1
|
Donate-Correa J, Ferri CM, Mora-Fernández C, Pérez-Delgado N, González-Luis A, Navarro-González JF. Pentoxifylline ameliorates subclinical atherosclerosis progression in patients with type 2 diabetes and chronic kidney disease: a randomized pilot trial. Cardiovasc Diabetol 2024; 23:314. [PMID: 39182114 PMCID: PMC11344929 DOI: 10.1186/s12933-024-02393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is associated with a higher risk of cardiovascular disease (CVD). Pentoxifylline (PTF), a nonselective phosphodiesterase inhibitor with anti-inflammatory, antiproliferative, and antifibrotic actions, has demonstrated renal benefits in both clinical trials and meta-analyses. The present work aimed to study the effects of PTF on the progression of subclinical atherosclerosis (SA) in a population of patients with diabetes and moderate to severe chronic kidney disease (CKD). METHODS In this open-label, randomized controlled, prospective single-center pilot study the evolution of carotid intima-media thickness (CIMT) and ankle-brachial index (ABI) were determined in 102 patients with type 2 diabetes mellitus and CKD assigned to PTF, aspirin or control groups during 18 months. We also determined the variations in the levels of inflammatory markers and Klotho (KL), a protein involved in maintaining cardiovascular health, and their relationship with the progression of SA. RESULTS Patients treated with PTF presented a better evolution of CIMT, increased KL mRNA levels in peripheral blood cells (PBCs) and reduced the inflammatory state. The progression of CIMT values was inversely related to variations in KL both in serum and mRNA expression levels in PBCs. Multiple regression analysis demonstrated that PTF treatment and variations in mRNA KL expression in PBCs, together with changes in HDL, were significant determinants for the progression of CIMT (adjusted R2 = 0.24, P < 0.001) independently of traditional risk factors. Moreover, both variables constituted protective factors against a worst progression of CIMT [OR: 0.103 (P = 0.001) and 0.001 (P = 0.005), respectively]. CONCLUSIONS PTF reduced SA progression assessed by CIMT variation, a beneficial effect related to KL gene expression in PBCs. TRIAL REGISTRATION The study protocol code is PTF-AA-TR-2009 and the trial was registered on the European Union Drug Regulating Authorities Clinical Trials (EudraCT #2009-016595-77). The validation date was 2010-03-09.
Collapse
Grants
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PI21/01037, PI16/00024, PI19/00035, RD16/0009/0022, CP20/00122, FI22/00213 Instituto de Salud Carlos III
- PIFIISC21/08 Fundación Canaria Instituto de Investigación Sanitaria de Canarias
- TESIS2018010110 Agencia Canaria de Investigación, Innovación y Sociedad de la Información
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain
| | - Nayra Pérez-Delgado
- Clinical Analysis Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- RICORS2040 (RD21/0005/0013), Instituto de Salud Carlos III, 28000 Madrid, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
2
|
Chung HC, Keiller DR, Swain PM, Chapman SL, Roberts JD, Gordon DA. Responsiveness to endurance training can be partly explained by the number of favorable single nucleotide polymorphisms an individual possesses. PLoS One 2023; 18:e0288996. [PMID: 37471354 PMCID: PMC10358902 DOI: 10.1371/journal.pone.0288996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
Cardiorespiratory fitness is a key component of health-related fitness. It is a necessary focus of improvement, especially for those that have poor fitness and are classed as untrained. However, much research has shown individuals respond differentially to identical training programs, suggesting the involvement of a genetic component in individual exercise responses. Previous research has focused predominantly on a relatively low number of candidate genes and their overall influence on exercise responsiveness. However, examination of gene-specific alleles may provide a greater level of understanding. Accordingly, this study aimed to investigate the associations between cardiorespiratory fitness and an individual's genotype following a field-based endurance program within a previously untrained population. Participants (age: 29 ± 7 years, height: 175 ± 9 cm, mass: 79 ± 21 kg, body mass index: 26 ± 7 kg/m2) were randomly assigned to either a training (n = 21) or control group (n = 24). The training group completed a periodized running program for 8-weeks (duration: 20-30-minutes per session, intensity: 6-7 Borg Category-Ratio-10 scale rating, frequency: 3 sessions per week). Both groups completed a Cooper 12-minute run test to estimate cardiorespiratory fitness at baseline, mid-study, and post-study. One thousand single nucleotide polymorphisms (SNPs) were assessed via saliva sample collections. Cooper run distance showed a significant improvement (0.23 ± 0.17 km [11.51 ± 9.09%], p < 0.001, ES = 0.48 [95%CI: 0.16-0.32]), following the 8-week program, whilst controls displayed no significant changes (0.03 ± 0.15 km [1.55 ± 6.98%], p = 0.346, ES = 0.08, [95%CI: -0.35-0.95]). A significant portion of the inter-individual variation in Cooper scores could be explained by the number of positive alleles a participant possessed (r = 0.92, R2 = 0.85, p < 0.001). These findings demonstrate the relative influence of key allele variants on an individual's responsiveness to endurance training.
Collapse
Affiliation(s)
- Henry C. Chung
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, United Kingdom
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Don R. Keiller
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Patrick M. Swain
- Department of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Shaun L. Chapman
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- HQ Army Recruiting and Initial Training Command, United Kingdom Ministry of Defence, Upavon, United Kingdom
| | - Justin D. Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan A. Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
3
|
Donate-Correa J, Ferri CM, Martín-Núñez E, Pérez-Delgado N, González-Luis A, Mora-Fernández C, Navarro-González JF. Klotho as a biomarker of subclinical atherosclerosis in patients with moderate to severe chronic kidney disease. Sci Rep 2021; 11:15877. [PMID: 34354161 PMCID: PMC8342510 DOI: 10.1038/s41598-021-95488-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) has been associated with a higher risk of cardiovascular disease (CVD). CKD patients present a decrease in the levels of the protein Klotho that accompanies the decrease in kidney function. This protein has been related to protective effects against CVD. However, it is unclear whether circulating Klotho, and its expression in peripheral blood cells (PBCs) are also associated with subclinical atherosclerosis in CKD. The present study aimed to study the relationship between Klotho and subclinical atherosclerosis in a population of patients with moderate to severe CKD. We determined the serum levels and gene expression in PBCs levels of Klotho and three inflammatory cytokines in 103 patients with CKD and investigated their relationship with two surrogate markers of subclinical atherosclerotis: ankle-brachial index (ABI) and carotid intima-media thickness (CIMT). Patients with subclinical atherosclerosis presented lower serum and PBCs expression levels of Klotho. Both variables were associated with the presence of subclinical atherosclerosis, being directly related with ABI and inversely with CIMT (P < 0.0001 for both). Multiple regression analysis demonstrated that both variables were significant determinants for ABI (adjusted R2 = 0.511, P < 0.0001) and CIMT (adjusted R2 = 0.445, P < 0.0001), independently of traditional and emergent cardiovascular risk factors. Moreover, both constituted protective factors against subclinical atherosclerosis [OR: 0.993 (P = 0.002) and 0.231 (P = 0.025), respectively]. Receiver operating characteristic analysis pointed to the utility of serum Klotho (area under the curve [AUC]: 0.817, 95% CI: 0.736-0.898, P < 0.001) and its gene expression in PBCs (AUC: 0.742, 95% CI: 0.647-0.836, P < 0.001) to distinguish subclinical atherosclerosis. The reductions in serum and PBCs expression levels of Klotho in CKD patients are independently associated with the presence of for subclinical atherosclerosis. Further research exploring whether therapeutic approaches to maintain or elevate Klotho could reduce the impact of CVD in CKD patients is warranted.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Nayra Pérez-Delgado
- Clinical Analysis Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain.
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
4
|
Tyurenkov IN, Perfilova VN, Nesterova AA, Glinka Y. Klotho Protein and Cardio-Vascular System. BIOCHEMISTRY (MOSCOW) 2021; 86:132-145. [PMID: 33832412 DOI: 10.1134/s0006297921020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Klotho protein affects a number of metabolic pathways essential for pathogenesis of cardio-vascular diseases and their prevention. It inhibits lipid peroxidation and inflammation, as well as prevents endothelial injury and calcification of blood vessels. Klotho decreases rigidity of blood vessels and suppresses development of the heart fibrosis. Low level of its expression is associated with a number of diseases. Cardioprotective effect of klotho is based on its ability to interact with multiple receptors and ion channels. Being a pleiotropic protein, klotho could be a useful target for therapeutic intervention in the treatment of cardio-vascular diseases. In this review we present data on pharmaceuticals that stimulate klotho expression and suggest some promising research directions.
Collapse
Affiliation(s)
- Ivan N Tyurenkov
- Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, 400066, Russia
| | - Valentina N Perfilova
- Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, 400066, Russia.
| | - Alla A Nesterova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of the Volgograd State Medical University, Ministry of Health of the Russian Federation, Pyatigorsk, 357500, Russia
| | - Yelena Glinka
- Keenan Research Centre, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
5
|
Forte M, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Vascular ageing in hypertension: Focus on mitochondria. Mech Ageing Dev 2020; 189:111267. [PMID: 32473170 DOI: 10.1016/j.mad.2020.111267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Hypertension is a common age-related disease, along with vascular and neurodegenerative diseases. Vascular ageing increases during hypertension, but hypertension itself accelerates vascular ageing, thus creating a vicious circle. Vascular stiffening, endothelial dysfunction, impaired contractility and vasorelaxation are the main alterations related to vascular ageing, as a consequence of vascular smooth muscle and endothelial cells senescence. Several molecular mechanisms have been involved into the functional and morphological changes of the aged vessels. Among them, oxidative stress, inflammation, extracellular matrix deregulation and mitochondrial dysfunction are the best characterized. In the present review, we discuss relevant literature about the biology of vascular and cerebrovascular ageing with a particular focus on mitochondria signalling. We underline the therapeutic strategies, able to improve mitochondrial health, which may represent a promising tool to decrease vascular dysfunction associated with ageing and hypertension-related complications.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Maria Cotugno
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | - Franca Bianchi
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy
| | | | - Speranza Rubattu
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli IS, Italy; Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
| |
Collapse
|
6
|
Ramez M, Ramezani F, Nasirinezhad F, Rajabi H. High‐intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Exp Physiol 2020; 105:652-665. [DOI: 10.1113/ep087994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Maral Ramez
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| | - Fatemeh Ramezani
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Physiology DepartmentFaculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Hamid Rajabi
- Department of Exercise physiologyFaculty of Physical Education and Sport Sciences, Kharazmi University Tehran Iran
| |
Collapse
|
7
|
Yokoyama S, Oguro R, Yamamoto K, Akasaka H, Ito N, Kawai T, Kusunoki H, Takeya Y, Takeya-Onishi M, Yamamoto-Hanasaki H, Sugimoto K, Ikebe K, Gondo Y, Ohishi M, Kamide K, Rakugi H. A klotho gene single nucleotide polymorphism is associated with the onset of stroke and plasma klotho concentration. Aging (Albany NY) 2019; 11:104-114. [PMID: 30595559 DOI: 10.18632/aging.101728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023]
Abstract
Klotho protects against development of multiple age-related disorders, including cardiovascular diseases. We assessed whether a human klotho single nucleotide polymorphism (SNP) rs650439 is associated with the onset of stroke in hypertensive patients and plasma klotho concentration in the general population. Five hundred and twenty-three patients with hypertension were analyzed for both the presence of rs650439 and onset of stroke. We found that hypertensive patients with the TT genotype of rs650439 (n=52) had a higher incidence of stroke than those with AT (n=257) and AA (n=214) genotypes. Multivariate analysis indicated that the TT genotype was the only risk factor associated with increased incidence of stroke. Plasma klotho concentrations were measured in a general population (age=70±1 years) to assess the association between rs650439 and plasma klotho concentration. A significant trend was observed in the elderly population where plasma klotho concentration decreased as the T alleles in rs650439 increased. Subjects with a TT genotype had lower plasma klotho concentrations than those with AT+AA genotypes. In conclusion, TT genotype of klotho SNP (rs650439) is correlated with an increased incidence of stroke in hypertensive patients, and the mechanism underlying this correlation might involve the effect of rs650439 T allele on plasma klotho concentrations.
Collapse
Affiliation(s)
- Serina Yokoyama
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryosuke Oguro
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Norihisa Ito
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tatsuo Kawai
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kusunoki
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Miyuki Takeya-Onishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroko Yamamoto-Hanasaki
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Gondo
- Department of Clinical Thanatology and Geriatric Behavioral Science, Osaka University Graduate School of Human Sciences, Suita, Osaka 565-0871, Japan
| | - Mitsuru Ohishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima, Kagoshima 890-8544, Japan
| | - Kei Kamide
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.,Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5171945. [PMID: 30671457 PMCID: PMC6323445 DOI: 10.1155/2018/5171945] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Kałużna-Oleksy
- Department of Cardiology, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Valdivielso JM, Bozic M, Galimudi RK, Bermudez-López M, Navarro-González JF, Fernández E, Betriu À. Association of the rs495392 Klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrol Dial Transplant 2018; 34:2079-2088. [DOI: 10.1093/ndt/gfy207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Prevalence of atherosclerotic cardiovascular disease and its rate of progression are higher in patients with chronic kidney disease (CKD) compared with the general population. Mineral metabolism parameters have been shown to be involved in the increased velocity of atheromatosis progression. The aim of this study is to determine the role of 11 single-nucleotide polymorphisms (SNPs) of the Klotho gene on the rate of atherosclerosis progression in CKD.
Methods
This was a multicentre, prospective, observational study of 1439 CKD patients from the NEFRONA cohort. Carotid and femoral ultrasounds were performed at baseline and after 24 months in 10 arterial territories. Progression of atheromatosis was defined as an increase in the number of territories with plaque. Genotyping of 11 SNPs of the Klotho gene was performed and its association with atheromatosis progression was determined by multivariate logistic regression.
Results
Bivariate analysis showed that none of the 11 SNPs was associated with atheroma plaque prevalence, but 3 of them (rs495392, rs562020 and rs567170) showed association with atheromatosis progression. The multivariate analysis revealed that only rs495392 showed a statistically significant association with atheromatosis progression, after adjustment for several parameters known to affect it in CKD patients. Thus, the presence of one allele T was associated with a reduction of 30% of the odds of progression, whereas the presence of the two T alleles was associated with a decrease close to 50%.
Conclusions
The presence of the allele T of the SNP rs495392 of the Klotho gene is associated with a decrease in the odds of progression of atheromatosis in CKD patients.
Collapse
Affiliation(s)
- José M Valdivielso
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Rajesh Kumar Galimudi
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Marcelino Bermudez-López
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elvira Fernández
- Department of Nephrology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Àngels Betriu
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLleida, RedinRen RETIC, ISCIII, Lleida, Spain
| |
Collapse
|
10
|
Abstract
The vertebrate endoskeleton is not a mere frame for muscle attachment to facilitate locomotion, but is a massive organ integrated with many physiologic functions including mineral and energy metabolism. Mineral balance is maintained by tightly controlled ion fluxes that are external (intestine and kidney) and internal (between bone and other organs), and are regulated and coordinated by many endocrine signals between these organs. The endocrine fibroblast growth factors (FGFs) and Klotho gene families are complex systems that co-evolved with the endoskeleton. In particular, FGF23 and αKlotho which are primarily derived from bone and kidney respectively, are critical in maintaining mineral metabolism where each of these proteins serving highly diverse roles; abound with many unanswered questions regarding their upstream regulation and downstream functions. Genetic lesions of components of this network produce discreet disturbances in many facets of mineral metabolism. One acquired condition with colossal elevations of FGF23 and suppression of αKlotho is chronic kidney disease where multiple organ dysfunction contributes to the morbidity and mortality. However, the single most important group of derangements that encompasses the largest breadth of complications is mineral metabolism disorders. Mineral metabolic disorders in CKD impact negatively and significantly on the progression of renal disease as well as extra-renal complications. Knowledge of the origin, nature, and impact of phosphate, FGF23, and αKlotho derangements is pivotal to understanding the pathophysiology and treatment of CKD.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry 2016; 6:e876. [PMID: 27576165 PMCID: PMC5022081 DOI: 10.1038/tp.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.
Collapse
|
12
|
Rubinek T, Wolf I. The Role of Alpha-Klotho as a Universal Tumor Suppressor. VITAMINS AND HORMONES 2016; 101:197-214. [PMID: 27125743 DOI: 10.1016/bs.vh.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The klotho gene is implicated in many physiological activities, among them aging, glucose metabolism, and phosphate and calcium metabolism. Many cellular activities of klotho were implicated in promoting these activities. Two of them, inhibition of the insulin-like growth factor-1 pathway and of the Wnt signaling pathway, are also major pathways associated with cancer development and progression. These discoveries prompted a surge of research aiming to elucidate the role of klotho in cancer. Studies show that klotho is universally silenced in a wide array of malignancies, including breast, pancreatic, ovarian, lung, colorectal, and melanoma, and that klotho's expression can serve as an invaluable prognostic marker. Epigenetic mechanisms, ie, promoter hypermethylation and histone deacetylation, are mainly associated with klotho's silencing; however, different micro-RNAs were also demonstrated to be involved in the process. The activity of klotho on cancer cells growth was also widely investigated, and accumulating data suggest that klotho forced expression or treatment with the soluble protein can inhibit cancer development and progression. Moreover, studies now aim to reveal the specific region in klotho protein that underlies this anticancer activity in order to develop efficient and safe klotho-based medications.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - I Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, James S, Wilkinson IB, Ting S, Hsiao LL, Hiemstra TF, Zehnder D. α-Klotho Expression in Human Tissues. J Clin Endocrinol Metab 2015; 100:E1308-18. [PMID: 26280509 PMCID: PMC4596032 DOI: 10.1210/jc.2015-1800] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT α-Klotho has emerged as a powerful regulator of the aging process. To date, the expression profile of α-Klotho in human tissues is unknown, and its existence in some human tissue types is subject to much controversy. OBJECTIVE This is the first study to characterize systemwide tissue expression of transmembrane α-Klotho in humans. We have employed next-generation targeted proteomic analysis using parallel reaction monitoring in parallel with conventional antibody-based methods to determine the expression and spatial distribution of human α-Klotho expression in health. RESULTS The distribution of α-Klotho in human tissues from various organ systems, including arterial, epithelial, endocrine, reproductive, and neuronal tissues, was first identified by immunohistochemistry. Kidney tissues showed strong α-Klotho expression, whereas liver did not reveal a detectable signal. These results were next confirmed by Western blotting of both whole tissues and primary cells. To validate our antibody-based results, α-Klotho-expressing tissues were subjected to parallel reaction monitoring mass spectrometry (data deposited at ProteomeXchange, PXD002775) identifying peptides specific for the full-length, transmembrane α-Klotho isoform. CONCLUSIONS The data presented confirm α-Klotho expression in the kidney tubule and in the artery and provide evidence of α-Klotho expression across organ systems and cell types that has not previously been described in humans.
Collapse
|
14
|
Mengel-From J, Soerensen M, Nygaard M, McGue M, Christensen K, Christiansen L. Genetic Variants in KLOTHO Associate With Cognitive Function in the Oldest Old Group. J Gerontol A Biol Sci Med Sci 2015; 71:1151-9. [PMID: 26405063 DOI: 10.1093/gerona/glv163] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decline in cognitive abilities is a major concern in aging individuals. A potential important factor for functioning of the central nervous system in late-life stages is the KLOTHO (KL) gene. KL is expressed in various organs including the brain and is involved in multiple biological processes, for example, growth factor signaling. In the present study, 19 tagging gene variants in KL were studied in relation to 2 measures of cognitive function, a 5-item cognitive composite score and the Mini Mental State Examination, in 1,480 Danes 92-100 years of age. We found that heterozygotes for the previously reported KL-VS had poorer cognitive function than noncarriers. Two other variants positioned in the 5' end of the gene, rs398655 and rs562020, were associated with better cognitive function independently of KL-VS, and the common haplotype AG was associated with poorer cognition, consistently across two cognitive measures in two cohort strata. The haplotype effect was stronger than that of KL-VS. Two variants, rs2283368 and rs9526984, were the only variants significantly associated with cognitive decline over 7 years. We discuss an age-dependent effect of KL and the possibility that multiple gene variants in KL are important for cognitive function among the oldest old participants.
Collapse
Affiliation(s)
- Jonas Mengel-From
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark. Department of Clinical Genetics, Odense University Hospital, Odense, Denmark.
| | - Mette Soerensen
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark. Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark. Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Matt McGue
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark. Department of Psychology, University of Minnesota, Minneapolis
| | - Kaare Christensen
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark. Department of Clinical Genetics, Odense University Hospital, Odense, Denmark. Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lene Christiansen
- The Danish Aging Research Center and The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography Unit, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Vervloet MG, Adema AY, Larsson TE, Massy ZA. The role of klotho on vascular calcification and endothelial function in chronic kidney disease. Semin Nephrol 2015; 34:578-85. [PMID: 25498377 DOI: 10.1016/j.semnephrol.2014.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent insights into novel roles of klotho in vascular biology make this primarily kidney-derived protein a possible candidate to form a link between chronic kidney disease and cardiovascular morbidity and mortality. Typical features of vascular dysfunction or structural abnormalities in the arterial wall are exacerbated in klotho-deficient states. Reported klotho functions include inhibition of local phosphate transport in vascular cells, phenotypic switches of vascular cellular elements into bone-forming cells, attenuation of matrix mineralization and calcification, and also preservation of endothelial functional properties and viability. To a large extent these insights rely on animal models of kidney or cardiovascular diseases. In this review the current state of knowledge on these issues is summarized, and we aim to provide a possible new perspective on cardiovascular disease in chronic kidney disease.
Collapse
Affiliation(s)
- Marc G Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research VU (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands.
| | - Aaltje Y Adema
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tobias E Larsson
- Department of Clinical Science, Intervention and Technology, Renal Unit, Karolinska Institute, Stockholm, Sweden; Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden
| | - Ziad A Massy
- Inserm U-1088, University of Picardie Jules verne (UPJV), Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris-Ile-de-France-Ouest University (University of Versailles Saint Quentin (UVSQ)), Paris-Boulogne Billancourt, France
| |
Collapse
|
16
|
Cyclooxygenase 2, toll-like receptor 4 and interleukin 1β mRNA expression in atherosclerotic plaques of type 2 diabetic patients. Inflamm Res 2014; 63:851-8. [PMID: 25095741 DOI: 10.1007/s00011-014-0759-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES AND DESIGN Inflammation has a prominent role in the development of atherosclerosis. Type 2 diabetes could contribute to atherosclerosis development by promoting inflammation. This status might accelerate changes in intrinsic vascular wall cells and favor plaque formation. Cyclooxygenase 2 (COX-2) is highly expressed in atherosclerotic plaques. COX-2 gene expression is promoted through activation of toll-like receptor 4 (TLR4) and pro-inflammatory cytokine interleukin 1β (IL1-β). Aim of this study is to investigate whether expression profiles of pro-inflammatory genes such as COX-2, TLR4 and IL1-β in atherosclerotic plaques are altered in type 2 diabetes (T2D). METHODS Total RNA was isolated from plaques of atherosclerotic patients and expression of COX-2, TLR4, IL1-β analyzed using real-time PCR. Histological analysis was performed on sections of the plaque to establish the degree of instability. RESULTS Statistically significant differences in mRNA expression of COX-2 and IL1-β were found in plaques of T2D compared with non-T2D patients. A multi-variable linear regression model suggests that COX-2 mRNA expression is affected by T2D pathology and IL1-β mRNA expression in atherosclerotic plaques. CONCLUSIONS Our results support the hypothesis that T2D pathology contributes in vivo to increase the inflammatory process associated with the atherosclerotic plaque formation, as shown by an increment of COX-2 and IL1-β mRNA expression.
Collapse
|
17
|
Navarro-González JF, Donate-Correa J, Muros de Fuentes M, Pérez-Hernández H, Martínez-Sanz R, Mora-Fernández C. Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart 2014; 100:34-40. [PMID: 24165855 DOI: 10.1136/heartjnl-2013-304746] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Klotho is involved in vascular health. We aimed to analyse in a cross-sectional study the relationship between Klotho and human coronary artery disease (CAD). METHODS The study included 371 subjects who underwent coronary angiography and 70 patients who underwent elective cardiac surgery recruited between May 2008 and June 2009. The presence and severity (stenosis index) of CAD, cardiovascular risk factors, Klotho gene expression in the thoracic aorta, and serum soluble Klotho concentrations were evaluated. RESULTS The soluble Klotho concentration was lower (p<0.001) in patients with significant CAD (n=233). The maximal stenosis observed in every epicardial artery and the stenosis severity index was significantly lower in patients within the higher soluble Klotho concentrations (p<0.0001). Multiple regression analysis showed that serum Klotho concentrations were inverse and significantly associated with CAD (adjusted R(2)=0.67, p<0.001). Multivariate logistic regression analysis showed that risk factors for significant CAD included age, diabetes, smoking and inflammation, whereas high serum Klotho values were associated with a lower risk for CAD. Lower mRNA expression level of Klotho was observed in 46 patients with significant CAD, as compared with subjects without CAD (p=0.01). Logistic regression analysis showed that high Klotho gene expression was independently associated with lower risk for CAD. CONCLUSIONS Patients with significant CAD present lower soluble concentrations of Klotho, as well as reduced levels of Klotho gene expression in the vascular wall. Reduced serum Klotho concentrations and decreased vascular Klotho gene expression were associated with the presence and severity of CAD independently of established cardiovascular risk factors.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Research Division, Hospital Universitario Nuestra Señora de Candelaria, , Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
18
|
A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol 2013; 46:577-81. [DOI: 10.1007/s11255-013-0536-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
19
|
Klotho gene polymorphism of rs3752472 is associated with the risk of urinary calculi in the population of Han nationality in Eastern China. Gene 2013; 526:494-7. [DOI: 10.1016/j.gene.2013.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 01/06/2023]
|
20
|
Abstract
A disproportionate expansion of white adipose tissue and abnormal recruitment of adipogenic precursor cells can not only lead to obesity but also impair glucose metabolism, which are both common causes of insulin resistance and diabetes mellitus. The development of novel and effective therapeutic strategies to slow the progression of obesity, diabetes mellitus and their associated complications will require improved understanding of adipogenesis and glucose metabolism. Klotho might have a role in adipocyte maturation and systemic glucose metabolism. Klotho increases adipocyte differentiation in vitro, and mice that lack Klotho activity are lean owing to reduced white adipose tissue accumulation; moreover, mice that lack the Kl gene (which encodes Klotho) are resistant to obesity induced by a high-fat diet. Knockout of Kl in leptin-deficient Lep(ob/ob) mice reduces obesity and increases insulin sensitivity, which lowers blood glucose levels. Energy metabolism might also be influenced by Klotho. However, further studies are needed to explore the possibility that Klotho could be a novel therapeutic target to reduce obesity and related complications, and to determine whether and how Klotho might influence the regulation and function of a related protein, β-Klotho, which is also involved in energy metabolism.
Collapse
Affiliation(s)
- M Shawkat Razzaque
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Research and Education Building, Room 304, 190 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, et alScott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Mägi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, Yengo L, Lecoeur C, Shungin D, Sanna S, Sidore C, Johnson PCD, Jukema JW, Johnson T, Mahajan A, Verweij N, Thorleifsson G, Hottenga JJ, Shah S, Smith AV, Sennblad B, Gieger C, Salo P, Perola M, Timpson NJ, Evans DM, Pourcain BS, Wu Y, Andrews JS, Hui J, Bielak LF, Zhao W, Horikoshi M, Navarro P, Isaacs A, O'Connell JR, Stirrups K, Vitart V, Hayward C, Esko T, Mihailov E, Fraser RM, Fall T, Voight BF, Raychaudhuri S, Chen H, Lindgren CM, Morris AP, Rayner NW, Robertson N, Rybin D, Liu CT, Beckmann JS, Willems SM, Chines PS, Jackson AU, Kang HM, Stringham HM, Song K, Tanaka T, Peden JF, Goel A, Hicks AA, An P, Müller-Nurasyid M, Franco-Cereceda A, Folkersen L, Marullo L, Jansen H, Oldehinkel AJ, Bruinenberg M, Pankow JS, North KE, Forouhi NG, Loos RJF, Edkins S, Varga TV, Hallmans G, Oksa H, Antonella M, Nagaraja R, Trompet S, Ford I, Bakker SJL, Kong A, Kumari M, Gigante B, Herder C, Munroe PB, Caulfield M, Antti J, Mangino M, Small K, Miljkovic I, Liu Y, Atalay M, Kiess W, James AL, Rivadeneira F, Uitterlinden AG, Palmer CNA, Doney ASF, Willemsen G, Smit JH, Campbell S, Polasek O, Bonnycastle LL, Hercberg S, Dimitriou M, Bolton JL, Fowkes GR, Kovacs P, Lindström J, Zemunik T, Bandinelli S, Wild SH, Basart HV, Rathmann W, Grallert H, Maerz W, Kleber ME, Boehm BO, Peters A, Pramstaller PP, Province MA, Borecki IB, Hastie ND, Rudan I, Campbell H, Watkins H, Farrall M, Stumvoll M, Ferrucci L, Waterworth DM, Bergman RN, Collins FS, Tuomilehto J, Watanabe RM, de Geus EJC, Penninx BW, Hofman A, Oostra BA, Psaty BM, Vollenweider P, Wilson JF, Wright AF, Hovingh GK, Metspalu A, Uusitupa M, Magnusson PKE, Kyvik KO, Kaprio J, Price JF, Dedoussis GV, Deloukas P, Meneton P, Lind L, Boehnke M, Shuldiner AR, van Duijn CM, Morris AD, Toenjes A, Peyser PA, Beilby JP, Körner A, Kuusisto J, Laakso M, Bornstein SR, Schwarz PEH, Lakka TA, Rauramaa R, Adair LS, Smith GD, Spector TD, Illig T, de Faire U, Hamsten A, Gudnason V, Kivimaki M, Hingorani A, Keinanen-Kiukaanniemi SM, Saaristo TE, Boomsma DI, Stefansson K, van der Harst P, Dupuis J, Pedersen NL, Sattar N, Harris TB, Cucca F, Ripatti S, Salomaa V, Mohlke KL, Balkau B, Froguel P, Pouta A, Jarvelin MR, Wareham NJ, Bouatia-Naji N, McCarthy MI, Franks PW, Meigs JB, Teslovich TM, Florez JC, Langenberg C, Ingelsson E, Prokopenko I, Barroso I. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet 2012; 44:991-1005. [PMID: 22885924 PMCID: PMC3433394 DOI: 10.1038/ng.2385] [Show More Authors] [Citation(s) in RCA: 651] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Collapse
Affiliation(s)
- Robert A Scott
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tangri N, Alam A, Wooten EC, Huggins GS. Lack of association of Klotho gene variants with valvular and vascular calcification in Caucasians: a candidate gene study of the Framingham Offspring Cohort. Nephrol Dial Transplant 2011; 26:3998-4002. [PMID: 21565945 DOI: 10.1093/ndt/gfr188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Valvular and vascular calcification are important early aging phenotypes and represent risk factors for cardiovascular morbidity and mortality. Klotho is a gene primarily expressed in the kidney that has an important role in calcium-phosphate homeostasis. The functional KL-VS variant of Klotho has been associated with aging and cardiovascular disease in human studies, but its role in valvular and vascular calcification remains unknown. We performed a candidate gene study in the Framingham Offspring Cohort to evaluate the effect of KL-VS variant of the Klotho gene on valvular calcification. METHODS We analyzed the Klotho KL-VS genotype (rs9536314) from the Affymetrix 550K genome-wide dataset, distributed by dbGAP, on 1389 cases and 2139 controls from the Framingham Heart Study Offspring Cohort. Allele and genotype frequencies were compared between cases and controls. Valvular calcification was defined as presence of calcification on the mitral annulus or the aortic valve as determined by echocardiography. A sensitivity analysis of coronary artery calcification by electron beam computed tomography was performed on 1363 patients. RESULTS The frequency of the TT versus the TG allele was not different between the cases and the controls (39 versus 41%). The KL-VS variant of Klotho was not associated with valvular or vascular calcification, despite adequate power to detect association (86% for odds ratios ≥1.2). In sensitivity analyses, no association (P > 0.001) between other common variants of Klotho, β-Klotho or fibroblast growth factor-23 and the end points of valvular or vascular calcification was observed. CONCLUSIONS In our adequately powered candidate gene study, we did not observe an association with the functional KL-VS variant of Klotho and presence of valvular or vascular calcification. Future studies aimed at combining cohorts with echocardiographic phenotypes need to be conducted to identify genetic variants associated with valvular calcification.
Collapse
Affiliation(s)
- Navdeep Tangri
- Department of Medicine, Tufts Medical Center, Boston, MA, USA.
| | | | | | | |
Collapse
|
23
|
Maekawa Y, Ohishi M, Ikushima M, Yamamoto K, Yasuda O, Oguro R, Yamamoto-Hanasaki H, Tatara Y, Takeya Y, Rakugi H. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen-activated kinase pathway. Geriatr Gerontol Int 2011; 11:510-6. [PMID: 21518171 DOI: 10.1111/j.1447-0594.2011.00699.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM Mice that carry the Klotho mutation (KL(-) (/) (-) ) manifest diverse age-related disorders similar to those observed in humans. Thus, the Klotho protein might function as an anti-aging hormone in mammals. Recently, we reported that Klotho recombinant protein attenuated apoptosis and cellular senescence in endothelial cells, but the mechanism remained unclear. Here, we designed an in vitro study to test whether inhibitors of extracellular signal-regulated kinase and mitogen-activated kinase kinase could affect Klotho regulation of apoptosis and cellular senescence. METHODS Cellular senescence was investigated in human umbilical vein endothelial cells treated with or without Klotho recombinant protein, and with or without inhibitors of mitogen-activated kinases. Senescence was quantified by staining with senescence-associated β-galactosidase and by evaluating western blots probed for phosphorylation of mitogen-activated kinases. Apoptosis was assayed on western probed for p53, p21, and caspase-3 and -9. RESULTS The Klotho recombinant protein induced transient phosphorylation of mitogen-activated kinases within a few minutes. Application of inhibitors of mitogen-activated kinases attenuated the ability of Klotho to interfere with apoptosis and senescence in endothelial cells. CONCLUSION This study demonstrated that Klotho attenuated cellular apoptosis and senescence in vascular cells via mitogen-activated kinase kinase and extracellular signal-regulated kinase pathways.
Collapse
Affiliation(s)
- Yoshihiro Maekawa
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|