1
|
Gonzalez-Ericsson PI, Opalenik SR, Sanchez V, Palubinsky AM, Hanna A, Sun X, Ocampo AA, Garcia G, Maldonado L, Morante Z, Vidaurre T, Valencia G, Gomez HL, Sanders ME, Kennedy LC, Phillips EJ, Balko JM. In Situ Detection of Individual Classic MHC-I Gene Products in Cancer. Cancer Immunol Res 2025; 13:602-609. [PMID: 39804685 DOI: 10.1158/2326-6066.cir-24-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 04/03/2025]
Abstract
Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated antigens or neoantigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicates detection by IHC. In this study, we determined recognition of 16 specific HLA-A, -B, and -C alleles by 15 antibodies commercially available for IHC use, identifying and validating pan and specific HLA-A, -B, and -C antibodies, providing a validated method that can be applied to investigate HLA-A, -B, and -C molecule-specific loss in cancer. We applied this approach to a series of breast cancers as a proof of utility, identifying differential HLA-A, -B, and -C loss, with a higher incidence of HLA-A and -B loss in hormone-driven breast cancers, HLA-B loss in HER2+ cancers, and an equal loss of all three molecules in triple-negative disease. Additionally, we found that at the protein level, HLA-A and -B loss were early events prevalent in premalignant lesions, whereas HLA-C loss was less common throughout tumor evolution. Effective response to immunotherapies such as checkpoint inhibitors and MHC-I-targeted cancer vaccines, which hinge on the carriage of specific allele groups, requires MHC-I expression on tumor cells. These findings have implications for the success of checkpoint inhibitors and vaccine strategies.
Collapse
Affiliation(s)
| | - Susan R Opalenik
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaopeng Sun
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Andres A Ocampo
- Cancer Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Guadalupe Garcia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leonel Maldonado
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zaida Morante
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Grupo de Estudios Clínicos Oncológicos del Perú (GECO Perú), Lima, Peru
| | | | - Guillermo Valencia
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Grupo de Estudios Clínicos Oncológicos del Perú (GECO Perú), Lima, Peru
| | - Henry L Gomez
- Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Grupo de Estudios Clínicos Oncológicos del Perú (GECO Perú), Lima, Peru
| | - Melinda E Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Laura C Kennedy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M Balko
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Corti C, Binboğa Kurt B, Koca B, Rahman T, Conforti F, Pala L, Bianchini G, Criscitiello C, Curigliano G, Garrido-Castro AC, Kabraji SK, Waks AG, Mittendorf EA, Tolaney SM. Estrogen Signaling in Early-Stage Breast Cancer: Impact on Neoadjuvant Chemotherapy and Immunotherapy. Cancer Treat Rev 2025; 132:102852. [PMID: 39571402 DOI: 10.1016/j.ctrv.2024.102852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 01/01/2025]
Abstract
Neoadjuvant chemoimmunotherapy (NACIT) has been shown to improve pathologic complete response (pCR) rates and survival outcomes in stage II-III triple-negative breast cancer (TNBC). Promising pCR rate improvements have also been documented for selected patients with estrogen receptor-positive (ER+) human epidermal growth factor receptor 2-negative (HER2-) breast cancer (BC). However, one size does not fit all and predicting which patients will benefit from NACIT remains challenging. Accurate predictions would be useful to minimize immune-related toxicity, which can be severe, irreversible, and potentially impact fertility and quality of life, and to identify patients in need of alternative treatments. This review aims to capitalize on the existing translational and clinical evidence on predictors of treatment response in patients with early-stage BC treated with neoadjuvant chemotherapy (NACT) and NACIT. It summarizes evidence suggesting that NACT/NACIT effectiveness may correlate with pre-treatment tumor characteristics, including mutational profiles, ER expression and signaling, immune cell presence and spatial organization, specific gene signatures, and the levels of proliferating versus quiescent cancer cells. However, the predominantly qualitative and descriptive nature of many studies highlights the challenges in integrating various potential response determinants into a validated, comprehensive, and multimodal predictive model. The potential of novel multi-modal approaches, such as those based on artificial intelligence, to overcome current challenges remains unclear, as these tools are not free from bias and shortcut learning. Despite these limitations, the rapid evolution of these technologies, coupled with further efforts in basic and translational research, holds promise for improving treatment outcome predictions in early HER2- BC.
Collapse
Affiliation(s)
- Chiara Corti
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy.
| | - Busem Binboğa Kurt
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Beyza Koca
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tasnim Rahman
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Fabio Conforti
- Department of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Laura Pala
- Department of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, IRCCS, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology (DIPO), University of Milan, Milan, Italy
| | - Ana C Garrido-Castro
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sheheryar K Kabraji
- Department of Medicine, Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Adrienne G Waks
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Kubo T, Asano S, Sasaki K, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Assessment of cancer cell-expressed HLA class I molecules and their immunopathological implications. HLA 2024; 103:e15472. [PMID: 38699870 DOI: 10.1111/tan.15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has shown superior efficacy compared with conventional chemotherapy in certain cancer types, establishing immunotherapy as the fourth standard treatment alongside surgical intervention, chemotherapy, and radiotherapy. In cancer immunotherapy employing ICIs, CD8-positive cytotoxic T lymphocytes are recognized as the primary effector cells. For effective clinical outcomes, it is essential that the targeted cancer cells express HLA class I molecules to present antigenic peptides derived from the tumor. However, cancer cells utilize various mechanisms to downregulate or lose HLA class I molecules from their surface, resulting in evasion from immune surveillance. Correlations between prognosis and the integrity of HLA class I molecules expressed by cancer cells have been consistently found across different types of cancer. This paper provides an overview of the regulatory mechanisms of HLA class I molecules and their role in cancer immunotherapy, with a particular emphasis on the significance of utilizing pathological tissues to evaluate HLA class I molecules expressed in cancer cells.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shiori Asano
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenta Sasaki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
4
|
Yang Y, Xu S, Jia G, Yuan F, Ping J, Guo X, Tao R, Shu XO, Zheng W, Long J, Cai Q. Integrating genomics and proteomics data to identify candidate plasma biomarkers for lung cancer risk among European descendants. Br J Cancer 2023; 129:1510-1515. [PMID: 37679517 PMCID: PMC10628278 DOI: 10.1038/s41416-023-02419-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Plasma proteins are potential biomarkers for complex diseases. We aimed to identify plasma protein biomarkers for lung cancer. METHODS We investigated genetically predicted plasma levels of 1130 proteins in association with lung cancer risk among 29,266 cases and 56,450 controls of European descent. For proteins significantly associated with lung cancer risk, we evaluated associations of genetically predicted expression of their coding genes with the risk of lung cancer. RESULTS Nine proteins were identified with genetically predicted plasma levels significantly associated with overall lung cancer risk at a false discovery rate (FDR) of <0.05. Proteins C2, MICA, AIF1, and CTSH were associated with increased lung cancer risk, while proteins SFTPB, HLA-DQA2, MICB, NRP1, and GMFG were associated with decreased lung cancer risk. Stratified analyses by histological types revealed the cross-subtype consistency of these nine associations and identified an additional protein, ICAM5, significantly associated with lung adenocarcinoma risk (FDR < 0.05). Coding genes of NRP1 and ICAM5 proteins are located at two loci that have never been reported by previous GWAS. Genetically predicted blood levels of genes C2, AIF1, and CTSH were associated with lung cancer risk, in directions consistent with those shown in protein-level analyses. CONCLUSION Identification of novel plasma protein biomarkers provided new insights into the biology of lung cancer.
Collapse
Affiliation(s)
- Yaohua Yang
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fangcheng Yuan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Bauer M, Vetter M, Stückrath K, Yohannes M, Desalegn Z, Yalew T, Bekuretsion Y, Kenea TW, Joffe M, van den Berg EJ, Nikulu JI, Bakarou K, Manraj SS, Ogunbiyi OJ, Ekanem IO, Igbinoba F, Diomande M, Adebamowo C, Dzamalala CP, Anele AA, Zietsman A, Galukande M, Foerster M, dos-Santos-Silva I, Liu B, Santos P, Jemal A, Abebe T, Wickenhauser C, Seliger B, McCormack V, Kantelhardt EJ. Regional Variation in the Tumor Microenvironment, Immune Escape and Prognostic Factors in Breast Cancer in Sub-Saharan Africa. Cancer Immunol Res 2023; 11:720-731. [PMID: 37058582 PMCID: PMC10552870 DOI: 10.1158/2326-6066.cir-22-0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
The low overall survival rates of patients with breast cancer in sub-Saharan Africa (SSA) are driven by regionally differing tumor biology, advanced tumor stages at diagnosis, and limited access to therapy. However, it is not known whether regional differences in the composition of the tumor microenvironment (TME) exist and affect patients' prognosis. In this international, multicentre cohort study, 1,237 formalin-fixed, paraffin-embedded breast cancer samples, including samples of the "African Breast Cancer-Disparities in Outcomes (ABC-DO) Study," were analyzed. The immune cell phenotypes, their spatial distribution in the TME, and immune escape mechanisms of breast cancer samples from SSA and Germany (n = 117) were investigated using histomorphology, conventional and multiplex IHC, and RNA expression analysis. The data revealed no regional differences in the number of tumor-infiltrating lymphocytes (TIL) in the 1,237 SSA breast cancer samples, while the distribution of TILs in different breast cancer IHC subtypes showed regional diversity, particularly when compared with German samples. Higher TIL densities were associated with better survival in the SSA cohort (n = 400), but regional differences concerning the predictive value of TILs existed. High numbers of CD163+ macrophages and CD3+CD8+ T cells accompanied by reduced cytotoxicity, altered IL10 and IFNγ levels and downregulation of MHC class I components were predominantly detected in breast cancer samples from Western SSA. Features of nonimmunogenic breast cancer phenotypes were associated with reduced patient survival (n = 131). We therefore conclude that regional diversity in the distribution of breast cancer subtypes, TME composition, and immune escape mechanisms should be considered for therapy decisions in SSA and the design of personalized therapies. See related Spotlight by Bergin et al., p. 705.
Collapse
Affiliation(s)
- Marcus Bauer
- Department of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martina Vetter
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Stückrath
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Meron Yohannes
- Department of Medical Laboratory Science, College of Health sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology & Parasitology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Yalew
- Department of Pathology, Tikur Anbessa Specialized University Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, Tikur Anbessa Specialized University Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tariku W. Kenea
- Department of Surgery, Aira General Hospital, Aira, Ethiopia
| | - Maureen Joffe
- Noncommunicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, Johannesburg, South Africa and U Witwatersrand, Faculty of Health Sciences, Strengthening Oncology Services Research Unit
- SAMRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eunice J van den Berg
- Department of Anatomical Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Julien I. Nikulu
- Ligue congolaise contre le cancer, l’Unité Pilote du GFAOP, Lubumbashi, Democratic Republic of the Congo
| | - Kamate Bakarou
- Service d’anatomie, Cytologie Pathologique au C.H.U. du point G BP:333, Bamako, Mali
| | - Shyam S. Manraj
- Central Health Laboratory, Victoria Hospital, Candos, Mauritius
| | - Olufemi J. Ogunbiyi
- Department of Pathology, University College Hospital, Ibadan, Oyo state, Nigeria
| | - Ima-Obong Ekanem
- Department of Pathology, Calabar Cancer Registry, University of Calabar Teaching Hospital, Calabar, Nigeria
| | | | - Mohenou Diomande
- Service d’anatomie et cytologie pathologiques, Abidjan, Côte d’Ivoire
| | - Clement Adebamowo
- Department of Epidemiology and Public Health, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore
| | | | | | - Annelle Zietsman
- AB May Cancer Centre, Windhoek Central Hospital, Windhoek, Namibia
| | - Moses Galukande
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Milena Foerster
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Isabel dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM)
| | - Biying Liu
- African Cancer Registry Network, Oxford, United Kingdom
| | - Pablo Santos
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmedin Jemal
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Tamrat Abebe
- Department of Medical Laboratory Science, College of Health sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claudia Wickenhauser
- Department of Pathology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School ‘Theodor Fontane, Brandenburg an der Havel, Germany
- Fraunhofer Institute for Immunology, Leipzig, Germany
| | - Valerie McCormack
- International Agency for Research on Cancer (IARC/WHO), Environment and Lifestyle Epidemiology Branch, Lyon, France
| | - Eva J. Kantelhardt
- Global Health Working Group, Institute of Medical Epidemiology, Biometrics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Gynecology, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
7
|
Song IH, Kim YA, Heo SH, Bang WS, Park HS, Choi YH, Lee H, Seo JH, Cho Y, Jung SW, Kim HJ, Ahn SH, Lee HJ, Gong G. The Association of Estrogen Receptor Activity, Interferon Signaling, and MHC Class I Expression in Breast Cancer. Cancer Res Treat 2022; 54:1111-1120. [PMID: 34942685 PMCID: PMC9582481 DOI: 10.4143/crt.2021.1017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The expression of major histocompatibility complex class I (MHC I) has previously been reported to be negatively associated with estrogen receptor (ER) expression. Furthermore, MHC I expression, level of tumor-infiltrating lymphocytes (TILs), and expression of interferon (IFN) mediator MxA are positively associated with one another in human breast cancers. This study aimed to investigate the mechanisms of association of MHC I with ER and IFN signaling. MATERIALS AND METHODS The human leukocyte antigen (HLA)-ABC protein expression was analyzed in breast cancer cell lines. The expressions of HLA-A and MxA mRNAs were analyzed in MCF-7 cells in Gene Expression Omnibus (GEO) data. ER and HLA-ABC expressions, Ki-67 labeling index and TIL levels in tumor tissue were also analyzed in ER+/ human epidermal growth factor receptor 2 (HER2)- breast cancer patients who randomly received either neoadjuvant chemotherapy or estrogen modulator treatment followed by resection. RESULTS HLA-ABC protein expression was decreased after β-estradiol treatment or hESR-GFP transfection and increased after fulvestrant or IFN-γ treatment in cell lines. In GEO data, HLA-A and MxA expression was increased after ESR1 shRNA transfection. In patients, ER Allred score was significantly lower and the HLA-ABC expression, TIL levels, and Ki-67 were significantly higher in the estrogen modulator treated group than the chemotherapy treated group. CONCLUSION MHC I expression and TIL levels might be affected by ER pathway modulation and IFN treatment. Further studies elucidating the mechanism of MHC I regulation could suggest a way to boost TIL influx in cancer in a clinical setting.
Collapse
Affiliation(s)
- In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | | | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Won Seon Bang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | | | | | | | | | - Youngjin Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sung Wook Jung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sei Hyun Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- NeogenTC Corp., Seoul,
Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
8
|
Kawazu M, Ueno T, Saeki K, Sax N, Togashi Y, Kanaseki T, Chida K, Kishigami F, Sato K, Kojima S, Otsuka M, Kawazoe A, Nishinakamura H, Yuka M, Yamamoto Y, Yamashita K, Inoue S, Tanegashima T, Matsubara D, Tane K, Tanaka Y, Iinuma H, Hashiguchi Y, Hazama S, Khor SS, Tokunaga K, Tsuboi M, Niki T, Eto M, Shitara K, Torigoe T, Ishihara S, Aburatani H, Haeno H, Nishikawa H, Mano H. HLA Class I Analysis Provides Insight Into the Genetic and Epigenetic Background of Immune Evasion in Colorectal Cancer With High Microsatellite Instability. Gastroenterology 2022; 162:799-812. [PMID: 34687740 DOI: 10.1053/j.gastro.2021.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A detailed understanding of antitumor immunity is essential for optimal cancer immune therapy. Although defective mutations in the B2M and HLA-ABC genes, which encode molecules essential for antigen presentation, have been reported in several studies, the effects of these defects on tumor immunity have not been quantitatively evaluated. METHODS Mutations in HLA-ABC genes were analyzed in 114 microsatellite instability-high colorectal cancers using a long-read sequencer. The data were further analyzed in combination with whole-exome sequencing, transcriptome sequencing, DNA methylation array, and immunohistochemistry data. RESULTS We detected 101 truncating mutations in 57 tumors (50%) and loss of 61 alleles in 21 tumors (18%). Based on the integrated analysis that enabled the immunologic subclassification of microsatellite instability-high colorectal cancers, we identified a subtype of tumors in which lymphocyte infiltration was reduced, partly due to reduced expression of HLA-ABC genes in the absence of apparent genetic alterations. Survival time of patients with such tumors was shorter than in patients with other tumor types. Paradoxically, tumor mutation burden was highest in the subtype, suggesting that the immunogenic effect of accumulating mutations was counterbalanced by mutations that weakened immunoreactivity. Various genetic and epigenetic alterations, including frameshift mutations in RFX5 and promoter methylation of PSMB8 and HLA-A, converged on reduced expression of HLA-ABC genes. CONCLUSIONS Our detailed immunogenomic analysis provides information that will facilitate the improvement and development of cancer immunotherapy.
Collapse
Affiliation(s)
- Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Saeki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Keigo Chida
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Fumishi Kishigami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sato
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masafumi Otsuka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihito Kawazoe
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Maeda Yuka
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tokiyoshi Tanegashima
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsukeshi, Japan
| | - Kenta Tane
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisae Iinuma
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yojiro Hashiguchi
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsukeshi, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Haeno
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan; Research Institute, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
9
|
Liang H, Lu T, Liu H, Tan L. The Relationships between HLA-A and HLA-B Genes and the Genetic Susceptibility to Breast Cancer in Guangxi. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Iwasaki A, Shinozaki-Ushiku A, Kunita A, Yamazawa S, Sato Y, Yamashita H, Fukayama M, Seto Y, Ushiku T. Human Leukocyte Antigen Class I Deficiency in Gastric Carcinoma: An Adaptive Immune Evasion Strategy Most Common in Microsatellite Instable Tumors. Am J Surg Pathol 2021; 45:1213-1220. [PMID: 34310369 DOI: 10.1097/pas.0000000000001779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitor therapy is effective only for a subset of patients with gastric cancer. Impaired neoantigen presentation caused by deficiency of human leukocyte antigen class I (HLA-I) has been reported as a common mechanism of immune evasion which is associated with resistance to immune checkpoint blockade. To elucidate the significance of HLA-I deficiency in gastric cancer with special focus on microsatellite instable (MSI) and Epstein-Barr virus (EBV)-positive tumors, we examined HLA-I expression on tumor cells and correlated the results with clinicopathologic features, programmed death-ligand 1 (PD-L1) expression, and degree of tumor-infiltrating immune cells. This study included 58 MSI, 44 EBV-positive, and 107 non-EBV non-MSI tumors for comparison. The frequency of HLA-I deficiency (≥1% tumor cells) was significantly higher in MSI tumors (52%) compared with EBV-positive tumors (23%) and the other tumors (28%). In contrast, PD-L1 expression levels were highest in EBV-positive tumors, followed by MSI tumors, with the lowest prevalence in the other tumors in both Tumor Proportion Score and Combined Positive Score. HLA-I deficiency was significantly more frequent in advanced tumors (pT2-4) than in early tumors (pT1) in MSI and non-EBV non-MSI subtypes. In addition, the degree of CD8-positive cells infiltration was significantly reduced in HLA-I deficient tumor areas compared with HLA-I preserved tumor area within a tumor. Based on our observations, HLA-I, as well as PD-L1, should be considered as a common mechanism of immune escape especially in the MSI subtype, and therefore could be a biomarker predicting response to immune checkpoint inhibitor therapy in gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroharu Yamashita
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo
| | - Masashi Fukayama
- Asahi TelePathology Center, Asahi General Hospital, Asahi, Chiba Prefecture, Japan
| | | | | |
Collapse
|
11
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
12
|
Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, Waks AG, Keenan T, McAllister SS, Tolaney SM, Mittendorf EA, Guerriero JL. The Immunology of Hormone Receptor Positive Breast Cancer. Front Immunol 2021; 12:674192. [PMID: 34135901 PMCID: PMC8202289 DOI: 10.3389/fimmu.2021.674192] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the treatment of cancer patients. The main focus of ICB has been on reinvigorating the adaptive immune response, namely, activating cytotoxic T cells. ICB has demonstrated only modest benefit against advanced breast cancer, as breast tumors typically establish an immune suppressive tumor microenvironment (TME). Triple-negative breast cancer (TNBC) is associated with infiltration of tumor infiltrating lymphocytes (TILs) and patients with TNBC have shown clinical responses to ICB. In contrast, hormone receptor positive (HR+) breast cancer is characterized by low TIL infiltration and minimal response to ICB. Here we review how HR+ breast tumors establish a TME devoid of TILs, have low HLA class I expression, and recruit immune cells, other than T cells, which impact response to therapy. In addition, we review emerging technologies that have been employed to characterize components of the TME to reveal that tumor associated macrophages (TAMs) are abundant in HR+ cancer, are highly immune-suppressive, associated with tumor progression, chemotherapy and ICB-resistance, metastasis and poor survival. We reveal novel therapeutic targets and possible combinations with ICB to enhance anti-tumor immune responses, which may have great potential in HR+ breast cancer.
Collapse
Affiliation(s)
- Jonathan Goldberg
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Ricardo G. Pastorello
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Janae Davis
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Yvonne Xiaoyong Cui
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Adrienne G. Waks
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Tanya Keenan
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Sara M. Tolaney
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Elizabeth A. Mittendorf
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| | - Jennifer L. Guerriero
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol 2021; 12:636568. [PMID: 33767702 PMCID: PMC7986854 DOI: 10.3389/fimmu.2021.636568] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Major histocompatibility class I (MHC I) molecules bind peptides derived from a cell's expressed genes and then transport and display this antigenic information on the cell surface. This allows CD8 T cells to identify pathological cells that are synthesizing abnormal proteins, such as cancers that are expressing mutated proteins. In order for many cancers to arise and progress, they need to evolve mechanisms to avoid elimination by CD8 T cells. MHC I molecules are not essential for cell survival and therefore one mechanism by which cancers can evade immune control is by losing MHC I antigen presentation machinery (APM). Not only will this impair the ability of natural immune responses to control cancers, but also frustrate immunotherapies that work by re-invigorating anti-tumor CD8 T cells, such as checkpoint blockade. Here we review the evidence that loss of MHC I antigen presentation is a frequent occurrence in many cancers. We discuss new insights into some common underlying mechanisms through which some cancers inactivate the MHC I pathway and consider some possible strategies to overcome this limitation in ways that could restore immune control of tumors and improve immunotherapy.
Collapse
|
14
|
Hiraoka N, Ino Y, Hori S, Yamazaki‐Itoh R, Naito C, Shimasaki M, Esaki M, Nara S, Kishi Y, Shimada K, Nakamura N, Torigoe T, Heike Y. Expression of classical human leukocyte antigen class I antigens, HLA-E and HLA-G, is adversely prognostic in pancreatic cancer patients. Cancer Sci 2020; 111:3057-3070. [PMID: 32495519 PMCID: PMC7419048 DOI: 10.1111/cas.14514] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 01/18/2023] Open
Abstract
The expression of classical human leukocyte antigen class I antigens (HLA-I) on the surfaces of cancer cells allows cytotoxic T cells to recognize and eliminate these cells. Reduction or loss of HLA-I is a mechanism of escape from antitumor immunity. The present study aimed to investigate the clinicopathological impacts of HLA-I and non-classical HLA-I antigens expressed on pancreatic ductal adenocarcinoma (PDAC) cells. We performed immunohistochemistry to detect expression of HLA-I antigens in PDAC using 243 PDAC cases and examined their clinicopathological influences. We also investigated the expression of immune-related genes to characterize PDAC tumor microenvironments. Lower expression of HLA-I, found in 33% of PDAC cases, was significantly associated with longer overall survival. Higher expression of both HLA-E and HLA-G was significantly associated with shorter survival. Multivariate analyses revealed that higher expression of these three HLA-I antigens was significantly correlated with shorter survival. Higher HLA-I expression on PDAC cells was significantly correlated with higher expression of IFNG, which also correlated with PD1, PD-L1 and PD-L2 expression. In vitro assay revealed that interferon gamma (IFNγ) stimulation increased surface expression of HLA-I in three PDAC cell lines. It also upregulated surface expression of HLA-E, HLA-G and immune checkpoint molecules, including PD-L1 and PD-L2. These results suggest that the higher expression of HLA-I, HLA-E and HLA-G on PDAC cells is an unfavorable prognosticator. It is possible that IFNγ promotes a tolerant microenvironment by inducing immune checkpoint molecules in PDAC tissues with higher HLA-I expression on PDAC cells.
Collapse
Affiliation(s)
- Nobuyoshi Hiraoka
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
- Division of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
| | - Yoshinori Ino
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Shutaro Hori
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
- Division of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
- Department of PathologyTokai University School of MedicineIseharaJapan
| | - Rie Yamazaki‐Itoh
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Chie Naito
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Mari Shimasaki
- Division of Molecular PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Minoru Esaki
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Satoshi Nara
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Yoji Kishi
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Kazuaki Shimada
- Hepato‐Biliary and Pancreatic Surgery DivisionNational Cancer Center HospitalTokyoJapan
| | - Naoya Nakamura
- Department of PathologyTokai University School of MedicineIseharaJapan
| | | | - Yuji Heike
- Division of Biomedical SciencesSt. Luke’s International University Graduate School of Public HealthTokyoJapan
| |
Collapse
|
15
|
Akazawa Y, Saito Y, Yoshikawa T, Saito K, Nosaka K, Shimomura M, Mizuno S, Nakamoto Y, Nakatsura T. Efficacy of immunotherapy targeting the neoantigen derived from epidermal growth factor receptor T790M/C797S mutation in non-small cell lung cancer. Cancer Sci 2020; 111:2736-2746. [PMID: 32391625 PMCID: PMC7419036 DOI: 10.1111/cas.14451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related deaths worldwide. Epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKI) often have good clinical activity against non–small cell lung cancer (NSCLC) with activating EGFR mutations. Osimertinib, which is a third‐generation EGFR‐TKI, has a clinical effect even on NSCLC harboring the threonine to methionine change at codon 790 of EGFR (EGFR T790M) mutation that causes TKI resistance. However, most NSCLC patients develop acquired resistance to osimertinib within approximately 1 year, and 40% of these patients have the EGFR T790M and cysteine to serine change at codon 797 (C797S) mutations. Therefore, there is an urgent need for the development of novel treatment strategies for NSCLC patients with the EGFR T790M/C797S mutation. In this study, we identified the EGFR T790M/C797S mutation‐derived peptide (790‐799) (MQLMPFGSLL) that binds the human leukocyte antigen (HLA)‐A*02:01, and successfully established EGFR T790M/C797S‐peptide‐specific CTL clones from human PBMC of HLA‐A2 healthy donors. One established CTL clone demonstrated adequate cytotoxicity against T2 cells pulsed with the EGFR T790M/C797S peptide. This CTL clone also had high reactivity against cancer cells that expressed an endogenous EGFR T790M/C797S peptide using an interferon‐γ (IFN‐γ) enzyme‐linked immunospot (ELISPOT) assay. In addition, we demonstrated using a mouse model that EGFR T790M/C797S peptide‐specific CTL were induced by EGFR T790M/C797S peptide vaccine in vivo. These findings suggest that an immunotherapy targeting a neoantigen derived from EGFR T790M/C797S mutation could be a useful novel therapeutic strategy for NSCLC patients with EGFR‐TKI resistance, especially those resistant to osimertinib.
Collapse
Affiliation(s)
- Yu Akazawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yuki Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Keigo Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kazuto Nosaka
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
16
|
Koike K, Dehari H, Shimizu S, Nishiyama K, Sonoda T, Ogi K, Kobayashi J, Sasaki T, Sasaya T, Tsuchihashi K, Tsukahara T, Hasegawa T, Torigoe T, Hiratsuka H, Miyazaki A. Prognostic value of HLA class I expression in patients with oral squamous cell carcinoma. Cancer Sci 2020; 111:1491-1499. [PMID: 32167621 PMCID: PMC7226222 DOI: 10.1111/cas.14388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human leukocyte antigen (HLA) class Ⅰ molecules play a central role in anticancer immunity, but their prognostic value in oral squamous cell carcinoma (OSCC) remains unclear. We examined HLA class I expression in 2 distinct tumor compartments, namely, the tumor center and invasive front, and evaluated the association between its expression pattern and histopathological status in 137 cases with OSCC. Human leukocyte antigen class Ⅰ expression was graded semiquantitatively as high, low, and negative. At the invasive front of the tumor, HLA class I expression was high in 72 cases (52.6%), low in 44 cases (32.1%), and negative in 21 cases (15.3%). The HLA class I expression in the tumor center was high in 48 cases (35.0%), low in 58 cases (42.4%), and negative in 31 cases (22.6%). The 5‐year overall survival and disease‐specific survival rates were good in cases with high HLA class I expression at the invasive front; however, there was no significant difference in survival based on HLA class I expression in the tumor center. In addition, high HLA class I expression was correlated with high CD8+ T cell density, whereas negative HLA class I expression was correlated with low CD8+ T cell density at the invasive front. These results suggest that it is easier for CD8+ T cells to recognize presented peptides in the case of high HLA class Ⅰ expression at the tumor invasive front and could be a prognostic factor for OSCC.
Collapse
Affiliation(s)
- Kazushige Koike
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shota Shimizu
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junichi Kobayashi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takanori Sasaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Sasaya
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kei Tsuchihashi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyoshi Hiratsuka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Tsang JY, Ho CS, Ni YB, Shao Y, Poon IK, Chan SK, Cheung SY, Shea KH, Marabi M, Tse GM. Co-expression of HLA-I loci improved prognostication in HER2+ breast cancers. Cancer Immunol Immunother 2020; 69:799-811. [PMID: 32055918 DOI: 10.1007/s00262-020-02512-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Abstract
The underlying basis for cancer immune evasion is important for effective immunotherapy and prognosis in breast cancers. Human leucocyte antigens (HLA)-I comprising three classical antigens (HLA-A, -B and -C) is mandatory for anti-tumor immunity. Its loss occurred frequently in many cancers resulting in effective immune evasion. Most studies examined HLA-I as a whole. Alterations in specific locus could have different clinical ramifications. Hence, we evaluated the expression of the three HLA-I loci in a large cohort of breast cancers. Low expression of HLA-A, -B and -C were found in 71.1%, 66.3%, and 60.2% of the cases. Low and high expression in all loci was found in 48.3% and 17.9% of the cases respectively. The remaining showed high expression in one or two loci. Cases with all HLA high expression (all HLA high) was frequent in the ER-HER2- (27.4%) and ER-HER2+ (23.1%) cases and was associated with characteristic pathologic features related to these tumor (higher grade, necrosis, high tumor infiltrating lymphocyte (TIL), pT stage, low hormonal receptor, high basal marker expression) (p ≤ 0.019). Interestingly, in HER2+ cancers, only cases with all HLA high and high TIL showed significantly better survival. In node positive cancers, concordant high HLA expression in primary tumors and nodal metastases was favorable prognostically (DFS: HR = 0.741, p < 0.001; BCSS: HR = 0.699, p = 0.003). The data suggested an important clinical value of a combined analysis on the co-expression HLA-I status in both primary and metastatic tumors. This could be a potential additional key component to be incorporated into TIL evaluation for improved prognostication.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Chun-Sing Ho
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Yan Shao
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Ivan K Poon
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Yau Ma Tei, Hong Kong
| | - Sai-Yin Cheung
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Ka-Ho Shea
- Department of Pathology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | - Monalyn Marabi
- Department of Pathology, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Ngan Shing Street, Shatin, NT, Hong Kong.
| |
Collapse
|
18
|
Shima H, Tsurita G, Wada S, Hirohashi Y, Yasui H, Hayashi H, Miyakoshi T, Watanabe K, Murai A, Asanuma H, Tokita S, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Nakae Y, Sugita O, Ito YM, Ota Y, Kimura Y, Kutomi G, Hirata K, Mizuguchi T, Imai K, Takemasa I, Sato N, Torigoe T. Randomized phase II trial of survivin 2B peptide vaccination for patients with HLA-A24-positive pancreatic adenocarcinoma. Cancer Sci 2019; 110:2378-2385. [PMID: 31218770 PMCID: PMC6676125 DOI: 10.1111/cas.14106] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The prognosis of advanced pancreatic adenocarcinoma is still extremely poor. This study sought to determine the efficacy of, and immunological response to, peptide vaccination therapy in patients with this disease. In this multicenter randomized phase II study, patients with advanced pancreatic adenocarcinoma after gemcitabine and/or tegafur/gimeracil/oteracil were randomly assigned to 3 groups that each received a 2-step treatment course. In Step 1, the groups received treatments of: (i) survivin 2B peptide (SVN-2B) plus interferon-β (IFNβ); (ii) SVN-2B only; or (iii) placebo until the patients show progression. In Step 2, all patients who consented to participate received 4 treatments with SVN-2B plus IFNβ. The primary endpoint was progression-free survival (PFS) after initiation of Step 1 treatment. Secondary endpoints included immunological effects assessed by analysis of PBMCs after Step 1. Eighty-three patients were randomly assigned to receive SVN-2B plus IFNβ (n = 30), SVN-2B (n = 34), or placebo (n = 19). No significant improvement in PFS was observed. Survivin 2B-specific CTLs were found to be increased in the SVN-2B plus IFNβ group by tetramer assay. Among patients who participated in Step 2, those who had received SVN-2B plus IFNβ in Step 1 showed better overall survival compared with those who had received placebo in Step 1. Patients vaccinated with SVN-2B plus IFNβ did not have improved PFS, but showed significant immunological reaction after vaccination. Subgroup analysis suggested that a longer SVN-2B plus IFNβ vaccination protocol might confer survival benefit. (Clinical trial registration number: UMIN 000012146).
Collapse
Affiliation(s)
- Hiroaki Shima
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Giichiro Tsurita
- Department of SurgeryResearch Hospital, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Satoshi Wada
- Department of Clinical Diagnostic OncologyShowa UniversityTokyoJapan
- Cancer Vaccine CenterKanagawa Cancer CenterKanagawaJapan
| | - Yoshihiko Hirohashi
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Yasui
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Hiroshi Hayashi
- Hokkaido University Hospital Clinical Research and Medical Innovation CenterSapporoJapan
| | - Takashi Miyakoshi
- Hokkaido University Hospital Clinical Research and Medical Innovation CenterSapporoJapan
| | - Kazue Watanabe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Aiko Murai
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroko Asanuma
- Department of Surgical PathologySapporo Medical University School of MedicineSapporoJapan
| | - Serina Tokita
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Terufumi Kubo
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Munehide Nakatsugawa
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Kanaseki
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Tomohide Tsukahara
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Yutaka Nakae
- Collaboration Center for Community and IndustrySapporo Medical University School of MedicineSapporoJapan
| | - Osamu Sugita
- Hokkaido University Hospital Clinical Research and Medical Innovation CenterSapporoJapan
| | - Yoichi M. Ito
- Department of BiostatisticsHokkaido University Graduate School of MedicineSapporoJapan
| | - Yasunori Ota
- Department of PathologyResearch Hospital, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yasutoshi Kimura
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Goro Kutomi
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Kohzoh Imai
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Noriyuki Sato
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Toshihiko Torigoe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
19
|
Kubo T, Tsurita G, Hirohashi Y, Yasui H, Ota Y, Watanabe K, Murai A, Matsuo K, Asanuma H, Shima H, Wada S, Nakatsugawa M, Kanaseki T, Tsukahara T, Mizuguchi T, Hirata K, Takemasa I, Imai K, Sato N, Torigoe T. Immunohistological analysis of pancreatic carcinoma after vaccination with survivin 2B peptide: Analysis of an autopsy series. Cancer Sci 2019; 110:2386-2395. [PMID: 31206934 PMCID: PMC6676134 DOI: 10.1111/cas.14099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer by providing new options in addition to existing therapies. However, peptide vaccination therapies still represent an attractive approach, because of the antigen specificity. We identified survivin 2B peptide (SVN-2B), a 9-mer antigenic peptide encoded by survivin, and an SVN-2B peptide vaccine-based phase II randomized clinical trial targeting unresectable and refractory pancreatic carcinoma was undertaken. The SVN-2B peptide vaccine did not have any statistically significant clinical benefits in that study. Therefore, we undertook an autopsy study to analyze the immune status of the pancreatic cancer lesions at the histological level. Autopsies were carried out in 13 patients who had died of pancreatic cancer, including 7 who had received SVN-2B peptide vaccination and 6 who had not, as negative controls. The expression of immune-related molecules was analyzed by immunohistochemical staining. Cytotoxic T lymphocytes were analyzed by tetramer staining and enzyme-linked immunospot assay. Histological analysis revealed dense infiltration of CD8+ T cells in some lesions in patients who had received the SVN-2B peptide vaccine. A high rate of programmed cell death ligand 1 expression in cancer cells was observed in these cases, indicating that CTLs were induced by SVN-2B peptide vaccination and had infiltrated the lesions. The lack of a significant antitumor effect was most likely attributable to the expression of immune checkpoint molecules. These findings suggest that the combination of a tumor-specific peptide vaccine and an ICI might be a promising approach to the treatment of pancreatic carcinoma in the future.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Giichiro Tsurita
- Department of SurgeryResearch HospitalThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yoshihiko Hirohashi
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Hiroshi Yasui
- Division of Fundamental Study on Cutting Edge of Genome MedicineDepartment of Hematology/OncologyResearch HospitalInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yasunori Ota
- Department of PathologyResearch HospitalInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Kazue Watanabe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Aiko Murai
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | | | - Hiroko Asanuma
- Department of Surgical PathologySchool of MedicineSapporo Medical UniversitySapporoJapan
| | - Hiroaki Shima
- Department of SurgerySurgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Satoshi Wada
- Department of Clinical Diagnostic OncologyShowa UniversityTokyoJapan
- Cancer Vaccine CenterKanagawa Cancer CenterKanagawaJapan
| | - Munehide Nakatsugawa
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Takayuki Kanaseki
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Tomohide Tsukahara
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Toru Mizuguchi
- Department of SurgerySurgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Koichi Hirata
- Department of SurgerySurgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Ichiro Takemasa
- Department of SurgerySurgical Oncology and ScienceSapporo Medical University School of MedicineSapporoJapan
| | - Kohzoh Imai
- Research HospitalInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Noriyuki Sato
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| | - Toshihiko Torigoe
- Department of PathologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
20
|
Krijgsman D, Van Vlierberghe RLP, Evangelou V, Vahrmeijer AL, Van de Velde CJH, Sier CFM, Kuppen PJK. A method for semi-automated image analysis of HLA class I tumour epithelium expression in rectal cancer. Eur J Histochem 2019; 63. [PMID: 31113192 PMCID: PMC6536912 DOI: 10.4081/ejh.2019.3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022] Open
Abstract
Biomarkers may hold the key towards development and improvement of personalized cancer treatment. For instance, tumour expression of immune system-related proteins may reveal the tumour immune status and, accordingly, determine choice for type of immunotherapy. Therefore, objective evaluation of tumour biomarker expression is needed but often challenging. For instance, human leukocyte antigen (HLA) class I tumour epithelium expression is cumbersome to quantify by eye due to its presence on both tumour epithelial cells and tumour stromal cells, as well as tumourinfiltrating immune cells. In this study, we solved this problem by setting up an immunohistochemical (IHC) double staining using a tissue microarray (TMA) of rectal tumours wherein HLA class I expression was coloured with a blue chromogen, whereas non-epithelial tissue was visualized with a brown chromogen. We subsequently developed a semi-automated image analysis method that identified tumour epithelium as well as the percentage of HLA class I-positive tumour epithelium. Using this technique, we compared HCA2/HC10 and EMR8-5 antibodies for the assessment of HLA class I tumour expression and concluded that EMR8-5 is the superior antibody for this purpose. This IHC double staining can in principle be used for scoring of any biomarker expressed by tumour epithelium.
Collapse
|
21
|
Akazawa Y, Nobuoka D, Takahashi M, Yoshikawa T, Shimomura M, Mizuno S, Fujiwara T, Nakamoto Y, Nakatsura T. Higher human lymphocyte antigen class I expression in early-stage cancer cells leads to high sensitivity for cytotoxic T lymphocytes. Cancer Sci 2019; 110:1842-1852. [PMID: 30973665 PMCID: PMC6549930 DOI: 10.1111/cas.14022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Human lymphocyte antigen (HLA) class I molecules play a central role in cytotoxic T lymphocytes (CTL)‐based antitumor immunity. However, the expression rate of HLA class I in cancer cells remains a topic of discussion. We compared HLA class I expression levels between cancer cells and surrounding non–tumorous hepatocytes in 20 early‐stage hepatocellular carcinoma (HCC) patients by immunohistochemistry using EMR 8‐5. The expression levels of HLA class I were classified as negative, incomplete positive or complete positive. Similarly, for various types of solid cancers, HLA class I expression was examined. For the HLA class I expression in cancer cells, among 20 HCC patients, 13 were complete positive, 3 were incomplete positive, and 4 were negative. In addition, 15 (75.0%) had higher expression levels of HLA class I in cancer cells compared with that in surrounding non–tumorous hepatocytes. An interferon‐γ (IFN‐γ) enzyme‐linked immunospot (ELISPOT) assay indicated that cancer cells with positive expression of HLA class I had strong sensitivity to antigen‐specific CTL. We suggested that HLA class I expression in cancer cells could be involved in the clinical prognosis of HCC patients. Similarly, 66.7%, 100.0%, 66.7% and 62.5% of patients with early‐stage pancreatic, gallbladder, esophageal and breast cancers, respectively, had higher expression levels of HLA class I in cancer cells than in surrounding normal tissue cells. We suggest that in several early‐stage solid cancers, including HCC, HLA class I expression levels in cancer cells are higher than that in surrounding normal tissue cells, which could result in the anti–tumor effect of CTL‐based cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Akazawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisuke Nobuoka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mari Takahashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shoichi Mizuno
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
22
|
Nejo T, Matsushita H, Karasaki T, Nomura M, Saito K, Tanaka S, Takayanagi S, Hana T, Takahashi S, Kitagawa Y, Koike T, Kobayashi Y, Nagae G, Yamamoto S, Ueda H, Tatsuno K, Narita Y, Nagane M, Ueki K, Nishikawa R, Aburatani H, Mukasa A, Saito N, Kakimi K. Reduced Neoantigen Expression Revealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma. Cancer Immunol Res 2019; 7:1148-1161. [PMID: 31088845 DOI: 10.1158/2326-6066.cir-18-0599] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Immune-based therapies have shown limited efficacy in glioma thus far. This might be at least in part due to insufficient numbers of neoantigens, thought to be targets of immune attack. In addition, we hypothesized that dynamic genetic and epigenetic tumor evolution in gliomas might also affect the mutation/neoantigen landscape and contribute to treatment resistance through immune evasion. Here, we investigated changes in the neoantigen landscape and immunologic features during glioma progression using exome and RNA-seq of paired primary and recurrent tumor samples obtained from 25 WHO grade II-IV glioma patients (glioblastoma, IDH-wild-type, n = 8; grade II-III astrocytoma, IDH-mutant, n = 9; and grade II-III oligodendroglioma, IDH-mutant, 1p/19q-codeleted, n = 8). The number of missense mutations, predicted neoantigens, or expressed neoantigens was not significantly different between primary and recurrent tumors. However, we found that in individual patients the ratio of expressed neoantigens to predicted neoantigens, designated the "neoantigen expression ratio," decreased significantly at recurrence (P = 0.003). This phenomenon was particularly pronounced for "high-affinity," "clonal," and "passenger gene-derived" neoantigens. Gene expression and IHC analyses suggested that the decreased neoantigen expression ratio was associated with intact antigen presentation machinery, increased tumor-infiltrating immune cells, and ongoing immune responses. Our findings imply that decreased expression of highly immunogenic neoantigens, possibly due to persistent immune selection pressure, might be one of the immune evasion mechanisms along with tumor clonal evolution in some gliomas.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kuniaki Saito
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan. .,Cancer Immunology Data Multi-level Integration Unit, Medical Science Innovation Hub Program, RIKEN, Tokyo, Japan
| |
Collapse
|
23
|
Ichinokawa K, Nakanishi Y, Hida Y, Tsuchikawa T, Kato T, Itoh T, Kaji M, Kaga K, Hirano S. Downregulated expression of human leukocyte antigen class I heavy chain is associated with poor prognosis in non-small-cell lung cancer. Oncol Lett 2019; 18:117-126. [PMID: 31289480 DOI: 10.3892/ol.2019.10293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/01/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to clarify the association between expression of human leukocyte antigen (HLA) class I in non-small-cell lung cancer (NSCLC) cells and patient survival. To address this, immunohistochemical staining for HLA class I was performed on specimens from 111 patients with NSCLC, and overall survival curves were compared using the log-rank test. In addition, multivariate analyses were performed using Cox's proportional hazard model. The cases were divided into 5 classes based on the expression of HLA class I heavy chain and β2-microglobulin. The overall survival rate for patients with tumors lacking HLA class I heavy chain (30 cases; 27.0%) was significantly decreased. The multivariate analysis demonstrated that the absence of HLA class I heavy chain was an independent predictor of poor prognosis. There was a trend towards an unfavorable prognosis for patients whose tumors did not express β2-microglobulin (57 cases; 51.4%). Downregulation of HLA class I heavy chain expression was significantly associated with the downregulation of β2-microglobulin. Cases lacking HLA class I heavy chain as well as β2-microglobulin expression (23 cases; 20.7%) had a statistically significant unfavorable prognosis compared with other cases. The present findings demonstrate that the lack of HLA class I heavy chain expression in tumor cells is an independent prognostic factor for poor NSCLC survival, and is likely to exert an important influence on immune surveillance in patients.
Collapse
Affiliation(s)
- Kazuomi Ichinokawa
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshitsugu Nakanishi
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuya Kato
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Tomoo Itoh
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Mitsuhito Kaji
- Department of Thoracic Surgery, Sapporo Minami Sanjo Hospital, Sapporo, Hokkaido 060-0063, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
24
|
Zhang ML, Kem M, Mooradian MJ, Eliane JP, Huynh TG, Iafrate AJ, Gainor JF, Mino-Kenudson M. Differential expression of PD-L1 and IDO1 in association with the immune microenvironment in resected lung adenocarcinomas. Mod Pathol 2019; 32:511-523. [PMID: 30367104 DOI: 10.1038/s41379-018-0160-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022]
Abstract
Like programmed cell death ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO1) is known to exert immunosuppressive effects and be variably expressed in human lung cancer. However, IDO1 expression has not been well studied in lung adenocarcinoma. PD-L1 and IDO1 expression was evaluated in 261 resected lung adenocarcinomas using tissue microarrays and H-scores (cutoff: 5). We compared IDO1 and PD-L1 expression with clinical features, tumor-infiltrating lymphocytes, HLA class I molecule expression, molecular alterations, and patient outcomes. There was expression of PD-L1 in 89 (34%) and IDO1 in 74 (29%) cases, with co-expression in 49 (19%). Both PD-L1 and IDO1 were significantly associated with smoking, aggressive pathologic features, and abundant CD8+ and T-bet+ (Th1 marker) tumor-infiltrating lymphocytes. PD-L1 expression was also associated with preserved HLA class I molecule expression (p = 0.002). Compared to PD-L1+/IDO1+ and PD-L1+ only cases, significantly fewer IDO1+ only cases had abundant CD8+ and T-bet+ tumor-infiltrating lymphocytes (p < 0.001, respectively). PD-L1 expression was significantly associated with EGFR wild-type (p < 0.001) and KRAS mutants (p = 0.021), whereas isolated IDO1 expression was significantly associated with EGFR mutations (p = 0.007). As for survival, PD-L1 was a significant predictor of decreased progression-free and overall survival by univariate but not multivariate analysis, while IDO1 was not associated with progression-free or overall survival. Interestingly, there was a significant difference in the 5-year progression-free and overall survival (p = 0.004 and 0.038, respectively), where cases without PD-L1 or IDO1 expression had the longest survival, and those with PD-L1 alone had the shortest survival. While PD-L1+/-IDO1 expression is observed in association with HLA class I expression, cytotoxic T lymphocyte/Th1 microenvironments, EGFR wild-type, and KRAS mutations, isolated IDO1 expression does not demonstrate these associations, suggesting that IDO1 may serve a distinct immunosuppressive role in lung adenocarcinomas. Thus, further investigation of IDO1 may demonstrate its role as a potential biomarker for patients who undergo anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Meghan J Mooradian
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jean-Pierre Eliane
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Tiffany G Huynh
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Justin F Gainor
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA. .,Cancer Center, Massachusetts General Hospital, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Akazawa Y, Suzuki T, Yoshikawa T, Mizuno S, Nakamoto Y, Nakatsura T. Prospects for immunotherapy as a novel therapeutic strategy against hepatocellular carcinoma. World J Meta-Anal 2019; 7:80-95. [DOI: 10.13105/wjma.v7.i3.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant disease, with a poor clinical prognosis. Many standard therapies are often considered for HCC treatment today; however, these conventional therapies often fail to achieve sufficiently effective clinical results. Today, HCC therapy is set to undergo a major revolution, owing to rapid developments in cancer immunotherapy, particularly immune checkpoint inhibitor therapy. Cancer immunotherapy is a novel and promising treatment strategy that differs significantly from conventional therapies in its approach to achieve antitumor effects. In fact, many cancer immunotherapies have been tested worldwide and shown to be effective against various types of cancer; HCC is no exception to this trend. For example, we identified a specific cancer antigen called glypican-3 (GPC3) and performed clinical trials of GPC3-targeted peptide vaccine immunotherapy in patients with HCC. Here, we present an overview of the immune mechanisms for development and progression of HCC, our GPC3-based immunotherapy, and immune checkpoint inhibitor therapy against HCC. Finally, we discuss the future prospects of cancer immunotherapy against HCC. We believe that this review and discussion of cancer immunotherapy against HCC could stimulate more interest in this promising strategy for cancer therapy and help in its further development.
Collapse
Affiliation(s)
- Yu Akazawa
- Toshiaki Yoshioka, Shoichi Mizuno, Tetsuya Nakatsura, Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshihiro Suzuki
- Toshiaki Yoshioka, Shoichi Mizuno, Tetsuya Nakatsura, Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | | | | | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | | |
Collapse
|
26
|
Park HS, Cho U, Im SY, Yoo CY, Jung JH, Suh YJ, Choi HJ. Loss of Human Leukocyte Antigen Class I Expression Is Associated with Poor Prognosis in Patients with Advanced Breast Cancer. J Pathol Transl Med 2018; 53:75-85. [PMID: 30424591 PMCID: PMC6435992 DOI: 10.4132/jptm.2018.10.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023] Open
Abstract
Background Human leukocyte antigen class I (HLA-I) molecules play important roles in regulating immune responses. Loss or reduction of HLA-I expression has been shown to be associated with prognosis in several cancers. Regulatory T-cells (Tregs) also play critical functions in immune response regulation. Evaluation of HLA-I expression status by the EMR8-5 antibody and its clinical impact in breast cancer have not been well studied, and its relationship with Tregs remains unclear. Methods We evaluated HLA-I expression and Treg infiltration by immunohistochemistry in 465 surgically resected breast cancer samples. We examined the correlation between HLA-I expression and Treg infiltration and clinicopathologic characteristics and survival analyses were performed. Results Total loss of HLA-I expression was found in 84 breast cancer samples (18.1%). Univariate survival analysis revealed that loss of HLA-I expression was significantly associated with worse disease-specific survival (DSS) (p = .029). HLA-I was not an independent prognostic factor in the entire patient group, but it was an adverse independent prognostic factor for DSS in patients with advanced disease (stage II–IV) (p = .031). Treg numbers were significantly higher in the intratumoral stroma of HLA-I–positive tumors than in HLA-I–negative tumors (median 6.3 cells/high power field vs 2.1 cells/high power field, p < .001). However, Tregs were not an independent prognostic factor in our cohort. Conclusions Our findings suggest that the loss of HLA-I expression is associated with poor prognosis in breast cancer patients, highlighting the role of HLA-I alterations in immune evasion mechanisms of breast cancer. HLA-I could be a promising marker that enables the application of more effective and precise immunotherapies for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Hong Sik Park
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Uiju Cho
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - So Young Im
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Young Yoo
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Han Jung
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Jin Suh
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Joo Choi
- Department of Hospital Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
27
|
Liu SS, Yang YZ, Jiang C, Quan Q, Xie QK, Wang XP, He WZ, Rong YM, Chen P, Yang Q, Yang L, Zhang B, Xia XJ, Kong PF, Xia LP. Comparison of immunological characteristics between paired mismatch repair-proficient and -deficient colorectal cancer patients. J Transl Med 2018; 16:195. [PMID: 30005666 PMCID: PMC6045865 DOI: 10.1186/s12967-018-1570-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/04/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Currently, mismatch repair-deficient (dMMR) status is a promising candidate for targeted immune checkpoint inhibition therapy in colorectal cancer (CRC) patients, however, the potential immunological mechanism has not yet been well clarified and some other predictors need to be excavated as well. METHODS We collected 330 CRC patients by the match of mismatch repair-proficient (167) and dMMR (163), explored the relationship between MMR status and some important immune molecules including MHC class I, CD3, CD4, CD8, CD56, programmed death-1 and programmed death ligand-1, and investigated the risk factors for dMMR status as well as low MHC class I expression. The Pearson Chi square test was used for analyzing the associations between clinicopathological and immune characteristics and MMR status, and two categories logistic regression model was used for univariate and multivariate analysis to predict the odds ratio of risk factors for dMMR status and low MHC class I expression. RESULTS Multivariate logistic regression analysis showed that low MHC class I and CD4 expression and high CD8 expression were significant risk factors for dMMR status [odds ratio (OR) = 24.66, 2.94 and 2.97, respectively; all p < 0.05] and dMMR status was the only risk factor for low MHC class I expression (OR = 15.34; p < 0.001). CONCLUSIONS High CD8 and low MHC class I expression suggests the contradiction and complexity of immune microenvironment in dMMR CRC patients. Some other immunocytes such as CD56+ cells might also participate in the process of immune checkpoint inhibition, whereas needs further investigations.
Collapse
Affiliation(s)
- Shou-Sheng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yuan-Zhong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chang Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qian-Kun Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiao-Pai Wang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510080, People's Republic of China
| | - Wen-Zhuo He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu-Ming Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qiong Yang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Guangzhou, 510000, People's Republic of China
| | - Lin Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Bei Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiao-Jun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Peng-Fei Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Liang-Ping Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
28
|
Lee M, Song IH, Heo SH, Kim YA, Park IA, Bang WS, Park HS, Gong G, Lee HJ. Expression of Immunoproteasome Subunit LMP7 in Breast Cancer and Its Association with Immune-Related Markers. Cancer Res Treat 2018; 51:80-89. [PMID: 29510614 PMCID: PMC6333994 DOI: 10.4143/crt.2017.500] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose In the presence of interferon, proteasome subunits are replaced by their inducible counterparts to form an immunoproteasome (IP) plays a key role in generation of antigenic peptides presented by MHC class I molecules, leading to elicitation of a T cell‒mediated immune response. Although the roles of IP in other cancers, and inflammatory diseases have been extensively studied, its significance in breast cancer is unclear. Materials and Methods We investigated the expression of LMP7, an IP subunit, and its relationship with immune system components in two breast cancer cohorts. Results In 668 consecutive breast cancer cohort, 40% of tumors showed high level of LMP7 expression, and tumors with high expression of LMP7 had more tumor-infiltrating lymphocytes (TILs) in each subtype of breast cancer. In another cohort of 681 triple-negative breast cancer patients cohort, the expression of LMP7 in tumor cells was significantly correlated with the amount of TILs and the expression of interferon-associated molecules (MxA [p < 0.001] and PKR [p < 0.001]), endoplasmic reticulum stress-associated molecules (PERK [p=0.012], p-eIF2a [p=0.001], and XBP1 [p < 0.001]), and damage-associated molecular patterns (HMGN1 [p < 0.001] and HMGB1 [p < 0.001]). Patients with higher LMP7 expression had better disease-free survival outcomes than those with no or low expression in the positive lymph node metastasis group (p=0.041). Conclusion Close association between the TIL levels and LMP7 expression in breast cancer indicates that better antigen presentation through greater LMP7 expression might be associated with more TILs.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun-Hee Heo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Ae Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Seon Bang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hye Seon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget 2017; 7:30119-32. [PMID: 27121061 PMCID: PMC5058668 DOI: 10.18632/oncotarget.8798] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/03/2016] [Indexed: 01/09/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC) have a strong prognostic and predictive significance. However, the mechanism of TIL influx in TNBC is unclear. Expression of major histocompatibility complex class I (MHC I) on the tumor cell is essential for the effective killing of tumor by cytotoxic TILs. In our current study, human leukocyte antigen (HLA) expression was inversely correlated with estrogen receptor (ER) expression in normal and cancerous breast tissue and positively correlated with TILs in breast cancer. The ER score was inversely correlated with TILs in breast cancer. HLA-A and CD8B gene expression was negatively correlated with ESR1 and positively correlated with interferon-associated gene expression in The Cancer Genome Atlas (TCGA) data. Negative correlation between ESR1 and HLA and positive correlation between interferon-associated and HLA gene expression were also confirmed in Cancer Cell Line Encyclopedia (CCLE) data. Taken together, our data suggest that a lower expression of HLA in luminal-type tumors might be associated with low level of TILs in those tumors. Further investigation of the mechanism of higher HLA expression and TIL influx in TNBC may help to boost the host immune response.
Collapse
|
30
|
Song IH, Kim YA, Heo SH, Park IA, Lee M, Bang WS, Park HS, Gong G, Lee HJ. ADAR1 expression is associated with tumour-infiltrating lymphocytes in triple-negative breast cancer. Tumour Biol 2017; 39:1010428317734816. [PMID: 29022489 DOI: 10.1177/1010428317734816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tumours with a high mutation burden exhibit considerable neoantigens and tumour-infiltrating lymphocytes. RNA editing by ADAR1 is a source of changes in epitope. However, ADAR1 expression in cancer cells and tumour-infiltrating lymphocyte levels in triple-negative breast cancer have not been well evaluated. We immunohistochemically examined ADAR1 expression in 681 triple-negative breast cancer patients and analysed their clinicopathological characteristics. We also analysed basal-like tumours using The Cancer Genome Atlas data. Among the 681 triple-negative breast cancer patients, 45.8% demonstrated high ADAR1 expression. Tumours with high ADAR1 expression exhibited high tumour-infiltrating lymphocyte levels, considerable CD8 + T lymphocyte infiltration, high histological grade and high expression of interferon-related proteins, including HLA-ABC, MxA and PKR. Among patients with lymph node metastasis, those with high tumour-infiltrating lymphocyte levels and low ADAR1 expression demonstrated the best disease-free survival. The Cancer Genome Atlas data analysis of basal-like tumours revealed significant positive correlation between ADAR1 and CD8B expression and positive association of high ADAR1 expression with immune responses and apoptosis pathways. We detected high ADAR1 expression in half of the triple-negative breast cancer patients. In addition to DNA mutations, RNA editing can be related to neoantigens; hence, we need to explore non-synonymous mutations exclusively found using RNA sequencing data to identify clinically relevant neoantigens.
Collapse
Affiliation(s)
- In Hye Song
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Young-Ae Kim
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sun-Hee Heo
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Ah Park
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Miseon Lee
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Won Seon Bang
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Seon Park
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,2 Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hee Jin Lee
- 1 Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
31
|
Marcellin L, Schmitz T, Messaoudene M, Chader D, Parizot C, Jacques S, Delaire J, Gogusev J, Schmitt A, Lesaffre C, Breuiller-Fouché M, Caignard A, Vaiman D, Goffinet F, Cabrol D, Gorochov G, Méhats C. Immune Modifications in Fetal Membranes Overlying the Cervix Precede Parturition in Humans. THE JOURNAL OF IMMUNOLOGY 2016; 198:1345-1356. [PMID: 28031337 DOI: 10.4049/jimmunol.1601482] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
Abstract
In humans, parturition is currently viewed as an intrauterine outbreak of inflammation, accompanied by a massive release of proinflammatory cytokines at the maternal-fetal interface that comprises the maternal decidua, placenta, and fetal membranes. At term, fetal membranes overlying the cervix, the future site of rupture, show altered morphology and are termed the zone of altered morphology (ZAM). These alterations occur in normal fetal membranes during late pregnancy, in preparation for labor. In this study, transcriptome, flow cytometry, electron microscopy, and immunohistochemistry analyses collectively highlight a local shift in gene expression and lymphocyte activation in the ZAM. Just before labor, we show that highly polymorphic HLA-A, -B, and -C determinants of fetal origin are selectively exposed in the ZAM to the maternal immune system. A graft rejection-like program occurs in the ZAM, which involves 1) the activation of cytotoxic decidual NK cells, and 2) the decline of decidual immunotolerant M2-like macrophages. Comparison with a prior cohort of fetal membranes shows that acute inflammation only takes place after these first steps of immune modifications. Our results therefore strongly argue in favor of local immune remodeling at the onset of parturition.
Collapse
Affiliation(s)
- Louis Marcellin
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France.,Service de Gynécologie Obstétrique II et Médecine de la Reproduction, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Thomas Schmitz
- Service de Gynécologie Obstétrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.,Faculté de Médecine, Université Paris Diderot, 75013 Paris, France.,INSERM, U1141, 75013 Paris, France.,Département Hospitalo-Universitaire Protect, Hôpital Robert Debré, 75019 Paris, France
| | - Meriem Messaoudene
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Driss Chader
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, 75013 Paris, France
| | - Christophe Parizot
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, 75013 Paris, France.,Département d'Immunologie, Groupement Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France; and
| | - Sébastien Jacques
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Jérémy Delaire
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Jean Gogusev
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| | - Alain Schmitt
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Corinne Lesaffre
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Michelle Breuiller-Fouché
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| | - Anne Caignard
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France
| | - Daniel Vaiman
- INSERM, U1016, Institut Cochin, 75014 Paris, France.,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| | - François Goffinet
- Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| | - Dominique Cabrol
- Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| | - Guy Gorochov
- INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, 75013 Paris, France.,Département d'Immunologie, Groupement Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris, France; and.,Centre d'Immunologie et des Maladies Infectieuses, Université Pierre et Marie Curie Université Paris 06, CR7, Sorbonne Universités, 75013 Paris, France
| | - Céline Méhats
- INSERM, U1016, Institut Cochin, 75014 Paris, France; .,CNRS, UMR8104, 75014 Paris, France.,Faculté de Médecine, Université Paris Descartes, 75015 Paris, France.,Département Hospitalo-Universitaire Risques et Grossesse, Maternité Port Royal, 75014 Paris, France
| |
Collapse
|
32
|
Tada K, Maeshima AM, Hiraoka N, Yamauchi N, Maruyama D, Kim SW, Watanabe T, Katayama N, Heike Y, Tobinai K, Kobayashi Y. Prognostic significance of HLA class I and II expression in patients with diffuse large B cell lymphoma treated with standard chemoimmunotherapy. Cancer Immunol Immunother 2016; 65:1213-22. [PMID: 27522583 PMCID: PMC11029644 DOI: 10.1007/s00262-016-1883-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 08/06/2016] [Indexed: 12/17/2022]
Abstract
Loss of tumor cell human leukocyte antigen (HLA) is an immune escape mechanism for malignancies. However, the effect of low HLA class I or class II expression in diffuse large B cell lymphoma (DLBCL) treated with chemoimmunotherapy with the monoclonal antibody rituximab is largely unknown. We retrospectively analyzed samples and other data from 144 patients with DLBCL who were newly diagnosed in our institution and treated with standard R-CHOP therapy. We used antibodies against pan-HLA class I and pan-HLA class II molecules to assess HLA expression and its effect on prognosis. In a multivariate analysis, loss of HLA class II expression was a significantly independent adverse factor for progression-free survival (PFS; hazard ratio 2.3; 95 % confidence interval 1.2-4.6; P = 0.01). Although HLA class I loss of expression did not correlate with prognosis, the combination of HLA class I(+) with either low peripheral lymphocyte count or CD3(+) lymphocyte count was an adverse prognostic factor for PFS. Loss of HLA class II is an International Prognostic Index (IPI)-independent adverse factor for PFS in patients with DLBCL treated with standard therapy. However, in contrast to other solid cancers, HLA class I loss was not solely a prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Kohei Tada
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
- Immunotherapy and Cell Therapy Service, St. Luke's International Hospital, Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Nobuhiko Yamauchi
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Dai Maruyama
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sung-Won Kim
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Watanabe
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuji Heike
- Immunotherapy and Cell Therapy Service, St. Luke's International Hospital, Tokyo, Japan
- Immunotherapy Research Field, Translational Research Group, and Translational Medicine Department, Phase 1 Group, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Kensei Tobinai
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yukio Kobayashi
- Department of Hematology and Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
33
|
Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett 2016; 376:34-42. [DOI: 10.1016/j.canlet.2016.02.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 02/05/2023]
|
34
|
Kim YA, Lee HJ, Heo SH, Park HS, Park SY, Bang W, Song IH, Park IA, Gong G. MxA expression is associated with tumor-infiltrating lymphocytes and is a prognostic factor in triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:597-606. [DOI: 10.1007/s10549-016-3786-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
|
35
|
Yakabe K, Murakami A, Nishimoto Y, Kajimura T, Sueoka K, Sugino N. Clinical implications of human leukocyte antigen class I expression in endometrial cancer. Mol Clin Oncol 2015; 3:1285-1290. [PMID: 26807234 DOI: 10.3892/mco.2015.636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/18/2015] [Indexed: 01/15/2023] Open
Abstract
Decreased expression of human leukocyte antigen (HLA) class I molecules, which is found in several types of cancer, is associated with worse clinical prognosis in cancer patients. The present study was undertaken to investigate the association of immunohistochemical HLA class I expression patterns with clinicopathological factors and prognosis in 96 endometrial cancer patients. HLA class I is composed of a heavy chain (HC-10) and a β2-microglobulin (β2-m) light chain. The HLA class I expression patterns were classified as positive when both HC-10 and β2-m were strongly stained and negative in all other cases. The negative staining pattern was associated with advanced International Federation of Gynecology and Obstetrics stage (P<0.001), lymphovascular space involvement (LVSI) (P=0.003) and lymph node metastasis (P=0.005). Moreover, these cases exhibited worse progression-free survival (PFS) and overall survival (OS) rates compared with positive cases (P=0.005 and P=0.014, respectively). However, the multivariate analysis did not identify HLA class I expression as an independent predictive factor for PFS and OS. In conclusion, HLA class I expression may be useful for predicting postoperative outcome in endometrial cancer, as well as well-known predictive prognostic factors, such as lymph node metastasis and LVSI.
Collapse
Affiliation(s)
- Kazuyuki Yakabe
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Akihiro Murakami
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Yuki Nishimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Takuya Kajimura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Kotaro Sueoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
36
|
Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, Gong G. Prognostic Significance of Tumor-Infiltrating Lymphocytes and the Tertiary Lymphoid Structures in HER2-Positive Breast Cancer Treated With Adjuvant Trastuzumab. Am J Clin Pathol 2015; 144:278-88. [PMID: 26185313 DOI: 10.1309/ajcpixuydvz0rz3g] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have prognostic significance in breast cancer. The tertiary lymphoid structure (TLS) is related to the influx of TILs, and expression of major histocompatibility complex (MHC) I in tumor cells is necessary for the effective action of TILs. METHODS We retrospectively evaluated the relationship of TILs and TLS and the expression of MHC I in 447 HER2-positive breast cancers treated with chemotherapy and 1 year of trastuzumab. RESULTS TILs were more abundant in hormone receptor (HR)-/HER2+ tumors than in HR+/HER2+ tumors. HR-/HER2+ breast cancers with abundant TILs showed a higher histologic grade, the absence of lymphovascular invasion, the presence of peritumoral lymphocytic infiltration, moderate to abundant TLSs in adjacent tissue, and stronger HLA-ABC and HLA-A expression. Abundant TILs and the absence of lymphovascular invasion were found to be good, independent prognostic factors for disease-free survival in patients with HR-/HER2+ breast cancer. The level of TILs was not associated with the patients' prognosis in HR+ tumors. CONCLUSIONS Abundant TILs are an independent prognostic factor in HR-/HER2+ breast cancers. Evaluation of TILs in HR-/HER2+ breast cancers may provide valuable information regarding the prognosis of patients treated using adjuvant chemotherapy and trastuzumab.
Collapse
Affiliation(s)
- Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joo Young Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Han Yu
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jin-Hee Ahn
- sDepartment of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
37
|
Kukita K, Tamura Y, Tanaka T, Kajiwara T, Kutomi G, Saito K, Okuya K, Takaya A, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T, Furuhata T, Hirata K, Sato N. Cancer-Associated Oxidase ERO1-α Regulates the Expression of MHC Class I Molecule via Oxidative Folding. THE JOURNAL OF IMMUNOLOGY 2015; 194:4988-96. [PMID: 25870246 DOI: 10.4049/jimmunol.1303228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/23/2015] [Indexed: 12/13/2022]
Abstract
ERO1-α is an oxidizing enzyme that exists in the endoplasmic reticulum and is induced under hypoxia. It reoxidizes the reduced form of protein disulfide isomerase that has oxidized target proteins. We found that ERO1-α is overexpressed in a variety of tumor types. MHC class I H chain (HC) has two disulfide bonds in the α2 and α3 domains. MHC class I HC folding is linked to the assembly of MHC class I molecules because only fully disulfide-bonded class I HCs efficiently assemble with β2-microglobulin. In this study, we show that ERO1-α associates with protein disulfide isomerase, calnexin, and immature MHC class I before being incorporated into the TAP-1-associated peptide-loading complex. Importantly, ERO1-α regulates the redox state as well as cell surface expression of MHC class I, leading to alteration of susceptibility by CD8(+) T cells. Similarly, the ERO1-α expression within cancer cells was associated with the expression level of MHC class I in colon cancer tissues. Thus, the cancer-associated ERO1-α regulates the expression of the MHC class I molecule via oxidative folding.
Collapse
Affiliation(s)
- Kazuharu Kukita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tsutomu Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Toshimitsu Kajiwara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Goro Kutomi
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Keita Saito
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Koichi Okuya
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| | - Tomohisa Furuhata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Koichi Hirata
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; and
| |
Collapse
|
38
|
Iwayama Y, Tsuruma T, Mizuguchi T, Furuhata T, Toyota N, Matsumura M, Torigoe T, Sato N, Hirata K. Prognostic value of HLA class I expression in patients with colorectal cancer. World J Surg Oncol 2015; 13:36. [PMID: 25889416 PMCID: PMC4336735 DOI: 10.1186/s12957-015-0456-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/08/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Prognostic factors are useful for determination of the therapeutic strategy and follow-up examination after curative operation in cancer treatment. The immunological state of the host can influence the prognosis for cancer patients as well as the features of the cancer. Human lymphocyte antigen (HLA) class I molecules have a central role in the anti-cancer immune system. Therefore, we focused on the HLA class I expression level in cancer cells to investigate its prognostic value in patients with colorectal cancer. METHODS We reviewed the clinical pathology archives of 97 consecutive patients with stage II colorectal cancer who underwent curative operation at the Sapporo Medical University, Japan, from February 1994 to January 2005. Fifty-six high-risk patients had adjuvant chemotherapy. The cancer cell membrane immunoreactivity level for HLA class I expressed by EMR8-5 was classified into three categories (positive, dull, and negative). In this study, the cases were divided into two groups: "positive" and "dull/negative". HLA class I expression level and clinicopathological parameters were evaluated with the Pearson χ (2) test. Survival analysis was assessed by the Kaplan-Meier methods, and the differences between survival curves were analyzed using the log-rank test. RESULTS Immunohistochemical study of HLA class I revealed the following. There were 51 cases that were positive, 40 were dull, and six negative. The HLA class I expression level had no significant correlation with other clinicopathological parameters, except for gender. Univariate and multivariate analyses related to disease-free survival (DFS) revealed that tumor location, HLA expression level, and venous invasion were significant independent prognostic factors (P < 0.05). The 5-year DFS rates in HLA class I positive group and in the dull/negative group were 89% and 70%, respectively. For high-risk patients with adjuvant chemotherapy, the 5-year DFS rates in the HLA class I positive group and in the dull/negative group were 84% and 68%, respectively. For low-risk patients without the chemotherapy, the 5-year DFS rates in the HLA class I positive group and in the dull/negative group were 100% and 71%, respectively. CONCLUSIONS Our study concluded that the HLA class I expression level might be a very sensitive prognostic factor in colorectal cancer patients with stage II disease.
Collapse
Affiliation(s)
- Yuji Iwayama
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Tetsuhiro Tsuruma
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Toru Mizuguchi
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Tomohisa Furuhata
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Nobuhiko Toyota
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Masayuki Matsumura
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-061, Japan.
| | - Noriyuki Sato
- Department of Pathology, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-061, Japan.
| | - Koichi Hirata
- Department of Surgery, School of Medicine, Sapporo Medical University, S1, W16, Chuo-ku, Sapporo, Hokkaido, 060-0061, Japan.
| |
Collapse
|
39
|
Yasuda K, Torigoe T, Mariya T, Asano T, Kuroda T, Matsuzaki J, Ikeda K, Yamauchi M, Emori M, Asanuma H, Hasegawa T, Saito T, Hirohashi Y, Sato N. Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity. J Transl Med 2014; 94:1355-69. [PMID: 25329002 DOI: 10.1038/labinvest.2014.122] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 12/23/2022] Open
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cells within cancer that contribute to cancer initiation and progression. Cancer-associated fibroblasts (CAFs) are stromal fibroblasts surrounding tumor cells, and they have important roles in tumor growth and tumor progression. It has been suggested that stromal fibroblasts and CSCs/CICs might mutually cooperate to enhance their growth and tumorigenic capacity. In this study, we investigated the effects of fibroblasts on tumor-initiating capacity and stem-like properties of ovarian CSCs/CICs. CSCs/CICs were isolated from the ovarian carcinoma cell line HTBoA as aldehyde dehydrogenase 1 high (ALDH1(high)) population by the ALDEFLUOR assay. Histological examination of tumor tissues derived from ALDH1(high) cells revealed few fibrous stroma, whereas those derived from fibroblast-mixed ALDH1(high) cells showed abundant fibrous stroma formation. In vivo tumor-initiating capacity and in vitro sphere-forming capacity of ALDH1(high) cells were enhanced in the presence of fibroblasts. Gene expression analysis revealed that fibroblast-mixed ALDH1(high) cells had enhanced expression of fibroblast growth factor 4 (FGF4) as well as stemness-associated genes such as SOX2 and POU5F1. Sphere-forming capacity of ALDH1(high) cells was suppressed by small-interfering RNA (siRNA)-mediated knockdown of FGFR2, the receptor for FGF4 which was expressed preferentially in ALDH1(high) cells. Taken together, the results indicate that interaction of fibroblasts with ovarian CSCs/CICs enhanced tumor-initiating capacity and stem-like properties through autocrine and paracrine FGF4-FGFR2 signaling.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tasuku Mariya
- 1] Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan [2] Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuya Asano
- 1] Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan [2] Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junichi Matsuzaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kanae Ikeda
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Yamauchi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroko Asanuma
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Mariya T, Hirohashi Y, Torigoe T, Asano T, Kuroda T, Yasuda K, Mizuuchi M, Sonoda T, Saito T, Sato N. Prognostic impact of human leukocyte antigen class I expression and association of platinum resistance with immunologic profiles in epithelial ovarian cancer. Cancer Immunol Res 2014; 2:1220-9. [PMID: 25324403 DOI: 10.1158/2326-6066.cir-14-0101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the most deadly carcinomas in females. Immune systems can recognize EOCs; however, a defect of human leukocyte antigen (HLA) class I expression is known to be a major mechanism for escape from immune systems, resulting in poor prognosis. The purpose of this study is to identify novel correlations between immunologic responses and other clinical factors. We investigated the expression of immunologic components in 122 cases of EOCs for which surgical operations were performed between 2001 and 2011. We immunohistochemically stained EOC specimens using an anti-pan HLA class I monoclonal antibody (EMR8-5) and anti-CD3, -CD4, and -CD8 antibodies, and we analyzed correlations between immunologic parameters and clinical factors. In multivariate analysis that used the Cox proportional hazards model, independent prognostic factors for overall survival in advanced EOCs included low expression level of HLA class I [risk ratio (RR), 1.97; 95% confidence interval (CI), 1.01-3.83; P = 0.046] and loss of intraepithelial cytotoxic T lymphocyte (CTL) infiltration (RR, 2.11; 95% CI, 1.06-4.20; P = 0.033). Interestingly, almost all platinum-resistant cases showed a significantly low rate of intraepithelial CTL infiltration in the χ(2) test (positive vs. negative: 9.0% vs. 97.7%; P < 0.001). Results from a logistic regression model revealed that low CTL infiltration rate was an independent factor of platinum resistance in multivariate analysis (OR, 3.77; 95% CI, 1.08-13.12; P = 0.037). Platinum-resistant EOCs show poor immunologic responses. The immune escape system of EOCs may be one of the mechanisms of platinum resistance.
Collapse
Affiliation(s)
- Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan. Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
41
|
Sasaki T, Ravindranath MH, Terasaki PI, Freitas MC, Kawakita S, Jucaud V. Gastric cancer progression may involve a shift in HLA-E profile from an intact heterodimer to β2-microglobulin-free monomer. Int J Cancer 2014; 134:1558-70. [PMID: 24105714 DOI: 10.1002/ijc.28484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/08/2013] [Accepted: 08/29/2013] [Indexed: 01/15/2023]
Abstract
Phenotypic expression of human leukocyte antigen (HLA)-E on the surface of tumor lesions includes intact heterodimer [HLA-E heavy chain and β2-microglobulin (β2m)] and β2m-free monomer. Anti-HLA-E monoclonal antibodies (mAbs), MEM-E/02 or 3D12 bind to the peptide sequences in β2m-free HLA-E, which is common and shared with HLA-Ia monomers. A newly developed monospecific anti-HLA-E mAb (TFL-033) recognizes HLA-E-restricted peptide sequences on α1 and α2 helices away from β2-m-site. Tumor progression may involve shedding of β2-m from HLA-E or overexpression of β2m-free monomers. There is a need to identify and distinguish the different phenotypic expression of HLA-E, particularly the intact heterodimer from the β2m-free monomer on the surface of tumor lesions. Because of the unique peptide-binding affinities of the mAbs, it is hypothesized that TFL-033 and MEM-E/02 may distinguish the phenotypic expressions of cell surface HLA-E during stages of tumor progression. Only TFL-033 stained diffusely the cytoplasm of normal mucosa. The incidence and intensity of TFL-033 staining of the cell surface in early stages, poorly or undifferentiated and non-nodal lesions and in diffuse carcinoma is greater than that of MEM-E/02. Whereas MEM-E/02 stained terminal stages, adenocarcinoma and lymph node metastatic lesions intensely, either owing to increased expression of β2m-free HLA-E with tumor progression or owing to expression of HLA-Ia molecules. Our study evaluates the relative diagnostic potential of HLA-E-monospecific TFL-033 and the HLA-Ia-reactive MEM-E/02 for determining the specific distribution and immunodiagnosis of different phenotypic expression HLA-E in tumor lesions, and the structural and functional alterations undergone by HLA-E during tumor progression.
Collapse
Affiliation(s)
- Toshiyuki Sasaki
- Terasaki Foundation Laboratory, Los Angeles, CA; Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Nada OH, Ahmed NS, Abou Gabal HH. Prognostic significance of HLA EMR8-5 immunohistochemically analyzed expression in osteosarcoma. Diagn Pathol 2014; 9:72. [PMID: 24667142 PMCID: PMC3987053 DOI: 10.1186/1746-1596-9-72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/18/2014] [Indexed: 01/23/2023] Open
Abstract
Background Defects in Human Leukocyte Antigen (HLA) class I antigen expression and/or function in tumor cells have been extensively investigated, because of their potential role in the escape of tumor cells from T cell recognition and destruction. The researchers evaluated HLA class I expression in tumor tissue as a prognostic factor in osteosarcoma patients and as a predictor of their survival. This retrospective cohort study was conducted at the pathology laboratory of Ain Shams University Hospital, and Ain Shams University Specialized Hospital during the period between January 2009 and January 2012. Methods The researchers investigated HLA class I expression in primary osteosarcoma by immunohistochemistry using EMR8-5 mAbs. Furthermore, researchers evaluated the correlation between HLA class I expression and the clinicopathological status and outcome in formalin fixed paraffin embedded tissues from thirty six (36) patients with osteosarcoma. Results A high expression of HLA class I was detected in 18 (50) % of tumor samples examined; while tumors with low or negative expression represented 9 (25%) cases each. Data indicate that the overall survival rate of patients with tumors highly expressing HLA class I was significantly higher than those with low or negative expression. Conclusion Down-regulation of class I antigen expression is associated with features of aggressive disease and a poorer prognosis. Therefore, it is imperative to identify HLA as a prognostic factor at the time of diagnosis to detect chemotherapy-resistant tumors and to generate a modified treatment regimen. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1159334857109547.
Collapse
Affiliation(s)
- Ola H Nada
- Department of pathology, faculty of Medicine, Ain Shams university, Cairo, Egypt.
| | | | | |
Collapse
|
43
|
Hatano R, Yamada T, Matsuoka S, Iwata S, Yamazaki H, Komiya E, Okamoto T, Dang NH, Ohnuma K, Morimoto C. Establishment of monoclonal anti-human CD26 antibodies suitable for immunostaining of formalin-fixed tissue. Diagn Pathol 2014; 9:30. [PMID: 24502396 PMCID: PMC3944398 DOI: 10.1186/1746-1596-9-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/24/2014] [Indexed: 01/13/2023] Open
Abstract
Background A T cell costimulatory molecule with dipeptidyl peptidase IV (DPPIV) activity in its extracellular region, CD26 is a multifunctional molecule associated with various proteins such as adenosine deaminase, caveolin-1, CXCR4, collagen, and fibronectin, while playing an important role in the regulation of inflammatory responses and tumor biology. We have focused on CD26 as a novel therapeutic target for various tumors and immune disorders, and have developed a humanized anti-CD26 monoclonal antibody (mAb), YS110, which is currently being evaluated in a phase I clinical trial for patients with CD26-expressing tumors, including malignant mesothelioma. Since detection of tumor CD26 expression is required for determining potential eligibility for YS110 therapy, the development of anti-human CD26 mAb that can clearly and reliably detect the denatured CD26 molecule in the formalin-fixed paraffin-embedded tissues is critical. Methods To develop novel anti-CD26 mAbs capable of binding to the denatured CD26, we immunized mice with CD26 protein denatured in urea buffer. After the fusion of splenocytes and myeloma cells, the mAbs were screened for specific reactivity with human CD26 by flow cytometry, enzyme-linked immunosorbent assay, and immunohistochemistry. The binding competitiveness of novel anti-CD26 mAbs with the humanized anti-CD26 mAb YS110 was also examined. Results We have succeeded in developing novel anti-human CD26 mAbs suitable for immunohistochemical staining of CD26 in formalin-fixed tissue sections with reliable clarity and intensity. Importantly, some of these mAbs exhibit no cross-reactivity with the humanized anti-CD26 mAb. Conclusions These novel mAbs are potentially useful as companion diagnostic agents to analyze CD26 expression in the clinical setting while advancing future CD26-related research. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5987140221097729
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
44
|
Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer. Int J Breast Cancer 2013; 2013:250435. [PMID: 24363939 PMCID: PMC3864140 DOI: 10.1155/2013/250435] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
Considering that downregulation of HLA expression could represent a potential mechanism for breast carcinogenesis and metastasis, the aim of the present study was to use immunohistochemical methods to analyze the expression of HLA-Ia, HLA-DR, HLA-DQ, HLA-E, and HLA-G in invasive ductal carcinoma (IDC) of the breast and to relate this HLA profile to anatomopathological parameters. Fifty-two IDC from breast biopsies were stratified according to histological differentiation (well, moderately, and poorly differentiated) and to the presence of metastases in axillary lymph nodes. The expression of HLA molecules was assessed by immunohistochemistry, using a computer-assisted system. Overall, 31 (59.6%) out of the 52 IDC breast biopsies exhibited high expression of HLA-G, but only 14 (26.9%) showed high expression of HLA-E. A large number (41, 78.8%) of the biopsies showed low expression of HLA-Ia, while 45 (86.5%) showed high expression of HLA-DQ and 36 (69.2%) underexpressed HLA-DR. Moreover, 24 (41.2%) of 52 biopsies had both low HLA-Ia expression and high HLA-G expression, while 11 (21.2%) had low HLA-Ia expression and high HLA-E expression. These results suggest that, by different mechanisms, the downregulation of HLA-Ia, HLA-E, and HLA-DR and the upregulation of HLA-G and HLA-DQ are associated with immune response evasion and breast cancer aggressiveness.
Collapse
|
45
|
Yuan J, Liu S, Yu Q, Lin Y, Bi Y, Wang Y, An R. Down-regulation of human leukocyte antigen class I (HLA-I) is associated with poor prognosis in patients with clear cell renal cell carcinoma. Acta Histochem 2013; 115:470-4. [PMID: 23245688 DOI: 10.1016/j.acthis.2012.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 01/22/2023]
Abstract
Human leukocyte antigen class I (HLA-I) molecules are transmembrane glycoproteins that have been reported to be down-regulated in multiple types of human malignancies, including clear cell renal cell carcinoma (CCRCC). However, only one study has investigated its prognostic value in CCRCC. In the present study, HLA-I protein expression was analyzed in 120 archived, paraffin-embedded CCRCC samples and 10 adjacent normal tissues using immunohistochemistry. The correlation between HLA-I expression and clinicopathological factors was evaluated by the χ(2) test. Patients' overall survival was analyzed by the Kaplan-Meier method. HLA-I down-regulation was observed in 38.3% (46/120) of renal tumor samples, but only in 10% (1/10) of adjacent normal tissues. Statistical analysis showed a significant correlation of HLA-I expression with TNM stage, lymph node metastasis, and Fuhrman grade. Patients with tumors displaying down-regulation of HLA-I showed significantly shorter overall survival (P=0.021, log-rank test). More importantly, multivariate analysis indicated that down-regulation of HLA-I was an independent prognostic factor for CCRCC patients (P=0.033). Overall, our data suggest that HLA-I down-regulation is associated with tumor progression and a poor prognosis in CCRCC patients, and emphasize the importance of HLA-I in natural and therapeutic immune surveillance of patients with CCRCC.
Collapse
Affiliation(s)
- Jinyang Yuan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Nobuoka D, Yoshikawa T, Fujiwara T, Nakatsura T. Peptide intra-tumor injection for cancer immunotherapy: enhancement of tumor cell antigenicity is a novel and attractive strategy. Hum Vaccin Immunother 2013; 9:1234-6. [PMID: 23411443 PMCID: PMC3901811 DOI: 10.4161/hv.23990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the problems in antigen-specific cancer immunotherapy is the low density of the tumor antigen-derived peptide endogenously presented on tumor cell surface major histocompatibility complex class I molecules. To overcome this, we are engaged in research on peptide intra-tumor injection to enhance tumor cell antigenicity. In in vivo studies using immunodeficient mice, the peptide injected into a solid mass of subcutaneous tumor was revealed to be loaded onto human leukocyte antigen class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, peptide intra-tumor injection was effective in terms of tumor growth inhibition and prolongation of survival time. Moreover, an antigen-spreading effect was detected after peptide intra-tumor injection. Peptide intra-tumor injection is an effective method of enhancing tumor cell antigenicity. It can induce additional peptide loading onto tumor cells, making tumor cells more antigenic for specific cytotoxic T-lymphocyte activity. Peptide intra-tumor injection may be a useful option for improvement of antigen-specific immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Daisuke Nobuoka
- Division of Cancer Immunotherapy; Research Center for Innovative Oncology; National Cancer Center Hospital East; Kashiwa, Japan; Department of Gastroenterological Surgery; Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences; Kita-ku, Okayama, Japan
| | | | | | | |
Collapse
|
47
|
Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, Imamura M, Torigoe T, Takahashi A, Hirohashi Y, Tamura Y, Tsukahara T, Kanaseki T, Sato N, Hirata K. Immunotherapeutic benefit of α-interferon (IFNα) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci 2012; 104:124-9. [PMID: 23078230 DOI: 10.1111/cas.12046] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/04/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis protein (IAP) family containing a single baculovirus IAP repeat domain, is highly expressed in cancerous tissues but not in normal counterparts. Our group identified an HLA-A24-restricted antigenic peptide, survivin-2B80-88 (AYACNTSTL), that is recognized by CD8 + CTLs and functions as an immunogenic molecule in patients with cancers of various histological origins such as colon, breast, lung, oral, and urogenital malignancies. Subsequent clinical trials with this epitope peptide alone resulted in clinical and immunological responses. However, these were not strong enough for routine clinical use as a therapeutic cancer vaccine, and our previous study of colon cancer patients indicated that treatment with a vaccination protocol of survivin-2B80-88 plus incomplete Freund's adjuvant (IFA) and α-interferon (IFNα) conferred overt clinical improvement and enhanced the immunological responses of patients. In the current study, we further investigated whether this vaccination protocol could efficiently provide not only improved immune responses but also better clinical outcomes for advanced pancreatic cancers. Tetramer and enzyme-linked immunosorbent spot analysis data indicated that more than 50% of the patients had positive clinical and immunological responses. In contrast, assessment of treatment with IFNα only to another group of cancer patients resulted in no obvious increase in the frequency of survivin-2B80-88 peptide-specific CTLs. Taken together, our data clearly indicate that a vaccination protocol of survivin-2B80-88 plus IFA and IFNα is very effective and useful in immunotherapy for this type of poor-prognosis neoplasm. This trial was registered with the UMIN Clinical Trials Registry, no. UMIN000000905.
Collapse
Affiliation(s)
- Hidekazu Kameshima
- Department of Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Intratumoral peptide injection enhances tumor cell antigenicity recognized by cytotoxic T lymphocytes: a potential option for improvement in antigen-specific cancer immunotherapy. Cancer Immunol Immunother 2012; 62:639-52. [PMID: 23143746 PMCID: PMC3624010 DOI: 10.1007/s00262-012-1366-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3144–152 (FVGEFFTDV) and cytomegalovirus495–503 (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3144–152 and cytomegalovirus495–503 peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin257–264 peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors.
Collapse
|