminal heme synthetic enzymes from the hyperthermophile Aquifex aeolicus. FEMS Microbiol Lett 2001; 202:115-9. [PMID: 11506917 DOI: 10.1111/j.1574-6968.2001.tb10789.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The terminal two heme biosynthetic pathway enzymes, protoporphyrinogen oxidase and ferrochelatase, of the hyperthermophilic bacterium Aquifex aeolicus have been expressed in Escherichia coli, purified to homogeneity, and biochemically characterized. Ferrochelatase and protoporphyrinogen oxidase of this organism are both monomeric, as was found for the corresponding enzymes of Bacillus subtilis. However, unlike the B. subtilis proteins, both A. aeolicus enzymes are membrane-associated. Both proteins have temperature optima over 60 degrees C. This is the first demonstration of functional heme biosynthetic enzymes in an extreme thermophilic bacterium.
Collapse
Affiliation(s)
- K F Wang
- Department of Microbiology, University of Georgia, Athens, GA 30602-7229, USA
| | | | | |
Collapse
|
35
|
Abstract
Ferrochelatase with an Mr of 42,700 Da and a pI of 7.35 has been purified to homogeneity from chironomidae larvae. The activity of the enzyme reached maximum at pH 7.8 and decreased with the increase of pH. The enzyme activity varied with temperature and showed maximum activity around 37 degrees C. The purified enzyme was active towards protoporphyrin but inactive towards other porphyrins. The specific enzyme activity of ferrochelatase from chironomidae is about 10-fold higher than that of the rat. Electrophoresis of the purified fractions shows that the enzyme contains only one single polypeptide. The soluble ferrochelatase contained one mole of iron in each mole of the enzyme. The N-terminal sequence analysis of the enzyme shows a high percentage of conserved regions of the enzyme among other species. The enzyme properties are similar to those of the mammalian ferrochelatases except with slightly higher specific activity. Chironomidae ferrochelatase appeared to be more heat resistant and less susceptible than its mammalian equivalent to inhibition by lead.
Collapse
Affiliation(s)
- Y K Leung
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin
| | | |
Collapse
|
36
|
Abstract
Antibody molecules elicited with rationally designed transition-state analogs catalyze numerous reactions, including many that cannot be achieved by standard chemical methods. Although relatively primitive when compared with natural enzymes, these catalysts are valuable tools for probing the origins and evolution of biological catalysis. Mechanistic and structural analyses of representative antibody catalysts, generated with a variety of strategies for several different reaction types, suggest that their modest efficiency is a consequence of imperfect hapten design and indirect selection. Development of improved transition-state analogs, refinements in immunization and screening protocols, and elaboration of general strategies for augmenting the efficiency of first-generation catalytic antibodies are identified as evident, but difficult, challenges for this field. Rising to these challenges and more successfully integrating programmable design with the selective forces of biology will enhance our understanding of enzymatic catalysis. Further, it should yield useful protein catalysts for an enhanced range of practical applications in chemistry and biology.
Collapse
Affiliation(s)
- D Hilvert
- Laboratorium für Organische Chemie, Swiss Federal Institute of Technology (ETH), Universitätstrasse 16, 8092 Zurich, Switzerland.
| |
Collapse
|
37
|
Lecerof D, Fodje M, Hansson A, Hansson M, Al-Karadaghi S. Structural and mechanistic basis of porphyrin metallation by ferrochelatase. J Mol Biol 2000; 297:221-32. [PMID: 10704318 DOI: 10.1006/jmbi.2000.3569] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferrochelatase, the enzyme catalyzing metallation of protoporphyrin IX at the terminal step of heme biosynthesis, was co-crystallized with an isomer mixture of the potent inhibitor N-methylmesoporphyrin (N-MeMP). The X-ray structure revealed the active site of the enzyme, to which only one of the isomers was bound, and for the first time allowed characterization of the mode of porphyrin macrocycle distortion by ferrochelatase. Crystallization of ferrochelatase and N-MeMP in the presence of Cu(2+) leads to metallation and demethylation of N-MeMP. A mechanism of porphyrin distortion is proposed, which assumes that the enzyme holds pyrrole rings B, C and D in a vice-like grip and forces a 36 degrees tilt on ring A.
Collapse
Affiliation(s)
- D Lecerof
- Department of Molecular Biophysics, Lund University, Sweden
| | | | | | | | | |
Collapse
|
38
|
Burden AE, Wu C, Dailey TA, Busch JL, Dhawan IK, Rose JP, Wang B, Dailey HA. Human ferrochelatase: crystallization, characterization of the [2Fe-2S] cluster and determination that the enzyme is a homodimer. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1435:191-7. [PMID: 10561552 DOI: 10.1016/s0167-4838(99)00196-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Previously we have demonstrated that the mammalian enzyme is associated with the inner surface of the inner mitochondrial membrane and contains a nitric oxide sensitive [2Fe-2S] cluster that is coordinated by four Cys residues whose spacing in the primary sequence is unique to animal ferrochelatase. We report here the characterization and crystallization of recombinant human ferrochelatase with an intact [2Fe-2S] cluster. Gel filtration chromatography and dynamic light scattering measurements revealed that the purified recombinant human ferrochelatase in detergent solution is a homodimer. EPR redox titrations of the enzyme yield a midpoint potential of -453+/-10 mV for the [2Fe-2S] cluster. The form of the protein that was crystallized has a single Arg to Leu substitution. This mutation has no detectable effect on enzyme activity but is critical for crystallization. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell constants of a=93.5 A, b=87.7 A, and c=110.2 A. There are two molecules in the asymmetric unit and the crystals diffract to better than 2.0 A resolution. The Fe to Fe distance of the [2Fe-2S] cluster is calculated to be 2.7 A based upon the Bijvoet difference Patterson map.
Collapse
Affiliation(s)
- A E Burden
- Department of Microbiology, Center for Metalloenzyme Studies, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Góra M, Rytka J, Labbe-Bois R. Activity and cellular location in Saccharomyces cerevisiae of chimeric mouse/yeast and Bacillus subtilis/yeast ferrochelatases. Arch Biochem Biophys 1999; 361:231-40. [PMID: 9882451 DOI: 10.1006/abbi.1998.0990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a series of chimeric yeast/mouse and yeast/Bacillus subtilis ferrochelatase genes in order to investigate domains of the ferrochelatase that are important for activity and/or association with the membrane. These genes were expressed in a Saccharomyces cerevisiae mutant in which the endogenous ferrochelatase gene (HEM15) had been deleted, and the phenotypes of the transformants were characterized. Exchanging the approximately 40-amino-acid C-terminus between the yeast and mouse ferrochelatases caused a total loss of activity and the hybrid proteins were unstable when overproduced in Escherichia coli. The water-soluble ferrochelatase of B. subtilis did not complement the yeast mutant, although a large amount of active protein accumulated in the cytosol. Addition of the N-terminal leader sequence of yeast ferrochelatase to the B. subtilis enzyme targeted the fusion protein to mitochondria, but both the precursor and the mature forms of the enzyme were inactive in vivo and had residual activity when measured in vitro. An internal approximately 45-amino-acid segment located at the N-terminus of yeast ferrochelatase was identified, which, when replaced with the corresponding 30-amino-acid segment of the B. subtilis enzyme, caused the yeast enzyme to be located in the mitochondrial matrix as a soluble protein. The fusion protein was inactive in vivo and had residual activity in vitro. We speculate that this segment, which shows the greatest variability between species, is responsible for the association of the enzyme with the membrane.
Collapse
Affiliation(s)
- M Góra
- Institute of Biochemistry and Biophysics, Polish Academy of Science, 5A Pawinskiego Street, Warsaw, 02-106, Poland
| | | | | |
Collapse
|
40
|
Jensen PE, Gibson LC, Hunter CN. Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocystis PCC6803. Biochem J 1998; 334 ( Pt 2):335-44. [PMID: 9716491 PMCID: PMC1219695 DOI: 10.1042/bj3340335] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The I, D and H subunits (ChlI, ChlD and ChlH respectively) of the magnesium protoporphyrin IX chelatase from Synechocystis have been purified to homogeneity as a result of the overexpression of the encoding genes in Escherichia coli and the production of large quantities of histidine-tagged proteins. These subunits have been used in an initial investigation of the biochemical and kinetic properties of the enzyme. The availability of pure ChlI, ChlD and ChlH has allowed us to estimate the relative concentrations of the three protein components required for optimal activity, and to investigate the dependence of chelatase activity on the concentrations of MgCl2, ATP and protoporphyrin IX. It was found that, whereas ChlD and ChlH are likely to be monomeric, ChlI can aggregate in an ATP-dependent manner, changing from a dimeric to an octameric structure. Subunit titration assays suggest an optimal ratio of ChlI, ChlD and ChlH of 2:1:4 respectively. However, the dependence of chelatase activity on increasing concentrations of ChlI and ChlH with respect to ChlD suggests that these two subunits, at least in vitro, behave as substrates in their interaction with ChlD. Mg chelation could not be detected unless the Mg2+ concentration exceeded the ATP concentration, suggesting at least two requirements for Mg2+, one as a component of MgATP2-, the other as the chelated metal. The steady-state kinetic parameters were determined from continuous assays; the Km values for protoporphyrin, MgCl2 and ATP were 1.25 microM, 4.9 mM and 0.49 mM respectively. The rate dependence of Mg2+ was clearly sigmoidal with a Hill coefficient of 3, suggesting positive co-operativity. Initiating the reaction by the addition of one of the substrates in these continuous assays resulted in a significant lag period of at least 10 min before the linear production of Mg protoporphyrin. This lag was significantly decreased by preincubating ChlI and ChlD with ATP and MgCl2, and by mixing it with ChlH that had been preincubated with protoporphyrin IX, ATP and MgCl2. This suggests not only a close MgATP2--dependent interaction between ChlI and ChlD but also an interaction between ChlH and the protoporphyrin substrate that also is stimulated by ATP and MgCl2.
Collapse
Affiliation(s)
- P E Jensen
- Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
41
|
Arnould S, Camadro JM. The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci U S A 1998; 95:10553-8. [PMID: 9724741 PMCID: PMC27932 DOI: 10.1073/pnas.95.18.10553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protoporphyrinogen oxidase (EC 1-3-3-4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the betaalphabeta ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.
Collapse
Affiliation(s)
- S Arnould
- Laboratoire de Biochimie des Porphyrines, Département de Microbiologie, Institut Jacques Monod, Unité Mixte de Recherche 7592 Centre National de la Recherche Scientifique- Université Paris 7-Université Paris 6, 2 Place Jussieu, F-7525, France
| | | |
Collapse
|
42
|
Chow KS, Singh DP, Walker AR, Smith AG. Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:531-41. [PMID: 9753778 DOI: 10.1046/j.1365-313x.1998.00235.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ferrochelatase is the last enzyme of haem biosynthesis. We have isolated 27 independent ferrochelatase cDNAs from Arabidopsis thaliana by functional complementation of a yeast mutant. Twenty-two of these cDNAs were similar to a previously isolated clone, AF3, and although they varied in length at the 5' and 3' ends, their nucleotide sequences were identical, indicating that they were derived from the same gene (ferrochelatase-I). The remaining five cDNAs all encoded a separate ferrochelatase isoform (ferrochelatase-II), which was 69% identical at the amino acid level to ferrochelatase-I. Using RFLP analysis in recombinant inbred lines, the ferrochelatase-I gene was mapped to chromosome V and that for ferrochelatase-II to chromosome II. Northern analysis showed that both ferrochelatase genes are expressed in leaves, stems and flowers, and expression in the leaves is higher in the light than in the dark. However, in roots only ferrochelatase-I transcripts were detected. High levels of sucrose stimulated expression of ferrochelatase-I, but had no effect, or repressed slightly, the expression of the ferrochelatase-II isoform. Import experiments into isolated chloroplasts and mitochondria showed that the ferrochelatase-II gene encodes a precursor which is imported solely into the chloroplast, in contrast to ferrochelatase-I which is targeted to both organelles. The significance of these results for haem biosynthesis and the production of haemoproteins, both within the plant cell and in different plant tissues, is discussed.
Collapse
Affiliation(s)
- K S Chow
- Department of Plant Sciences, University of Cambridge, UK
| | | | | | | |
Collapse
|
43
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
44
|
Al-Karadaghi S, Hansson M, Nikonov S, Jönsson B, Hederstedt L. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure 1997; 5:1501-10. [PMID: 9384565 DOI: 10.1016/s0969-2126(97)00299-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The metallation of closed ring tetrapyrroles resulting in the formation of hemes, chlorophylls and vitamin B12 is catalyzed by specific enzymes called chelatases. Ferrochelatase catalyzes the terminal step in heme biosynthesis by inserting ferrous ion into protoporphyrin IX by a mechanism that is poorly understood. Mutations in the human gene for ferrochelatase can result in the disease erythropoietic protoporphyria, and a further understanding of the mechanism of this enzyme is therefore of clinical interest. No three-dimensional structure of a tetrapyrrole metallation enzyme has been available until now. RESULTS The three-dimensional structure of Bacillus subtilis ferrochelatase has been determined at 1.9 A resolution by the method of multiple isomorphous replacement. The structural model contains 308 of the 310 amino acid residues of the protein and 198 solvent molecules. The polypeptide is folded into two similar domains each with a four-stranded parallel beta sheet flanked by alpha helices. Structural elements from both domains build up a cleft, which contains several amino acid residues that are invariant in ferrochelatases from different organisms. In crystals soaked with gold and cadmium salt solutions, the metal ion was found to be coordinated to the conserved residue His 183, which is located in the cleft. This histidine residue has previously been suggested to be involved in ferrous ion binding. CONCLUSIONS Ferrochelatase seems to have a structurally conserved core region that is common to the enzyme from bacteria, plants and mammals. We propose that porphyrin binds in the identified cleft; this cleft also includes the metal-binding site of the enzyme. It is likely that the structure of the cleft region will have different conformations upon substrate binding and release.
Collapse
Affiliation(s)
- S Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, S-221 00, Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
46
|
Schiött T, Throne-Holst M, Hederstedt L. Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. J Bacteriol 1997; 179:4523-9. [PMID: 9226261 PMCID: PMC179287 DOI: 10.1128/jb.179.14.4523-4529.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochromes of the c type contain covalently bound heme. In bacteria, they are located on the outside of the cytoplasmic membrane. Cytochrome c synthesis involves export of heme and apocytochrome across the cytoplasmic membrane followed by ligation of heme to the polypeptide. Using radioactive protoheme IX produced in Escherichia coli, we show that Bacillus subtilis can use heme from the growth medium for cytochrome c synthesis. The B. subtilis ccdA gene encodes a 26-kDa integral membrane protein which is required for cytochrome c synthesis (T. Schiött et al., J. Bacteriol. 179:1962-1973, 1997). In this work, we analyzed the stage at which cytochrome c synthesis is blocked in a ccdA deletion mutant. The following steps were found to be normal in the mutant: (i) transcription and translation of cytochrome c structural genes, (ii) translocation of apocytochrome across the cytoplasmic membrane, and (iii) heme transport from the cytoplasm to cytochrome polypeptide on the outer side of the cytoplasmic membrane. It is concluded that CcdA is required for a late step in the cytochrome c synthesis pathway.
Collapse
Affiliation(s)
- T Schiött
- Department of Microbiology, Lund University, Sweden
| | | | | |
Collapse
|
47
|
|
48
|
Gora M, Grzybowska E, Rytka J, Labbe-Bois R. Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses. J Biol Chem 1996; 271:11810-6. [PMID: 8662602 DOI: 10.1074/jbc.271.20.11810] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the insertion of ferrous iron into protoporphyrin, the terminal step in protoheme biosynthesis. The functional/structural roles of 10 invariant amino acid residues were investigated by site-directed mutagenesis in the yeast Saccharomyces cerevisiae ferrochelatase. The mutant enzymes were expressed in a yeast strain lacking the ferrochelatase gene HEM15 and in Escherichia coli. The kinetic parameters of the mutant enzymes were determined for the enzymes associated with the yeast membranes and the enzymes in the bacterial soluble fraction. They were compared with the in vivo functioning of the mutant enzymes. The main conclusions are the following. Glu-314 is critical for catalysis, and we suggest that it is the base responsible for abstracting the N-pyrrole proton(s). His-235 is essential for metal binding. Asp-246 and Tyr-248 are also involved in metal binding in a synergistic manner. The Km for protoporphyrin was also increased in the H235L, D246A, and Y248L mutants, suggesting that the binding sites of the two substrates are not independent of each other. The R87A, Y95L, Q111E, Q273E, W282L, and F308A mutants had 1.2-2-fold increased Vm and 4-10-fold increased Km values for protoporphyrin, but the amount of heme made in vivo was 10-100% of the normal value. These mutations probably affected the geometry of the active center, resulting in improper positioning of protoporphyrin.
Collapse
Affiliation(s)
- M Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
49
|
Dailey HA, Dailey TA. Protoporphyrinogen oxidase of Myxococcus xanthus. Expression, purification, and characterization of the cloned enzyme. J Biol Chem 1996; 271:8714-8. [PMID: 8621504 DOI: 10.1074/jbc.271.15.8714] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4) catalyzes the six electron oxidation of protoporphyrinogen IX to protoporphyrin IX. The enzyme from the bacterium Myxococcus xanthus has been cloned, expressed, purified, and characterized. The protein has been expressed in Escherichia coli using a Tac promoter-driven expression plasmid and purified to apparent homogeneity in a rapid procedure that yields approximately 10 mg of purified protein per liter of culture. Based upon the deduced amino acid sequence the molecular weight of a single subunit is 49,387. Gel permeation chromatography in the presence of 0.2% n-octyl-beta-D-glucopyranoside yields a molecular weight of approximately 100,000 while SDS gel electrophoresis shows a single band at 50,000. The native enzyme is, thus, a homodimer. The purified protein contains a non-covalently bound FAD but no detectable redox active metal. The M. xanthus enzyme utilizes protoporphyrinogen IX, but not coproporphyrinogen III, as substrate and produces 3 mol of H2O2/mol of protoporphyrin. The apparent Km and kcat for protoporphyrinogen in assays under atmospheric concentrations of oxygen are 1.6 microM and 5.2 min-1, respectively. The diphenyl ether herbicide acifluorfen at 1 microM strongly inhibits the enzyme's activity.
Collapse
Affiliation(s)
- H A Dailey
- Department of Microbiology, University of Georgia, Athens, 30602-2605, USA
| | | |
Collapse
|
50
|
Góra M, Chaciñska A, Rytka J, Labbe-Bois R. Isolation and functional characterization of mutant ferrochelatases in Saccharomyces cerevisiae. Biochimie 1996; 78:144-52. [PMID: 8818224 DOI: 10.1016/0300-9084(96)82647-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the incorporation of ferrous iron into protoporphyrin, the last step in protoheme biosynthesis. It is encoded by the HEM15 gene in the yeast Saccharomyces cerevisiae. Five hem15 mutants causing defective heme synthesis and protoporphyrin accumulation were investigated. The mutations were identified by sequencing the mutant hem15 alleles amplified in vitro from mutant genomic DNA. A single nucleotide change, causing an amino acid substitution, was found in each mutant. The substitution L62F caused a five-fold increase in Vmax and 32-fold and four-fold increases in the KM's for protoporphyrin and metal. Replacements of the conserved G47 by S and S102 by F increased the KM for protoporphyrin 10-fold without affecting the affinity for metal or enzyme activity. Two amino acid changes, L205P and P221L, produced a thermosensitive phenotype. In vivo heme synthesis, the amount of immunodetected protein, and ferrochelatase activity measured in vitro were more affected in cells grown at 37 degrees C than at 30 degrees C. The effects of these mutations on the enzyme function are discussed with respects to ferrochelatase structure and mechanism of action.
Collapse
Affiliation(s)
- M Góra
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | | | | | |
Collapse
|