1
|
Al-Selwi Y, Shaw JA, Kattner N. Understanding the Pancreatic Islet Microenvironment in Cystic Fibrosis and the Extrinsic Pathways Leading to Cystic Fibrosis Related Diabetes. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2021; 14:11795514211048813. [PMID: 34675737 PMCID: PMC8524685 DOI: 10.1177/11795514211048813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive chronic condition
effecting approximately 70 000 to 100 000 people globally and is
caused by a loss-of-function mutation in the CF transmembrane
conductance regulator. Through improvements in clinical care, life
expectancy in CF has increased considerably associated with rising
incidence of secondary complications including CF-related diabetes
(CFRD). CFRD is believed to result from β-cell loss as well as
insufficient insulin secretion due to β-cell dysfunction, but the
underlying pathophysiology is not yet fully understood. Here we review
the morphological and cellular changes in addition to the
architectural remodelling of the pancreatic exocrine and endocrine
compartments in CF and CFRD pancreas. We consider also potential
underlying proinflammatory signalling pathways impacting on endocrine
and specifically β-cell function, concluding that further research
focused on these mechanisms may uncover novel therapeutic targets
enabling restoration of normal insulin secretion.
Collapse
Affiliation(s)
- Yara Al-Selwi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James Am Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Nielsen MFB, Mortensen MB, Detlefsen S. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas. Histochem Cell Biol 2017; 148:359-380. [PMID: 28540429 DOI: 10.1007/s00418-017-1581-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.
Collapse
Affiliation(s)
- Michael Friberg Bruun Nielsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.,Department of Surgery, HPB Section, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark. .,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.
| |
Collapse
|
3
|
Roche E, Ramírez-Tortosa CL, Arribas MI, Ochoa JJ, Sirvent-Belando JE, Battino M, Ramírez-Tortosa MC, González-Alonso A, Pérez-López MP, Quiles JL. Comparative analysis of pancreatic changes in aged rats fed life long with sunflower, fish, or olive oils. J Gerontol A Biol Sci Med Sci 2013; 69:934-44. [PMID: 24136874 DOI: 10.1093/gerona/glt157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. We aimed to study the effect of oil consumption on pancreas histology in order to find aging-related signs. To this end, three groups of rats were fed an isocaloric diet for 2 years, where virgin olive, sunflower, or fish oil was included. Pancreatic samples for microscopy and blood samples were collected at the moment of sacrifice. As a result, the sunflower oil-fed rats presented higher β-cell numbers and twice the insulin content than virgin olive oil-fed animals. In addition, rats fed with fish oil developed acinar fibrosis and macrophage infiltrates in peri-insular regions, compared with counterparts fed with virgin olive oil. Inflammation signs were less prominent in the sunflower group. The obtained data emphasize the importance of dietary fatty acids in determining pancreatic structure.
Collapse
Affiliation(s)
- Enrique Roche
- Bioengineering Institute, University Miguel Hernandez, Elche (Alicante), Spain
| | | | - María I Arribas
- Bioengineering Institute, University Miguel Hernandez, Elche (Alicante), Spain
| | - Julio J Ochoa
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - José E Sirvent-Belando
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Alicante, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, Ancona, Italy
| | - M Carmen Ramírez-Tortosa
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Biochemistry and Molecular Biology II, University of Granada, Spain
| | - Adrián González-Alonso
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - M Patricia Pérez-López
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú" and Department of Physiology, University of Granada, Spain.
| |
Collapse
|
4
|
Alcoholic pancreatitis: pathogenesis, incidence and treatment with special reference to the associated pain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:2763-82. [PMID: 20049222 PMCID: PMC2800061 DOI: 10.3390/ijerph6112763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/02/2009] [Indexed: 12/22/2022]
Abstract
Alcoholic pancreatitis continues to stir up controversy. One of the most debated points is whether from onset it is a chronic disease or whether it progresses to a chronic form after repeated episodes of acute pancreatitis. Histological studies on patients with alcoholic pancreatitis have shown that the disease is chronic from onset and that alcoholic acute pancreatitis occurs in a pancreas already damaged by chronic lesions. Genetic factors may also play a role in the pathogenesis of alcoholic disease. The incidence of chronic alcoholic pancreatitis seems to have decreased in the last twenty years. Finally, recent therapeutic studies which have shown medical or surgical approaches capable of reducing the pain episodes in chronic pancreatitis patients will be described.
Collapse
|
5
|
Abstract
The evidence from recent surveys on chronic pancreatitis carried out around the world shows that alcohol remains the main factor associated with chronic pancreatitis, even if at a frequency lower than that reported previously. It has further confirmed that heavy alcohol consumption and smoking are independent risk factors for chronic pancreatitis. Autoimmune pancreatitis accounts for 2%-4% of all forms of chronic pancreatitis, but this frequency will probably increase over the next few years. The rise in idiopathic chronic pancreatitis, especially in India, represents a black hole in recently published surveys. Despite the progress made so far regarding the possibility of establishing the hereditary forms of chronic pancreatitis and the recognition of autoimmune pancreatitis, it is possible that we are more inaccurate today than in the past in identifying the factors associated with chronic pancreatitis in our patients.
Collapse
|
6
|
Matsubara K, Suda K, Suzuki F, Kumasaka T, Shiotsu H, Miyano T. alpha-Smooth muscle actin immunoreactivity may change in nature in interlobular fibrosis of the pancreas in patients with congenital biliary dilatation. Pathol Int 2004; 54:498-502. [PMID: 15189503 DOI: 10.1111/j.1440-1827.2004.01656.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pancreatic fibrosis in patients with congenital biliary dilatation (CBD) or choledochal cyst was studied to determine why biliary pancreatitis seldom progresses to chronic pancreatitis/more progressive state. Pancreatic collagenization in eight patients (three adults with pancreatoduodenectomy and five children with biopsy of the pancreas performed when excising the cyst) with CBD was evaluated histopathologically and immunohistochemically. Interlobular and periductal fibrosis with both collagen Type I and Type III immunoreactivities was found in six out of eight cases and in all four cases in which the pancreatic duct was included, respectively. The interlobular area was seldom immunoreactive for alpha-smooth muscle actin (alpha-SMA), a marker for myofibroblasts, but was usually positive for CD34, a human progenitor cell antigen. In contrast, the periductal area was usually immunoreactive for alpha-SMA, but usually negative for CD34 and immunopositive for bcl-2, indicating a continuously progressive state of fibrosis, in which 'pre-existing'alpha-SMA immunoreactivity in the interlobular area may change in nature and lead to CD34-positive fibrosis or apoptosis. In conclusion, biliary pancreatitis is not likely to evolve into chronic pancreatitis/more progressive state because 'pre-existing'alpha-SMA immunoreactivity in the interlobular area may change in nature.
Collapse
Affiliation(s)
- Kenro Matsubara
- Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Klöppel G, Detlefsen S, Feyerabend B. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern. Virchows Arch 2004. [PMID: 15138818 DOI: 10.1007/s00428-003-0958-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.
Collapse
Affiliation(s)
- Günter Klöppel
- Department of Pathology, University of Kiel, Michaelisstrasse 11, 24105, Kiel, Germany.
| | | | | |
Collapse
|
8
|
Klöppel G, Detlefsen S, Feyerabend B. Fibrosis of the pancreas: the initial tissue damage and the resulting pattern. Virchows Arch 2004; 445:1-8. [PMID: 15138818 DOI: 10.1007/s00428-004-1021-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 03/23/2004] [Indexed: 02/07/2023]
Abstract
Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.
Collapse
Affiliation(s)
- Günter Klöppel
- Department of Pathology, University of Kiel, Michaelisstrasse 11, 24105, Kiel, Germany.
| | | | | |
Collapse
|
9
|
Lugea A, Gukovsky I, Gukovskaya AS, Pandol SJ. Nonoxidative ethanol metabolites alter extracellular matrix protein content in rat pancreas. Gastroenterology 2003; 125:1845-59. [PMID: 14724836 DOI: 10.1053/j.gastro.2003.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The mechanisms involved in ethanol-induced pancreas fibrosis are poorly understood. Here we show that fatty acid ethyl esters (FAEEs), nonoxidative ethanol metabolites, increase extracellular matrix (ECM) protein levels in pancreas. METHODS Rat pancreatic acini were incubated for 1-4 hours with FAEEs or acetaldehyde. In another set of experiments, rats received an intravenous infusion of FAEEs for 6 hours. Collagens were assessed by a hydroxyproline assay. Laminin and fibronectin were analyzed by Western blotting. Gene expression of ECM proteins was measured by conventional and real-time reverse-transcription polymerase chain reaction (RT-PCR). Matrix metalloproteinase (MMP), plasmin, and urokinase-type plasminogen activator (uPA) activities were determined by zymography and fluorogenic assays. RESULTS FAEEs increased collagen, laminin, and fibronectin levels in pancreatic acini without affecting messenger RNA (mRNA) expression for these proteins. Actinomycin D, a transcriptional inhibitor, did not block the increase in ECM proteins induced by FAEEs. FAEEs reduced the activity of the serine protease, plasmin, and that of the uPA. Consistent with these results, the serine protease inhibitor aprotinin reproduced the effects of FAEEs and prevented the further increase in ECM proteins induced by FAEEs. In vivo administration of FAEEs reduced plasmin and uPA activities and increased ECM protein levels in pancreas. Acetaldehyde had minor effects on ECM protein levels and did not affect plasmin activity. CONCLUSIONS FAEEs increase ECM protein levels in pancreas. The results suggest that this effect is caused primarily by an inhibition in ECM degradation via serine proteases including the plasminogen system.
Collapse
Affiliation(s)
- Aurelia Lugea
- University of Southern California-University of California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System, 90073, USA.
| | | | | | | |
Collapse
|
10
|
Konishi H, Katoh Y, Takaya N, Kashiwakura Y, Itoh S, Ra C, Daida H. Platelets activated by collagen through immunoreceptor tyrosine-based activation motif play pivotal role in initiation and generation of neointimal hyperplasia after vascular injury. Circulation 2002; 105:912-6. [PMID: 11864917 DOI: 10.1161/hc0802.105256] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Platelet adhesion on components of the extracellular matrix and platelet activation by those components are crucial for the arrest of posttraumatic bleeding, but they can also harm tissue by occluding diseased vessels. Recent studies have shown that the activation of platelets by collagen is mediated through the same pathway used by immune receptors, with an immunoreceptor tyrosine-based activation motif on the Fc receptor gamma chain (FcRgamma) playing a pivotal role. METHODS AND RESULTS We examined the role of collagen-stimulated platelets in the development of injury-induced neointimal formation by using mice deficient in FcRgamma. The left femoral arteries of 8- to 12-week-old FcRgamma-deficient mice (n=16) and C57BL/6 (wild-type) mice (n=16) were injured by a straight spring wire (0.35-mm diameter). Segments of the injured and uninjured femoral arteries were excised at 7 days and 28 days after the vascular injury. Arterial segments were examined by immunohistochemistry and electron microscopy. Two hours after injury, electron microscopy showed marked decreases in platelet adhesion and neutrophil attachment to the vascular wall surface in FcRgamma-knockout mice compared with wild-type mice. At 7 days after injury, staining with anti-neutrophil antibody showed fewer neutrophils in FcRgamma-knockout mice than in wild-type mice. Computer-aided morphometry performed to measure the neointimal area, intima/media ratio, and stenotic area at 28 days after injury showed a significantly smaller ratio and area in FcRgamma-knockout mice than in wild-type mice (for neointimal area, 16 635 +/- 1406 versus 31 483 +/- 2309 microm2, respectively; for intima/media ratio, 1.25 +/- 0.40 versus 2.68 +/- 0.04, respectively; and for stenotic area, 26.8 +/- 2.1% versus 49.3 +/- 4.1%, respectively). CONCLUSIONS These results demonstrate that FcRgamma may play important roles in the initiation and generation of neointimal hyperplasia after balloon injury through the activation of platelets by collagen.
Collapse
Affiliation(s)
- Hakuoh Konishi
- Department of Cardiology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|