1
|
Ketchum RN, Smith EG, DeBiasse MB, Vaughan GO, McParland D, Leach WB, Al-Mansoori N, Ryan JF, Burt JA, Reitzel AM. Population Genomic Analyses of the Sea Urchin Echinometra sp. EZ across an Extreme Environmental Gradient. Genome Biol Evol 2020; 12:1819-1829. [PMID: 32697837 PMCID: PMC7594579 DOI: 10.1093/gbe/evaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Extreme environmental gradients represent excellent study systems to better understand the variables that mediate patterns of genomic variation between populations. They also allow for more accurate predictions of how future environmental change might affect marine species. The Persian/Arabian Gulf is extreme in both temperature and salinity, whereas the adjacent Gulf of Oman has conditions more typical of tropical oceans. The sea urchin Echinometra sp. EZ inhabits both of these seas and plays a critical role in coral reef health as a grazer and bioeroder, but, to date, there have been no population genomic studies on this or any urchin species in this unique region. E sp. EZ's life history traits (e.g., large population sizes, large reproductive clutches, and long life spans), in theory, should homogenize populations unless nonneutral processes are occurring. Here, we generated a draft genome and a restriction site-associated DNA sequencing data set from seven populations along an environmental gradient across the Persian/Arabian Gulf and the Gulf of Oman. The estimated genome size of E. sp. EZ was 609 Mb and the heterozygosity was among the highest recorded for an echinoderm at 4.5%. We recovered 918 high-quality SNPs from 85 individuals which we then used in downstream analyses. Population structure analyses revealed a high degree of admixture between all sites, although there was population differentiation and significant pairwise FST values between the two seas. Preliminary results suggest migration is bidirectional between the seas and nine candidate loci were identified as being under putative natural selection, including one collagen gene. This study is the first to investigate the population genomics of a sea urchin from this extreme environmental gradient and is an important contribution to our understanding of the complex spatial patterns that drive genomic divergence.
Collapse
Affiliation(s)
- Remi N Ketchum
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine
| | - Grace O Vaughan
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Dain McParland
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte
| | - Noura Al-Mansoori
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine
| | - John A Burt
- Marine Biology Laboratory, Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte
| |
Collapse
|
2
|
Sugni M, Fassini D, Barbaglio A, Biressi A, Di Benedetto C, Tricarico S, Bonasoro F, Wilkie IC, Candia Carnevali MD. Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity. MARINE ENVIRONMENTAL RESEARCH 2014; 93:123-132. [PMID: 24008006 DOI: 10.1016/j.marenvres.2013.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.
Collapse
Affiliation(s)
- Michela Sugni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Dario Fassini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Alice Barbaglio
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Anna Biressi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | | | - Serena Tricarico
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Francesco Bonasoro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Iain C Wilkie
- Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK.
| | | |
Collapse
|
3
|
Parsons CJ, Stefanovic B, Seki E, Aoyama T, Latour AM, Marzluff WF, Rippe RA, Brenner DA. Mutation of the 5'-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J Biol Chem 2010; 286:8609-8619. [PMID: 21193410 DOI: 10.1074/jbc.m110.189118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type I collagen is a heterotrimeric extracellular matrix protein consisting of two α1(I) chains and one α2(I) chain. During liver fibrosis, activated hepatic stellate cells (HSCs) are the major source of the type I collagen that accumulates in the damaged tissue. Expression of α1(I) and α2(I) collagen mRNA is increased 60-fold compared with quiescent stellate cells and is due predominantly to post-transcriptional message regulation. Specifically, a stem-loop structure in the 5'-untranslated region of α1(I) collagen mRNA may regulate mRNA expression in activated HSCs through its interaction with stem-loop binding proteins. The stem-loop may also be necessary for efficient production and folding of the type I collagen heterotrimer. To assess the role of the stem-loop in type I collagen expression in vivo, we generated a knock-in mouse harboring a mutation that abolished the stem-loop structure. Heterozygous and homozygous knock-in mice exhibited a normal phenotype. However, steady-state levels of α1(I) collagen mRNA decreased significantly in homozygous mutant MEFs as well as HSCs; intracellular and secreted type I collagen protein levels also decreased. Homozygous mutant mice developed less liver fibrosis. These results confirm an important role of the 5' stem-loop in regulating type I collagen mRNA and protein expression and provide a mouse model for further study of collagen-associated diseases.
Collapse
Affiliation(s)
| | - Branko Stefanovic
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, and
| | - Ekihiro Seki
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Tomonori Aoyama
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | | | | | - Richard A Rippe
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7080
| | - David A Brenner
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
4
|
Mann K, Poustka AJ, Mann M. The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Sci 2008; 6:22. [PMID: 18694502 PMCID: PMC2527298 DOI: 10.1186/1477-5956-6-22] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/11/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis. RESULTS We identified 110 proteins as components of sea urchin test and spine organic matrix. Fourty of these proteins occurred in both compartments while others were unique to their respective compartment. More than 95% of the proteins were detected in sea urchin skeletal matrices for the first time. The most abundant protein in both matrices was the previously characterized spicule matrix protein SM50, but at least eight other members of this group, many of them only known as conceptual translation products previously, were identified by mass spectrometric sequence analysis of peptides derived from in vitro matrix degradation. The matrices also contained proteins implicated in biomineralization processes previously by inhibition studies using antibodies or specific enzyme inhibitors, such as matrix metalloproteases and members of the mesenchyme-specific MSP130 family. Other components were carbonic anhydrase, collagens, echinonectin, a alpha2-macroglobulin-like protein and several proteins containing scavenger receptor cysteine-rich domains. A few possible signal transduction pathway components, such as GTP-binding proteins, a semaphorin and a possible tyrosine kinase were also identified. CONCLUSION This report presents the most comprehensive list of sea urchin skeletal matrix proteins available at present. The complex mixture of proteins identified in matrices of the sea urchin skeleton may reflect many different aspects of the mineralization process. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Considering the many newly identified matrix proteins, this proteomic study may serve as a road map for the further exploration of biomineralization processes in an important model organism.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz, 18, Germany
| | - Albert J Poustka
- Max-Planck-Institut für Molekulare Genetik, Evolution and Development Group, D-14195, Berlin, Ihnestrasse, 73, Germany
| | - Matthias Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz, 18, Germany
| |
Collapse
|
5
|
Cluzel C, Lethias C, Garrone R, Exposito JY. Distinct maturations of N-propeptide domains in fibrillar procollagen molecules involved in the formation of heterotypic fibrils in adult sea urchin collagenous tissues. J Biol Chem 2003; 279:9811-7. [PMID: 14665629 DOI: 10.1074/jbc.m311803200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the primary structure of a new sea urchin fibrillar collagen, the 5alpha chain, including nine repeats of the sea urchin fibrillar module in its N-propeptide. By Western blot and immunofluorescence analyses, we have shown that 5alpha is co-localized in adult collagenous ligaments with the 2alpha fibrillar collagen chain and fibrosurfin, two other extracellular matrix proteins possessing sea urchin fibrillar modules. At the ultrastructural level, the 5alpha N-propeptide is detected at the surface of fibrils, suggesting the retention of this domain in mature collagen molecules. Biochemical characterization of pepsinized collagen molecules extracted from the test tissue (the endoskeleton) together with a matrix-assisted laser desorption ionization time-of-flight analysis allowed us to determine that 5alpha is a quantitatively minor fibrillar collagen chain in comparison with the 1alpha and 2alpha chains. Moreover, 5alpha forms heterotrimeric molecules with two 1alpha chains. Hence, as in vertebrates, sea urchin collagen fibrils are made up of quantitatively major and minor fibrillar molecules undergoing distinct maturation of their N-propeptide regions and participating in the formation of heterotypic fibrils.
Collapse
Affiliation(s)
- Caroline Cluzel
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Mixte de Recherche 5086, Université Claude Bernard, France
| | | | | | | |
Collapse
|
6
|
Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. THE ANATOMICAL RECORD 2002; 268:302-16. [PMID: 12382326 DOI: 10.1002/ar.10162] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The extracellular matrix is often defined as the substance that gives multicellular organisms (from plants to vertebrates) their structural integrity, and is intimately involved in their development. Although the general functions of extracellular matrices are comparable, their compositions are quite distinct. One of the specific components of metazoan extracellular matrices is collagen, which is present in organisms ranging from sponges to humans. By comparing data obtained in diploblastic, protostomic, and deuterostomic animals, we have attempted to trace the evolution of collagens and collagen-like proteins. Moreover, the collagen story is closely involved with the emergence and evolution of metazoa. The collagen triple helix is one of numerous modules that arose during the metazoan radiation which permit the formation of large multimodular proteins. One of the advantages of this module is its involvement in oligomerization, in which it acts as a structural organizer that is not only relatively resistant to proteases but also permits the creation of multivalent supramolecular networks.
Collapse
Affiliation(s)
- Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines, Université Claude Bernard, Lyon, France.
| | | | | | | |
Collapse
|
7
|
Huggins LG, Lennarz WJ. Inhibitors of procollagen C-terminal proteinase block gastrulation and spicule elongation in the sea urchin embryo. Dev Growth Differ 2001; 43:415-24. [PMID: 11473548 DOI: 10.1046/j.1440-169x.2001.00589.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the sea urchin embryo, inhibition of collagen processing and deposition affects both gastrulation and embryonic skeleton (spicule) formation. It has been found that cell-free extracts of gastrula-stage embryos of Strongylocentrotus purpuratus contain a procollagen C-terminal proteinase (PCP) activity. A rationally designed non-peptidic organic hydroxamate, which is a potent and specific inhibitor of human recombinant PCP (FG-HL1), inhibited both the sea urchin PCP as well as purified chick embryo tendon PCP. In the sea urchin embryo, FG-HL1 inhibited gastrulation and blocked spicule elongation, but not spicule nucleation. A related compound with a terminal carboxylate rather than a hydroxamate (FG-HL2) did not inhibit either chick PCP or sea urchin PCP activity in a procollagen-cleavage assay. However, FG-HL2 did block spicule elongation without affecting spicule nucleation or gastrulation. Neither compound was toxic, because their effects were reversible on removal. It was shown that the inhibition of gastrulation and spicule elongation were independent of tissue specification events, because both the endoderm specific marker Endo1 and the primary mesenchyme cell specific marker SM50 were expressed in embryos treated with FG-HL1 and FG-HL2. These results suggest that disruption of the fibrillar collagen deposition in the blastocoele blocks the cell movements of gastrulation and may disrupt the positional information contained within the extracellular matrix, which is necessary for spicule formation.
Collapse
Affiliation(s)
- L G Huggins
- Department of Biochemistry and Cell Biology, Life Sciences Building, State University of New York at Stony Brook, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
8
|
Cluzel C, Lethias C, Humbert F, Garrone R, Exposito JY. Characterization of fibrosurfin, an interfibrillar component of sea urchin catch connective tissues. J Biol Chem 2001; 276:18108-14. [PMID: 11259425 DOI: 10.1074/jbc.m009597200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sea URchin Fibrillar (SURF) domain is a four-cysteine module present in the amino-propeptide of the sea urchin 2alpha fibrillar collagen chain. Despite numerous international genome and expressed sequence tag projects, computer searches have so far failed to identify similar domains in other species. Here, we have characterized a new sea urchin protein of 2656 amino acids made up of a series of epidermal growth factor-like and SURF modules. From its striking similarity to the modular organization of fibropellins, we called this new protein fibrosurfin. This protein is acidic with a calculated pI of 4.12. Eleven of the 17 epidermal growth factor-like domains correspond to the consensus sequence of calcium-binding type. By Western blot and immunofluorescence analyses, this protein is not detectable during embryogenesis. In adult tissues, fibrosurfin is co-localized with the amino-propeptide of the 2alpha fibrillar collagen chain in several collagenous ligaments, i.e., test sutures, spine ligaments, peristomial membrane, and to a lesser extent, tube feet. Finally, immunogold labeling indicates that fibrosurfin is an interfibrillar component of collagenous tissues. Taken together, the data suggest that proteins possessing SURF modules are localized in the vicinity of mineralized tissues and could be responsible for the unique properties of sea urchin mutable collagenous tissues.
Collapse
Affiliation(s)
- C Cluzel
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Mixte de Recherche 5086, Université Claude Bernard, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
9
|
Exposito J, Cluzel C, Lethias C, Garrone R. Tracing the evolution of vertebrate fibrillar collagens from an ancestral alpha chain. Matrix Biol 2000; 19:275-9. [PMID: 10936452 DOI: 10.1016/s0945-053x(00)00067-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
From considerations of gene structure, phylogenetic analysis, modular organisation of related proteins and fibril shapes, we suggest a model for the evolution of contemporary vertebrate fibrillar collagens from a common ancestral alpha chain.
Collapse
Affiliation(s)
- J Exposito
- Institut de Biologie et Chimie des Protéines, CNRS, Unité Propre de Recherche 412, Université Claude Bernard, 7 passage du Vercors, 69367 cedex 07, Lyon, France.
| | | | | | | |
Collapse
|
10
|
Drasdo D, Hwa T, Lässig M. Scaling laws and similarity detection in sequence alignment with gaps. J Comput Biol 2000; 7:115-41. [PMID: 10890391 DOI: 10.1089/10665270050081414] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We study the problem of similarity detection by sequence alignment with gaps, using a recently established theoretical framework based on the morphology of alignment paths. Alignments of sequences without mutual correlations are found to have scale-invariant statistics. This is the basis for a scaling theory of alignments of correlated sequences. Using a simple Markov model of evolution, we generate sequences with well-defined mutual correlations and quantify the fidelity of an alignment in an unambiguous way. The scaling theory predicts the dependence of the fidelity on the alignment parameters and on the statistical evolution parameters characterizing the sequence correlations. Specific criteria for the optimal choice of alignment parameters emerge from this theory. The results are verified by extensive numerical simulations.
Collapse
Affiliation(s)
- D Drasdo
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany
| | | | | |
Collapse
|
11
|
Stefanovic B, Hellerbrand C, Brenner DA. Regulatory role of the conserved stem-loop structure at the 5' end of collagen alpha1(I) mRNA. Mol Cell Biol 1999; 19:4334-42. [PMID: 10330174 PMCID: PMC104393 DOI: 10.1128/mcb.19.6.4334] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three fibrillar collagen mRNAs, alpha1(I), alpha2(I), and alpha1(III), are coordinately upregulated in the activated hepatic stellate cell (hsc) in liver fibrosis. These three mRNAs contain sequences surrounding the start codon that can be folded into a stem-loop structure. We investigated the role of this stem-loop structure in expression of collagen alpha1(I) reporter mRNAs in hsc's and fibroblasts. The stem-loop dramatically decreases accumulation of mRNAs in quiescent hsc's and to a lesser extent in activated hsc's and fibroblasts. The stem-loop decreases mRNA stability in fibroblasts. In activated hsc's and fibroblasts, a protein complex binds to the stem-loop, and this binding requires the presence of a 7mG cap on the RNA. Placing the 3' untranslated region (UTR) of collagen alpha1(I) mRNA in a reporter mRNA containing this stem-loop further increases the steady-state level in activated hsc's. This 3' UTR binds alphaCP, a protein implicated in increasing stability of collagen alpha1(I) mRNA in activated hsc's (B. Stefanovic, C. Hellerbrand, M. Holcik, M. Briendl, S. A. Liebhaber, and D. A. Brenner, Mol. Cell. Biol. 17:5201-5209, 1997). A set of protein complexes assembles on the 7mG capped stem-loop RNA, and a 120-kDa protein is specifically cross-linked to this structure. Thus, collagen alpha1(I) mRNA is regulated by a complex interaction between the 5' stem-loop and the 3' UTR, which may optimize collagen production in activated hsc's.
Collapse
Affiliation(s)
- B Stefanovic
- Departments of Medicine and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
12
|
Affiliation(s)
- R Garrone
- CNRS Institute of Biology and Chemistry of Proteins, Claude Bernard University, Lyons, France
| |
Collapse
|
13
|
Lethias C, Exposito JY, Garrone R. Collagen fibrillogenesis during sea urchin development--retention of SURF motifs from the N-propeptide of the 2alpha chain in mature fibrils. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:434-40. [PMID: 9151976 DOI: 10.1111/j.1432-1033.1997.t01-2-00434.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sea urchin 2alpha fibrillar collagen chain has a unique amino-propeptide structure with several repetitions of a still unknown 140-145-amino-acid, four-Cys module called SURF (for sea urchin fibrillar module). To follow the expression of the amino-propeptide of the 2alpha chain and assign a function to this domain, we have overproduced in Escherichia coli several recombinant proteins corresponding either to the amino-propeptide or to the amino-telopeptide. Monoclonal and/or polyclonal antibodies against these recombinant proteins allowed us to observe a similar tissue distribution during the first stages of development. A signal is first observed at the prism stage as intracellular spots in mesenchymal cells. In plutei, immunofluorescence staining is observed around the skeleton spicules and as a thin meshwork surrounding the mesenchymal cells. At the ultrastructural level, and using antibodies against the amino-propeptide, gold particles are observed at the surface of 25 nm thin periodic fibrils. By rotary shadowing, these fibrils show a brush-bottle aspect, exhibiting at their surface numerous periodically distributed thin rods ended by a small globule. These data indicate that the amino-propeptide is maintained during fibrillogenesis. As previously suggested, the retention of the amino-propeptide could play an important role in regulation of the fibril growth. We propose that the important region of this amino-propeptide in the widely encountered 25-nm-diameter fibrils is the short triple-helical segment. The globular part of the amino-propeptide will not only restrict the fibril growth but also interact with other neighbouring components and playing, as suspected from our immunofluorescence studies, a function during the spiculogenesis of the sea urchin embryo.
Collapse
Affiliation(s)
- C Lethias
- Institut de Biologie et Chimie des Protéines, CNRS UPR 412, Uiversité Claude Bernard, Lyon, France
| | | | | |
Collapse
|