1
|
Yamada M, Hirai Y, Inoue D, Komatsu S, Uchida T, Kojima T, Tomiyasu T, Yoshikawa N, Oda T. Increased expression of epimorphin in a peritoneal fibrosis mouse model. Perit Dial Int 2021; 42:522-529. [PMID: 34641723 DOI: 10.1177/08968608211051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long-term peritoneal dialysis results in functional and histopathological alterations of the peritoneal membrane, leading to peritoneal fibrosis (PF). The mechanism of PF has not been fully elucidated, and at present there is no effective therapy for PF. Epimorphin is a mesenchymal protein that not only regulates morphogenesis in organ development but is implicated in tissue repair. However, the role of epimorphin in PF has not yet been clarified. METHODS PF was induced in C57/Bl6 mice by intraperitoneal injection of chlorhexidine gluconate (CG-injected mice) three times a week for 3 weeks. The parietal peritoneum was subsequently dissected and assessed by Masson's trichrome staining, and epimorphin expression was analysed by immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR). Furthermore, epimorphin-positive regions were analysed by multiple immunofluorescence staining using fibrosis-associated markers. In addition, normal rat fibroblast cells (NRK-49F) were treated with transforming growth factor-β (TGF-β) in the presence or absence of epimorphin. The expression of fibrosis-associated markers was assessed by real-time RT-PCR. RESULTS In CG-injected mice, Masson's trichrome staining showed marked thickening of the submesothelial compact zone. Weak epimorphin expression was observed in the narrow submesothelial compact zone beneath the mesothelial cells in control mice; however, epimorphin expression was stronger in the submesothelial compact zone in CG-injected mice. Epimorphin expression was observed mainly in α-smooth muscle actin (α-SMA)-positive myofibroblasts. Epimorphin suppressed the TGF-β-induced upregulation of α-SMA and platelet-derived growth factor receptor-β in cultured cells. CONCLUSIONS Our results suggest that epimorphin may be a therapeutic target for fibrotic diseases of the peritoneum.
Collapse
Affiliation(s)
- Muneharu Yamada
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Dan Inoue
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Shuhei Komatsu
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Takahiro Uchida
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Tadasu Kojima
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Tomohiro Tomiyasu
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Noriko Yoshikawa
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Qu M, Zou X, Fang F, Wang S, Xu L, Zeng Q, Fan Z, Chen L, Yue W, Xie X, Pei X. Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun 2020; 11:4964. [PMID: 33009394 PMCID: PMC7532443 DOI: 10.1038/s41467-020-18802-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Thrombosis leads to platelet activation and subsequent degradation; therefore, replenishment of platelets from hematopoietic stem/progenitor cells (HSPCs) is needed to maintain the physiological level of circulating platelets. Platelet-derived microparticles (PMPs) are protein- and RNA-containing vesicles released from activated platelets. We hypothesized that factors carried by PMPs might influence the production of platelets from HSPCs, in a positive feedback fashion. Here we show that, during mouse acute liver injury, the density of megakaryocyte in the bone marrow increases following an increase in circulating PMPs, but without thrombopoietin (TPO) upregulation. In vitro, PMPs are internalized by HSPCs and drive them toward a megakaryocytic fate. Mechanistically, miR-1915-3p, a miRNA highly enriched in PMPs, is transported to target cells and suppresses the expression levels of Rho GTPase family member B, thereby inducing megakaryopoiesis. In addition, direct injection of PMPs into irradiated mice increases the number of megakaryocytes and platelets without affecting TPO levels. In conclusion, our data reveal that PMPs have a role in promoting megakaryocytic differentiation and platelet production. Platelets derive from megakaryocytes, which differentiate from hematopoietic stem/progenitor cells (HSPCs). Here, Qu et al show that platelet-derived microparticles carrying miR-1915-3p target HSPCs and promote megakaryopoiesis by suppressing RHOB expression levels.
Collapse
Affiliation(s)
- Mingyi Qu
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,Beijing Institute of Radiation Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xiaojing Zou
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China
| | - Fang Fang
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,Beijing Institute of Radiation Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Shouye Wang
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Lei Xu
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Quan Zeng
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Zeng Fan
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Lin Chen
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xiaoyan Xie
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xuetao Pei
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine Beijing, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
3
|
Ferreira D, Pinto DCGA, Silva H, Girol AP, de Lourdes Pereira M. Salicornia ramosissima J. Woods seeds affected the normal regenerative function on carbon tetrachloride-induced liver and kidney injury. Biomed Pharmacother 2018; 107:283-291. [PMID: 30098546 DOI: 10.1016/j.biopha.2018.07.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
The growing importance of Salicornia plants as bioactive agents and health promoters associated with the continuous demand for alternative treatments for liver disorders, has stimulated us to evaluate the renal and hepatic effects of S. ramosissima seeds in mice under normal conditions and exposure to toxic products as carbon tetrachloride (CCl4). Thus, histopathological and lipid peroxidation evaluations of the liver and kidneys were performed. Powdered dried seeds of S. ramosissima (SRS) were administered orally for 22 days at a dose of 2000 mg/kg/day to male mice in three different settings: 1) seed effects, 2) protection against CCl4 acute toxicity (0.2 mL/kg) and 3) regeneration after acute exposure to CCl4 (0.2 mL/kg), each study being performed with appropriate control animals. Mice treated with SRS per se had slightly enlarged hepatic sinusoids and noticeable renal inflammation. SRS did not show effective protection against mice exposed to CCl4 and had no positive influence on liver and kidney recovery after CCl4 administration. These results demonstrated that SRS failed to improve hepato- and nephrotoxicity, in addition to the apparent synergism between CCl4 and SRS under these experimental conditions. Although the biological mechanisms of S. ramosissima are not fully understood, the evidence suggests further research to elucidate its adverse biological effects.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Biology & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA - Organic Chemistry and Natural and Agro-food Products, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Silva
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Paula Girol
- Padre Albino University Centre, Catanduva, São Paulo, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Vishy CE, Swietlicki EA, Gazit V, Amara S, Heslop G, Lu J, Levin MS, Rubin DC. Epimorphin regulates the intestinal stem cell niche via effects on the stromal microenvironment. Am J Physiol Gastrointest Liver Physiol 2018; 315:G185-G194. [PMID: 29631377 PMCID: PMC6139643 DOI: 10.1152/ajpgi.00224.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche. To examine the role of ISEMFs, we have previously generated mice with deletion of epimorphin ( Epim), an ISEMF protein and member of the syntaxin family of intracellular vesicle docking proteins that regulate cell secretion. Herein we explore the mechanisms for previous observations that Epim deletion increases gut crypt cell proliferation, crypt fission, and small bowel length in vivo. Stem cell-derived crypt culture techniques were used to explore the interaction between enteroids and myofibroblasts from Epim-/- and WT mice. Enteroids cocultured with ISEMFS had increased growth and crypt-like budding compared with enteroids cultured without stromal support. Epim deletion in ISEMFs resulted in increased enteroid budding and surface area compared with cocultures with wild-type (WT) ISEMFs. In primary crypt cultures, Epim-/- enteroids had significantly increased surface area and budding compared with WTs. However, stem cell assays comparing the number of Epim-/- vs. WT colony-forming units after first passage showed no differences in the absence of ISEMF support. Epim-/- vs. WT ISEMFs had increased Wnt4 expression, and addition of Wnt4 to WT cocultures enhanced budding. We conclude that ISEMFs play an important role in the stem cell niche. Epim regulates stem cell proliferation and differentiation via stromal contributions to the niche microenvironment. NEW & NOTEWORTHY The role of subepithelial intestinal myofibroblasts (ISEMFs) in the gut stem cell niche is controversial. We provide novel evidence supporting ISEMFs as important niche contributors. We show that the in vivo intestinal effects of deletion of myofibroblast Epim can be recapitulated in crypt stem cell cultures in vitro. ISEMFs support cocultured stem cell proliferation and enteroid growth, and these effects are augmented by deletion of Epim, a syntaxin that regulates myofibroblast cell secretion.
Collapse
Affiliation(s)
| | | | - Vered Gazit
- 1Washington University School of Medicine, Saint Louis, Missouri
| | - Suneetha Amara
- 1Washington University School of Medicine, Saint Louis, Missouri
| | - Gabriela Heslop
- 1Washington University School of Medicine, Saint Louis, Missouri
| | - Jianyun Lu
- 1Washington University School of Medicine, Saint Louis, Missouri
| | - Marc S. Levin
- 1Washington University School of Medicine, Saint Louis, Missouri,2Veterans Administration Saint Louis Health Care System, Saint Louis, Missouri
| | - Deborah C. Rubin
- 1Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
5
|
Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells. PLoS One 2014; 9:e100091. [PMID: 24971829 PMCID: PMC4074045 DOI: 10.1371/journal.pone.0100091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Background and Aims Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM) deposition from activated hepatic stellate cells (HSCs). Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM) has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs), in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9). Methods Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP). Results During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1), and α- Smooth muscle actin (α-SMA). Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN), while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13). Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. Conclusion These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.
Collapse
|
6
|
Inamine T, Nakamura M, Kawauchi A, Shirakawa Y, Hashiguchi H, Aiba Y, Taketomi A, Shirabe K, Nakamuta M, Hayashi S, Saoshiro T, Komori A, Yatsuhashi H, Kondo S, Omagari K, Maehara Y, Ishibashi H, Tsukamoto K. A polymorphism in the integrin αV subunit gene affects the progression of primary biliary cirrhosis in Japanese patients. J Gastroenterol 2011; 46:676-86. [PMID: 21116829 DOI: 10.1007/s00535-010-0351-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/02/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Accumulating evidence indicates that multiple genetic factors are involved in the pathogenesis of primary biliary cirrhosis (PBC). The aim of this study was to investigate whether polymorphisms of the integrin αV subunit gene (ITGAV), a component of integrin αVβ6, which plays an important role in the process of fibrosis, are associated with susceptibility to the onset and/or progression of PBC. METHODS In the primary study, eight tag single nucleotide polymorphisms (SNPs) in ITGAV were analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, direct DNA sequencing, or high-resolution melting curve analysis in 309 Japanese patients with PBC who were registered in the National Hospital Organization Study Group for Liver Disease in Japan (PBC cohort I) and 293 gender-matched healthy Japanese volunteers (control subjects). For the replication study, 35 PBC patients who progressed to end-stage hepatic failure and underwent liver transplantation (PBC cohort II) were also analyzed. RESULTS Three tag SNPs (rs3911238, rs10174098, and rs1448427) in ITGAV were significantly associated with the severe progression of PBC, but not with susceptibility to the onset of PBC, in the primary study (PBC cohort I). Among these SNPs, rs1448427 was also significantly associated with the severe progression to end-stage hepatic failure in the replication study of PBC patients who underwent liver transplantation (PBC cohort II). CONCLUSIONS ITGAV is a genetic determinant for the severe progression of PBC in Japanese patients. Genetic polymorphisms of ITGAV may be useful for identifying high-risk Japanese PBC patients, including those who will require liver transplantation, at the time of initial diagnosis.
Collapse
Affiliation(s)
- Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamada M, Oda T, Higashi K, Kushiyama T, Yamakami K, Sakurai Y, Hirai Y, Yamamoto K, Hyodo T, Suzuki S, Miura S, Kumagai H. Involvement of epimorphin in the repair of experimental renal fibrosis in mice. J Transl Med 2010; 90:867-80. [PMID: 20195239 DOI: 10.1038/labinvest.2010.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interaction between epithelial cells and mesenchymal cells is essential in normal organ morphogenesis and in tissue repair after injury. Epimorphin, a mesenchymal protein that regulates epithelial morphogenesis through epithelial-mesenchymal interactions, has recently attracted attention as an important modulator of tissue repair. In this study we analyzed the role of epimorphin in renal fibrosis. We first found a progressive increase in epimorphin expression corresponding to the progression of renal fibrosis in mice with unilateral ureteral obstruction (UUO). To determine whether this expression has a role in the repair or progression of renal fibrosis, we analyzed a model of renal fibrosis repair, the UUO-release (UUO-R) model. Epimorphin expression was increased at 3 and 7 days after the UUO-R rather than on the day of release, but was decreased at 21 days after the release. Inhibition of endogenous epimorphin with anti-epimorphin antibody (MC-1) significantly delayed the repair of fibrosis. When compared with normal-IgG-injected mice, MC-1-injected mice showed significantly decreased renal matrix metalloproteinase (MMP)-2 and MMP-9 expressions by western blotting and increased expression of TGF-beta and collagen-I mRNA by real-time RT-PCR. Recombinant epimorphin induced prominent increases in MMP-2 and MMP-9 activities in the culture media of renal interstitial fibroblasts in vitro. These findings indicate that epimorphin has a pivotal role in the repair of renal fibrosis by modulating both extracellular matrix (ECM) degradation and its production.
Collapse
Affiliation(s)
- Muneharu Yamada
- Division of Nephrology, Department of Internal Medicine, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou J, Zhao L, Qin L, Wang J, Jia Y, Yao H, Sang C, Hu Q, Shi S, Nan X, Yue W, Zhuang F, Yang C, Wang Y, Pei X. Epimorphin regulates bile duct formation via effects on mitosis orientation in rat liver epithelial stem-like cells. PLoS One 2010; 5:e9732. [PMID: 20305811 PMCID: PMC2840022 DOI: 10.1371/journal.pone.0009732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/23/2010] [Indexed: 01/11/2023] Open
Abstract
Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3alpha and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, beta1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role.
Collapse
Affiliation(s)
- Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Lei Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lipeng Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Jing Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Hailei Yao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Chen Sang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qinghua Hu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuangshuang Shi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Fengyuan Zhuang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chun Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yunfang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China
| |
Collapse
|
9
|
Chen CS, Nelson CM, Khauv D, Bennett S, Radisky ES, Hirai Y, Bissell MJ, Radisky DC. Homology with vesicle fusion mediator syntaxin-1a predicts determinants of epimorphin/syntaxin-2 function in mammary epithelial morphogenesis. J Biol Chem 2009; 284:6877-84. [PMID: 19129200 DOI: 10.1074/jbc.m805908200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have shown that branching morphogenesis of mammary ductal structures requires the action of the morphogen epimorphin/syntaxin-2. Epimorphin, originally identified as an extracellular molecule, is identical to syntaxin-2, an intracellular molecule that is a member of the extensively investigated syntaxin family of proteins that mediate vesicle trafficking. We show here that, although epimorphin/syntaxin-2 is highly homologous to syntaxin-1a, only epimorphin/syntaxin-2 can stimulate mammary branching morphogenesis. We construct a homology model of epimorphin/syntaxin-2 based on the published structure of syntaxin-1a, and we use this model to identify the structural motif responsible for the morphogenic activity. We identify four residues located within the cleft between helices B and C that differ between syntaxin-1a and epimorphin/syntaxin-2; through site-directed mutagenesis of these four amino acids, we confer the properties of epimorphin for cell adhesion, gene activation, and branching morphogenesis onto the inactive syntaxin-1a template. These results provide a dramatic demonstration of the use of structural information about one molecule to define a functional motif of a second molecule that is related at the sequence level but highly divergent functionally.
Collapse
Affiliation(s)
- Connie S Chen
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Miura K, Yoshino R, Hirai Y, Goto T, Ohshima S, Mikami KI, Yoneyama K, Watanabe D, Sato M, Senoo H, Kodama Y, Osawa Y, Brenner DA, Watanabe S. Epimorphin, a morphogenic protein, induces proteases in rodent hepatocytes through NF-kappaB. J Hepatol 2007; 47:834-43. [PMID: 17935821 DOI: 10.1016/j.jhep.2007.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/22/2007] [Accepted: 07/17/2007] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS Epimorphin, expressed by hepatic stellate cells in the liver, directs normal morphogenesis in various organs. The aim of this study was to clarify the mechanism by which epimorphin functions as a morphogen in vitro. METHODS Male Balb/c mice and Sprague-Dawley rats were used. First, we explored the relationship between epimorphin expression and distribution of protease-positive cells in carbon tetrachloride-induced acute liver injury. We then examined protease levels in cultured hepatocytes and signal transduction of epimorphin. Finally, we determined the requirement for proteases and NF-kappaB in spheroid formation induced by epimorphin. RESULTS Epimorphin expression was enhanced in injured areas during late recovery phase, in which protease-positive hepatocytes were localized adjacent to epimorphin-expressing cells. In vitro, epimorphin induced matrix metalloproteinase (MMP) 9, MMP 3 and urokinase type plasminogen activator (uPA) in hepatocytes. NF-kappaB mediated these protease expressions in hepatocytes. These proteases were required for epimorphin-induced and Matrigel induced spheroid. An epimorphin-neutralizing antibody also blocked spheroid formation on Matrigel, which contained epimorphin. In addition, NF-kappaB activation was also required for spheroid formation. CONCLUSION Epimorphin elicits hepatocyte spheroids by inducing proteases in rodent hepatocytes through NF-kappaB.
Collapse
Affiliation(s)
- Kouichi Miura
- Department of Gastroenterology, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sheng J, Yu H, Li J, Sheng G, Zhou L, Lu Y. Cloning and expression of the human augmenter of liver regeneration at low temperature in Escherichia coli. ACTA ACUST UNITED AC 2007; 70:465-70. [PMID: 17210184 DOI: 10.1016/j.jbbm.2006.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Acute and chronic hepatic failure is a devastating illness of varied causes with considerable mortality. Human augmenter of liver regeneration (hALR) is a hepatotrophic protein and the unique cytokine which can specially stimulate hepatic origin cells to grow regardless of genus. It has been proven that ALR can promote regeneration and avoid all kinds of injury in rat and canine models. In this study, the recombinant protein hALR was expressed successfully with recombinant prokaryotic expression vector pET28a(+) in Escherichia coli BL21 (DE3). We constructed the recombinant expression vector pET28a(+)/hALR with a full-length cDNA encoding hALR protein from normal human liver tissue by one-step reverse transcription-polymerase chain reaction and his-tag recognition sequence encoding polyhistidine (6 x His). Under IPTG (isopropyl-beta-d-thiogalactopyranoside) induction for 2 h at 37 degrees C, recombinant protein hALR was expressed. The expression of recombinant polyhistidine-tagged hALR was increased under low temperature and was confirmed that the temperature of 23 degrees C was the most suitable IPTG induction condition. Under low temperature induction of IPTG, recombinant protein can be expressed as a soluble protein. Recombinant protein hALR was also purified with His Bind Kits and characterized with SDS-PAGE and Western blotting. The results showed that recombinant hALR could be expressed as a soluble protein under low temperature induction of IPTG. The successful expression of ALR in E. coli makes it possible to further study its biological function and purified recombinant hALR could be developed into a new anti-hepatic damage product.
Collapse
Affiliation(s)
- Jifang Sheng
- Department of Infectious Disease, the First Affiliated Hospital, College of Medicine, Zhejiang University, Key Lab. of Infectious Disease of Ministry of Health, Qingchun Rd. 79, Hangzhou, 310003, China.
| | | | | | | | | | | |
Collapse
|