1
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Li Y, Yang L, Su P, Chen N. Curcumin protects against cadmium-induced germ cell death in the testis of rats. Toxicol Res (Camb) 2024; 13:tfae082. [PMID: 38841432 PMCID: PMC11149375 DOI: 10.1093/toxres/tfae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cadmium (Cd) has been shown to disrupt the reproductive system. In this study, we evaluated the protective effects of Curcumin (Cur) against Cd-induced reproductive toxicity. Methods Exploring the role of Cur in Cd-treated rat models. Results The study demonstrated that Cd treatment impaired the seminiferous epithelium, leading to increased apoptosis of germ cells. Interestingly, pretreatment with Cur ameliorated the histological damage and decreased the germ cell apoptosis induced by Cd. Furthermore, after Cd exposure, B-cell lymphoma-2 expression was significantly decreased while Bax expression was increased. Pretreatment of rats with Cur protected against germ cell apoptosis by improving the expression of B-cell lymphoma-2 and reducing Bax. Additionally, Cd treatment increased reactive oxygen species, resulting in a decrease in antioxidant enzymes. However, pretreatment of rats with Cur followed by Cd administration led to a substantial decrease in reactive oxygen species levels and increased activities of antioxidant enzymes. Ultrastructural investigations revealed that damage to the mitochondrial structure was significantly ameliorated by Cur pretreatment in Cd-treated rats. Notably, Cur significantly activated the peroxisome proliferator-activated receptor gamma coactivator 1a/Sirtuins-3 signaling pathway. Conclusions Overall, our data suggest that Cd induces germ cell apoptosis through mitochondrial-induced oxidative stress, but Cur pretreatment offers strong protection against Cd-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, 745 Luoyu Avenue, Wuhan, Hubei 430071, P. R. China
| | - Lu Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, P. R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 HangkongAvenue, Wuhan 430030, P. R. China
| | - Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, P. R. China
| |
Collapse
|
4
|
Wanjari UR, Gopalakrishnan AV. Cadmium as a male reproductive toxicant and natural and non-natural ways to tackle it: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18340-18361. [PMID: 38349491 DOI: 10.1007/s11356-024-32210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Cadmium (Cd) is a naturally occurring environmental pollutant, a toxic substance that causes oxidative stress. According to epidemiological studies, the data suggested that environmental and occupational Cd exposure may be related to several diseases and severe testicular damage. However, studies are going on to explore the mechanism of Cd-induced male reproductive toxicity and its treatment strategies. Currently, researchers are focusing on naturally occurring bioactive compounds, plant extracts, and biochemical, which have better efficacy, less toxicity, and high bioavailability. This review focuses on the mechanistic effect of Cd on testicular toxicity and different categories of compounds having a beneficial impact on Cd-induced male reproductive toxicity. Some potent bioactive antioxidants are quercetin, caffeic acid phenethyl ester, cyanidin-3-O-glucoside, curcumin, and silymarin. In comparison, plant extracts are Costus afer leaf methanol extract, methanol root extract of Carpolobia lutea, red carrot methanolic extract, Panax ginseng extract, and biochemicals including melatonin, progesterone, glutamine, L-carnitine, and selenium. Advanced and more detailed studies are needed on these compounds to explore their mechanism in attenuating Cd-induced testicular toxicity and can be potential therapeutics in the future.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Üremiş MM, Gültekin S, Üremiş N, Şafak T, Çiğremiş Y, Gül M, Aydin M, Zayman E, Türköz Y. Protective role of vitamin E against acrylamide-induced testicular toxicity from pregnancy to adulthood: insights into oxidative stress and aromatase regulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:829-841. [PMID: 37515736 DOI: 10.1007/s00210-023-02638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Acrylamide (ACR) is a toxic chemical frequently encountered in daily life, posing health risks. This study aimed to elucidate the molecular-level mechanism of ACR's toxic effects on testicles and investigate whether Vitamin E can mitigate these effects. A total of 40 adult pregnant rats were utilized, divided into four groups: Control, ACR, Vitamin E, and ACR + Vitamin E. ACR and Vitamin E were administered to the mother rats during pregnancy and lactation, and to the male offspring until the 8th week post-birth. Serum hormone levels, oxidant-antioxidant parameters, histopathological examination of testicular tissue, and mRNA and protein levels of the testicular and liver aromatase gene were analyzed. Spermiogram analysis was conducted on the collected sperm samples from the male offspring. The results revealed that ACR exposure adversely affected hormone levels, oxidant-antioxidant parameters, histological findings, as well as aromatase gene and protein expressions. However, Vitamin E administration effectively prevented the toxic effects of ACR. These findings demonstrate that ACR application significantly impairs the reproductive performance of male offspring rats by increasing liver aromatase activity.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Sevinç Gültekin
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Tarık Şafak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Muhterem Aydin
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Özal University, Malatya, Türkiye
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
6
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
7
|
Ghasemi H, Manesh SFM, Kheiripour N, Asl SS, Jouzdani AF, Ranjbar A, Abdolvahab MH. An Oxidative Stress Study on Curcumin and NanoCurcumin against Aluminum Phosphide-induced Kidney Injury in Rats: The Role of SIRT1/FOXO3 Signaling Pathway in Nephrotoxicity. Pharm Nanotechnol 2024; 12:449-458. [PMID: 37605419 DOI: 10.2174/2211738511666230821124704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION In this study, we have investigated the aluminium phosphide (ALP) toxicity on Renal Function and oxidative stress in kidney tissue of male rats and the possible protective role of Curcumin and nanoCurcumin against ALP-induced nephrotoxicity. METHODS Thirty-six adult male rats were divided into 6 groups (n=6). ALP (2 mg/kg oral administration) and control groups received Curcumin and nanoCurcumin (oral administration 100 mg/kg) or without it. After seven days of treatment, kidney parameters, oxidative stress biomarkers, and expression level of sirtuins1 (SIRT1)/Forkhead box protein O1 (FoxO1) pathway genes were evaluated in kidney tissue. In addition, histopathological changes in the kidney tissues were assayed. RESULTS In the ALP group, compared to the control group, lipid peroxidation levels, urea, and creatinine were increased, and total antioxidant capacity and thiol groups decreased significantly p < 0.05. In Curcumin and nanoCurcumin groups compared to the ALP group, lipid peroxidation and creatinine decreased significantly p < 0.05. Also, Curcumin and nanoCurcumin improved the tissue damage caused by ALP. NanoCurcumin modulated the effect of ALP on the gene expression levels in SIRT1/FoxO1. CONCLUSION The present study showed that ALP intoxication in kidney tissue can induce oxidative damage. Moreover, Curcumin and nanocurcumin, as potential antioxidants, can be effective therapeutics in ALP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fathi Jouzdani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- USERN office, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, 1517964311, Iran
| |
Collapse
|
8
|
Dashtbanei S, Keshtmand Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics Antimicrob Proteins 2023; 15:226-238. [PMID: 35819625 DOI: 10.1007/s12602-022-09946-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Cadmium (Cd) produces severe oxidative stress, which can result in serious clinical consequences and tissue injury. The aim of the present survey was to investigate the protective effects of native Iranian probiotics (Lactobacillus rhamnosus, L. helveticus, and L. casei) against cadmium (Cd)-induced toxicity against the small intestine and lung at histopathological and biochemical levels. MATERIALS AND METHODS Twenty-one adult male Wistar rats were randomized into three groups of seven rats (control, Cd-treated (3 mg/kg), and concomitant Cd and mix probiotic treatment for 30 days). Histological alterations were appraised via hematoxylin & eosin, Trichrome Masson, and PAS staining. The qRT-PCR technique was applied to assess the expression of pro-apoptotic, anti-apoptotic, and pro-inflammatory genes. Antioxidant enzymes activity was measured via ZellBio kits. RESULTS Probiotic-treated rats displayed low production of lipid peroxides, reduced malondialdehyde (MDA) level, and elevated contents of superoxide dismutase (SOD) and catalase (CAT) enzymes compared with Cd-treated rats. The results of qRT-PCR demonstrated the up-regulation of Bax, p53, and caspase 3 and down-regulation of Bcl2, TNF-α, and IL-6 genes in both the intestine and lungs of mix probiotic-treated rats compared with Cd-treated animals. Histopathological findings revealed that the probiotic formulation improved Cd-triggered tissue damage in the intestine and lungs. CONCLUSION The strong cytoprotective benefits of Iranian probiotics against Cd-induced tissue injury observed in this study may be due to their anti-inflammatory and antioxidant properties. Therefore, additional clinical and experimental research is required to explain the precise mechanisms of probiotics' beneficial impacts and underline their potential therapeutic use.
Collapse
Affiliation(s)
- Shadi Dashtbanei
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Smirnova E, Moniruzzaman M, Chin S, Sureshbabu A, Karthikeyan A, Do K, Min T. A Review of the Role of Curcumin in Metal Induced Toxicity. Antioxidants (Basel) 2023; 12:antiox12020243. [PMID: 36829803 PMCID: PMC9952547 DOI: 10.3390/antiox12020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.
Collapse
Affiliation(s)
- Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| |
Collapse
|
10
|
Ranjbar A, Kheiripour N, Shateri H, Sameri A, Ghasemi H. Protective Effect of Curcumin and Nanocurcumin on Sperm Parameters and Oxidant-antioxidants System of Rat Testis in Aluminium Phosphide Subacute Poisoning. Pharm Nanotechnol 2023; 11:355-363. [PMID: 36927427 DOI: 10.2174/2211738511666230316101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Aluminum phosphide (AlP) as an effective pesticide may contribute to oxidative stress and adversely influence sperm parameters. This study aimed to investigate the protective role of curcumin and nanocurcumin on oxidative damage in the testis of rats with AlP toxicity. METHODS A total of 42 adult male Wistar rats were equally randomized into the following study groups (n = 7): Control, Control+Curcumin, Control+Nanocurcumin, AlP, AlP+Curcumin, and AlP+Nanocurcumin. The testis tissue was used to investigate the levels of testicular malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and reduced glutathione (GSH) as well as the Catalase (CAT) and superoxide dismutase (SOD) enzyme activity. Epididymal sperm was used to perform sperm analysis. RESULTS AlP administration led to a significant increase in MDA, and TOS levels and also markedly decreased the SOD activity and the levels of TAC and GSH in testis tissue (p <0.001). Moreover, the motility and viability of sperms were significantly reduced (p <0.001). Curcumin and Nanocurcumin co-administration with AlP remarkably decreased the MDA and TOS level (p <0.001) and significantly increased the GSH and TAC levels as well as the activity of SOD in AlP intoxicated groups (p<0.001). Our findings demonstrated that Nanocurcumin administration has significantly enhanced the sperm quality in AlP intoxicated rats as compared to the control group (p <0.001). CONCLUSION According to the results of this study, Curcumin as a potential antioxidant could be an effective attenuative agent against AlP-induced oxidative damage in testis, especially when it is used in encapsulated form, nanocurcumin.
Collapse
Affiliation(s)
- Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Shateri
- Department of Clinical Biochemistry, Hamadan School of Medical Sciences, Hamadan, Iran
| | - Amirhossein Sameri
- Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Hadi Ghasemi
- Department of Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Hemati U, Moshajari M, Jalali Mashayekhi F, Bayat M, Moslemi A, Baazm M. The effect of curcumin on NRF2/Keap1 signalling pathway in the epididymis of mouse experimental cryptorchidism. Andrologia 2022; 54:e14532. [PMID: 35882440 DOI: 10.1111/and.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nrf2/Keap1 pathway, which prevents cellular damage against reactive oxygen species production, is disrupted in epididymis following cryptorchidism. In this study, we aimed to use curcumin (Cur) as an activator of Nrf2 to decrease the effects of disruption in this pathway caused by cryptorchidism. In this study, animals were randomly divided into following groups: control, sham-surgery, sham-vehicle, sham-Cur50, sham-Cur100 , cryptorchidism, cryptorchidism-vehicle, cryptorchidism-Cur50 and cryptorchidism-Cur100 . For cryptorchidism induction, the left testicle was removed from the scrotum and sutured to the abdominal wall. Two weeks after surgery, Cur was given orally to animals. After 1 month, sperm parameters and testis histopathology were analysed. The expression of Nrf2, NQO1, HO1, and Keap1 genes was evaluated by real-time polymerase chain reaction. Our data showed that Cur, especially at high doses, could improve sperm parameters and testis histopathology, which were damaged following cryptorchidism induction. The expression of HO1, NQO1, and Nrf2 genes, which had decreased in the cryptorchidism group, showed a significant increase after administration of Cur in a dose-dependent manner. Cur, by inducing the expression of genes involved in the Nrf2/Keap1 pathway, could reduce the adverse effects of cryptorchidism and might be used as adjuvant therapy for decreasing cryptorchidism complications before surgery.
Collapse
Affiliation(s)
- Uosef Hemati
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Minoo Moshajari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Farideh Jalali Mashayekhi
- Department of Genetics and Biochemistry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Bayat
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Azam Moslemi
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
12
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
13
|
Hussein RM, Kandeil MA, Mohammed NA, Khallaf RA. Evaluation of the hepatoprotective effect of curcumin-loaded solid lipid nanoparticles against paracetamol overdose toxicity : Role of inducible nitric oxide synthase. J Liposome Res 2022; 32:365-375. [PMID: 35132919 DOI: 10.1080/08982104.2022.2032737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin (Cur) is a natural compound that exhibited therapeutic effects against various liver injuries however Cur showed poor water solubility and bioavailability. This study aimed to design Cur-loaded solid lipid nanoparticles (SLNs) and to evaluate the hepatoprotective and antioxidant effects in a model of acute hepatotoxicity induced by paracetamol (PCM) overdose compared to the raw Cur and N-acetylcysteine (NAC). SLNs were prepared by emulsion/solvent evaporation method and 32 factorial design was employed. Wistar rats were divided into Control, PCM, PCM + NAC, PCM + raw Cur, and PCM + Cur-SLNs groups and treated orally for 14 days before receiving a single PCM dose. The Cur-loaded SLNs showed high entrapment efficiency % ranging between 69.1 and 92.1%, particle size (PS) between 217 and 506 nm, and zeta potential values between -17.9 and -25.5 mV. The in vivo results revealed that the PCM group exhibited deterioration of liver functions, pathological lesions on the liver tissues, severe oxidative stress, and increases in both the serum and hepatic iNOS levels. Remarkably, the PCM + Cur-SLNs group showed significantly better liver functions and tissue integrity compared to the PCM group. Furthermore, higher reduced glutathione and catalase but lower malondialdehyde and iNOS levels were observed. In conclusion, Cur-loaded SLNs effectively prevented the liver damage induced by PCM overdose through alleviating the oxidative stress and inhibiting the serum and hepatic iNOS expression in an effect comparable to NAC and better than raw Cur.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan.,Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Norhan A Mohammed
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Preventive Medicine, Al-Fayoum Health directorate, Al-Fayoum, Egypt
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
14
|
Neuroprotective Role of Polyphenols in Treatment of Neurological Disorders: A Review. Neuromodulation 2021. [DOI: 10.5812/ipmn.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: The most frequent illnesses characterized by the gradual malfunctioning of brain neurons are neurodegenerative disorders (NDs). Genetic mutations and a range of biological processes can produce NDs. Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are all related to oxidative stress (OS). Reduced brain activity has become a greater health threat with a growing elderly population. It causes some pathophysiological alterations and is an important risk factor for a range of neurodegenerative illnesses. An increase in reactive oxygen species (ROS) can cause neuronal cell death, and it is thus essential to control ROS levels to maintain normal neuronal activity. Synthetic medicines are often used to treat neurological disorders; however, harmful effects have been reported. Multiple bodies of research have shown the effectiveness of polyphenols in the treatment of various NDs due to their negligible side effects. This review article describes the neuroprotection effects of polyphenols such as resveratrol, epigallocatechin-3-gallate, curcumin, and quercetin, as well as the signaling pathways and immune response controls through polyphenols.
Collapse
|
15
|
Ezim OE, Abarikwu SO. Therapeutic effects of fluted pumpkin seeds on cadmium-induced testicular injury. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1965623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
16
|
Ferlazzo N, Micali A, Marini HR, Freni J, Santoro G, Puzzolo D, Squadrito F, Pallio G, Navarra M, Cirmi S, Minutoli L. A Flavonoid-Rich Extract from Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, Shows Protective Effects in a Murine Model of Cadmium-Induced Testicular Injury. Pharmaceuticals (Basel) 2021; 14:ph14050386. [PMID: 33919028 PMCID: PMC8142973 DOI: 10.3390/ph14050386] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
It is known that cadmium damages testis structure and functionality. We examined the effects of nutraceuticals such as a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), on mice testicular dysfunction caused by cadmium chloride (CdCl2). Controversial data on the protective effects of Cur and Re are available, while no evidence on the possible role of BJe exists. Adult male C57 BL/6J mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. Then, testes were removed and processed for molecular, structural, and immunohistochemical analyses. CdCl2 increased the mRNA of IL-1β, TNF-α, p53, and BAX while reduced that of Bcl-2 and induced tubular lesions and apoptosis of germinal cells. Cur, Re, and BJe at 40 mg/kg significantly improved all of these parameters and events, although BJe at 20 mg/kg showed a lower protective effect. The association of Cur, Re, and BJe at both doses of 50/20/20 and 100/20/40 mg/kg brought each parameter close to those of the control. Our results indicate that the nutraceuticals employed in this study and their associations exert a positive action against Cd-induced testicular injury, suggesting a possible protection of testis functionality in subjects exposed to environmental toxicants.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Antonio Micali
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Josè Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Giuseppe Santoro
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence:
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| |
Collapse
|
17
|
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:95-118. [PMID: 33357071 DOI: 10.1080/10937404.2020.1860842] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Curcumin, used as a spice and traditional medicine in India, exerts beneficial effects against several diseases, owing to its antioxidant, analgesic, and anti-inflammatory properties. Evidence indicates that curcumin might protect against heavy metal-induced organ toxicity by targeting biological pathways involved in anti-oxidation, anti-inflammation, and anti-tumorigenesis. Curcumin has received considerable attention owing to its therapeutic properties, and the mechanisms underlying some of its actions have been recently investigated. Cadmium (Cd) is a heavy metal found in the environment and used extensively in industries. Chronic Cd exposure induces damage to bones, liver, kidneys, lungs, testes, and the immune and cardiovascular systems. Because of its long half-life, exposure to even low Cd levels might be harmful. Cd-induced toxicity involves the overproduction of reactive oxygen species (ROS), resulting in oxidative stress and damage to essential biomolecules. Dietary antioxidants, such as chelating agents, display the potential to reduce Cd accumulation and metal-induced toxicity. Curcumin scavenges ROS and inhibits oxidative damage, thus resulting in many therapeutic properties. This review aims to address the effectiveness of curcumin against Cd-induced organ toxicity and presents evidence supporting the use of curcumin as a protective antioxidant.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon Republic of Korea
| |
Collapse
|
18
|
Riahi MM, Behnam B, Henney NC, Jamialahmadi T, Sahebkar A. Protective Effects of Curcumin in the Reproductive System: Anti-toxic, Semen Cryopreservative, and Contraceptive Actions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:223-242. [DOI: 10.1007/978-3-030-73234-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Health Benefits of Turmeric and Curcumin Against Food Contaminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:171-197. [DOI: 10.1007/978-3-030-73234-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
20
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Tran QH, Le DV. A NEW SPECTROSCOPY METHOD FOR THE QUANTITATIVE DETERMINATION OF IRON(III) BASED ON CURCUMIN REAGENT. ACTA CHEMICA IASI 2021. [DOI: 10.47743/achi-2021-1-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Başak Türkmen N, Ayhan İ, Taşlıdere A, Aydın M, Çiftçi O. Investigation of protective effect of ellagic acid in phthalates-induced reproductive damage. Drug Chem Toxicol 2020; 45:1652-1659. [PMID: 33292028 DOI: 10.1080/01480545.2020.1853764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phthalates that people are exposed to every day are toxic carcinogenic chemicals with proven harmful effects on growth and reproduction. Ellagic acid (EA) is a polyphenol derivative known for its antioxidant properties. We hypothesized that the possible reproductive damage mechanism of phthalates is oxidative attack and ellagic acid could have a protective effect against radical forms in the body through its antioxidant properties. Thirty-two male rats were randomly divided into 4 groups, with 8 rats in each. Phthalate (DBP) was administered intraperitoneally and EA acid through gastric oral gavage (phthalate group 500 mg/kg/day DBP; EA group 2 mg/kg/day ellagic acid; the treatment group 500 mg/kg/day DBP and 2 mg/kg/day EA). The vehicle of DBP and EA, carboxymethyl cellulose was administered to control group. At the end of 4 weeks the testis tissue samples were taken under mild anesthesia. Tissue malondialdehyde, antioxidant parameters, sperm motility, sperm density and abnormal spermatozoon ratios were determined. Analysis was performed with One Way ANOVA test using SPSS 12.0 program. As a result; it has been shown that DBP causes oxidative damage by increasing the malondialdehyde level and decreasing antioxidant parameters, increased abnormal sperm rate and decreased sperm motility and concentration and histopathological damage so this damage is inhibited by the antioxidant activity of ellagic acid.
Collapse
Affiliation(s)
- Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, Turkey
| | - İdris Ayhan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Muhterem Aydın
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Osman Çiftçi
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| |
Collapse
|
23
|
Rajak C, Singh N, Parashar P. Metal toxicity and natural antidotes: prevention is better than cure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43582-43598. [PMID: 32951168 DOI: 10.1007/s11356-020-10783-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Toxicity due to heavy metals (HM), specifically mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd) remains a challenge to scientists till date. This review gives insights into natural antidotes for the management and prevention of HM toxicity. Various databases such as PubMed, Embase, and Science Direct were searched for available facts on natural antidotes and their commercial products against HM toxicity till date. Toxicity owing to such metals needs prevention rather than therapy. Natural antidotes, fruits and vegetables, rich in antioxidant are the answers to such toxicities. Synthetic chelators impart a major drawback of removing essential metals required for normal body function, along with the toxic one. Natural antioxidants are bestowed with scavenging and chelation properties and can be alternative for synthetic chelating agents. Natural compounds are abundantly available, economic, and have minimal side effects when compared with classical chelators. Prevention is better than cure and thus adding plentiful vegetables and fruits to our diet can combat HM toxicity-related illness. Graphical abstract.
Collapse
Affiliation(s)
- Chetan Rajak
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Near CRPF Base Camp, Ahmadpur urf Kamlapur, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Poonam Parashar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Near CRPF Base Camp, Ahmadpur urf Kamlapur, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
24
|
Noh S, Go A, Kim DB, Park M, Jeon HW, Kim B. Role of Antioxidant Natural Products in Management of Infertility: A Review of Their Medicinal Potential. Antioxidants (Basel) 2020; 9:E957. [PMID: 33036328 PMCID: PMC7600260 DOI: 10.3390/antiox9100957] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Infertility, a couple's inability to conceive after one year of unprotected regular intercourse, is an important issue in the world. The use of natural products in the treatment of infertility has been considered as a possible alternative to conventional therapies. The present study aimed to investigate the effects and the mechanisms of various natural products on infertility. We collected articles regarding infertility and natural products using the research databases PubMed and Google Scholar. Several natural products possess antioxidant properties and androgenic activities on productive factors and hormones. Antioxidants are the first defense barrier against free radicals produced by oxidative stress (OS). They remove reactive oxygen stress (ROS), reducing insulin resistance, total cholesterol, fat accumulation, and cancer growth. Moreover, various natural products increase endometrial receptivity and fertility ability showing androgenic activities on productive factors and hormones. For example, Angelica keiskei powder and Astragalus mongholicus extract showed anti-infertility efficacies in males and females, respectively. On the other hand, adverse effects and acute toxicity of natural products were also reported. Tripterygium glycoside decreased fertility ability both in males and females. Results indicate that management of infertility with natural products could be beneficial with further clinical trials to evaluate the safety and effect.
Collapse
Affiliation(s)
- Seungjin Noh
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Ara Go
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Da Bin Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Minjeong Park
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (S.N.); (A.G.); (D.B.K.); (M.P.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
| |
Collapse
|
25
|
Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A Review. J Appl Toxicol 2020; 41:105-117. [DOI: 10.1002/jat.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| |
Collapse
|
26
|
Abdel Latif H, Abdel Khalek R, AbdelGalil W, AbdAllah H, Fawzy A, AbdelFattah S. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium-induced testicular injury: A crosstalk between oxidative and apoptotic markers. Andrologia 2020; 52:e13760. [PMID: 32692431 DOI: 10.1111/and.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd), a grave occupational pollutant, can result in; testicular damage. This study was designed to distinguish the potential effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) versus that of curcumin nanoemulsion on Cd-induced testicular damage. Fifty adult male Sprague Dawley rats were distributed into five groups; control, sham control, Cd-treated, stem cell-treated and nanocurcumin-treated groups. Histological, immune histochemical; caspase 3 and proliferating cell nuclear antigen (PCNA) and CD 68, testosterone levels, nitric oxide, malondialdehyde (MDA)/glutathione (GSH) superoxide, dismutase (SOD), Western blot; B-cell lymphoma (Bcl-2), BCL2-Associated X Protein (BAX), BAX/Bcl-2 ratio and morphometry were done. Cadmium-treated group showed degenerated, detached seminiferous tubules, vacuolations and wide interstitial spaces containing fluid exudates. The same group revealed increased expression of BAX, BAX/Bcl-2 ratio, caspase 3, CD 68 and increased mean values of MDA, NO. Concomitantly, Cd has significant reduction in PCNA, Bcl-2 and sperm cell count when compared to control group. BM-MSCs- and nanocurcumin-treated groups revealed well-structured tubules and were perceived to expressively enhance the deleterious changes induced by Cd. The injurious changes on the testis induced by Cd were obviously improved when treated with either MSCs or nano-curcumin. BM-MSCs exerted more ameliorative changes.
Collapse
Affiliation(s)
- Hany Abdel Latif
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdel Khalek
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walid AbdelGalil
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend AbdAllah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad Fawzy
- Medical Physiology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen AbdelFattah
- Anatomy and Embryology, Kasralainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3656419. [PMID: 32765806 PMCID: PMC7387956 DOI: 10.1155/2020/3656419] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Curcumin has extensive therapeutic potential because of its antioxidant, anti-inflammatory, and antiproliferative properties. Multiple preclinical studies in vitro and in vivo have proven curcumin to be effective against various cancers. These potent effects are driven by curcumin's ability to induce G2/M cell cycle arrest, induce autophagy, activate apoptosis, disrupt molecular signaling, inhibit invasion and metastasis, and increase the efficacy of current chemotherapeutics. Here, we focus on the hormetic behavior of curcumin. Frequently, low doses of natural chemical products activate an adaptive stress response, whereas high doses activate acute responses like autophagy and cell death. This phenomenon is often referred to as hormesis. Curcumin causes cell death and primarily initiates an autophagic step (mitophagy). At higher doses, cells undergo mitochondrial destabilization due to calcium release from the endoplasmic reticulum, and die. Herein, we address the complex crosstalk that involves mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy, and cell death.
Collapse
|
28
|
Chen S, Yang S, Wang M, Chen J, Huang S, Wei Z, Cheng Z, Wang H, Long M, Li P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem Toxicol 2020; 141:111385. [DOI: 10.1016/j.fct.2020.111385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
|
29
|
Gad El-Hak HN, Mobarak YM. Copper oxychloride-induced testicular damage of adult albino rats and the possible role of curcumin in healing the damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11649-11662. [PMID: 31970636 DOI: 10.1007/s11356-020-07715-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The current research study investigated the effect of 80 mg/kg b.wt./day curcumin (cur) against 50, 100, and 200 mg/kg copper oxychloride (COC) for 90 days induced testicular damage using histological, ultrastructural, and biochemical techniques. Histological and cellular abnormalities have been noted in seminiferous tubules of COC-treated group and treated group with Cur- and COC-treated group. The biochemical result showed that serum testosterone was significantly decreased in COC-treated rats and Cur COC-treated rats compared with the control groups. Testes copper content and malondialdehyde was increased, whereas the testes total antioxidant, manganese, ferrous, and zinc levels were decreased (p ≥ 0.05) compared to the control groups. In conclusion, the present work reported that the treatment of rats with 80 mg/kg body weight curcumin prior to treatment with COC did not mitigate the deleterious effects of COC and manifested no signs of protection.
Collapse
|
30
|
|
31
|
Tran QH, Doan TT. A novel study on curcumin metal complexes: solubility improvement, bioactivity, and trial burn wound treatment in rats. NEW J CHEM 2020. [DOI: 10.1039/d0nj01159b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper describes a new technique to enhance the solubility of metal curcumin complexes.
Collapse
Affiliation(s)
- Quang Hieu Tran
- Division of Chemistry
- Basic Sciences Department
- Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| | - Thanh Thao Doan
- Faculty of Food Technology
- Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| |
Collapse
|
32
|
Hasan W, Kori RK, Jain J, Yadav RS, Jat D. Neuroprotective effects of mitochondria‐targeted curcumin against rotenone‐induced oxidative damage in cerebellum of mice. J Biochem Mol Toxicol 2019; 34:e22416. [DOI: 10.1002/jbt.22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/10/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Whidul Hasan
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Rajesh Kumar Kori
- Department of Criminology and Forensic ScienceDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Juli Jain
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic ScienceDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| | - Deepali Jat
- Neuroscience Research Lab, School of Biological SciencesDr. Harisingh Gour Vishwavidyalaya (A Central University)Sagar MP India
| |
Collapse
|
33
|
Yang SH, He JB, Yu LH, Li L, Long M, Liu MD, Li P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34575-34583. [PMID: 31650475 DOI: 10.1007/s11356-019-06587-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate whether curcumin (CUR) can ameliorate cadmium-induced reproductive toxicity and its mechanism. A total of 48 male mice were equally divided into 4 groups: control, CdCl2 (2 mg/kg, intraperitoneally inject) curcumin (50 mg/kg, intraperitoneally inject), co-treatment with curcumin (50 mg/kg), and CdCl2 (2 mg/kg) for 10 days. The results demonstrated that CdCl2 reduces sperm motility, decreases the sperm density and serum testosterone content, and significantly improves the rate of sperm deformity. CdCl2 increased the level of testicular total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH), and CdCl2 declined the level of malondialdehyde (MDA). However, the semen quality of the mice in the curcumin intervention group was improved. Moreover, the testosterone content and antioxidant capacity were increased. In the Cd group mice, the expression of testicular Nrf2, as well as the mRNA and protein expressions of the downstream target molecules, glutathione peroxidase (GSH-Px), and γ-glutamylcysteine synthetase (γ-GCS) of Nrf2 declined, while the above genetic expressions elevated significantly in the curcumin intervention group. Our results suggested that curcumin could protect against Cd-induced testicular injury via activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ming-Da Liu
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
34
|
Abd Elhafeez E, Halawa A, Hamed M, Abouelmaged M. Effects of Cadmium and /or Chromium on reproductive organs and semen profiles of male albino rats. MANSOURA VETERINARY MEDICAL JOURNAL 2019:14-18. [DOI: 10.35943/mvmj.2019.23.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Objective: To evaluate the potential hazards of cadmium and/or chromium on the reproductive system of adult male albino rat.
Design: Randomized controlled study.
Animals: Forty mature male albino rats weighing 260 ± 10 g.
Procedures: Rats were allocated into four groups (ten animals each). Control group (group 1), group 2 received 4.4 mg kg-1 cadmium chloride, group 3 was given 2.5 mg kg-1 sodium dichromate and group 4 received combination of Cd (2.2 mg kg-1) and Cr (1.25mg kg-1) orally, once daily for 65 consecutive days.
Results: Exposure to Cd or Cr, in particular their combination, caused a reduction in the index weights of testes, epididymis, seminal vesicle and prostate glands. They induced a reduction of sperm count and viability with an increase of abnormal sperm morphology. Interestingly, in the combination group (Cd and Cr together), the deleterious effects were more noticeable. Pathologically, both Cd and Cr produced degenerative changes in seminiferous tubules, necrosis of spermatogenic epithelium within the testis. Moreover, the interstitial tissue of epididymis showed marked edema and prostate showed necrosis and serous exudate of lining epithelium. In the interaction group, testis showed complete degenerative changes and necrosis of spermatogenic epithelium, with marked interstitial edema and hyperplastic epithelial lining of epididymal tubules.
Conclusion and clinical relevance: The present results support the hypothesis that the testis is one of the most sensitive organs to Cd and/or Cr and that the exposure to any of them or to their combination lead to testicular damage and thereby male infertility.
Collapse
Affiliation(s)
- Eman Abd Elhafeez
- Department of Forensic Medicine and Toxicology. Faculty of Veterinary Medicine Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Amal Halawa
- Department of Forensic Medicine and Toxicology. Faculty of Veterinary Medicine Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Mohamed Hamed
- Department of pathology, Faculty of Veterinary Medicine Mansoura University, P.O. 35516, Mansoura, Egypt
| | - Mamdouh Abouelmaged
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine Mansoura University, P.O. 35516, Mansoura, Egypt
| |
Collapse
|
35
|
Enhancing the Solubility of Curcumin Metal Complexes and Investigating Some of Their Biological Activities. J CHEM-NY 2019. [DOI: 10.1155/2019/8082195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This article describes the synthesis of curcumin complexes with metal ions. Properties of these complexes such as spectra IR and UV-Vis and solubility were investigated. The optimum parameters of ultrasound to enhance the solubility was figured out as follows: the capacity of ultrasound: 750 W/g; the time of ultrasound: 7 min; the concentration of the surfactant Tween 80 : 2%. The maximum solubility (mg/ml) of complexes was as follows: Cur-Fe(III): 0.162 ± 0.01; Cur-Zn(II): 0.267 ± 0.02; and Cur-Ca(II): 0.417 ± 0.05. Antioxidant capacity (DPPH, %I) of curcumin complexes was higher than that of curcumin-free complexes. All of these curcumin complexes revealed antimicrobial activities, in which calcium complex had the best resistance against Salmonella, followed by Fe(III) complexes. Meanwhile, the zinc complex was not resistant to this bacterium. These complexes showed antibacterial activity on Staphylococcus aureus, in which Cur-Ca (II) complexes had the highest antibacterial activity. For Escherichia coli, the Cur-Zn (II) complex had no resistance, while the Cur-Ca (II) complex showed the highest antibacterial activity.
Collapse
|
36
|
Kotha RR, Luthria DL. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019; 24:molecules24162930. [PMID: 31412624 PMCID: PMC6720683 DOI: 10.3390/molecules24162930] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric is a curry spice that originated from India, which has attracted great interest in recent decades because it contains bioactive curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione), a lipophilic polyphenol may work as an anticancer, antibiotic, anti-inflammatory, and anti-aging agent as suggested by several in vitro, in vivo studies and clinical trials. However, poor aqueous solubility, bioavailability, and pharmacokinetic profiles limit curcumin’s therapeutic usage. To address these issues, several curcumin formulations have been developed. However, suboptimal sample preparation and analysis methodologies often hamper the accurate evaluation of bioactivities and their clinical efficacy. This review summarizes recent research on biological, pharmaceutical, and analytical aspects of the curcumin. Various formulation techniques and corresponding clinical trials and in vivo outcomes are discussed. A detailed comparison of different sample preparation (ultrasonic, pressurized liquid extraction, microwave, reflux) and analytical (FT-IR, FT-NIR, FT-Raman, UV, NMR, HPTLC, HPLC, and LC-MS/MS) methodologies used for the extraction and quantification of curcuminoids in different matrices, is presented. Application of optimal sample preparation, chromatographic separation, and detection methodologies will significantly improve the assessment of different formulations and biological activities of curcuminoids.
Collapse
Affiliation(s)
| | - Devanand L Luthria
- USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
37
|
Mohebbati R, Anaeigoudari A, Khazdair MR. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul 2019; 51:220-228. [PMID: 29232190 DOI: 10.1515/enr-2017-0024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Curcuma longa (C. longa) was used in some countries such as China and India for various medicinal purposes. Curcumin, the active component of C. longa, is commonly used as a coloring agent in foods, drugs, and cosmetics. C. longa and curcumin have been known to act as antioxidant, anti-inflammatory, anti-mutagen, and anti-carcinogenic agents. Th e attempt of the present review was to give an effort on a detailed literature survey concentrated on the protective effects of C. longa and curcumin on the reproductive organs activity. METHODS The databases such as, PubMed, Web of Science, Google Scholar, Scopus, and Iran- Medex, were considered. The search terms were "testis" or "ovary" and "Curcuma longa", "curcumin", "antioxidant effect", "anti-inflammatory effect" and "anti-cancer effect". RESULTS C. longa and curcumin inhibited the production of the tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) and increased the caspases (3, 8 and 9) activities in HL-60 prostate cancer. Furthermore, C. longa and curcumin suppressed the vascular endothelial growth factor (VEGF), phosphorylated signal transducers and activators of the transcription 3 (STAT) and matrix metalloproteinase-9 (MMP-9) in ovarian cancer cell line. CONCLUSION C. longa and curcumin might decrease the risk of cancer and other malignant diseases in the reproductive system. C. longa and curcumin have a protective effect on the reproductive organs activity such as, anti-inflammatory, anti-apoptotic, and antioxidant effects in normal cells but showed pro-apoptotic effects in the malignant cells. Therefore, different effects of C. longa and curcumin are dependent on the doses and the type of cells used in various models studied.
Collapse
|
38
|
Amadi CN, Offor SJ, Frazzoli C, Orisakwe OE. Natural antidotes and management of metal toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18032-18052. [PMID: 31079302 DOI: 10.1007/s11356-019-05104-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The global burden of heavy metal especially mercury, arsenic, lead, and cadmium toxicities remains a significant public health challenge. Developing nations are particularly at high risk and carry the highest burden of this hazard. Chelation therapy has been the mainstay for treatment of heavy metal poisoning where the chelating agent binds metal ions to form complex ring-like structures called "chelates" to enhance their elimination from the body. Metal chelators have some drawbacks such as redistribution of some heavy metals from other tissues to the brain thereby increasing its neurotoxicity, causing loss of essential metals such as copper and zinc as well as some serious adverse effects, e.g., hepatotoxicity. The use of natural antidotes, which are easily available, affordable, and with little or no side effects compared to the classic metal chelators, is the focus of this review and suggested as cheaper options for developing nations in the treatment of heavy metal poisoning.
Collapse
Affiliation(s)
- Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
39
|
Kazemizadeh A, Zare Shahneh A, Zeinoaldini S, Yousefi AR, Mehrabani Yeganeh H, Ansari Pirsaraei Z, Akhlaghi A. Effects of dietary curcumin supplementation on seminal quality indices and fertility rate in broiler breeder roosters. Br Poult Sci 2019; 60:256-264. [DOI: 10.1080/00071668.2019.1571165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- A. Kazemizadeh
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A. Zare Shahneh
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - S. Zeinoaldini
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - A. R. Yousefi
- Department of Research, Breeding and Production of Laboratory Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - H. Mehrabani Yeganeh
- Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Z. Ansari Pirsaraei
- Department of Animal Science, Sari Agricultural Sciences & Natural Resources University, Sari, Iran
| | - A. Akhlaghi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
40
|
Zhang Y, Li S, Li S. Relationship between cadmium content in semen and male infertility: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1947-1953. [PMID: 30460654 DOI: 10.1007/s11356-018-3748-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Meta-analysis with high-quality studies can provide superior evidence. In this paper, we use meta-analysis to analyze the relationship between cadmium (Cd) content in semen and male infertility, and then objectively evaluate the effect of Cd on sperm quality. The objectives of this study were to update our understanding of infertility and to provide evidence to treat and prevent the infertility. We searched potentially relevant studies that were published from establishing database data to April 2018. Articles came from the databases of CNKI, Wanfang, VIP, PubMed, CMCI, and EMBASE. A total of 11 articles were included. We gathered the mean and variance of the infertility group and the control group to compare the Cd content in two groups. In total, the 11 studies include 1707 subjects, 1093 of which were in the infertility group and 614 of which were in the control group. We can get some information from this meta-analysis: SMD = 0.50 (95% Cl 0.39-0.61), Z = 8.92, P < 0.05; the funnel plot of the meta-analysis shows incomplete symmetry, which may have the publication bias. Therefore, the high content of Cd in semen is a causative factor of infertility. The Cd content in semen can be used as an indicator of sperm quality.
Collapse
Affiliation(s)
- Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiping Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
41
|
Mężyńska M, Brzóska MM. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J Appl Toxicol 2018; 39:117-145. [PMID: 30216481 DOI: 10.1002/jat.3709] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Recently, the growing attention of the scientific community has been focused on the threat to health created by environmental pollutants, including toxic metals such as cadmium (Cd), and on the need of finding effective ways to prevent and treat the unfavorable health effects of exposure to them. Particularly promising for Cd, and thus arousing the greatest interest, is the possibility of using various ingredients present in plants, including mainly polyphenolic compounds. As the liver is one of the target organs for this toxic metal and disturbances in the proper functioning of this organ have serious consequences for health, the aim of the present review was to discuss the possibility of using polyphenol-rich food products (e.g., chokeberry, black and green tea, blueberry, olive oil, rosemary and ginger) as the strategy in protection from this xenobiotic hepatotoxicity and treatment of this heavy metal-induced liver damage. Owing to the ability of polyphenols to bind ions of Cd and the strong antioxidative potential of these compounds, as well as their abundance in dietary products, it seems to be of high importance to consider the possibility of using polyphenols as potential preventive and therapeutic agents against Cd hepatotoxicity, determined by its strong pro-oxidative properties. Although most of the data on the effectiveness of polyphenols comes from studies in animals, the fact that some of them are derived from experimental models that reflect human exposure to this metal allows us to assume that some polyphenol-rich food products may be promising protective agents against Cd hepatotoxicity in humans.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| |
Collapse
|
42
|
Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C. The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 2018; 40:344-352. [PMID: 30052483 DOI: 10.1080/08923973.2018.1490318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to investigate the beneficial effects of 18β-glycyrrhetinic acid (GA) on the experimental allergic encephalomyelitis (EAE) in C57BL/6 mice. GA is a natural substance found in the root of licorice and is used in traditional Chinese medicine. It has many pharmacological activities such as antioxidant, anti-inflammatory, and anti-cancer effects. MATERIALS AND METHODS A total of 40 C57BL/6 mice were divided equally into four groups: (1) Control, (2) EAE, (3) GA and (4) GA + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, mice were treated with GA at doses of 100 mg/kg/day for 7 days intraperitoneally. RESULTS To our results, oxidative stress and lipid peroxidations (elevated TBARS levels, decreased GPx, SOD, CAT, and GSH levels) were significantly (p < .01) increased, causing EAE in brain tissue. Also, histopathological damage (Caspase-3 and IL-17 activity, p ≤ .01) and cytokine levels (TNF-α and IL-1β, p < .01) were induced with EAE in mice brain tissue. On the other hand, GA treatment significantly (p < .01) reversed oxidative histological and immunological alterations caused by EAE. CONCLUSIONS In conclusion, the GA treatment can protect the brain tissue against EAE in mice with its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Suat Kamisli
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| | - Osman Ciftci
- b Faculty of Medicine, Department of Pharmacology , University of Pamukkale , Denizli , Turkey
| | - Asli Taslidere
- c Faculty of Medicine, Department of Histology and Embryology , University of Inonu , Malatya , Turkey
| | - Nese Basak Turkmen
- d Faculty of Pharmacy, Department of Pharmaceutical Toxicology , University of Inonu , Malatya , Turkey
| | - Cemal Ozcan
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| |
Collapse
|
43
|
Yang SH, Yu LH, Li L, Guo Y, Zhang Y, Long M, Li P, He JB. Protective Mechanism of Sulforaphane on Cadmium-Induced Sertoli Cell Injury in Mice Testis via Nrf2/ARE Signaling Pathway. Molecules 2018; 23:molecules23071774. [PMID: 30029485 PMCID: PMC6100605 DOI: 10.3390/molecules23071774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/21/2023] Open
Abstract
The present study evaluated the mechanism underlying the protective effect of sulforaphane (SFN) on cadmium (Cd)-induced Sertoli cell (TM4 cells) injury in mice. The apoptosis rate of cells in each group was detected by flow cytometry. It was determined the effect of SFN on the expression of downstream molecular targets of Nrf2/ARE axis and on the lipid peroxide content. The related genes involved in the nuclear factor E2-related factor 2(Nrf2)/antioxidant response element (ARE) signaling pathway were evaluated by RT-PCR; for example, the mRNA expression levels of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS), while the protein expression levels were assessed by Western blot. Our results showed that the mRNA and protein expression levels of Nrf2, HO-1, NQO1, GSH-Px, and γ-GCS were increased in various degree when the Sertoli cells were to added different concentrations of SFN. Our results also showed that SFN reduced the apoptosis rate, increased the activity of T-SOD, inhibited the increase of the MDA content caused by Cd. Meanwhile, SFN could increase the mRNA and protein expression levels of Nrf2, HO-1 and NQO1 and reduced the mRNA and protein expression levels of GSH-Px and γ-GCS caused by Cd in Sertoli cells (p < 0.01). Taken together, SFN could improve the antioxidant capacity of Sertoli cells, and exert a protective effect on the oxidative damage and apoptosis of Cd-induced Sertoli cells through the activation of Nrf2/ARE signal transduction pathway.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
44
|
Evcimen M, Aslan R, Gulay MS. Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug Chem Toxicol 2018; 43:225-233. [PMID: 29927664 DOI: 10.1080/01480545.2018.1480629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current study aimed to investigate the protective role of polydatin (PD) and grape seed extracts (GSEs) against the effects of cadmium chlorine (CD) application in the rats. Forty-nine adult Wistar albino male rats were used in the study. Rats were assigned into control (saline), CD (5 mg/kg CdCI2), PD (120 mg/kg PD), GSE (120 mg/kg GSE), CD + PD (5 mg/kg CdCI2 + 120 mg/kg PD), CD + GSE (5 mg/kg CdCI2 + 120 mg GSE), and CD + PD + GSE (5 mg/kg CdCI2+120 mg/kg PD +120 mg/kg GSE) treatments (n = 7 per group). The treatments were administered orally for four weeks. CD accumulation was observed in all tissues studied except for the brain tissue. PD and GSE inhibited CD accumulation in erythrocytes and tissues at varying levels. The liver, kidney, brain, and testes showed extensive degenerative histopathological changes in CD group. Liver total oxidant status (TOS) in the CD group increased significantly compared to the control. TOS of kidney, brain, and testis suggested that PD and GSE did not show a strong antioxidant effect in these tissues. Malondialdehyde (MDA) levels in blood and liver raised significantly in CD-treated rats compared to controls. PD, GSE, and their combinations increased antioxidant potential in all tissues and decreased MDA levels in blood plasma and liver. Overall, the protective effects of PD were more effective than GSE. Results suggested that although the initiation of histopathological changes was present in all tissues, the initiating factor was not the oxidative stress in the tissues studied except for the liver and blood.
Collapse
Affiliation(s)
- Mustafa Evcimen
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Recep Aslan
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Mehmet Sukru Gulay
- Department of Physiology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
45
|
El-Maddawy ZK, El-Sayed YS. Comparative analysis of the protective effects of curcumin and N-acetyl cysteine against paracetamol-induced hepatic, renal, and testicular toxicity in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3468-3479. [PMID: 29152699 DOI: 10.1007/s11356-017-0750-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the possible protective role of curcumin (CUR) vs. N-acetyl cysteine (NAC) against paracetamol (PCM)-induced oxidative damage and impairment of liver, kidney, and testicular functions, as well as hematotoxicity, in albino rats. A large single dose of PCM induced lipid peroxidation along with a significant decline in glutathione content and catalase activity in the liver, kidneys, and testicles. The apparent oxidative damage was associated with evident hepatic, renal, and testicular dysfunction, which was confirmed in histopathological lesions, and increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. PCM decreased serum total protein, albumin, and globulin contents; increased bilirubin, urea, and creatinine contents; and induced hematotoxicity. PCM also reduced the sperm cell count, sperm motility, and alive sperm rate and increased the sperm abnormality rate. Pretreatment of PCM-intoxicated animals with CUR or NAC substantially alleviated the increase in malondialdehyde and maintained the antioxidants at control levels. These pretreatments also minimized liver, kidney, and testicular histopathological changes and normalized their functions. CUR similarly mitigated the PCM hemato- and hepatotoxicity compared with NAC. However, it exhibited a pronounced nephroprotection, rather than reproductive protection as did NAC. Our findings demonstrate that a large single dose of PCM is not only associated with hepatotoxicity but also nephrotoxicity and reproductive toxicity. Both CUR and NAC administration provided substantial organ protection with pronounced efficacy against PCM nephrotoxicity with CUR and reproductive toxicity with NAC, which was possibly mediated through their antioxidant activities, as well as their specific characteristics.
Collapse
Affiliation(s)
- Zeynab Kh El-Maddawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
46
|
Shah AJ, Prasanth Kumar S, Rao MV, Pandya HA. Ameliorative effects of curcumin towards cyclosporine-induced genotoxic potential: an in vitro and in silico study. Drug Chem Toxicol 2017; 41:259-269. [DOI: 10.1080/01480545.2017.1380660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ankita J. Shah
- Department of Zoology, Human Genetics and Biomedical Technology, Ahmedabad, India
| | - Sivakumar Prasanth Kumar
- Department of Bioinformatics, Applied Botany Centre, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Mandava V. Rao
- Department of Zoology, Human Genetics and Biomedical Technology, Ahmedabad, India
| | - Himanshu A. Pandya
- Department of Bioinformatics, Applied Botany Centre, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
47
|
Moshari S, Nejati V, Najafi G, Razi M. Insight into curcumin nanomicelle-induced derangements in male reproduction potential: An experimental study. Andrologia 2017; 50. [DOI: 10.1111/and.12842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 11/27/2022] Open
Affiliation(s)
- S. Moshari
- Department of Biology; Faculty of Basic Science; Urmia University; Urmia Iran
| | - V. Nejati
- Department of Biology; Faculty of Basic Science; Urmia University; Urmia Iran
| | - G. Najafi
- Department of Basic Science; Faculty of Veterinary Medicine; Urmia University; Urmia Iran
| | - M. Razi
- Department of Basic Science; Faculty of Veterinary Medicine; Urmia University; Urmia Iran
| |
Collapse
|
48
|
Mohajeri M, Rezaee M, Sahebkar A. Cadmium-induced toxicity is rescued by curcumin: A review. Biofactors 2017; 43:645-661. [PMID: 28719149 DOI: 10.1002/biof.1376] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is one of the most common environmental and occupational heavy metals with extended distribution. Exposure to Cd may be associated with several deleterious consequences on the liver, bones, kidneys, lungs, testes, brain, immunological, and cardiovascular systems. Overproduction of reactive oxygen species (ROS) as the main mechanism behind its toxicity causes oxidative stress and subsequent damages to lipids, proteins, and DNA. Therefore, antioxidants along with chelating agents have shown promising outcomes against Cd-induced toxicity. Curcumin with various beneficial effects and medical efficacy has been evaluated for its inhibitory activities against biological impairments caused by Cd. Thus, this article is intended to address the effectiveness of curcumin against toxicity following Cd entry. Curcumin can afford to attenuate lipid peroxidation, glutathione depletion, alterations in antioxidant enzyme, and so forth through scavenging and chelating activities or Nrf2/Keap1/ARE pathway induction. © 2017 BioFactors, 43(5):645-661, 2017.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Yan W, Kanno C, Oshima E, Kuzuma Y, Kim SW, Bai H, Takahashi M, Yanagawa Y, Nagano M, Wakamatsu JI, Kawahara M. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim Reprod Sci 2017; 185:195-204. [PMID: 28869111 DOI: 10.1016/j.anireprosci.2017.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/30/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Improving sperm motility and viability are major goals to improve efficiency in the poultry industry. In this study, the effects of supplemental dietary turmeric by-product (TBP) from commercial turmeric production on sperm motility, viability, and antioxidative status were examined in domestic fowl. Mature Rhode Island Red roosters were divided into two groups - controls (groupC) without TBP administration and test subjects (groupT) fed a basal diet supplemented with 0.8g of TBP/day in a temperature-controlled rearing facility (Experiment 1) and 1.6g/day under heat stress (Experiment 2) for 4 weeks. In Experiment 1, TBP dietary supplementation increased the sperm motility variables straight-line velocity, curvilinear velocity, and linearity based on a computer-assisted semen analysis, 2 weeks following TBP supplementation. In Experiment 2, using flow cytometry, sperm viability at 3 and 4 weeks following TBP supplementation was greater in Group T than C, and this increase was consistent with a reduction in reactive oxygen species (ROS) production at 2 and 4 weeks. The results of both experiments clearly demonstrate that dietary supplementation with TBP enhanced sperm motility in the controlled-temperature conditions as well as sperm viability, and reduced ROS generation when heat stress prevailed. Considering its potential application in a range of environments, TBP may serve as an economical and potent antioxidant to improve rooster fertility.
Collapse
Affiliation(s)
- Wenjing Yan
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiki Oshima
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yukiko Kuzuma
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung Woo Kim
- National Institute of Animal Science, Animal Genetic Resources Research Center, Namwon, 55717, South Korea
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Wakamatsu
- Laboratory of Applied Food Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
50
|
Jadán-Piedra C, Chiocchetti GM, Clemente MJ, Vélez D, Devesa V. Dietary compounds as modulators of metals and metalloids toxicity. Crit Rev Food Sci Nutr 2017; 58:2055-2067. [PMID: 28686469 DOI: 10.1080/10408398.2017.1302407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.
Collapse
Affiliation(s)
- Carlos Jadán-Piedra
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Gabriela Matuoka Chiocchetti
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - María Jesús Clemente
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Dinoraz Vélez
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| | - Vicenta Devesa
- a Departamento de Conservaciòn y Calidad de los Alimentos , Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Paterna , Valencia , Spain
| |
Collapse
|