1
|
Mollaei Z, Asle-Rousta M, Asaadi Tehrani G. Protective effect of menthol against diethylnitrosamine-induced hepatocellular carcinoma in mice by downregulating CTNNB1 and HIF-1α. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1167-1176. [PMID: 40365190 PMCID: PMC12068496 DOI: 10.22038/ajp.2024.25230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Objective This study examined the impact of menthol, a natural monoterpene, on diethylnitrosamine (DEN)-induced molecular and histopathological changes in the livers of male mice. Materials and Methods Forty male mice were divided into four groups: Control, Menthol (M), DEN, and DEN-M. The DEN and DEN-M groups received an intraperitoneal injection of DEN (25 mg/kg) at the age of 14 days. The M and DEN-M groups were also given menthol (50 mg/kg, three times a week for six months) via gavage. The expression of genes related to liver carcinoma was analyzed using real-time PCR. Subsequently, the liver tissue was microscopically examined following staining with hematoxylin-eosin. Results After one month, menthol reduced the infiltration of inflammatory cells in the liver tissue of mice injected with DEN. It also prevented the increase in the expression of alpha-fetoprotein (AFP) (p<0.001), programmed cell death 6 (p<0.05), hypoxia-inducible factor-1 alpha (HIF-1α) (p<0.001), and vascular endothelial growth factor (VEGF) (p<0.001) in DEN-M animals compared with DEN group. After six months of session, the expression of AFP (p<0.05), HIF-1α (p<0.05), secreted frizzled-related protein 1 (p<0.001), and catenin beta 1 (p<0.01) was lower in group DEN-M compared with group DEN. Menthol also partially prevented DEN-induced various histopathological changes in the liver after six months of treatment. Conclusion We concluded that menthol inhibits Wnt signaling and suppresses the expression of HIF-1α and VEGF in the liver of DEN-injected mice. It is probably a suitable option for the prevention and treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zahra Mollaei
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Golnaz Asaadi Tehrani
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
- Aerospace and Mechanical Engineering Department, Notre Dame University, Indiana, USA
| |
Collapse
|
2
|
Shen H, Nie J, Wang X, Li G, Zhao L, Jin Y, Jin L. MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A. Exp Cell Res 2025; 444:114354. [PMID: 39581216 DOI: 10.1016/j.yexcr.2024.114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Mitochondrial ORF of the 12S rRNA type-c (MOTS-c) as an AMPK agonist can regulate the expression of adaptive nuclear genes to promote cell homeostasis. However, the investigation of MOTS-c in hepatocellular carcinoma (HCC) is insufficient. This study aims to reveal the role of MOTS-c on HCC cell apoptosis. METHODS Huh7 and HCCLM3 cells were incubated with MOTS-c under a hypoxic condition. MOTS-c levels were quantified by enzyme-linked immunosorbent assay in the peripheral blood of HCC patients and healthy controls. Cell viability was detected by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was investigated by flow cytometry and Tunel assay. Protein expression was detected by western blotting or immunohistochemistry assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to identify the association among myocyte enhancer factor 2A (MEF2A), death receptor 4 (DR4) and DR5. A tumor-bearing nude mouse model was conducted to assess the effect of MOTS-c on HCC tumor formation in vivo. RESULTS MOTS-c levels in the peripheral blood of HCC patients were significantly lower compared to healthy individuals. MOTS-c promoted HCC cell apoptosis under hypoxia conditions. Hypoxia stimulation decreased the protein expression of MEF2A, DR4, DR5, fas-associating via death domain (FADD) and caspase-8, while these effects were attenuated after MOTS-c treatment. MOTS-c induced TRAIL-induced apoptosis of HCC cells by activating MEF2A through the phosphorylation of AMPK under hypoxia treatment. In addition, MEF2A transcriptionally up-regulated DR4 and DR5. MOTS-c activated MEF2A to regulate DR4 and DR5 expression, further mediating TRAIL-induced apoptosis. Further, MOTS-c treatment relieved hypoxia-induced tumor growth in vivo. CONCLUSION MOTS-c relieved hypoxia-induced HCC cell resistance to TRAIL-caused apoptosis by activating MEF2A.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Apoptosis/drug effects
- Animals
- Mice
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- TNF-Related Apoptosis-Inducing Ligand/pharmacology
- MEF2 Transcription Factors/metabolism
- MEF2 Transcription Factors/genetics
- Mice, Nude
- Cell Line, Tumor
- Male
- Female
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
- Xenograft Model Antitumor Assays
- Middle Aged
- Cell Hypoxia/drug effects
Collapse
Affiliation(s)
- Haiying Shen
- Department of Pathophysiology, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China.
| | - Junjie Nie
- Department of Nuclear Medicine, Jilin People's Hospital, Jilin 132001, Jilin Province, PR China
| | - Xiaojun Wang
- School of Public Health, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Guangqing Li
- Department of Computer Application, School of Biomedical Engineering, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Liwei Zhao
- Department of Pathology, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Yuji Jin
- Department of Medical Genetics, School of Basic Medicine, Jilin Medical University, Jilin 132013, Jilin Province, PR China
| | - Lianhai Jin
- Hypoxia and Health Medicine Research Center, Jilin Medical University, Jilin 132013, Jilin Province, PR China.
| |
Collapse
|
3
|
Bannister ME, Chatterjee DA, Shetty S, Patten DA. The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci 2024; 25:13167. [PMID: 39684877 DOI: 10.3390/ijms252313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant clinical burden globally and is predicted to continue to increase in incidence for the foreseeable future. The treatment of HCC is complicated by the fact that, in the majority of cases, it develops on a background of advanced chronic inflammatory liver disease. Chronic inflammation can foster an immunosuppressive microenvironment that promotes tumour progression and metastasis. In this setting, macrophages make up a major immune component of the HCC tumour microenvironment, and in this review, we focus on their contribution to HCC development and progression. Tumour-associated macrophages (TAMs) are largely derived from infiltrating monocytes and their potent anti-inflammatory phenotype can be induced by factors that are found within the tumour microenvironment, such as growth factors, cytokines, hypoxia, and extracellular matrix (ECM) proteins. In general, experimental evidence suggest that TAMs can exhibit a variety of functions that aid HCC tumour progression, including the promotion of angiogenesis, resistance to drug therapy, and releasing factors that support tumour cell proliferation and metastasis. Despite their tumour-promoting profile, there is evidence that the underlying plasticity of these cells can be targeted to help reprogramme TAMs to drive tumour-specific immune responses. We discuss the potential for targeting TAMs therapeutically either by altering their phenotype within the HCC microenvironment or by cell therapy approaches by taking advantage of their infiltrative properties from the circulation into tumour tissue.
Collapse
Affiliation(s)
- Megan E Bannister
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| | - Devnandan A Chatterjee
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Daniel A Patten
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation and Immunology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
4
|
Huang JX, Zhang WH, Wu YM, Hu JY, Long H, Zhu HD, Zhang JQ, Teng GJ, Xiong F. A Study on Overcoming Post-TACE Drug Resistance in HCC Based on Controllable Oxygen Release-Magnetic Hyperthermia Therapy. Adv Healthc Mater 2024; 13:e2402253. [PMID: 39319494 DOI: 10.1002/adhm.202402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Drug-eluting bead transcatheter arterial chemoembolization (D-TACE) is one of the first-line treatment for intermediate hepatocellular carcinoma (HCC). However, the dual hypoxia microenvironment, due to inherent tumor hypoxia and TACE-induced hypoxia, triggers drug resistance in HCC. To address this challenge, the study develops multicavitary microspheres capable of encapsulating oxygen and harnessing magnetic hyperthermia to enhance oxygen permeability. The novel multicavitary oxygen-encapsulated magnetothermal drug-eluting microspheres (OTD-Ms) effectively reduce hypoxia-related proteins (HIF-1α, VEGF-A) and drug resistance (P-gp) both in vitro and in vivo. Moreover, these microspheres demonstrate improved TACE efficacy and enhance survival rates in a rabbit VX-2 tumor model, suggesting their potential for HCC treatment.
Collapse
Affiliation(s)
- Jin-Xin Huang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Wei-Hua Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Ye-Ming Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Jian-Yu Hu
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
| | - Huan Long
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Hai-Dong Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Jian-Qiong Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
- Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Gao-Jun Teng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
- Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, P. R. China
- National Innovation Platform for Integration of Medical Engineering Education (NMEE) (Southeast University), Nanjing, 210009, P. R. China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 210009, P. R. China
| | - Fei Xiong
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
5
|
Chen ZX, Mu MY, Yang G, Qi H, Fu XB, Wang GS, Jiang WW, Huang BJ, Gao F. Hypoxia-induced DTL promotes the proliferation, metastasis, and sorafenib resistance of hepatocellular carcinoma through ubiquitin-mediated degradation of SLTM and subsequent Notch pathway activation. Cell Death Dis 2024; 15:734. [PMID: 39384740 PMCID: PMC11464529 DOI: 10.1038/s41419-024-07089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Denticleless E3 ubiquitin protein ligase homolog (DTL), the substrate receptor of the CRL4A complex, plays a central role in genome stability. Even though the oncogenic function of DTL has been investigated in several cancers, its specific role in hepatocellular carcinoma (HCC) still needs further elucidation. Data from a clinical cohort (n = 209), RNA-sequencing, and public database (TCGA and GEO) were analyzed, indicating that DTL is closely related to patient prognosis and could serve as a promising prognostic indicator in HCC. Functionally, DTL promoted the proliferation, metastasis, and sorafenib resistance of HCC in vitro. In the orthotopic tumor transplantation and tail vein injection model, DTL promoted the growth and metastasis of HCC in vivo. Mechanically, we revealed for the first time that DTL was transcriptionally activated by hypoxia-inducible factor 1α (HIF-1α) under hypoxia and functioned as a downstream effector molecule of HIF-1α. DTL promotes the ubiquitination of SAFB-like transcription modulator (SLTM) and subsequently relieves the transcriptional repression of Notch1. These results suggested that DTL may be a potential biomarker and therapeutic target for HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Humans
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- Cell Proliferation/drug effects
- Animals
- Drug Resistance, Neoplasm/drug effects
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Mice
- Signal Transduction/drug effects
- Mice, Nude
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Cell Line, Tumor
- Ubiquitination
- Neoplasm Metastasis
- Ubiquitin/metabolism
- Receptors, Notch/metabolism
- Mice, Inbred BALB C
- Male
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Hypoxia
Collapse
Affiliation(s)
- Zi-Xiong Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Yuan Mu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Bo Fu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Gui-Song Wang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wei-Wei Jiang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Fei Gao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Wang Z, Li Q, Liang B. Hypoxia as a Target for Combination with Transarterial Chemoembolization in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:1057. [PMID: 39204162 PMCID: PMC11357673 DOI: 10.3390/ph17081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC). Hypoxia has proven to be involved in multiple tumor biological processes and associated with malignant progression and resistance to therapy. Transarterial chemoembolization (TACE) is a well-established locoregional therapy for patients with unresectable HCC. However, TACE-induced hypoxia regulates tumor angiogenesis, energy metabolism, epithelial-mesenchymal transition (EMT), and immune processes through hypoxia-inducible factor 1 (HIF-1), which may have adverse effects on the therapeutic efficacy of TACE. Hypoxia has emerged as a promising target for combination with TACE in the treatment of HCC. This review summarizes the impact of hypoxia on HCC tumor biology and the adverse effects of TACE-induced hypoxia on its therapeutic efficacy, highlighting the therapeutic potential of hypoxia-targeted therapy in combination with TACE for HCC.
Collapse
Affiliation(s)
- Zizhuo Wang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| | - Qing Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Bin Liang
- Hubei Key Laboratory of Molecular Imaging, Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan 430022, China;
| |
Collapse
|
7
|
Ren X, Zhao Y, Wang N, Liu J, Zhang S, Zhuang M, Wang H, Wang J, Zhang Y, Song Q, Liu A. Intravoxel incoherent motion and enhanced T2*-weighted angiography for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Front Oncol 2024; 14:1389769. [PMID: 39184049 PMCID: PMC11341411 DOI: 10.3389/fonc.2024.1389769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Objective To investigate the value of the combined application of intravoxel incoherent motion (IVIM) and enhanced T2*-weighted angiography (ESWAN) for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Materials and methods 76 patients with pathologically confirmed HCC were retrospectively enrolled and divided into the MVI-positive group (n=26) and MVI-negative group (n=50). Conventional MRI, IVIM, and ESWAN sequences were performed. Three region of interests (ROIs) were placed on the maximum axial slice of the lesion on D, D*, and f maps derived from IVIM sequence, and R2* map derived from ESWAN sequence, and intratumoral susceptibility signal (ITSS) from the phase map derived from ESWAN sequence was also automatically measured. Receiver operating characteristic (ROC) curves were drawn to evaluate the ability for predicting MVI. Univariate and multivariate logistic regression were used to screen independent risk predictors in clinical and imaging information. The Delong's test was used to compare the differences between the area under curves (AUCs). Results The D and D* values of MVI-negative group were significantly higher than those of MVI-positive group (P=0.038, and P=0.023), which in MVI-negative group were 0.892×10-3 (0.760×10-3, 1.303×10-3) mm2/s and 0.055 (0.025, 0.100) mm2/s, and in MVI-positive group were 0.591×10-3 (0.372×10-3, 0.824×10-3) mm2/s and 0.028 (0.006, 0.050)mm2/s, respectively. The R2* and ITSS values of MVI-negative group were significantly lower than those of MVI-positive group (P=0.034, and P=0.005), which in MVI-negative group were 29.290 (23.117, 35.228) Hz and 0.146 (0.086, 0.236), and in MVI-positive group were 43.696 (34.914, 58.083) Hz and 0.199 (0.155, 0.245), respectively. After univariate and multivariate analyses, only AFP (odds ratio, 0.183; 95% CI, 0.041-0.823; P = 0.027) was the independent risk factor for predicting the status of MVI. The AUCs of AFP, D, D*, R2*, and ITSS for prediction of MVI were 0.652, 0.739, 0.707, 0.798, and 0.657, respectively. The AUCs of IVIM (D+D*), ESWAN (R2*+ITSS), and combination (D+D*+R2*+ITSS) for predicting MVI were 0.772, 0.800, and, 0.855, respectively. When IVIM combined with ESWAN, the performance was improved with a sensitivity of 73.1% and a specificity of 92.0% (cut-off value: 0.502) and the AUC was significantly higher than AFP (P=0.001), D (P=0.038), D* (P=0.023), R2* (P=0.034), and ITSS (P=0.005). Conclusion The IVIM and ESWAN parameters showed good efficacy in prediction of MVI in patients with HCC. The combination of IVIM and ESWAN may be useful for noninvasive prediction of MVI before clinical operation.
Collapse
Affiliation(s)
- Xue Ren
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiahui Liu
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Shuo Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingrui Zhuang
- College of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Hongkai Wang
- College of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Jixiang Wang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Yindi Zhang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Wang X, Wang X. The regulation of hypoxia-related lncRNAs in hepatocellular carcinoma. Discov Oncol 2024; 15:144. [PMID: 38713276 PMCID: PMC11076439 DOI: 10.1007/s12672-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is still a public health disease with its high prevalence and morbidity. Short of early diagnosis biomarkers and effective therapy, the treatment of HCC patients hasn't achieved ideal effect. Hypoxia is a hallmark of HCC, which is mainly induced by imbalance of tumor cell proliferation and insufficient supply of oxygen. Recently, amounting evidence suggested lncRNAs, especially hypoxia-related lncRNAs play a pivotal role in regulating HCC. Hypoxia-related lncRNAs are involved in altering glucose metabolism, maintaining of cancer stem cell-like properties (CSCs), cell apotosis, proliferation and immune escape, which all contribute to the poor prognosis of HCC patients. The novel identified hypoxia-related lncRNAs could be the potential target or biomarkers of HCC, which are beneficial to the clinical treatment. Herein, we summarized currently reported hypoxia-related lncRNAs and their related mechanisms, providing potential application and future perspective of hypoxia-related lncRNAs as a potential therapeutic target.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Pinto E, Pelizzaro F, Cardin R, Battistel M, Palano G, Bertellini F, Kitenge MP, Peserico G, Farinati F, Russo FP. HIF-1α and VEGF as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Dig Liver Dis 2024; 56:872-879. [PMID: 37783655 DOI: 10.1016/j.dld.2023.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Neoangiogenesis plays a crucial role in the progression of hepatocellular carcinoma (HCC), and concerns have been raised about the role of neoangiogenesis on the effectiveness of transarterial chemoembolization (TACE). AIM In this study, we aimed to evaluate Vascular Endothelial Growth Factor (VEGF) and Hypoxia-Inducible Factor-1α (HIF-1α) as circulating prognostic biomarkers in HCC patients treated with TACE. METHODS Blood samples were collected from 163 patients before (t0) and four weeks after TACE (t1). RESULTS Higher levels of VEGF after TACE were demonstrated (264.0 [78.7-450.8] vs. 278.6 [95.0-576.6] pg/mL; p < 0.0001). Responders to TACE had lower levels of VEGF than non-responders both at t0 (200.0 [58.9-415.8] vs. 406.6 [181.4-558.6] pg/mL; p = 0.006) and at t1 (257.3 [68.5-528.6] vs. 425.9 [245.2-808.3] pg/mL; p = 0.003), and in both groups there was an increase in VEGF compared to measurements before treatment (p = 0.001 and p = 0.005, respectively). VEGF was not associated with overall survival (OS), while patients with HIF-1α ≤ 0.49 ng/mL showed better prognosis (median OS 28.0 months [95% CI 19.7-36.3] vs. 17.0 months [95% CI 11.1-22.9]; p = 0.01). Moreover, HIF-1α was identified as an independent prognostic parameter. CONCLUSIONS VEGF and HIF-1α can be considered useful prognostic biomarkers in HCC patients treated with TACE.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Romilda Cardin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Michele Battistel
- Radiology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Giorgio Palano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Federica Bertellini
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Maria Piera Kitenge
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Giulia Peserico
- Gastroenterology Unit, Veneto Institute of Oncology (IOV), Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy.
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| |
Collapse
|
10
|
Ma R, Gao QY, Chen ZT, Liao GH, Li ST, Cai JW, Luo NS, Chen H, Zhang HF. SIRT3 suppression resulting from the enhanced β-catenin signaling drives glycolysis and promotes hypoxia-induced cell growth in hepatocellular carcinoma cells. Cell Cycle 2024; 23:435-447. [PMID: 38626328 PMCID: PMC11174062 DOI: 10.1080/15384101.2024.2340864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/08/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
The precise mechanisms underlying the inhibitory effects of SIRT3, a mitochondrial sirtuin protein, on hepatocellular carcinoma (HCC) development, as well as its impact on mitochondrial respiration, remain poorly understood. We assessed sirtuins 3 (SIRT3) levels in HCC tissues and Huh7 cells cultured under hypoxic condition. We investigated the effects of SIRT3 on cell proliferation, glycolytic metabolism, mitochondrial respiration, mitophagy, and mitochondrial biogenesis in Huh7 cells. Besides, we explored the potential mechanisms regulating SIRT3 expression in hypoxically cultured Huh7 cells. Gradual reduction in SIRT3 expressions were observed in both adjacent tumor tissues and tumor tissues. Similarly, SIRT3 expressions were diminished in Huh7 cells cultured under hypoxic condition. Forced expression of SIRT3 attenuated the growth of hypoxically cultured Huh7 cells. SIRT3 overexpression led to a decrease in extracellular acidification rate while increasing oxygen consumption rate. SIRT3 downregulated the levels of hexokinase 2 and pyruvate kinase M2. Moreover, SIRT3 enhanced mitophagy signaling, as indicated by mtKeima, and upregulated key proteins involved in various mitophagic pathways while reducing intracellular reactive oxygen species levels. Furthermore, SIRT3 increased proxisome proliferator-activated receptor-gamma coactivator 1α levels and the amount of mitochondrial DNA in Huh7 cells. Notably, β-catenin expressions were elevated in Huh7 cells cultured under hypoxic condition. Antagonists and agonists of β-catenin respectively upregulated and downregulated SIRT3 expressions in hypoxically cultured Huh7 cells. The modulationsof glycolysis and mitochondrial respiration represent the primary mechanism through which SIRT3, suppressed by β-catenin, inhibits HCC cell proliferation.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Chengdu Medical College, Chengdu, PRC
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Guang-Hong Liao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Shu-Tai Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Jie-Wen Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Nian-Sang Luo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Hao Chen
- Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PRC
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| |
Collapse
|
11
|
Wang Y, Yang Y, Yang Y, Dang Y, Guo Z, Zhuang Q, Zheng X, Wang F, Cheng N, Liu X, Guo W, Zhao B. Hypoxia induces hepatocellular carcinoma metastasis via the HIF-1α/METTL16/lnc-CSMD1-7/RBFOX2 axis. iScience 2023; 26:108495. [PMID: 38089592 PMCID: PMC10711500 DOI: 10.1016/j.isci.2023.108495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2025] Open
Abstract
Hypoxic microenvironment is clinically associated with metastasis and poor prognosis of numerous cancers. The mechanisms by which intratumoral hypoxia regulates metastasis are not fully understood. Our study identifies a downregulation of Lnc-CSMD1-7 in hepatocellular carcinoma (HCC) and correlated with poor prognosis of HCC patients. Lnc-CSMD1-7 negatively regulated HCC cell migration and invasion in vitro and suppressed lung metastasis in vivo. Mechanistically, Lnc-CSMD1-7 directly binds to RBFOX2, thereby affecting RBFOX2-regulated alternative splicing in epithelial and mesenchymal-specific events. More importantly, hypoxic microenvironment and m6A methylation mediate the downregulation of Lnc-CSMD1-7 expression. Specifically, hypoxia transcriptionally upregulates the expression of the m6A methyltransferase METTL16 via HIF-1α, and METTL16 directly binds to Lnc-CSMD1-7 and downregulates the RNA stability of Lnc-CSMD1-7 via m6A methylation, ultimately promoting HCC metastasis. Our findings highlight the regulatory function of the METTL16/Lnc-CSMD1-7/RBFOX2 axis in modulating hypoxia-induced HCC progression, which may provide potential prognostic and therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yong Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Ye Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yuan Dang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Zhiting Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Niangmei Cheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| | - Wuhua Guo
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
12
|
Ren M, Fan B, Cao G, Zong R, Feng L, Sun H. Exploration and validation of a combined Hypoxia and m6A/m5C/m1A regulated gene signature for prognosis prediction of liver cancer. BMC Genomics 2023; 24:776. [PMID: 38097948 PMCID: PMC10722758 DOI: 10.1186/s12864-023-09876-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND It is widely acknowledged that hypoxia and m6A/m5C/m1A RNA modifications promote the occurrence and development of tumors by regulating the tumor microenvironment. This study aimed to establish a novel liver cancer risk signature based on hypoxia and m6A/m5C/m1A modifications. METHODS We collected data from The Cancer Genome Atlas (TCGA-LIHC), the National Omics Data Encyclopedia (NODE-HCC), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO) databases for our study (GSE59729, GSE41666). Using Cox regression and least absolute shrinkage and selection operator (LASSO) method, we developed a risk signature for liver cancer based on differentially expressed genes related to hypoxia and genes regulated by m6A/m5C/m1A modifications. We stratified patients into high- and low-risk groups and assessed differences between these groups in terms of gene mutations, copy number variations, pathway enrichment, stemness scores, immune infiltration, and predictive capabilities of the model for immunotherapy and chemotherapy efficacy. RESULTS Our analysis revealed a significantly correlated between hypoxia and methylation as well as m6A/m5C/m1A RNA methylation. The three-gene prognosis signature (CEP55, DPH2, SMS) combining hypoxia and m6A/m5C/m1A regulated genes exhibited strong predictive performance in TCGA-LIHC, NODE-HCC, and ICGC-LIHC-JP cohorts. The low-risk group demonstrated a significantly better overall survival compared to the high-risk group (p < 0.0001 in TCGA, p = 0.0043 in NODE, p = 0.0015 in ICGC). The area under the curve (AUC) values for survival at 1, 2, and 3 years are all greater than 0.65 in the three cohorts. Univariate and Multivariate Cox regression analyses of the three datasets indicated that the signature could serve as an independent prognostic predictor (p < 0.001 in the three cohorts). The high-risk group exhibited more genome changes and higher homologous recombination deficiency scores and stemness scores. Analysis of immune infiltration and immune activation confirmed that the signature was associated with various immune microenvironment characteristics. Finally, patients in the high-risk group experienced a more favorable response to immunotherapy, and various common chemotherapy drugs. CONCLUSION Our prognostic signature which integrates hypoxia and m6A/m5C/m1A-regulated genes, provides valuable insights for clinical prediction and treatment guidance for liver cancer patients.
Collapse
Affiliation(s)
- Min Ren
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Bei Fan
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Guangcai Cao
- The First Clinical Medical College, Yan'an University, 716000, Yan'an, China
| | - Rongrong Zong
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Liaoliao Feng
- College of Life Science, Yan'an University, 716000, Yan'an, China
| | - Huiru Sun
- College of Life Science, Yan'an University, 716000, Yan'an, China.
| |
Collapse
|
13
|
Luo J, Huang Y, Wu J, Dai L, Dong M, Cheng B. A novel hypoxia-associated gene signature for prognosis prediction in head and neck squamous cell carcinoma. BMC Oral Health 2023; 23:864. [PMID: 37964257 PMCID: PMC10647095 DOI: 10.1186/s12903-023-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of head and neck, which seriously threatens human life and health. However, the mechanism of hypoxia-associated genes (HAGs) in HNSCC remains unelucidated. This study aims to establish a hypoxia-associated gene signature and the nomogram for predicting the prognosis of patients with HNSCC. METHODS Previous literature reports provided a list of HAGs. The TCGA database provided genetic and clinical information on HNSCC patients. First, a hypoxia-associated gene risk model was constructed for predicting overall survival (OS) in HNSCC patients and externally validated in four GEO datasets (GSE27020, GSE41613, GSE42743, and GSE117973). Then, immune status and metabolic pathways were analyzed. A nomogram was constructed and assessed the predictive value. Finally, experimental validation of the core genes was performed by qRT-PCR. RESULTS A HNSCC prognostic model was constructed based on 8 HAGs. This risk model was validated in four external datasets and exhibited high predictive value in various clinical subgroups. Significant differences in immune cell infiltration levels and metabolic pathways were found between high and low risk subgroups. The nomogram was highly accurate for predicting OS in HNSCC patients. CONCLUSIONS The 8 hypoxia-associated gene signature can serve as novel independent prognostic indicators in HNSCC patients. The nomogram combining the risk score and clinical stage enhanced predictive performance in predicting OS compared to the risk model and clinical characteristics alone.
Collapse
Affiliation(s)
- Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuejiao Huang
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Dai
- Department of Stomatology, Wuhan No. 1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430030, China.
| | - Mingyou Dong
- School of Laboratory Medicine, Youjiang Medical College for Nationalities, No. 98 Chengxiang Road, Youjiang District, Baise, 533000, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
14
|
Nyakale NE, Aldous C, Gutta AA, Khuzwayo X, Harry L, Sathekge MM. Emerging theragnostic radionuclide applications for hepatocellular carcinoma. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1210982. [PMID: 39355044 PMCID: PMC11440867 DOI: 10.3389/fnume.2023.1210982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem. Theragnostic is a term that refers to the integration of diagnostic and therapeutic modalities into a single system for personalized medicine. Theragnostic care in HCC involves the use of imaging techniques to diagnose the cancer and assess its characteristics, such as size, location, and extent of spread. Theragnostics involves the use of molecular and genetic tests to identify specific biomarkers that can help guide treatment decisions and, post-treatment, assess the dosimetry and localization of the treatment, thus guiding future treatment. This can be done through either positron emission tomography (PET) scanning or single photon emission tomography (SPECT) using radiolabeled tracers that target specific molecules expressed by HCC cells or radioembolization. This technique can help identify the location and extent of the cancer, as well as provide information on the tumor's metabolic activity and blood supply. In summary, theragnostics is an emerging field that holds promise for improving the diagnosis and treatment of HCC. By combining diagnostic and therapeutic modalities into a single system, theragnostics can help guide personalized treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- N E Nyakale
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - C Aldous
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - A A Gutta
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - X Khuzwayo
- Department of Nuclear Medicine, Sefako Makgatho Health Sciences University, Dr George Mukhari Academic Hospital, Pretoria, South Africa
| | - L Harry
- Department of Nuclear Medicine, University of Kwa-Zulu Natal, Durban, South Africa
| | - M M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
15
|
Liu K, Chen J, Zhao Y, Boland J, Ting KK, Lockwood G, McKenzie C, Kench J, Vadas MA, Gamble JR, McCaughan GW. Novel miRNA-based drug CD5-2 reduces liver tumor growth in diethylnitrosamine-treated mice by normalizing tumor vasculature and altering immune infiltrate. Front Immunol 2023; 14:1245708. [PMID: 37795103 PMCID: PMC10545841 DOI: 10.3389/fimmu.2023.1245708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Liver cancers exhibit abnormal (leaky) vasculature, hypoxia and an immunosuppressive microenvironment. Normalization of tumor vasculature is an emerging approach to treat many cancers. Blockmir CD5-2 is a novel oligonucleotide-based inhibitor of the miR-27a interaction with VE-Cadherin, the endothelial-specific cadherin. The combination of a vasoactive medication with inhibition of immune checkpoints such as programmed cell death protein 1 (PD1) has been shown to be effective in treating liver cancer in humans. We aimed to study the effect of CD5-2 combined with checkpoint inhibition (using an antibody against PD1) on liver tumor growth, vasculature and immune infiltrate in the diethylnitrosamine (DEN)-induced liver tumor mouse model. Methods We first analyzed human miR-27a and VE-Cadherin expression data from The Cancer Genome Atlas for hepatocellular carcinoma. CD5-2 and/or anti-PD1 antibody were given to the DEN-treated mice from age 7-months until harvest at age 9-months. Tumor and non-tumor liver tissues were analyzed using histology, immunohistochemistry, immunofluorescence and scanning electron microscopy. Results Human data showed high miR-27a and low VE-Cadherin were both significantly associated with poorer prognosis. Mice treated with CD5-2 plus anti-PD1 antibody had significantly smaller liver tumors (50% reduction) compared to mice treated with either agent alone, controls, or untreated mice. There was no difference in tumor number. Histologically, tumors in CD5-2-treated mice had less leaky vessels with higher VE-Cadherin expression and less tumor hypoxia compared to non-CD5-2-treated mice. Only tumors in the combination CD5-2 plus anti-PD1 antibody group exhibited a more favorable immune infiltrate (significantly higher CD3+ and CD8+ T cells and lower Ly6G+ neutrophils) compared to tumors from other groups. Discussion CD5-2 normalized tumor vasculature and reduced hypoxia in DEN-induced liver tumors. CD5-2 plus anti-PD1 antibody reduced liver tumor size possibly by altering the immune infiltrate to a more immunosupportive one.
Collapse
Affiliation(s)
- Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jinbiao Chen
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Yang Zhao
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jade Boland
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Ka Ka Ting
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Glen Lockwood
- Biogerontology Group, ANZAC Research Institute, Sydney, NSW, Australia
| | - Catriona McKenzie
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - James Kench
- New South Wales Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Mathew A. Vadas
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Jennifer R. Gamble
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Centenary Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Pourbaghi M, Haghani L, Zhao K, Karimi A, Marinelli B, Erinjeri JP, Geschwind JFH, Yarmohammadi H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr Oncol 2023; 30:6609-6622. [PMID: 37504345 PMCID: PMC10377758 DOI: 10.3390/curroncol30070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.
Collapse
Affiliation(s)
- Miles Pourbaghi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Leila Haghani
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Ken Zhao
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Anita Karimi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Brett Marinelli
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Joseph P. Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | | | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| |
Collapse
|
17
|
Papadakos SP, Stergiou IE, Gkolemi N, Arvanitakis K, Theocharis S. Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications. Cancers (Basel) 2023; 15:3434. [PMID: 37444544 PMCID: PMC10340246 DOI: 10.3390/cancers15133434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin signaling in HCC and its impact on various cellular processes, including cell proliferation, migration, and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications in disease progression and therapeutic responses may pave the way for novel targeted therapies and personalized treatment approaches for liver cancer patients. Further research is warranted to unravel the full potential of the EPH/ephrin system in liver cancer and its clinical translation.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
18
|
Pinto E, Pelizzaro F, Farinati F, Russo FP. Angiogenesis and Hepatocellular Carcinoma: From Molecular Mechanisms to Systemic Therapies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1115. [PMID: 37374319 PMCID: PMC10305396 DOI: 10.3390/medicina59061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. The hypervascular nature of the majority of HCCs and the peculiar vascular derangement occurring during liver carcinogenesis underscore the importance of angiogenesis in the development and progression of these tumors. Indeed, several angiogenic molecular pathways have been identified as deregulated in HCC. The hypervascular nature and the peculiar vascularization of HCC, as well as deregulated angiogenic pathways, represent major therapeutic targets. To a large extent, intra-arterial locoregional treatments (transarterial-(chemo)embolization) rely on tumor ischemia caused by embolization of tumor feeding arteries, even though this may represent the "primum movens" of tumor recurrence through the activation of neoangiogenesis. Considering systemic therapies, the currently available tyrosine kinase inhibitors (sorafenib, regorafenib, cabozantinib and lenvatinib) and monoclonal antibodies (ramucirumab and bevacizumab, in combination with the anti-PD-L1, atezolizumab) primarily target, among others, angiogenic pathways. Considering the importance of angiogenesis in the pathogenesis and treatment of liver cancer, in this paper, we aim to review the role of angiogenesis in HCC, addressing the molecular mechanisms, available antiangiogenic therapies and prognostic biomarkers in patients receiving these treatments.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (F.F.)
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| |
Collapse
|
19
|
Liu S, Kang L, Song Y, Miao M. Role of the HIF-1α/BNIP3 Signaling Pathway in Recurrent Hepatocellular Carcinoma and the Mechanism of Traditional Chinese Medicine. J Hepatocell Carcinoma 2023; 10:893-908. [PMID: 37313302 PMCID: PMC10259603 DOI: 10.2147/jhc.s409292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) negatively affects the quality of life of patients and leads to death. Studies have shown that recurrent hepatocellular carcinoma (RHCC) is closely related to tissue hypoxia and autophagy. It has been shown that hypoxia-inducible factor-1α (HIF-1α) and its downstream factor BCL-2 19 kDa-interacting protein 3 (BNIP3) promote cellular autophagy under hypoxic conditions, resulting in metastasis and RHCC. In this article, the molecular structures of HIF-1α and BNIP3 are described, and the significance of the HIF-1α/BNIP3 signaling pathway in RHCC is explained. Moreover, the role and mechanism of traditional Chinese medicine (TCM) in treating RHCC by modulating the HIF-1α/BNIP3 signaling pathway is discussed. Studies have shown that the HIF-1α/BNIP3 signaling pathway is a potential target of TCM in the treatment of RHCC. The mechanism of the HIF-1α/BNIP3 signaling pathway in RHCC and the progress achieved in TCM research on targeting and regulating this pathway are also reviewed in this article. The objective was to provide a theoretical basis for the prevention and treatment of RHCC, as well as further drug development.
Collapse
Affiliation(s)
- Sizhe Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Le Kang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Yagang Song
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| |
Collapse
|
20
|
Huynh KN, Rao S, Roth B, Bryan T, Fernando DM, Dayyani F, Imagawa D, Abi-Jaoudeh N. Targeting Hypoxia-Inducible Factor-1α for the Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2738. [PMID: 37345074 DOI: 10.3390/cancers15102738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis, growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs. Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors, as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising results; however, further research is needed to understand the effects of HAPs in combination with embolization in the treatment of HCC. This review aims to summarize current knowledge on the role of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.
Collapse
Affiliation(s)
- Kenneth N Huynh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Sriram Rao
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Bradley Roth
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Theodore Bryan
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Dayantha M Fernando
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - David Imagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
21
|
Patel MV, McNiel D, Brunson C, Kuo PH, Hennemeyer CT, Woodhead G, McGregor H. Prior ablation and progression of disease correlate with higher tumor-to-normal liver 99mTc-MAA uptake ratio in hepatocellular carcinoma. Abdom Radiol (NY) 2023; 48:752-757. [PMID: 36344658 DOI: 10.1007/s00261-022-03718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Factors affecting tumor-to-normal tissue ratio (T:N) have implications for patient selection, dosimetry, and outcomes when considering radioembolization for HCC. This study sought to evaluate patient, disease specific, and technical parameters that predict T:N as measured on planning pre-90Y radioembolization 99mTc-MAA scintigraphy for hepatocellular carcinoma (HCC). METHODS 99mTc-MAA hepatic angiography procedures with SPECT/CT over a 4-year period were reviewed. Data recorded included patient demographics, details of underlying liver disease, tumor size, history of prior treatments for HCC and technical parameters from angiography. Anatomic-based segmentation was performed in 93 cases for measurement of tumor and perfused liver volumes and SPECT counts. T:N were calculated and correlated with collected variables. RESULTS Mean calculated T:N was 2.52. History of prior ablation was significantly correlated with higher T:N (mean 3.39 vs 2.24, p = 0.003). Cases in which mapping was being performed for treatment of disease progression was significantly correlated with higher T:N (mean 3.35 vs 2.14, p = 0.001). Larger tumor size trended toward lower T:N (p = 0.052). CONCLUSION Patients with history of ablation and those undergoing treatment for disease progression have higher T:N and, therefore, could be considered for radioembolization preferentially over alternative treatments.
Collapse
Affiliation(s)
- Mikin V Patel
- Department of Radiology, University of Chicago Medical Center, 5841 S Maryland Ave, MC 2026, Chicago, IL, 60637, USA.
| | - David McNiel
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Christopher Brunson
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Phillip H Kuo
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Charles T Hennemeyer
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Gregory Woodhead
- Department of Medical Imaging, University of Arizona Medical Center, Tucson, AZ, USA
| | - Hugh McGregor
- Department of Radiology, University of Washington Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
Tümen D, Heumann P, Gülow K, Demirci CN, Cosma LS, Müller M, Kandulski A. Pathogenesis and Current Treatment Strategies of Hepatocellular Carcinoma. Biomedicines 2022; 10:3202. [PMID: 36551958 PMCID: PMC9775527 DOI: 10.3390/biomedicines10123202] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent liver cancer with high lethality and low five-year survival rates leading to a substantial worldwide burden for healthcare systems. HCC initiation and progression are favored by different etiological risk factors including hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, non-/and alcoholic fatty liver disease (N/AFLD), and tobacco smoking. In molecular pathogenesis, endogenous alteration in genetics (TP53, TERT, CTNNB1, etc.), epigenetics (DNA-methylation, miRNA, lncRNA, etc.), and dysregulation of key signaling pathways (Wnt/β-catenin, JAK/STAT, etc.) strongly contribute to the development of HCC. The multitude and complexity of different pathomechanisms also reflect the difficulties in tailored medical therapy of HCC. Treatment options for HCC are strictly dependent on tumor staging and liver function, which are structured by the updated Barcelona Clinic Liver Cancer classification system. Surgical resection, local ablative techniques, and liver transplantation are valid and curative therapeutic options for early tumor stages. For multifocal and metastatic diseases, systemic therapy is recommended. While Sorafenib had been the standalone HCC first-line therapy for decades, recent developments had led to the approval of new treatment options as first-line as well as second-line treatment. Anti-PD-L1 directed combination therapies either with anti-VEGF directed agents or with anti-CTLA-4 active substances have been implemented as the new treatment standard in the first-line setting. However, data from clinical trials indicate different responses on specific therapeutic regimens depending on the underlying pathogenesis of hepatocellular cancer. Therefore, histopathological examinations have been re-emphasized by current international clinical guidelines in addition to the standardized radiological diagnosis using contrast-enhanced cross-sectional imaging. In this review, we emphasize the current knowledge on molecular pathogenesis of hepatocellular carcinoma. On this occasion, the treatment sequences for early and advanced tumor stages according to the recently updated Barcelona Clinic Liver Cancer classification system and the current algorithm of systemic therapy (first-, second-, and third-line treatment) are summarized. Furthermore, we discuss novel precautional and pre-therapeutic approaches including therapeutic vaccination, adoptive cell transfer, locoregional therapy enhancement, and non-coding RNA-based therapy as promising treatment options. These novel treatments may prolong overall survival rates in regard with quality of life and liver function as mainstay of HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Guo Y, Hu HT, Xu SJ, Xia WL, Zhao Y, Zhao XH, Zhu WB, Li FT, Li HL. Proteoglycan-4 predicts good prognosis in patients with hepatocellular carcinoma receiving transcatheter arterial chemoembolization and inhibits cancer cell migration in vitro. Front Oncol 2022; 12:1023801. [PMID: 36439456 PMCID: PMC9691762 DOI: 10.3389/fonc.2022.1023801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 08/26/2023] Open
Abstract
PURPOSE To search for adaptive response molecules that affect the efficacy of transcatheter arterial chemoembolization (TACE), analyze their clinical correlation with and prognostic value for hepatocellular carcinoma (HCC), and explore their impact on cell biological behavior and their mechanisms of action. METHODS HCC tissue gene sequencing was used to identify differentially expressed genes. The expression of proteoglycan 4 (PRG4) in the serum of 117 patients with HCC who received TACE was detected by enzyme-linked immunosorbent assay. Serum-free medium mimicked TACE-induced nutrient deprivation. Cells with stable knockdown of PRG4 (shPRG4) were constructed to verify the effect and mechanism of PRG4 on the biological behavior of HCC cells in vitro. RESULTS The expression of PRG4 was significantly elevated under TACE-induced starvation conditions. Low PRG4 expression was associated with worse response to TACE treatment, shorter survival time, and stronger HCC migration ability. Furthermore, in vitro experiments showed that knockdown of PRG4 promoted HCC cell migration by enhancing epithelial-mesenchymal transition (EMT) while did not affect proliferation. When PRG4 expression was low, starvation treatment impaired the migratory ability of HCC cells and reduced the chemosensitivity of HCC cells to epirubicin. CONCLUSIONS PRG4 expression predicts survival and TACE treatment response in patients with HCC. Furthermore, knockdown of PRG4 enhanced EMT, leading to HCC cell migration. PRG4 may serve as a biomarker for HCC patients receiving TACE.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hong Tao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shi Jun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wei Li Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Zhao
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiao Hui Zhao
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wen Bo Zhu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fang Ting Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hai Liang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Tang Y, Zhang H, Chen L, Zhang T, Xu N, Huang Z. Identification of Hypoxia-Related Prognostic Signature and Competing Endogenous RNA Regulatory Axes in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:13590. [PMID: 36362375 PMCID: PMC9658439 DOI: 10.3390/ijms232113590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of liver cancer and one of the highly lethal diseases worldwide. Hypoxia plays an important role in the development and prognosis of HCC. This study aimed to construct a new hypoxia-related prognosis signature and investigate its potential ceRNA axes in HCC. RNA profiles and hypoxia genes were downloaded, respectively, from the Cancer Genome Atlas hepatocellular carcinoma database and Gene Set Enrichment Analysis website. Cox regression analyses were performed to select the prognostic genes and construct the risk model. The ENCORI database was applied to build the lncRNA-miRNA-mRNA prognosis-related network. The TIMER and CellMiner databases were employed to analyze the association of gene expression in ceRNA with immune infiltration and drug sensitivity, respectively. Finally, the co-expression analysis was carried out to construct the potential lncRNA/miRNA/mRNA regulatory axes. We obtained a prognostic signature including eight hypoxia genes (ENO2, KDELR3, PFKP, SLC2A1, PGF, PPFIA4, SAP30, and TKTL1) and further established a hypoxia-related prognostic ceRNA network including 17 lncRNAs, six miRNAs, and seven mRNAs for hepatocellular carcinoma. Then, the analysis of immune infiltration and drug sensitivity showed that gene expression in the ceRNA network was significantly correlated with the infiltration abundance of multiple immune cells, the expression level of immune checkpoints, and drug sensitivity. Finally, we identified three ceRNA regulatory axes (SNHG1/miR-101-3p/PPFIA4, SNHG1/miR-101-3p/SAP30, and SNHG1/miR-101-3p/TKTL1) associated with the progression of HCC under hypoxia. Here, we constructed a prognosis gene signature and a ceRNA network related to hypoxia for hepatocellular carcinoma. Among the ceRNA network, six highly expressed lncRNAs (AC005540.1, AC012146.1, AC073529.1, AC090772.3, AC138150.2, AL390728.6) and one highly expressed mRNA (PPFIA4) were the potential biomarkers of hepatocellular carcinoma which we firstly reported. The three predicted hypoxia-related regulatory axes may play a vital role in the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yulai Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Hua Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Lingli Chen
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Taomin Zhang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Na Xu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
- Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
25
|
Chen S, Gao Y, Wang Y, Daemen T. The combined signatures of hypoxia and cellular landscape provides a prognostic and therapeutic biomarker in hepatitis B virus-related hepatocellular carcinoma. Int J Cancer 2022; 151:809-824. [PMID: 35467769 PMCID: PMC9543189 DOI: 10.1002/ijc.34045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Prognosis and treatment options of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) are generally based on tumor burden and liver function. Yet, tumor growth and therapeutic resistance of HBV-HCC are strongly influenced by intratumoral hypoxia and cells infiltrating the tumor microenvironment (TME). We, therefore, studied whether linking parameters associated with hypoxia and TME cells could have a better prediction of prognosis and therapeutic responses. Quantification of 109 hypoxia-related genes and 64 TME cells was performed in 452 HBV-HCC tumors. Prognostic hypoxia and TME cells signatures were determined based on Cox regression and meta-analysis for generating the Hypoxia-TME classifier. Thereafter, the prognosis, tumor, and immune characteristics as well as the benefit of therapies in Hypoxia-TME defined subgroups were analyzed. Patients in the Hypoxialow /TMEhigh subgroup showed a better prognosis and therapeutic responses than any other subgroups, which can be well elucidated based on the differences in terms of immune-related molecules, tumor somatic mutations, and cancer cellular signaling pathways. Notably, our analysis furthermore demonstrated the synergistic influence of hypoxia and TME on tumor metabolism and proliferation. Besides, the classifier allowed a further subdivision of patients with early- and late-HCC stages. In addition, the Hypoxia-TME classifier was validated in another independent HBV-HCC cohort (n = 144) and several pan-cancer cohorts. Overall, the Hypoxia-TME classifier showed a pretreatment predictive value for prognosis and therapeutic responses, which might provide new directions for strategizing patients with optimal therapies.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Yuzhen Gao
- Department of Clinical LaboratorySir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Ying Wang
- Department of Laboratory MedicineShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
- Research Center for Translational MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, Tumor Virology and Cancer ImmunotherapyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, Kaur S, Eisa AA, Shingatgeri VMM, Najm MZ, Aloliqi AA. miRNAs and the Hippo pathway in cancer: Exploring the therapeutic potential (Review). Oncol Rep 2022; 48:135. [PMID: 35699111 DOI: 10.3892/or.2022.8346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is recognized as the leading cause of death worldwide. The hippo signaling pathway regulates organ size by balancing cell proliferation and cell death; hence dysregulation of the hippo pathway promotes cancer‑like conditions. miRNAs are a type of non‑coding RNA that have been shown to regulate gene expression. miRNA levels are altered in various classes of cancer. Researchers have also uncovered a crosslinking between miRNAs and the hippo pathway, which has been linked to cancer. The components of the hippo pathway regulate miRNA synthesis, and various miRNAs regulate the components of the hippo pathway both positively and negatively, which can lead to cancer‑like conditions. In the present review article, the mechanism behind the hippo signaling pathway and miRNAs biogenesis and crosslinks between miRNAs and the hippo pathway, which result in cancer, shall be discussed. Furthermore, the article will cover miRNA‑related therapeutics and provide an overview of the development of resistance to anticancer drugs. Understanding the underlying processes would improve the chances of developing effective cancer treatment therapies.
Collapse
Affiliation(s)
- Taruna Arora
- Division of Reproductive Biology, Maternal & Child Health, Department of Health Research, ICMR, MOHFW, Government of India, Ansari Nagar, New Delhi 110029, India
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | | | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, KSA‑2240, Saudi Arabia
| | - Malik Asif Hussain
- Department of Pathology, University of Hail, Hail, KSA-2240, Saudi Arabia
| | - Sadaf Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Simran Kaur
- School of Biosciences, Apeejay Stya University, Sohna, Haryana 122103, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, KSA‑344, Saudi Arabia
| | | | | | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
27
|
Yan H, He N, He S. HCG15 is a hypoxia-responsive lncRNA and facilitates hepatocellular carcinoma cell proliferation and invasion by enhancing ZNF641 transcription. Biochem Biophys Res Commun 2022; 608:170-176. [DOI: 10.1016/j.bbrc.2022.03.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023]
|
28
|
Zheng J, Yang Z, Li Y, Yang L, Yao R. Knockdown of AKR1C3 Promoted Sorafenib Sensitivity Through Inhibiting the Phosphorylation of AKT in Hepatocellular Carcinoma. Front Oncol 2022; 12:823491. [PMID: 35359392 PMCID: PMC8963762 DOI: 10.3389/fonc.2022.823491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
Background Sorafenib, which can induce ferroptosis, is a multikinase inhibitor for enhancing survival in advanced hepatocellular carcinoma (HCC). However, a considerable challenge for the treatment of HCC is sorafenib resistance. Therefore, targeting the relationship between sorafenib resistance and ferroptosis genes may provide a novel approach for the treatment of HCC. Materials and Methods We analyzed the gene expression and clinicopathological factors from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases (GSE109211/GSE62813). The statistical analysis was conducted in R. Cell proliferation was assayed by MTT, cell colony-forming assay, and wound healing assay. Immunofluorescence assay and Western blot were used to evaluate the expression of AKT. Results Many ferroptosis-related genes were upregulated in the sorafenib-resistant group. Aldo-keto reductase 1C3 (AKR1C3) was highly expressed in sorafenib-resistant patients, and the high expression of AKR1C3 was associated with the poor prognosis of patients from the TCGA and ICGC databases. MTT and colony-forming assays showing AKR1C3 overexpression enhanced the proliferation of HCC cells and acute sorafenib resistance. Knockdown of AKR1C3 inhibited the proliferation of HCC cells and increased the drug sensitivity of sorafenib. Immunofluorescence assay and Western blot proved that AKR1C3 promoted the phosphorylation of AKT. Conclusion AKR1C3 can induce sorafenib resistance through promoting the phosphorylation of AKT in HCC. AKR1C3 inhibitors may be used in conjunction with sorafenib to become a better therapeutic target for HCC.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Clinical Medicine, Tangshan Vocational and Technical College, Tangshan, China
| | - Zhihong Yang
- Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan, China
- *Correspondence: Zhihong Yang,
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Li Yang
- Department of Obstetrics and Gynecology, Tangshan Workers’ Hospital, Tangshan, China
| | - Ruili Yao
- Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan, China
| |
Collapse
|
29
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
30
|
Barbetta A, Goldbeck C, Lim A, Martin SP, Kahn JA, Sheikh MR, Emamaullee J. Treatment and outcomes of hepatocellular carcinoma in patients with Sickle cell disease: a population-based study in the U.S. HPB (Oxford) 2022; 24:234-243. [PMID: 34294525 PMCID: PMC8733051 DOI: 10.1016/j.hpb.2021.06.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is a rare hemoglobinopathy which can result in chronic liver disease and cirrhosis. Patients with SCD have an increased risk of hematologic malignancy, but the prevalence of hepatocellular carcinoma (HCC) in this population is unknown. Herein, the association of SCD with HCC was examined using registry data. METHODS The SEER-Medicare database was queried to identify patients diagnosed with HCC between 2000 and 2015, and further stratified by SCD status. Propensity matching was performed to examine cancer-related survival and treatment outcomes. RESULTS Overall 56,934 patients with HCC were identified, including 81 patients with SCD. Patients with SCD more frequently had cirrhosis [48.1% (39/81) vs 23.5% (13,377/56,853), p < 0.01] yet presented with smaller tumors [<5 cm: 51.9% (42/81) vs 38.5% (21,898/56,853), p = 0.01]. After propensity matching, SCD was not associated with attenuated survival (aHR 0.73 95%CI 0.52-1.01). When stratified by treatment, patients with SCD had equivalent outcomes to chemotherapy (p = 0.65), TACE/TARE (p = 0.35), resection (p = 0.15) and transplantation (p = 0.67) when compared to non-SCD patients. CONCLUSION This study confirms that a subset of patients with SCD will develop HCC. Importantly, therapeutic options for HCC should not be limited by pre-existing SCD, and similar survival should be expected when compared to non-SCD patients.
Collapse
Affiliation(s)
- Arianna Barbetta
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA
| | - Cameron Goldbeck
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA
| | - Angelina Lim
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA
| | - Sean P Martin
- Deparment of Surgery, UPMC Pinnacle, 111 S Front St, Harrisburg, 17101, PA, USA
| | - Jeffrey A Kahn
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA
| | - M Raashid Sheikh
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA
| | - Juliet Emamaullee
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, 1510 San Pablo St, Los Angeles, 90033, CA, USA.
| |
Collapse
|
31
|
Chen H, Nio K, Tang H, Yamashita T, Okada H, Li Y, Doan PTB, Li R, Lv J, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. BMP9-ID1 Signaling Activates HIF-1α and VEGFA Expression to Promote Tumor Angiogenesis in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23031475. [PMID: 35163396 PMCID: PMC8835914 DOI: 10.3390/ijms23031475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Since hepatocellular carcinoma (HCC) is a typical hypervascular malignant tumor with poor prognosis, targeting angiogenesis is an important therapeutic strategy for advanced HCC. Involvement of bone morphologic protein 9 (BMP9), a transforming growth factor-beta superfamily member, has recently been reported in the development of liver diseases and angiogenesis. Here, we aimed to elucidate the role of BMP9 signaling in promoting HCC angiogenesis and to assess the antiangiogenic effect of BMP receptor inhibitors in HCC. By analyzing HCC tissue gene expression profiles, we found that BMP9 expression was significantly correlated with angiogenesis-associated genes, including HIF-1α and VEGFR2. In vitro, BMP9 induced HCC cell HIF-1α/VEGFA expression and VEGFA secretion. Silencing of the inhibitor of DNA-binding protein 1 (ID1), a transcription factor targeted by BMP9 signaling, suppressed BMP9-induced HIF-1α/VEGFA expression and VEGFA secretion, resulting in decreased human umbilical vein endothelial cell (HUVEC) lumen formation. BMP receptor inhibitors, which inhibit BMP9-ID1 signaling, suppressed BMP9-induced HIF-1α/VEGFA expression, VEGFA secretion, and HUVEC lumen formation. In vivo, the BMP receptor inhibitor LDN-212854 successfully inhibited HCC tumor growth and angiogenesis by inhibiting BMP9-ID1 signaling. In summary, BMP9-ID1 signaling promotes HCC angiogenesis by activating HIF-1α/VEGFA expression. Thus, targeting BMP9-ID1 signaling could be a pivotal therapeutic option for advanced HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
- Correspondence: (K.N.); (H.T.); Tel.: +81-76-265-2235 (K.N.); +86-28-85422647 (H.T.); Fax: +81-76-234-4281 (K.N.); +86-28-85423052 (H.T.)
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Correspondence: (K.N.); (H.T.); Tel.: +81-76-265-2235 (K.N.); +86-28-85422647 (H.T.); Fax: +81-76-234-4281 (K.N.); +86-28-85423052 (H.T.)
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
- Department of General Medicine, Kanazawa University Hospital, Kanazawa 9208641, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Yingyi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Phuong Thi Bich Doan
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Ru Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Junyan Lv
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Tatsuya Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (T.Y.); (H.O.); (Y.L.); (P.T.B.D.); (R.L.); (J.L.); (Y.S.); (T.Y.); (E.M.); (M.H.); (S.K.)
| |
Collapse
|
32
|
Byun J, Kim SY, Kim JH, Kim MJ, Yoo C, Shim JH, Lee SS. Prediction of transarterial chemoembolization refractoriness in patients with hepatocellular carcinoma using imaging features of gadoxetic acid-enhanced magnetic resonance imaging. Acta Radiol 2021; 62:1548-1558. [PMID: 33197329 DOI: 10.1177/0284185120971844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Repeated transarterial chemoembolization (TACE) can be associated with loss of its efficacy and subsequent tumor progression. PURPOSE To identify features of gadoxetic acid-enhanced magnetic resonance imaging (MRI) associated with TACE refractoriness and to develop a prediction model for estimating the risk of TACE refractoriness. MATERIAL AND METHODS Among 1025 patients with intermediate-stage hepatocellular carcinoma (HCC) who underwent TACE as a first-line treatment during 2010-2017, 427 patients who underwent preoperative gadoxetic acid-enhanced MRI were analyzed. According to the date of initial TACE, patients were divided into the development cohort (n = 211) and the test cohort (n = 216). TACE refractoriness was determined according to the Japan Society of Hepatology guidelines. Univariable and multivariable analyses were performed to investigate the association between clinical/MRI features and TACE refractoriness. The performance of the prediction model was internally and externally assessed using the C-index of discrimination and a Hosmer-Lemeshow goodness-of-fit test for calibration. RESULTS By analyzing 427 patients, we constructed a prediction model with the following independent features associated with TACE refractoriness: maximum tumor size; tumor number; peritumoral hypointensity on hepatobiliary phase (HBP); and the presence of non-hypervascular hypointense nodule on HBP. This system enabled the prediction of TACE refractoriness in the development cohort (C-index, 0.796) and the test cohort (C-index, 0.738) with good discrimination and calibration abilities. CONCLUSION The prediction model based on gadoxetic acid-enhanced MRI features in addition to the known predictors including tumor size and number can be used to estimate the risk of TACE refractoriness in patients with intermediate-stage HCC.
Collapse
Affiliation(s)
- Jieun Byun
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Ju Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhoon Yoo
- Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Zhou C, Zhang H, Lu L. Identification and Validation of Hypoxia-Related lncRNA Signature as a Prognostic Model for Hepatocellular Carcinoma. Front Genet 2021; 12:744113. [PMID: 34650600 PMCID: PMC8505699 DOI: 10.3389/fgene.2021.744113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Hypoxia is a critical clinical characteristic and acts as a significant part in the development and cancers’ prognosis. The prognostic value and biological functions of hypoxia-related lncRNAs in hepatocellular carcinoma is little known. Thus, we aim to establish a hypoxia-related lncRNA signature to predict the HCC patients’ survival. First, we extracted the hypoxia-related genes and expression of lncRNAs from the MSigDB and TCGA database, respectively. The co-expression analysis among hypoxia-related mRNAs and lncRNAs was employed to identify hypoxia-related lncRNAs. Then, comprehensive analyses of lncRNAs expression level and survival data were applied to establish the signature. We built a prognostic signature on the foundation of the three differently expressed hypoxia-related lncRNAs. Kaplan-Meier curves indicated the low-risk group is associated with better survival. The 1−, 3−, and 5 years AUC values of the signature were 0.805, 0.672 and 0.63 respectively. The test set performed consistent outcomes. A nomogram was built grounded on the risk score and clinicopathological features. GSEA showed the immune-related pathways in high-risk group, while metabolism-related pathways in low-risk group. Besides, we found this model was correlated with the clinical features, tumor immune cell infiltration, immune checkpoints, and m6A-related genes. Finally, a novel signature based on hypoxia-related lncRNAs was established and validated for predicting HCC patients’ survival and may offer some useful information for immunotherapies.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Huajun Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu P, Xu L, Wang J, Yan Z, Han H, Liu R, Shu M. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med 2021; 25:10197-10212. [PMID: 34609072 PMCID: PMC8572766 DOI: 10.1111/jcmm.16957] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Residue hepatocellular carcinoma (HCC) cells enduring hypoxic environment triggered by interventional embolization obtain more malignant potential with little clarified mechanism. The N6 -methyladenosine (m6 A) biological activity plays essential roles in diverse physiological processes. However, its role under hypoxic condition remains largely unexplored. RT-qPCR and Western blot were used to evaluate METTL14 expression in hypoxic HCC cells. MDA assay and electronic microscopy photography were used to evaluate ferroptosis. The correlation between SLC7A11 and METTL14 was conducted by bioinformatical analysis. Flow cytometry was used to verify the effect of SLC7A11 on ROS production. Cell counting kit-8 assay was performed to detect cells proliferation ability. Hypoxia triggered suppression of METTL14 in a HIF-1α-dependent manner potently abrogated ferroptosis of HCC cells. Mechanistic investigation identified SLC7A11 was a direct target of METTL14. Both in vitro and in vivo assay demonstrated that METTL14 induced m6 A modification at 5'UTR of SLC7A11 mRNA, which in turn underwent degradation relied on the YTHDF2-dependent pathway. Importantly, ectopic expression of SLC7A11 strongly blocked METTL14-induced tumour-suppressive effect in hypoxic HCC. Our investigations lay the emphasis on the hypoxia-regulated ferroptosis in HCC cells and identify the HIF-1α /METTL14/YTHDF2/SLC7A11 axis as a potential therapeutic target for the HCC interventional embolization treatment.
Collapse
Affiliation(s)
- Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guangqin Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pingping Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ligang Xu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianhua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Han
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Interventional Radiology, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Shi Q, Li T, Huang S, Bai Y, Wang Y, Liu J, Zhou C, Chen Y, Xiong B. Transcatheter Arterial Embolization Containing Donafenib Induces Anti-Angiogenesis and Tumoricidal CD8 + T-Cell Infiltration in Rabbit VX2 Liver Tumor. Cancer Manag Res 2021; 13:6943-6952. [PMID: 34522137 PMCID: PMC8434853 DOI: 10.2147/cmar.s328294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To evaluate the effect and immune response of transcatheter arterial embolization (TAE) combined with donafenib in rabbit VX2 liver tumor model. Materials and Methods Thirty-six New Zealand white rabbits with VX2 liver tumor were randomly divided into three groups. The LD group was treated with the emulsion of 0.5 mL lipiodol and 4 mg donafenib via hepatic arterial administration. The LE group was treated with the emulsion of 0.5 mL lipiodol and 4 mg epirubicin. The control group was treated with the equal volume of saline. Four rabbits were euthanized in each group on day 1, 3 and 7 after treatment. The tumor growth, histological markers associated with angiogenesis and immune response were assessed by imaging and histopathology. In addition, immune modulatory cytokines included interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and biochemical hepatorenal function were measured. Results Compared to other groups, LD group achieved lower tumor growth rate, fewer metastatic lesions, and higher tumor necrosis rate on day 7 after treatment. The percentage of CD31-positive area in the LD group was significantly lower than that in the LE group on day 3 and 7 after treatment. In addition, CD8+ lymphocytes infiltration was more pronounced in LD group than in LE group on day 7 after treatment, regardless of in the tumor or adjacent liver tissue. Serum cytokines including IL-6, TNF-α and IFN-γ were strongly upregulated in the LD group on day 1 after treatment. And there was no significant difference in the hepatorenal function between LD group and LE group after treatment. Conclusion The combination of TAE and angiogenesis inhibitor donafenib resulted in a potentiated tumoricidal effect, anti-angiogenesis and antitumour T cell response in rabbit VX2 liver tumor model. This may provide a potential basis for exploring the immune-related mechanisms of embolization in liver cancer.
Collapse
Affiliation(s)
- Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| |
Collapse
|
36
|
Lim J, Choi H, Ahn J, Jeon NL. 3D High‐Content Culturing and Drug Screening Platform to Study Vascularized Hepatocellular Carcinoma in Hypoxic Condition. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jungeun Lim
- School of Mechanical and Aerospace Engineering Seoul National University Seoul 08826 South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering Seoul National University Seoul 08826 South Korea
| | - Jungho Ahn
- School of Mechanical and Aerospace Engineering Seoul National University Seoul 08826 South Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering Seoul National University Seoul 08826 South Korea
- Interdisciplinary Program in Bioengineering Seoul National University Seoul 08826 South Korea
- Institute of Advanced Machinery and Design Seoul National University Seoul 08826 South Korea
| |
Collapse
|
37
|
Li Q, Jin L, Jin M. Novel Hypoxia-Related Gene Signature for Risk Stratification and Prognosis in Hepatocellular Carcinoma. Front Genet 2021; 12:613890. [PMID: 34194464 PMCID: PMC8236897 DOI: 10.3389/fgene.2021.613890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with limited therapeutic options and low survival rate. The hypoxic microenvironment plays a vital role in progression, metabolism, and prognosis of malignancies. Therefore, this study aims to develop and validate a hypoxia gene signature for risk stratification and prognosis prediction of HCC patients. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases were used as a training cohort, and one Gene Expression Omnibus database (GSE14520) was served as an external validation cohort. Our results showed that eight hypoxia-related genes (HRGs) were identified by the least absolute shrinkage and selection operator analysis to develop the hypoxia gene signature and demarcated HCC patients into the high- and low-risk groups. In TCGA, ICGC, and GSE14520 datasets, patients in the high-risk group had worse overall survival outcomes than those in the low-risk group (all log-rank P < 0.001). Besides, the risk score derived from the hypoxia gene signature could serve as an independent prognostic factor for HCC patients in the three independent datasets. Finally, a nomogram including the gene signature and tumor-node-metastasis stage was constructed to serve clinical practice. In the present study, a novel hypoxia signature risk model could reflect individual risk classification and provide therapeutic targets for patients with HCC. The prognostic nomogram may help predict individualized survival.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Limin Jin
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Meng Jin
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm Sin B 2021; 11:560-571. [PMID: 33643831 PMCID: PMC7893141 DOI: 10.1016/j.apsb.2020.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor microenvironment has been widely utilized for advanced drug delivery in recent years, among which hypoxia-responsive drug delivery systems have become the research hotspot. Although hypoxia-responsive micelles or polymersomes have been successfully developed, a type of hypoxia-degradable nanogel has rarely been reported and the advantages of hypoxia-degradable nanogel over other kinds of degradable nanogels in tumor drug delivery remain unclear. Herein, we reported the synthesis of a novel hypoxia-responsive crosslinker and the fabrication of a hypoxia-degradable zwitterionic poly(phosphorylcholine)-based (HPMPC) nanogel for tumor drug delivery. The obtained HPMPC nanogel showed ultra-long blood circulation and desirable immune compatibility, which leads to high and long-lasting accumulation in tumor tissue. Furthermore, HPMPC nanogel could rapidly degrade into oligomers of low molecule weight owing to the degradation of azo bond in hypoxic environment, which leads to the effective release of the loaded drug. Impressively, HPMPC nanogel showed superior tumor inhibition effect both in vitro and in vivo compared to the reduction-responsive phosphorylcholine-based nanogel, owing to the more complete drug release. Overall, the drug-loaded HPMPC nanogel exhibits a pronounced tumor inhibition effect in a humanized subcutaneous liver cancer model with negligible side effects, which showed great potential as nanocarrier for advanced tumor drug delivery.
Collapse
|
39
|
Torgersen J, Kallan MJ, Carbonari DM, Park LS, Mehta RL, D’Addeo K, Tate JP, Lim JK, Goetz MB, Rodriguez-Barradas MC, Bräu N, Brown ST, Taddei TH, Justice AC, Lo Re V. Brief Report: Accuracy of FIB-4 for Cirrhosis in People Living With HIV and Hepatocellular Carcinoma. J Acquir Immune Defic Syndr 2020; 85:530-534. [PMID: 33185999 PMCID: PMC8353543 DOI: 10.1097/qai.0000000000002510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) may develop in the absence of cirrhosis in HIV, and determining how often this occurs can provide insights into mechanisms of carcinogenesis. Studies evaluating the prevalence of cirrhosis in the setting of HCC among people living with HIV (PLWH) often rely on noninvasive markers, such as the Fibrosis-4 Index for Hepatic Fibrosis (FIB-4). However, the accuracy of FIB-4 for cirrhosis in the setting of HCC has not been determined among PLWH. METHODS We conducted a cross-sectional study among PLWH in the Veterans Aging Cohort Study with VA cancer registry-confirmed HCC diagnosed between 1999 and 2015. FIB-4 was calculated using the age, alanine aminotransferase, aspartate aminotransferase, and platelet count obtained closest to, but within 1 year before, HCC diagnosis. Medical records were reviewed within 1 year before HCC diagnosis to determine the cirrhosis status. We evaluated the area under the receiver-operating characteristic curve and performance characteristics of FIB-4 for confirmed cirrhosis. RESULTS Incident HCC was diagnosed in 302 PLWH. After medical record review, 203 (67.2%, 95% confidence interval: 61.6% to 72.5%) had evidence of cirrhosis. FIB-4 identified patients with cirrhosis with an area under the receiver-operating characteristic curve of 0.67 (95% confidence interval: 0.60 to 0.73). FIB-4 scores >5.0 had a positive predictive value >80% and specificity of >77%, negative predictive value of <41%, and sensitivity of <45%. CONCLUSION The accuracy of FIB-4 for cirrhosis in the setting of HIV and HCC is modest and may result in misclassification of cirrhosis in this population.
Collapse
Affiliation(s)
- Jessie Torgersen
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J. Kallan
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dena M. Carbonari
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lesley S. Park
- Stanford Center for Population Health Sciences, Stanford University School of Medicine, Stanford, CA
| | - Rajni L. Mehta
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Kathryn D’Addeo
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Janet P. Tate
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Joseph K. Lim
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Matthew Bidwell Goetz
- VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Maria C. Rodriguez-Barradas
- Infectious Diseases Section, Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Norbert Bräu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA and James J. Peters VA Medical Center, Bronx, NY
| | - Sheldon T. Brown
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA and James J. Peters VA Medical Center, Bronx, NY
| | - Tamar H. Taddei
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Amy C. Justice
- Department of Medicine, Yale School of Medicine, New Haven, CT
- VA Connecticut Healthcare System, West Haven, CT
| | - Vincent Lo Re
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatol Int 2020; 14:947-957. [PMID: 33188512 DOI: 10.1007/s12072-020-10104-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
|
41
|
Hu B, Yang XB, Sang XT. Development and Verification of the Hypoxia-Related and Immune-Associated Prognosis Signature for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:315-330. [PMID: 33204664 PMCID: PMC7667586 DOI: 10.2147/jhc.s272109] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background It has been widely suggested that the association of hypoxia with the immune status within the microenvironment of hepatocellular carcinoma (HCC) is of great clinical significance. The present work was carried out aiming to establish the hypoxia-related and immune-associated gene signature to stratify the risks in HCC. Patients and Methods The ssGSEA and t-SNE algorithms were utilized to estimate the immune and hypoxia statuses, respectively, using the TCGA database-derived cohort transcriptome profiles. Different immune groups are distinguished according to the ssGSEA scores, while the hypoxia-high and -low groups are inferred based on the distinct overall survival (OS) of the two groups of patients. Moreover, prognostic genes were identified using the Cox regression model in combination with the LASSO approach, which were later used to establish the hypoxia-related and immune-associated gene signature. At the same time, an ICGC cohort was used for external validation. Results A total of 13 genes, namely, HAVCR1, PSRC1, CCNJL, PDSS1, MEX3A, EID3, EPO, PLOD2, KPNA2, CDCA8, ADAMTS5, SLC1A7 and PIGZ, were discovered by the LASSO approach for constructing a gene signature to stratify the risk of HCC. Those low-risk cases showed superior prognosis (OS) to the high-risk counterparts (p<0.05). Moreover, it was suggested by multivariate analysis that our constructed hypoxia-related and immune-associated prognosis signature might be used as the independent factor for prognosis prediction (p<0.001). Patients in high-risk groups had severe hypoxia, higher immune checkpoint expression such as PD-L1, and different immunocyte infiltration states (eg, higher infiltration of regulatory T cells in the high-risk group) compared with those low-risk patients. Conclusion Our as-constructed hypoxia-related and immune-associated prognosis signature can be used as an approach to stratify the risk of HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
42
|
Liao ZH, Zhu HQ, Chen YY, Chen RL, Fu LX, Li L, Zhou H, Zhou JL, Liang G. The epigallocatechin gallate derivative Y 6 inhibits human hepatocellular carcinoma by inhibiting angiogenesis in MAPK/ERK1/2 and PI3K/AKT/ HIF-1α/VEGF dependent pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112852. [PMID: 32278759 DOI: 10.1016/j.jep.2020.112852] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypervascularity has been considered as one of the major features of many solid tumors. Green tea is one of the commonly drink resources in China, and its active component, Epigallocatechin gallate (EGCG), exhibits antiangiogenic activities in various experimental tumor models. However, EGCG has many shortages, e.g., relatively unstable, low lipid solubility, poor bioavailability, and short duration of action. AIM OF THE STUDY To overcome the shortages of EGCG for antiangiogenic antitumor usage, our study developed a novel EGCG derivate, Y6(5,3',4',3″,4″,5″-6-0-ethyl-EGCG). The underlying mechanism was also elucidated. MATERIAL AND METHODS we evaluated the effects of EGCG, Y6 on HCC and angiogenesis in vivo and in vitro. Moreover, to understand their antitumor mechanisms, key factors within angiogenesis-related signaling pathways (MAPK/ERK1/2, PI3K/AKT, HIF-1 VEGF) were analyzed by using western blot, immunohistochemistry (IHC), quantitative real-time quantitative PCR (RT-PCR). HepG2 xenograft model and the chorioallantoic membrane (CAM) were used to investigate the effects of Y6 and EGCG on tumors and anti-angiogenesis in vivo. Micro-vessel density (MVD) was analyzed by IHC of CD34 staining. IHC, qRT-PCR and Western blot were used to detect the expression of HIF-1α and VEGF protein in tumor tissues. The protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF in tumor tissues were detected by western blot. RESULTS Our results demonstrated that both EGCG and Y6 displayed antiangiogenetic and antitumor effects against HCC cells in vitro and in vivo. We found that rather than equal amount of EGCG, Y6 displayed better abilities in inhibiting the growth of HCC tumor cells, as well as inhibiting the growth of neovascularization in the chick embryos and HepG2 xenograft tumors bearing-mice, based on the data obtained from MTT assay, immunohistochemistry (IHC), chick chorioallantoic membrane (CAM) assays. In the comparison of equivalent dose of EGCG, qRT-PCR data showed that Y6 induced more significant decrease of the mRNA levels of HIF-1α and VEGF in supernatant-treated SMMC-7721 cells under hypoxic condition, as well as in the in xenograft tumor tissues; whereas Y6 also significantly reduced the protein levels of MAPK/ERK1/2, PI3K/AKT, HIF-1α, and VEGF to a greater extent than EGCG, determined by western blotting assay. CONCLUSIONS our work suggests that the new EGCG derivate Y6 could significantly inhibit tumor growth and angiogenesis which is possibly involved with the signaling intervention of MAPK/ERK1/2 and PI3K/AKT/HIF-1α/VEGF pathways, and is supposed to be a potential therapeutic reagent for anti-angiogenesis treatment of solid tumors.
Collapse
Affiliation(s)
- Zhi-Hong Liao
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; The People's Hospital of Chongzuo, Chongzuo, 532200, China
| | - Hong-Qing Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yan-Yan Chen
- The Second People's Hospital of Qinzhou, Qinzhou, 535000, China
| | - Run-Li Chen
- The Sixth People's Hospital of Nanning, Nanning, 530028, China
| | - Li-Xiang Fu
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, China
| | - Li Li
- Guangxi University of Chinese Medicine, Nanning, 530021, China
| | - Huan Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Jin-Ling Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Gang Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
43
|
Zhang B, Tang B, Gao J, Li J, Kong L, Qin L. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. J Transl Med 2020; 18:342. [PMID: 32887635 PMCID: PMC7487492 DOI: 10.1186/s12967-020-02492-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aim to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism. METHODS Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival (OS) were identified using Cox regression and LASSO analysis. Then the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. The Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature. CIBERSORT was used for estimating the fractions of immune cell types. RESULTS A total of 397 hypoxia-related DEGs in HCC were detected and three genes (PDSS1, CDCA8 and SLC7A11) among them were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response. Meanwhile, the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1. CONCLUSIONS Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.
Collapse
Affiliation(s)
- Baohui Zhang
- Department of Physiology, School of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New AreaLiaoning Province, Shenyang, 110122, People's Republic of China
| | - Bufu Tang
- Department of Radiology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Jianyao Gao
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiatong Li
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New AreaLiaoning Province, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
44
|
Lee WH, Byun HK, Choi JS, Choi GH, Han DH, Joo DJ, Kim DY, Han KH, Seong J. Liver-directed combined radiotherapy as a bridge to curative surgery in locally advanced hepatocellular carcinoma beyond the Milan criteria. Radiother Oncol 2020; 152:1-7. [PMID: 32739317 DOI: 10.1016/j.radonc.2020.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Liver-directed combined radiotherapy (LDCRT) can provide substantial tumor control, which may be an effective bridge to curative surgery for selected patients. We aimed to investigate the outcomes of LDCRT for locally advanced hepatocellular carcinoma (LAHCC) beyond the Milan criteria. MATERIALS AND METHODS We identified 1078 patients diagnosed with LAHCC who received LDCRT and compared the outcomes based on no surgery, conversion to surgical resection, and liver transplantation (LT). Predictive factors for conversion to curative surgery were identified using logistic regression analysis. RESULTS The most frequently used LDCRT strategies were concurrent chemoradiation (CCRT) (497 patients, 46.1%) and transarterial chemoembolization (TACE) plus radiotherapy (251 patients 23.3%). After LDCRT, 96 (8.9%) and 42 patients (3.9%) received surgical resection and LT, respectively. After a median follow-up of 14.4 months, the 5-year overall survival (OS) rate was 16.5% for all patients. Conversion to curative surgery group had higher 5-year OS (surgical resection vs. LT vs. no surgery: 58.1% vs. 54.3% vs. 10.2%, p < 0.001). Patients aged < 60 years with a single tumor, no treatment history, pre-treatment Child class A, lower pre-treatment tumor marker levels, and radiologic complete or partial response (all p < 0.050) had a higher chance of conversion to surgery. CONCLUSION LDCRT could convert tumors to within the Milan criteria as a bridge to curative surgery, and improved long-term survival for the selected patients. Clinicians should consider LDCRT followed by curative surgery for young patients who are treatment-naïve and have good liver function with favorable tumor characteristics showing radiologic response to LDCRT.
Collapse
Affiliation(s)
- Won Hee Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gi Hong Choi
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Borde T, Laage Gaupp F, Geschwind JF, Savic LJ, Miszczuk M, Rexha I, Adam L, Walsh JJ, Huber S, Duncan JS, Peters DC, Sinusas A, Schlachter T, Gebauer B, Hyder F, Coman D, van Breugel JMM, Chapiro J. Idarubicin-Loaded ONCOZENE Drug-Eluting Bead Chemoembolization in a Rabbit Liver Tumor Model: Investigating Safety, Therapeutic Efficacy, and Effects on Tumor Microenvironment. J Vasc Interv Radiol 2020; 31:1706-1716.e1. [PMID: 32684417 DOI: 10.1016/j.jvir.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate toxicity, efficacy, and microenvironmental effects of idarubicin-loaded 40-μm and 100-μm drug-eluting embolic (DEE) transarterial chemoembolization in a rabbit liver tumor model. MATERIALS AND METHODS Twelve male New Zealand White rabbits with orthotopically implanted VX2 liver tumors were assigned to DEE chemoembolization with 40-μm (n = 5) or 100-μm (n = 4) ONCOZENE microspheres or no treatment (control; n = 3). At 24-72 hours postprocedurally, multiparametric magnetic resonance (MR) imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and biosensor imaging of redundant deviation in shifts (BIRDS) was performed to assess extracellular pH (pHe), followed by immediate euthanasia. Laboratory parameters and histopathologic ex vivo analysis included fluorescence confocal microscopy and immunohistochemistry. RESULTS DCE MR imaging demonstrated a similar degree of devascularization of embolized tumors for both microsphere sizes (mean arterial enhancement, 8% ± 12 vs 36% ± 51 in controls; P = .07). Similarly, DWI showed postprocedural increases in diffusion across the entire lesion (apparent diffusion coefficient, 1.89 × 10-3 mm2/s ± 0.18 vs 2.34 × 10-3 mm2/s ± 0.18 in liver; P = .002). BIRDS demonstrated profound tumor acidosis at baseline (mean pHe, 6.79 ± 0.08 in tumor vs 7.13 ± 0.08 in liver; P = .02) and after chemoembolization (6.8 ± 0.06 in tumor vs 7.1 ± 0.04 in liver; P = .007). Laboratory and ex vivo analyses showed central tumor core penetration and greater increase in liver enzymes for 40-μm vs 100-μm microspheres. Inhibition of cell proliferation, intratumoral hypoxia, and limited idarubicin elution were equally observed with both sphere sizes. CONCLUSIONS Noninvasive multiparametric MR imaging visualized chemoembolic effects in tumor and tumor microenvironment following DEE chemoembolization. Devascularization, increased hypoxia, coagulative necrosis, tumor acidosis, and limited idarubicin elution suggest ischemia as the predominant therapeutic mechanism. Substantial size-dependent differences indicate greater toxicity with the smaller microsphere diameter.
Collapse
Affiliation(s)
- Tabea Borde
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fabian Laage Gaupp
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | | | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Milena Miszczuk
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Irvin Rexha
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lucas Adam
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John J Walsh
- Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Biomedical Engineering, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Albert Sinusas
- Department of Cardiology, Yale Translational Research Imaging Center, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Bernhard Gebauer
- Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510
| | - Johanna M M van Breugel
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510.
| |
Collapse
|
47
|
Dhamecha D, Le D, Movsas R, Gonsalves A, Menon JU. Porous Polymeric Microspheres With Controllable Pore Diameters for Tissue Engineered Lung Tumor Model Development. Front Bioeng Biotechnol 2020; 8:799. [PMID: 32754585 PMCID: PMC7365955 DOI: 10.3389/fbioe.2020.00799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Complex cell cultures are more representative of in vivo conditions than conventionally used monolayer cultures, and are hence being investigated for predictive screening of therapeutic agents. Poly lactide co-glycolide (PLGA) polymer is frequently used in the development of porous substrates for complex cell culture. Substrates or scaffolds with highly interconnected, micrometric pores have been shown to positively impact tissue model formation by enhancing cell attachment and infiltration. We report a novel alginate microsphere (AMS)-based controlled pore formation method for the development of porous, biodegradable PLGA microspheres (PPMS), for tissue engineered lung tumor model development. The AMS porogen, non-porous PLGA microspheres (PLGAMS) and PPMS had spherical morphology (mean diameters: 10.3 ± 4, 79 ± 21.8, and 103 ± 30 μm, respectively). The PPMS had relatively uniform pores and a porosity of 45.5%. Degradation studies show that PPMS effectively maintained their structural integrity with time whereas PLGAMS showed shrunken morphology. The optimized cell seeding density on PPMS was 25 × 103 cells/mg of particles/well. Collagen coating on PPMS significantly enhanced the attachment and proliferation of co-cultures of A549 lung adenocarcinoma and MRC-5 lung fibroblast cells. Preliminary proof-of-concept drug screening studies using mono- and combination anti-cancer therapies demonstrated that the tissue-engineered lung tumor model had a significantly higher resistance to the tested drugs than the monolayer co-cultures. These studies indicate that the PPMS with controllable pore diameters may be a suitable platform for the development of complex tumor cultures for early in vitro drug screening applications.
Collapse
Affiliation(s)
| | | | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
48
|
Stechele M, Wittgenstein H, Stolzenburg N, Schnorr J, Neumann J, Schmidt C, Günther RW, Streitparth F. Novel MR-Visible, Biodegradable Microspheres for Transcatheter Arterial Embolization: Experimental Study in a Rabbit Renal Model. Cardiovasc Intervent Radiol 2020; 43:1515-1527. [PMID: 32514611 DOI: 10.1007/s00270-020-02534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess feasibility, embolization success, biodegradability, reperfusion, biocompatibility and in vivo visibility of novel temporary microspheres (MS) for transcatheter arterial embolization. MATERIAL AND METHODS In 9 New Zealand white rabbits unilateral superselective embolization of the lower kidney pole was performed with biodegradable MS made of polydioxanone (PDO) (size range 90-300 and 200-500 µm) impregnated with super-paramagnetic iron oxide (SPIO). Magnetic resonance imaging (MRI) was performed post-interventionally to assess in vivo visibility. Embolization success was assessed on digital subtraction angiography, MRI and gross pathology. One animal was killed immediately after embolization to assess original particle appearance. 8 animals were randomly assigned to different observation periods (1, 4, 8, 12 and 16 weeks), after which control angiography and MRI were obtained to determine recanalization. Histopathological analysis was performed to determine biodegradability and biocompatibility by using dedicated quantitative assessment analysis. RESULTS Ease of injection was moderate. Embolization was technically successful in 7 of 8 animals, one rabbit received non-selective embolization of the whole kidney and abdominal off-target embolization. Arterial occlusion was achieved in all kidneys, infarct areas in macro- and microscopic analysis confirmed embolization success. Control angiograms showed evidence of partial reperfusion. The microspheres showed extensive degradation over the course of time along with increasing inflammatory response and giant cell formation. SPIO-loaded MS were visible on MRI at all time points. CONCLUSIONS SPIO-impregnated biodegradable PDO-MS achieved effective embolization with in vivo visibility on MRI and increasing biodegradation over time while demonstrating good biocompatibility, i.e., a physiologically immune response without transformation into chronic inflammation. Further studies are needed to provide clinical applicability.
Collapse
Affiliation(s)
- Matthias Stechele
- Department of Radiology, University Hospital, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | - Helena Wittgenstein
- Evidensia Veterinary Clinic for Small Animals GmbH, Kabels Stieg 41, 22850, Norderstedt, Germany
| | - Nicola Stolzenburg
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jens Neumann
- University Hospital, Institute of Pathology, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany
| | | | - Rolf W Günther
- Department of Radiology, Charité School of Medicine and University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Florian Streitparth
- Department of Radiology, University Hospital, Ludwig Maximilians University, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
49
|
Dev A, Sood A, Choudhury SR, Karmakar S. Paclitaxel nanocrystalline assemblies as a potential transcatheter arterial chemoembolization (TACE) candidate for unresectable hepatocellular carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110315. [DOI: 10.1016/j.msec.2019.110315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
|
50
|
Li X, Li C, Zhang L, Wu M, Cao K, Jiang F, Chen D, Li N, Li W. The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer 2020; 19:1. [PMID: 31901224 PMCID: PMC6942270 DOI: 10.1186/s12943-019-1085-0] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonmalignancy. Exsome plays a significant role in the elucidation of signal transduction pathways between hepatoma cells, angiogenesis and early diagnosis of HCC. Exosomes are small vesicular structures that mediate interaction between different types of cells, and contain a variety of components (including DNA, RNA, and proteins). Numerous studies have shown that these substances in exosomes are involved in growth, metastasis and angiogenesis in liver cancer, and then inhibited the growth of liver cancer by blocking the signaling pathway of liver cancer cells. In addition, the exosomal substances could also be used as markers for screening early liver cancer. In this review, we summarized to reveal the significance of exosomes in the occurrence, development, diagnosis and treatment of HCC, which in turn might help us to further elucidate the mechanism of exosomes in HCC, and promote the use of exosomes in the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xin Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Liping Zhang
- Department of Maternity, Yanan University Affiliated Hospital, Yanan, China
| | - Min Wu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ke Cao
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feifei Jiang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai,Fengtai District, Beijing, 100069, China
| | - Ning Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China. .,Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai,Fengtai District, Beijing, 100069, China.
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Youanmenwai,Fengtai District, Beijing, 100069, China.
| |
Collapse
|