1
|
Iacobucci GJ, Popescu GK. Calcium- and calmodulin-dependent inhibition of NMDA receptor currents. Biophys J 2024; 123:277-293. [PMID: 38140727 PMCID: PMC10870176 DOI: 10.1016/j.bpj.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
Calcium ions (Ca2+) reduce NMDA receptor currents through several distinct mechanisms. Among these, calmodulin (CaM)-dependent inhibition (CDI) accomplishes rapid, reversible, and incomplete reduction of the NMDA receptor currents in response to elevations in intracellular Ca2+. Quantitative and mechanistic descriptions of CDI of NMDA receptor-mediated signals have been marred by variability originating, in part, from differences in the conditions and metrics used to evaluate this process across laboratories. Recent ratiometric approaches to measure the magnitude and kinetics of NMDA receptor CDI have facilitated rapid insights into this phenomenon. Notably, the kinetics and magnitude of NMDA receptor CDI depend on the degree of saturation of its CaM binding sites, which represent the bona fide calcium sensor for this type of inhibition, the kinetics and magnitude of the Ca2+ signal, which depends on the biophysical properties of the NMDA receptor or of adjacent Ca2+ sources, and on the relative distribution of Ca2+ sources and CaM molecules. Given that all these factors vary widely during development, across cell types, and with physiological and pathological states, it is important to understand how NMDA receptor CDI develops and how it contributes to signaling in the central nervous system. Here, we review briefly these recent advances and highlight remaining questions about the structural and kinetic mechanisms of NMDA receptor CDI. Given that pathologies can arise from several sources, including mutations in the NMDA receptor and in CaM, understanding how CaM responds to intracellular Ca2+ signals to initiate conformational changes in NMDA receptors, and mapping the structural domains responsible will help to envision novel therapeutic strategies to neuropsychiatric diseases, which presently have limited available treatments.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York.
| |
Collapse
|
2
|
Kang X, Zhao L, Liu X. Calcium Signaling and the Response to Heat Shock in Crop Plants. Int J Mol Sci 2023; 25:324. [PMID: 38203495 PMCID: PMC10778685 DOI: 10.3390/ijms25010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change and the increasing frequency of high temperature (HT) events are significant threats to global crop yields. To address this, a comprehensive understanding of how plants respond to heat shock (HS) is essential. Signaling pathways involving calcium (Ca2+), a versatile second messenger in plants, encode information through temporal and spatial variations in ion concentration. Ca2+ is detected by Ca2+-sensing effectors, including channels and binding proteins, which trigger specific cellular responses. At elevated temperatures, the cytosolic concentration of Ca2+ in plant cells increases rapidly, making Ca2+ signals the earliest response to HS. In this review, we discuss the crucial role of Ca2+ signaling in raising plant thermotolerance, and we explore its multifaceted contributions to various aspects of the plant HS response (HSR).
Collapse
Affiliation(s)
| | - Liqun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| |
Collapse
|
3
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
4
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
5
|
Ma Y, Garrido K, Ali R, Berkowitz GA. Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1223-1236. [PMID: 36633062 DOI: 10.1111/tpj.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca2+ influx as an early step in numerous signaling cascades. CNGC-mediated Ca2+ elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways. It is shown CNGC2, CNGC4, and CNGC6 physically interact in vivo, whereas CNGC12 does not. CNGC involvement in immune signaling was evaluated by monitoring mutant response to elicitor peptide Pep3. Pep3 response cascades involving CNGCs included mitogen-activated kinase activation mediated by Ca2+ -dependent protein kinase phosphorylation. Pep3-induced reactive oxygen species generation was impaired in cngc2, cngc4, and cngc6, but not in cngc12, suggesting that CNGC2, CNGC4, and CNGC6 (which physically interact) may be components of a multimeric CNGC channel complex for immune signaling. However, unlike cngc2 and cngc4, cngc6 is not sensitive to high Ca2+ and displays no pleiotropic dwarfism. All four cngc mutants showed thermotolerance compared to wild-type, although CNGC12 does not interact with the other three CNGCs. These results imply that physically interacting CNGCs may, in some cases, function in a signaling cascade as components of a heteromeric channel complex, although this may not be the case in other signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
6
|
Apostolakou AE, Nastou KC, Petichakis GN, Litou ZI, Iconomidou VA. LiGIoNs: A computational method for the detection and classification of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183956. [PMID: 35577076 DOI: 10.1016/j.bbamem.2022.183956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Ligand-Gated Ion Channels (LGICs) is one of the largest groups of transmembrane proteins. Due to their major role in synaptic transmission, both in the nervous system and the somatic neuromuscular junction, LGICs present attractive therapeutic targets. During the last few years, several computational methods for the detection of LGICs have been developed. These methods are based on machine learning approaches utilizing features extracted solely from the amino acid composition. Here we report the development of LiGIoNs, a profile Hidden Markov Model (pHMM) method for the prediction and ligand-based classification of LGICs. The method consists of a library of 10 pHMMs, one per LGIC subfamily, built from the alignment of representative LGIC sequences. In addition, 14 Pfam pHMMs are used to further annotate and classify unknown protein sequences into one of the 10 LGIC subfamilies. Evaluation of the method showed that it outperforms existing methods in the detection of LGICs. On top of that, LiGIoNs is the only currently available method that classifies LGICs into subfamilies. The method is available online at http://bioinformatics.biol.uoa.gr/ligions/.
Collapse
Affiliation(s)
- Avgi E Apostolakou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Katerina C Nastou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Georgios N Petichakis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Zoi I Litou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| |
Collapse
|
7
|
Deciphering the Role of Ion Channels in Early Defense Signaling against Herbivorous Insects. Cells 2021; 10:cells10092219. [PMID: 34571868 PMCID: PMC8470099 DOI: 10.3390/cells10092219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.
Collapse
|
8
|
Marchetti F, Cainzos M, Cascallares M, Distéfano AM, Setzes N, López GA, Zabaleta E, Pagnussat GC. Heat stress in Marchantia polymorpha: Sensing and mechanisms underlying a dynamic response. PLANT, CELL & ENVIRONMENT 2021; 44:2134-2149. [PMID: 33058168 DOI: 10.1111/pce.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
9
|
Yazıcılar B, Böke F, Alaylı A, Nadaroglu H, Gedikli S, Bezirganoglu I. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. PLANT CELL REPORTS 2021; 40:29-42. [PMID: 33037884 DOI: 10.1007/s00299-020-02613-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Ca2+ NPs enhanced tolerance of Triticale callus under salt stress by improving biochemical activity and confocal laser scanning analysis, conferring salt tolerance on callus cells. CaO NPs (Ca2+) are significant components that act as transducers in many adaptive and developmental processes in plants. In this study, effect of Ca2+ NPs on the response and regulation of the protective system in Triticale callus under short and long-salt treatments was investigated. The activation of Ca2+ NPs was induced by salt stress in callus of Triticale cultivars. MDA, H2O2, POD, and protein activities were determined in callus tissues. Concerning MDA, H2O2, protein activities, it was found that the Ca2+ NPs treatment was significant, and it demonstrated a high correlation with the tolerance levels of cultivars. Tatlıcak cultivar was detected for better MDA activities in the short time with 1.5 ppm Ca2+ NPs concentration of 50 g and 100 g NaCl. Similarly, the same cultivar responded with better H2O2 activity at 1.5 ppm Ca2+ NPs 100 g NaCl in the short time. POD activities exhibited a decreasing trend in response to the increasing concentrations of Ca2+ NPs. The best result was observed at 1.5 ppm Ca2+ NPs 100 g NaCl in the short term. Based on the protein content, treatment of short-term cultured callus cells with 1.5 ppm Ca2+ NPs inhibited stress response and it significantly promoted Ca2+ NPs signals as compared to control callus. Confocal laser scanning analysis proved that the application of Ca2+ NPs could alleviate the adverse effects of salt stress by the inhibition of stress severity in callus cells. This study demonstrated, under in vitro conditions, that the application of Ca2+ NPs can significantly suppress the adverse effects of salt stress on Triticale callus; it was also verified that the concentration of Ca2+ NPs could be important parameter to be considered in adjusting the micronutrient content in the media for this plant.
Collapse
Affiliation(s)
- Büşra Yazıcılar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey
| | - Fatma Böke
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey
| | - Azize Alaylı
- Department of Nursing, Faculty of Health Sciences, Faculty of Applied Sciences, Sakarya University, 54187, Sakarya, Turkey
| | - Hayrunisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Sciences, Ataturk University, 25240, Erzurum, Turkey
- Department of Nano-Science and Nano-Engineering, Institute of Science, Ataturk University, 25240, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Bezirganoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050, Erzurum, Turkey.
| |
Collapse
|
10
|
Schlegel AM, Haswell ES. Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology. Methods Cell Biol 2020; 160:61-82. [PMID: 32896333 DOI: 10.1016/bs.mcb.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plants possess numerous ion channels that respond to a range of stimuli, including small molecules, transmembrane voltage, and mechanical force. Many in the latter category, known as mechanosensitive (MS) ion channels, open directly in response to increases in lateral membrane tension. One of the most effective techniques for characterizing ion channel properties is patch-clamp electrophysiology, in which the current through a section of membrane containing ion channels is measured. For MS channels, this technique enables the measurement of key channel properties such as tension sensitivity, conductance, and ion selectivity. These characteristics, along with the phenotypes of genetic mutants, can help reveal the physiological roles of a particular MS channel. In this protocol, we provide detailed instructions on how to study MS ion channels using single-channel patch-clamp electrophysiology in giant E. coli spheroplasts. We first present an optimized method for preparing giant spheroplasts, then describe how to measure MS channel activity using patch-clamp electrophysiology and analyze the resulting data. We also provide recommended equipment lists, setup schematics, and useful conventions.
Collapse
Affiliation(s)
- Angela M Schlegel
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Elizabeth S Haswell
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
11
|
Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:910-923. [PMID: 31033043 DOI: 10.1111/tpj.14371] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.
Collapse
Affiliation(s)
- Christa Brost
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Tanja Studtrucker
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Ronny Reimann
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Philipp Denninger
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Czekalla
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Melanie Krebs
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Karin Schumacher
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Guido Grossmann
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Astier J, Mounier A, Santolini J, Jeandroz S, Wendehenne D. The evolution of nitric oxide signalling diverges between animal and green lineages. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4355-4364. [PMID: 30820534 DOI: 10.1093/jxb/erz088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/07/2019] [Indexed: 05/17/2023]
Abstract
Nitric oxide (NO) is a ubiquitous signalling molecule with widespread distribution in prokaryotes and eukaryotes where it is involved in countless physiological processes. While the mechanisms governing nitric oxide (NO) synthesis and signalling are well established in animals, the situation is less clear in the green lineage. Recent investigations have shown that NO synthase, the major enzymatic source for NO in animals, is absent in land plants but present in a limited number of algae. The first detailed analysis highlighted that these new NO synthases are functional but display specific structural features and probably original catalytic activities. Completing this picture, analyses were undertaken in order to investigate whether major components of the prototypic NO/cyclic GMP signalling cascades mediating many physiological effects of NO in animals were also present in plants. Only a few homologues of soluble guanylate cyclases, cGMP-dependent protein kinases, cyclic nucleotide-gated channels, and cGMP-regulated phosphodiesterases were identified in some algal species and their presence did not correlate with that of NO synthases. In contrast, S-nitrosoglutathione reductase, a critical regulator of S-nitrosothiols, was recurrently found. Overall, these findings highlight that plants do not mediate NO signalling through the classical NO/cGMP signalling module and support the concept that S-nitrosation is a ubiquitous NO-dependent signalling mechanism.
Collapse
Affiliation(s)
- Jeremy Astier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
13
|
Moeder W, Phan V, Yoshioka K. Ca 2+ to the rescue - Ca 2+channels and signaling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:19-26. [PMID: 30709488 DOI: 10.1016/j.plantsci.2018.04.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 05/03/2023]
Abstract
Ca2+ is a universal second messenger in many signaling pathways in all eukaryotes including plants. Transient changes in [Ca2+]cyt are rapidly generated upon a diverse range of stimuli such as drought, heat, wounding, and biotic stresses (infection by pathogenic and symbiotic microorganisms), as well as developmental cues. It has been known for a while that [Ca2+]cyt transient signals play crucial roles to activate plant immunity and recently significant progresses have been made in this research field. However the identity and regulation of ion channels that are involved in defense related Ca2+ signals are still enigmatic. Members of two ligand gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated channels (CNGCs) have been implicated in immune responses; nevertheless more precise data to understand their direct involvement in the creation of Ca2+ signals during immune responses is necessary. Furthermore, the study of other ion channel groups is also required to understand the whole picture of the intra- and inter-cellular Ca2+ signalling network. In this review we summarize Ca2+ signals in plant immunity from an ion channel point of view and discuss future challenges in this exciting research field.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Van Phan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada; Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
14
|
Zhang Z, Hou C, Tian W, Li L, Zhu H. Electrophysiological Studies Revealed CaM1-Mediated Regulation of the Arabidopsis Calcium Channel CNGC12. FRONTIERS IN PLANT SCIENCE 2019; 10:1090. [PMID: 31572412 PMCID: PMC6749817 DOI: 10.3389/fpls.2019.01090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/09/2019] [Indexed: 05/18/2023]
Abstract
The Arabidopsis cyclic nucleotide-gated channel (CNGC) family consists of 20 members, which have been reported to participate in various physiological processes, such as pathogen defense, development, and thermotolerance. Although CNGC11 and CNGC12 have been identified a decade ago and their role in programmed cell death is well studied, their precise channel regulation has not been studied electrophysiologically. Here, we determined the channel activities of CNGC11 and CNGC12 utilizing the two-electrode voltage-clamp technique in the Xenopus laevis oocyte heterologous expression system. Our results suggest that CNGC12 but not CNGC11 functions as an active calcium channel. Furthermore, the cyclic nucleotide monophosphates (cNMPs) did not affect the activities of CNGC11 nor CNGC12 in Xenopus oocytes. Interestingly, while the activity of CNGC11 was not affected by co-expression with calmodulin (CaM), the activity of CNGC12 was significantly enhanced when CaM1 was co-expressed in oocytes. This study reveals that the channel activities and the mechanisms of regulation by CaM are different between CNGC11 and CNGC12.
Collapse
Affiliation(s)
| | | | | | - Legong Li
- *Correspondence: Legong Li, ; Huifen Zhu,
| | - Huifen Zhu
- *Correspondence: Legong Li, ; Huifen Zhu,
| |
Collapse
|
15
|
Prihatna C, Barbetti MJ, Barker SJ. A Novel Tomato Fusarium Wilt Tolerance Gene. Front Microbiol 2018; 9:1226. [PMID: 29937759 PMCID: PMC6003170 DOI: 10.3389/fmicb.2018.01226] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
The reduced mycorrhizal colonization (rmc) tomato mutant is unable to form mycorrhiza and is more susceptible to Fusarium wilt compared with its wild-type isogenic line 76R. The rmc mutant has a chromosomal deletion affecting five genes, one of which is similar to CYCLOPS. Loss of this gene is responsible for non-mycorrhizality in rmc but not enhanced Fusarium wilt susceptibility. Here, we describe assessment of a second gene in the rmc deletion, designated Solyc08g075770 that is expressed in roots. Sequence analyses show that Solyc08g075770 encodes a small transmembrane protein with putative phosphorylation and glycosylation sites. It is predicted to be localized in the plasma membrane and may function in transmembrane ion transport and/or as a cell surface receptor. Complementation and knock-out strategies were used to test its function. Some putative CRISPR/Cas-9 knock-out transgenic events exhibited Fusarium wilt susceptibility like rmc and some putative complementation lines were 76R-like, suggesting that the tomato Solyc08g075770 functions in Fusarium wilt tolerance. This is the first study to demonstrate that Solyc08g075770 is the contributor to the Tfw locus, conferring tolerance to Fusarium wilt in 76R which was lost in rmc.
Collapse
Affiliation(s)
- Cahya Prihatna
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Indonesia
| | - Martin J. Barbetti
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Susan J. Barker
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
16
|
Costa A, Navazio L, Szabo I. The contribution of organelles to plant intracellular Calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4996169. [PMID: 29767757 DOI: 10.1093/jxb/ery185] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) is among the most important intracellular messengers in living organisms. Understanding of the players and dynamics of Ca2+ signalling pathways in plants may help to unravel the molecular basis of their exceptional flexibility to respond and to adapt to different stimuli. In the present review we focus on new tools that have recently revolutionized our view of organellar Ca2+ signalling as well as on the current knowledge regarding the pathways mediating Ca2+ fluxes across intracellular membranes. The contribution of organelles and cellular subcompartments to the orchestrated response via Ca2+ signalling within a cell is also discussed, underlining the fact that one of the greatest challenges in the field is the elucidation of how influx and efflux Ca2+ transporters/channels are regulated in a concerted manner to translate specific information into a Ca2+ signature.
Collapse
Affiliation(s)
- Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria, Milan, Italy
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria, Milan, Italy
| | - Lorella Navazio
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Via U. Bassi, Padova, Italy
- Botanical Garden, University of Padova, Via Orto Botanico, Padova, Italy
- Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Via U. Bassi, Padova, Italy
| |
Collapse
|
17
|
Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V. Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC PLANT BIOLOGY 2018; 18:29. [PMID: 29409451 PMCID: PMC5801699 DOI: 10.1186/s12870-018-1245-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/21/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Terminal drought stress leads to substantial annual yield losses in chickpea (Cicer arietinum L.). Adaptation to water limitation is a matter of matching water supply to water demand by the crop. Therefore, harnessing the genetics of traits contributing to plant water use, i.e. transpiration rate and canopy development dynamics, is important to design crop ideotypes suited to a varying range of water limited environments. With an aim of identifying genomic regions for plant vigour (growth and canopy size) and canopy conductance traits, 232 recombinant inbred lines derived from a cross between ICC 4958 and ICC 1882, were phenotyped at vegetative stage under well-watered conditions using a high throughput phenotyping platform (LeasyScan). RESULTS Twenty one major quantitative trait loci (M-QTLs) were identified for plant vigour and canopy conductance traits using an ultra-high density bin map. Plant vigour traits had 13 M-QTLs on CaLG04, with favourable alleles from high vigour parent ICC 4958. Most of them co-mapped with a previously fine mapped major drought tolerance "QTL-hotspot" region on CaLG04. One M-QTL was found for canopy conductance on CaLG03 with the ultra-high density bin map. Comparative analysis of the QTLs found across different density genetic maps revealed that QTL size reduced considerably and % of phenotypic variation increased as marker density increased. CONCLUSION Earlier reported drought tolerance hotspot is a vigour locus. The fact that canopy conductance traits, i.e. the other important determinant of plant water use, mapped on CaLG03 provides an opportunity to manipulate these loci to tailor recombinants having low/high transpiration rate and plant vigour, fitted to specific drought stress scenarios in chickpea.
Collapse
Affiliation(s)
- Kaliamoorthy Sivasakthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
- Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Murugesan Tharanya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
- Bharathidasan University, Tiruchirappalli, Tamil Nadu India
| | - Sandip M. Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Mahamat Hissene Halime
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Rekha Baddam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | | | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Telangana, India
- Institut de Recherche pour le Developpement (IRD), Université de Montpellier – UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
18
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
19
|
Fischer C, DeFalco TA, Karia P, Snedden WA, Moeder W, Yoshioka K, Dietrich P. Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. PLANT & CELL PHYSIOLOGY 2017; 58:1208-1221. [PMID: 28419310 DOI: 10.1093/pcp/pcx052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/06/2017] [Indexed: 05/23/2023]
Abstract
Ca2+ serves as a universal second messenger in eukaryotic signaling pathways, and the spatial and temporal patterns of Ca2+ concentration changes are determined by feedback and feed-forward regulation of the involved transport proteins. Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable channels that interact with the ubiquitous Ca2+ sensor calmodulin (CaM). CNGCs interact with CaMs via diverse CaM-binding sites, including an IQ-motif, which has been identified in the C-termini of CNGC20 and CNGC12. Here we present a family-wide analysis of the IQ-motif from all 20 Arabidopsis CNGC isoforms. While most of their IQ-peptides interacted with conserved CaMs in yeast, some were unable to do so, despite high sequence conservation across the family. We showed that the CaM binding ability of the IQ-motif is highly dependent on its proximal and distal vicinity. We determined that two alanine residues positioned N-terminal to the core IQ-sequence play a significant role in CaM binding, and identified a polymorphism at this site that promoted or inhibited CaM binding in yeast. Through detailed biophysical analysis of the CNGC2 IQ-motif, we found that this polymorphism specifically affected the Ca2+-independent interactions with the C-lobe of CaM. This same polymorphism partially suppressed the induction of programmed cell death by CNGC11/12 in planta. Our work expands the model of CNGC regulation, and posits that the C-lobe of apo-CaM is permanently associated with the channel at the N-terminal part of the IQ-domain. This mode allows CaM to function as a Ca2+-sensing regulatory subunit of the channel complex, providing a mechanism by which Ca2+ signals may be fine-tuned.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Thomas A DeFalco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Purva Karia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Wayne A Snedden
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON, Canada, M5S 3B2
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
20
|
Walch-Liu P, Meyer RC, Altmann T, Forde BG. QTL analysis of the developmental response to L-glutamate in Arabidopsis roots and its genotype-by-environment interactions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2919-2931. [PMID: 28449076 PMCID: PMC5853333 DOI: 10.1093/jxb/erx132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/28/2017] [Indexed: 05/28/2023]
Abstract
Primary root growth in Arabidopsis and a number of other species has previously been shown to be remarkably sensitive to the presence of external glutamate, with glutamate signalling eliciting major changes in root architecture. Using two recombinant inbred lines from reciprocal crosses between Arabidopsis accessions C24 and Col-0, we have identified one large-effect quantitative trait locus (QTL), GluS1, and two minor QTLs, GluS2 and GluS3, which together accounted for 41% of the phenotypic variance in glutamate sensitivity. The presence of the GluS1 locus on chromosome 3 was confirmed using a set of C24/Col-0 isogenic lines. GluS1 was mapped to an interval between genes At3g44830-At3g46880. When QTL mapping was repeated under a range of environmental conditions, including temperature, shading and nitrate supply, a strong genotype-by-environment interaction in the controls for the glutamate response was identified. Major differences in the loci controlling this trait were found under different environmental conditions. Here we present evidence for the existence of loci on chromosomes 1 and 5 epistatically controlling the response of the GluS1 locus to variations in ambient temperature, between 20°C and 26°C. In addition, a locus on the long arm of chromosome 1 was found to play a major role in controlling the ability of external nitrate signals to antagonize the glutamate effect. We conclude that there are multiple loci controlling natural variation in glutamate sensitivity in Arabidopsis roots and that epistatic interactions play an important role in modulating glutamate sensitivity in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Pia Walch-Liu
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Molecular Genetics, Gatersleben, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Department of Molecular Genetics, Gatersleben, Germany
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
21
|
Abstract
The primary processes that contribute to the efficient capture of soil nitrate are the development of a root system that effectively explores the soil and the expression of high-affinity nitrate uptake systems in those roots. Both these processes are highly regulated to take into account the availability and distribution of external nitrate pools and the endogenous N status of the plant. While significant progress has been made in elucidating the early steps in sensing and responding to external nitrate, there is much less clarity about how the plant monitors its N status. This review specifically addresses the questions of what N compounds are sensed and in which part of the plant, as well as the identity of the signalling pathways responsible for their detection. Candidates that are considered for the role of N sensory systems include the target of rapamycin (TOR) signalling pathway, the general control non-derepressible 2 (GCN2) pathway, the plastidic PII-dependent pathway, and the family of glutamate-like receptors (GLRs). However, despite significant recent progress in elucidating the function and mode of action of these signalling systems, there is still much uncertainty about the extent to which they contribute to the process by which plants monitor their N status. The possibility is discussed that the large GLR family of Ca2+ channels, which are gated by a wide range of different amino acids and expressed throughout the plant, could act as amino acid sensors upstream of a Ca2+-regulated signalling pathway, such as the TOR pathway, to regulate the plant's response to changes in N status.
Collapse
Affiliation(s)
- Lucas Gent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
22
|
Chen M, Wang C, Bao H, Chen H, Wang Y. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol Genet Genomics 2016; 291:1663-80. [PMID: 27138920 DOI: 10.1007/s00438-016-1210-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants.
Collapse
Affiliation(s)
- Min Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chenlu Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hai Bao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
23
|
Jin Y, Jing W, Zhang Q, Zhang W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. JOURNAL OF PLANT RESEARCH 2015; 128:211-20. [PMID: 25416933 DOI: 10.1007/s10265-014-0679-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/23/2014] [Indexed: 05/22/2023]
Abstract
A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.
Collapse
Affiliation(s)
- Yakang Jin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Forde BG, Roberts MR. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence? F1000PRIME REPORTS 2014; 6:37. [PMID: 24991414 PMCID: PMC4075314 DOI: 10.12703/p6-37] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plant glutamate receptor-like genes (GLRs) are homologous to the genes for mammalian ionotropic glutamate receptors (iGluRs), after which they were named, but in the 16 years since their existence was first revealed, progress in elucidating their biological role has been disappointingly slow. Recently, however, studies from a number of laboratories focusing on the model plant species Arabidopsis thaliana (L.) have thrown new light on the functional properties of some members of the GLR gene family. One important finding has been that plant GLR receptors have a much broader ligand specificity than their mammalian iGluR counterparts, with evidence that some individual GLR receptors can be gated by as many as seven amino acids. These results, together with the ubiquity of their expression throughout the plant, open up the possibility that GLR receptors could have a pervasive role in plants as non-specific amino acid sensors in diverse biological processes. Addressing what one of these roles could be, recent studies examining the wound response and disease susceptibility in GLR knockout mutants have provided evidence that some members of clade 3 of the GLR gene family encode important components of the plant's defence response. Ways in which this family of amino acid receptors might contribute to the plant's ability to respond to an attack from pests and pathogens are discussed.
Collapse
|
25
|
Pottosin I, Dobrovinskaya O. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:732-42. [PMID: 24560436 DOI: 10.1016/j.jplph.2013.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 05/25/2023]
Abstract
Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico.
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico
| |
Collapse
|
26
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
27
|
Abstract
As a signalling molecule, glutamate is best known for its role as a fast excitatory neurotransmitter in the mammalian nervous system, a role that requires the activity of a family of ionotropic glutamate receptors (iGluRs). The unexpected discovery in 1998 that Arabidopsis thaliana L. possesses a family of iGluR-related (GLR) genes laid the foundations for an assessment of glutamate's potential role as a signalling molecule in plants that is still in progress. Recent advances in elucidating the function of Arabidopsis GLR receptors has revealed similarities with iGluRs in their channel properties, but marked differences in their ligand specificities. The ability of plant GLR receptors to act as amino-acid-gated Ca(2+) channels with a broad agonist profile, combined with their expression throughout the plant, makes them strong candidates for a multiplicity of amino acid signalling roles. Although root growth is inhibited in the presence of a number of amino acids, only glutamate elicits a specific sequence of changes in growth, root tip morphology, and root branching. The recent finding that the MEKK1 gene is a positive regulator of glutamate sensitivity at the root tip has provided genetic evidence for the existence in plants of a glutamate signalling pathway analogous to those found in animals. This short review will discuss the most recent advances in understanding glutamate signalling in roots, considering them in the context of previous work in plants and animals.
Collapse
Affiliation(s)
- Brian G Forde
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
28
|
DeWoody J, Viger M, Lakatos F, Tuba K, Taylor G, Smulders MJM. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree. PLoS One 2013; 8:e79925. [PMID: 24260320 PMCID: PMC3833894 DOI: 10.1371/journal.pone.0079925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.
Collapse
Affiliation(s)
- Jennifer DeWoody
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
- Current address: USDA Forest Service, National Forest Genetics Lab, 2480 Carson Road, Placerville, California, United States of America
| | - Maud Viger
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ferenc Lakatos
- Institute of Silviculture and Forest Protection, University of West-Hungary, Sopron, Hungary
| | - Katalin Tuba
- Institute of Silviculture and Forest Protection, University of West-Hungary, Sopron, Hungary
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
29
|
Manzoor H, Kelloniemi J, Chiltz A, Wendehenne D, Pugin A, Poinssot B, Garcia-Brugger A. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:466-80. [PMID: 23952652 DOI: 10.1111/tpj.12311] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/04/2013] [Accepted: 08/09/2013] [Indexed: 05/22/2023]
Abstract
Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense-related genes by OGs. In addition, wild-type Col-0 plants treated with the glutamate-receptor antagonist 6,7-dinitriquinoxaline-2,3-dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against H. arabidopsidis. In addition, some OGs-triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen-mediated plant defense signaling pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hamid Manzoor
- Université de Bourgogne, UMR 1347 Agroécologie Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, 17 Rue Sully, BP 86510, F-21065, Dijon, France; INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes - ERL CNRS 6300, 17 Rue Sully, BP 86510, F-21065, Dijon, France; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | | | | | | | | | | | | |
Collapse
|
30
|
Schönknecht G. Calcium Signals from the Vacuole. PLANTS (BASEL, SWITZERLAND) 2013; 2:589-614. [PMID: 27137394 PMCID: PMC4844392 DOI: 10.3390/plants2040589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
Abstract
The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vacuolar Ca(2+) transporters is compared for different clades of photosynthetic eukaryotes. There are several candidates for vacuolar Ca(2+) channels that could elicit cytosolic [Ca(2+)] transients. Typical second messengers, such as InsP₃ and cADPR, seem to trigger vacuolar Ca(2+) release, but the molecular mechanism of this Ca(2+) release still awaits elucidation. Some vacuolar Ca(2+) channels have been identified on a molecular level, the voltage-dependent SV/TPC1 channel, and recently two cyclic-nucleotide-gated cation channels. However, their function in Ca(2+) signaling still has to be demonstrated. Ca(2+) pumps in addition to establishing long-term Ca(2+) homeostasis can shape cytosolic [Ca(2+)] transients by limiting their amplitude and duration, and may thus affect Ca(2+) signaling.
Collapse
Affiliation(s)
- Gerald Schönknecht
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
31
|
Swarbreck SM, Colaço R, Davies JM. Plant calcium-permeable channels. PLANT PHYSIOLOGY 2013; 163:514-22. [PMID: 23860348 PMCID: PMC3793033 DOI: 10.1104/pp.113.220855] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/14/2013] [Indexed: 05/19/2023]
Abstract
Experimental and modeling breakthroughs will help establish the genetic identities of plant calcium channels.
Collapse
|
32
|
Abdel-Hamid H, Chin K, Moeder W, Shahinas D, Gupta D, Yoshioka K. A suppressor screen of the chimeric AtCNGC11/12 reveals residues important for intersubunit interactions of cyclic nucleotide-gated ion channels. PLANT PHYSIOLOGY 2013; 162:1681-93. [PMID: 23735507 PMCID: PMC3707543 DOI: 10.1104/pp.113.217539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/01/2013] [Indexed: 05/23/2023]
Abstract
To investigate the structure-function relationship of plant cyclic nucleotide-gated ion channels (CNGCs), we identified a total of 29 mutant alleles of the chimeric AtCNGC11/12 gene that induces multiple defense responses in the Arabidopsis (Arabidopsis thaliana) mutant, constitutive expresser of PR genes22 (cpr22). Based on computational modeling, two new alleles, S100 (AtCNGC11/12:G459R) and S137 (AtCNGC11/12:R381H), were identified as counterparts of human CNGA3 (a human CNGC) mutants. Both mutants lost all cpr22-mediated phenotypes. Transient expression in Nicotiana benthamiana as well as functional complementation in yeast (Saccharomyces cerevisiae) showed that both AtCNGC11/12:G459R and AtCNGC11/12:R381H have alterations in their channel function. Site-directed mutagenesis coupled with fast-protein liquid chromatography using recombinantly expressed C-terminal peptides indicated that both mutations significantly influence subunit stoichiometry to form multimeric channels. This observation was confirmed by bimolecular fluorescence complementation in planta. Taken together, we have identified two residues that are likely important for subunit interaction for plant CNGCs and likely for animal CNGCs as well.
Collapse
|
33
|
Fischer C, Kugler A, Hoth S, Dietrich P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. PLANT & CELL PHYSIOLOGY 2013; 54:573-84. [PMID: 23385145 PMCID: PMC3612182 DOI: 10.1093/pcp/pct021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) form non-selective cation entry pathways regulated by calmodulin (CaM), a universal Ca(2+) sensor in eukaryotes. Although CaM binding has been shown to be important for Ca(2+)-dependent feedback regulation of CNGC activity, the CaM-binding properties of these channels have been investigated in a few cases only. We show that CNGC20 from Arabidopsis thaliana binds CaM in a Ca(2+)-dependent manner and interacts with all AtCaM isoforms but not with the CaM-like proteins CML8 and CML9. CaM interaction with the full-length channel was demonstrated in planta, using bimolecular fluorescence complementation. This interaction occurred at the plasma membrane, in accordance with our localization data of green fluorescent protein (GFP)-fused CNGC20 proteins. The CaM-binding site was mapped to an isoleucine glutamine (IQ) motif, which has not been characterized in plant CNGCs so far. Our results show that compared with the overlapping binding sites for cyclic nucleotides and CaM in CNGCs studied so far, they are sequentially organized in CNGC20. The presence of two alternative CaM-binding modes indicates that ligand regulation of plant CNGCs is more complex than previously expected. Since the IQ domain is conserved among plant CNGCs, this domain adds to the variability of Ca(2+)-dependent channel control mechanisms underlining the functional diversity within this multigene family.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Annette Kugler
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Molekulare Pflanzenphysiologie, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Petra Dietrich
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| |
Collapse
|
34
|
Baluška F, Mancuso S. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions. PLANT SIGNALING & BEHAVIOR 2013; 8:e23009. [PMID: 23221742 PMCID: PMC3745586 DOI: 10.4161/psb.23009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 05/20/2023]
Abstract
In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels. (1) He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula, (1,2) known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC). (1.)
Collapse
Affiliation(s)
- František Baluška
- University of Bonn; IZMB; Bonn, Germany
- Correspondence to: František Baluška,
| | | |
Collapse
|
35
|
Caballero F, Botella MA, Rubio L, Fernández JA, Martínez V, Rubio F. A Ca(2+)-sensitive system mediates low-affinity K(+) uptake in the absence of AKT1 in Arabidopsis plants. PLANT & CELL PHYSIOLOGY 2012; 53:2047-59. [PMID: 23054389 DOI: 10.1093/pcp/pcs140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
K(+) acquisition by Arabidopsis roots is mainly mediated by the high-affinity K(+) transporter AtHAK5 and the inward-rectifier K(+) channel AtAKT1. This model is probably universal to plants. Mutant plants lacking these two systems (athak5,atakt1) take up K(+) and grow when the external K(+) concentration is above a certain level, indicating that an additional transport system may compensate for the absence of AtHAK5 and AtAKT1. Here we describe that this alternative system is essential for providing sufficient K(+) to sustain growth of athak5,atakt1 plants. This system is especially sensitive to Ca(2+), Mg(2+), Ba(2+) and La(3+), it transports Cs(+) and its activity is reduced by cyclic nucleotides. These results suggest that a Ca(2+)-permeable voltage-independent non-selective cation channel, probably belonging to the cyclic nucleotide gated channel (CNGC) family, may provide the pathway for K(+) uptake in athak5,atakt1 plants. The genes encoding the two members of the CNGC family that have been described as mediating root K(+) uptake, AtCNGC3 and AtCNGC10, are not up-regulated in athak5,atakt1 plants, excluding overexpression of these genes as a compensatory mechanism. On the other hand, an increased driving force for K(+) in athak5,atakt1 plants due to a hyperpolarization of the membrane potential of its root cells is also discarded. The identification of this unknown system may provide tools to improve plant K(+) nutrition in conditions where AtAKT1 functionality is reduced, such as under salinity. In addition, this system may constitute an important pathway for accumulation of toxic cations such as Cs(+) or radiocesium ((137)Cs(+)), and could play a role in phytoremediation.
Collapse
Affiliation(s)
- Fernando Caballero
- Departamento de Nutrición, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Vincill ED, Bieck AM, Spalding EP. Ca(2+) conduction by an amino acid-gated ion channel related to glutamate receptors. PLANT PHYSIOLOGY 2012; 159:40-6. [PMID: 22447719 PMCID: PMC3375973 DOI: 10.1104/pp.112.197509] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 05/17/2023]
|
38
|
|
39
|
Wongchai C, Chaidee A, Pfeiffer W. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:129-141. [PMID: 21974771 DOI: 10.1111/j.1438-8677.2011.00487.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory.
Collapse
Affiliation(s)
- C Wongchai
- Fachbereich Zellbiologie, Abteilung Pflanzenphysiologie, Universität Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
40
|
Abdel-Hamid H, Chin K, Moeder W, Yoshioka K. High throughput chemical screening supports the involvement of Ca2+ in cyclic nucleotide-gated ion channel-mediated programmed cell death in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:1817-1819. [PMID: 22041991 PMCID: PMC3329357 DOI: 10.4161/psb.6.11.17502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recently, we reported the role of Arabidopsis cyclic nucleotide-gated ion channel (AtCNGC) 11 and 12 in Ca2+-dependent physiological responses. AtCNGC11 and 12 have been reported to be involved in plant immunity, but whether these channels play additional physiological roles was not clear before. Using single and double knockout mutants, we have found that these channels play significant roles in Ca2+ signaling, which mediates several physiological processes, such as gravitropic bending and senescence. Here, we conducted a high throughput, non-biased chemical screen using the gain-of-function mutant of AtCNGC11 and 12, cpr22. Our data presented here indicates that Ca2+ but not K+ channel blockers suppress AtCNGC11/12-induced lethality. Our data further suggest that AtCNGC11 and 12 are involved in Ca2+-dependent, but not K+-dependent physiological responses in planta.
Collapse
Affiliation(s)
- Huda Abdel-Hamid
- Department of Cell and Systems Biology, University of Toronto; Toronto, ON Canada
| | - Kimberley Chin
- Department of Cell and Systems Biology, University of Toronto; Toronto, ON Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto; Toronto, ON Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF); University of Toronto; Toronto, ON Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto; Toronto, ON Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF); University of Toronto; Toronto, ON Canada
| |
Collapse
|
41
|
Abstract
Calcium signal transduction is a central mechanism by which plants sense and respond to endogenous and environmental stimuli. Cytosolic Ca(2+) elevation is achieved via two cellular pathways, Ca(2+) influx through Ca(2+) channels in the plasma membrane and Ca(2+) release from intracellular Ca(2+) stores. Because of the significance of Ca(2+) channels in cellular signaling, interaction with the environment and developmental processes in plants, a great deal of effort has been invested in recent years with regard to these important membrane proteins. Because of limited space, in this review we focus on recent findings giving insight into both the molecular identity and physiological function of channels that have been suggested to be responsible for the elevation in cytosolic Ca(2+) level, including cyclic nucleotide gated channels, glutamate receptor homologs, two-pore channels and mechanosensitive Ca(2+) -permeable channels. We provide an overview of the regulation of these Ca(2+) channels and their physiological roles and discuss remaining questions.
Collapse
Affiliation(s)
- Fabien Jammes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
42
|
Alemán F, Nieves-Cordones M, Martínez V, Rubio F. Root K(+) acquisition in plants: the Arabidopsis thaliana model. PLANT & CELL PHYSIOLOGY 2011; 52:1603-12. [PMID: 21771865 DOI: 10.1093/pcp/pcr096] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
K(+) is an essential macronutrient required by plants to complete their life cycle. It fulfills important functions and it is widely used as a fertilizer to increase crop production. Thus, the identification of the systems involved in K(+) acquisition by plants has always been a research goal as it may eventually produce molecular tools to enhance crop productivity further. This review is focused on the recent findings on the systems involved in K(+) acquisition. From Epstein's pioneering work >40 years ago, K(+) uptake was considered to consist of a high- and a low-affinity component. The subsequent molecular approaches identified genes encoding K(+) transport systems which could be involved in the first step of K(+) uptake at the plant root. Insights into the regulation of these genes and the proteins that they encode have also been gained in recent studies. A demonstration of the role of the two main K(+) uptake systems at the root, AtHKA5 and AKT1, has been possible with the study of Arabidopsis thaliana T-DNA insertion lines that knock out these genes. AtHAK5 was revealed as the only uptake system at external concentrations <10 μM. Between 10 and 200 μM both AtHAK5 and AKT1 contribute to K(+) acquisition. At external concentrations >500 μM, AtHAK5 is not relevant and AKT1's contribution to K(+) uptake becomes more important. At 10 mM K(+), unidentified systems may provide sufficient K(+) uptake for plant growth.
Collapse
Affiliation(s)
- Fernando Alemán
- Centro de Edafología y Biología Aplicada del Segura-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
43
|
Urquhart W, Chin K, Ung H, Moeder W, Yoshioka K. The cyclic nucleotide-gated channels AtCNGC11 and 12 are involved in multiple Ca²⁺-dependent physiological responses and act in a synergistic manner. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3671-82. [PMID: 21414958 PMCID: PMC3130183 DOI: 10.1093/jxb/err074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 05/20/2023]
Abstract
Arabidopsis cyclic nucleotide-gated ion channels (AtCNGCs) form a large family consisting of 20 members. These channels have so far been reported to be involved in a diverse range of physiological phenomena. For example, AtCNGC18 was reported to play an important role in pollen tube growth, while AtCNGC2, 4, 11, and 12 were implicated in mediating pathogen defence. To identify additional functions for AtCNGC11 and 12, various physiological aspects were analysed using both AtCNGC11 and 12 single knockout mutants as well as a double mutant. Although AtCNGC11 and 12 can function as K(+) and Ca(2+) channels in yeast, it was found that the loss of AtCNGC11 and 12 in Arabidopsis caused increased sensitivity to Ca(2+) but not K(+), indicating a specific function for these genes in Ca(2+) signalling in planta. However, they did not show an alteration in Ca(2+) accumulation, suggesting that AtCNGC11 and 12 are not involved in general Ca(2+) homeostasis but rather in the endogenous movement of Ca(2+) and/or Ca(2+) signalling. Furthermore, these channels synergistically contribute to the generation of a Ca(2+) signal that leads to gravitropic bending. Finally, AtCNGC11 and 12 gene expression was induced during dark-induced senescence and AtCNGC11 and 12 knockout mutants displayed enhanced chlorophyll loss, which was even more pronounced in the double mutant, also indicating synergistic roles in senescence. The findings indicate that (i) some CNGC family members have multiple physiological functions and (ii) some plant CNGCs share the same biological function and work in a synergistic manner.
Collapse
Affiliation(s)
- William Urquhart
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Kimberley Chin
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Huoi Ung
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Moeder W, Urquhart W, Ung H, Yoshioka K. The role of cyclic nucleotide-gated ion channels in plant immunity. MOLECULAR PLANT 2011; 4:442-52. [PMID: 21459831 DOI: 10.1093/mp/ssr018] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Since the first plant cyclic nucleotide-gated ion channel (CNGC), HvCBT1, was identified as a calmodulin binding protein, more than a decade has passed and a substantial amount of work has been done to understand the molecular nature and function of these channel proteins. Based on electrophysiological and heterologous expression analyses, plant CNGCs function as non-selective cation channels and, so far, their biological roles have been reported in defense responses, development, and ion homeostasis. Forward genetic approaches identified four AtCNGCs (AtCNGC2, 4, 11, and 12) to be involved in plant immunity, as null mutants for AtCNGC2, 4, 11, and 12 as well as a gain-of- function mutant for AtCNGC11 and 12 exhibited alterations in defense responses. Since ion flux changes have been reported as one of the early events upon pathogen recognition and also are an essential component for the activation of defense responses, the involvement of CNGCs in these ion flux changes has been suggested. However, the recent detailed characterization of null mutants suggested a more complex involvement of this channel family. In this review, we focus on the discoveries and characterization of these CNGC mutants and discuss possible roles of CNGCs as components in plant immunity.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | | | | | | |
Collapse
|
45
|
Sauer N, Hedrich R. Dynamics and regulation of plant membrane transport. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:1-2. [PMID: 20712615 DOI: 10.1111/j.1438-8677.2010.00390.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|