1
|
Cathala A, Devroye C, Robert É, Vallée M, Revest JM, Artigas F, Spampinato U. Serotonin2B receptor blockade in the rat dorsal raphe nucleus suppresses cocaine-induced hyperlocomotion through an opposite control of mesocortical and mesoaccumbens dopamine pathways. Neuropharmacology 2020; 180:108309. [DOI: 10.1016/j.neuropharm.2020.108309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
|
2
|
The central serotonin2B receptor as a new pharmacological target for the treatment of dopamine-related neuropsychiatric disorders: Rationale and current status of research. Pharmacol Ther 2018; 181:143-155. [DOI: 10.1016/j.pharmthera.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. eNeuro 2016; 3:eN-NWR-0009-16. [PMID: 27419218 PMCID: PMC4942720 DOI: 10.1523/eneuro.0009-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Motivated behaviors and many psychopathologies typically involve changes in dopamine release from the projections of the ventral tegmental area (VTA) and/or the substantia nigra pars compacta (SNc). The morphogen Sonic Hedgehog (Shh) specifies fates of midbrain dopamine neurons, but VTA-specific effects of Shh signaling are also being uncovered. In this study, we assessed the role of the Shh receptor Cdon in the development of VTA and SNc dopamine neurons. We find that Cdon is expressed in the proliferating progenitor zone of the embryonic ventral midbrain and that the number of proliferating cells in this region is increased in mouse Cdon(-/-) embryos. Consistent with a role of Shh in the regulation of neuronal proliferation in this region, we find that the number of tyrosine hydroxylase (TH)-positive neurons is increased in the VTA of Cdon(-/-) mice at birth and that this effect endures into adulthood. In contrast, the number of TH-positive neurons in the SNc is not altered in Cdon(-/-) mice at either age. Moreover, adult Cdon(-/-) mice have a greater number of medial prefrontal cortex (mPFC) dopamine presynaptic sites, and increased baseline concentrations of dopamine and dopamine metabolites selectively in this region. Finally, consistent with increased dopamine function in the mPFC, we find that adult Cdon(-/-) mice fail to exhibit behavioral plasticity upon repeated amphetamine treatment. Based on these data, we suggest that Cdon plays an important role encoding the diversity of dopamine neurons in the midbrain, influencing both the development of the mesocortical dopamine pathway and behavioral outputs that involve this neural circuitry.
Collapse
|
5
|
Reynolds LM, Gifuni AJ, McCrea ET, Shizgal P, Flores C. dcc haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking. Behav Brain Res 2016; 298:27-31. [DOI: 10.1016/j.bbr.2015.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/25/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022]
|
6
|
Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res 2016; 1641:217-33. [PMID: 26790349 DOI: 10.1016/j.brainres.2016.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
7
|
Ko CY, Liu YP. Disruptions of sensorimotor gating, cytokines, glycemia, monoamines, and genes in both sexes of rats reared in social isolation can be ameliorated by oral chronic quetiapine administration. Brain Behav Immun 2016; 51:119-130. [PMID: 26254231 DOI: 10.1016/j.bbi.2015.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of schizophrenia in patients with metabolic abnormalities remains unclear. Our previous study demonstrated that isolation rearing (IR) induced longitudinal concomitant changes of pro-inflammatory cytokine (pro-CK) levels and metabolic abnormalities with a developmental origin. However, the general consensus, believes that these abnormalities are caused by antipsychotic treatment in schizophrenic patients. The IR paradigm presents with face, construct, and predictive validity for schizophrenia. Therefore, we employed IR rats of both sexes to examine whether chronic quetiapine (QTP, a second-generation antipsychotic medication) treatment induces disruptions of metabolism (body weight, blood pressure, and the glycemic and lipid profiles) or cytokines [interleukin (IL)-1 beta, IL-6, IL-10, interferon-gamma, and tumor necrosis factor (TNF)-alpha], and further, whether it reverses deficits of behaviors [locomotor activity and prepulse inhibition (PPI)] and the expression of monoamines (dopamine and serotonin) and related genes (Htr1a, Htr2a, Htr3a, Drd1a, and Gabbr2). IR induced higher levels of pro-CK, dysglycemia, blood pressure, locomotor activity, and impaired PPI, simultaneously destabilizing cortico-striatal monoamines and relevant genes in both sexes, while QTP demonstrated dose-dependent reversal of these changes, suggesting that QTP might reduce the pro-CKs to regulate these abnormalities. Our data implied that antipsychotics may not be the solitary factor causing metabolic problems in schizophrenia and suggested that inflammatory changes may play a vital role in the developmental pathophysiology of schizophrenia and related metabolic abnormalities.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yia-Ping Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei 11490, Taiwan.
| |
Collapse
|
8
|
Pokinko M, Moquin L, Torres-Berrío A, Gratton A, Flores C. Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology (Berl) 2015; 232:3719-29. [PMID: 26264903 DOI: 10.1007/s00213-015-4032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE Signaling through the netrin-1 receptor, deleted in colorectal cancer (DCC), in dopamine neurons controls the extent of their innervation to the medial prefrontal cortex (mPFC) during adolescence. In mice, dcc haploinsufficiency results in increased mPFC dopamine innervation and concentrations in adulthood. In turn, dcc haploinsufficiency leads to resilience to the effects of stimulant drugs of abuse on dopamine release in the nucleus accumbens and behavior. OBJECTIVES First, we set out to determine whether increased mPFC dopamine innervation causes blunted behavioral responses to amphetamine in adult dcc haploinsufficient mice. Second, we investigated whether unc5c, another netrin-1 receptor expressed by dopamine neurons, is involved in these effects. Third, we assessed whether haploinsufficiency of netrin-1 itself leads to blunted behavioral responding to amphetamine, whether this phenotype emerges before or after adolescence and whether increased mPFC dopamine input is the underlying mechanism. RESULTS Adult, but not adolescent, dcc, unc5c and netrin-1 haploinsufficient mice exhibit blunted behavioral responses to amphetamine. Furthermore, adult dcc, unc5c, and netrin-1 haploinsufficient mice have exaggerated mPFC dopamine concentrations in comparison to their wild-type littermates. Importantly, resilience to amphetamine-induced behavioral activation in all the three mouse models is abolished by selective dopamine depletion in the medial prefrontal cortex. CONCLUSIONS dcc, unc5c, or netrin-1 haploinsufficiency leads to increased dopamine content in the mPFC and to resilience against amphetamine-induced behavioral activation. Our findings raise the hypothesis that DCC, UNC5C, and netrin-1 act in concert to organize the adolescent development of mesocortical dopamine innervation and, in turn, determine behavioral responses to drugs of abuse.
Collapse
Affiliation(s)
- Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
9
|
Endogenous Opioid Signaling in the Medial Prefrontal Cortex is Required for the Expression of Hunger-Induced Impulsive Action. Neuropsychopharmacology 2015; 40:2464-74. [PMID: 25865930 PMCID: PMC4538362 DOI: 10.1038/npp.2015.97] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 01/18/2023]
Abstract
Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a 'low-drive' condition (2-h food deprivation), and also after a motivational shift to a 'high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered 'high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features.
Collapse
|
10
|
Graham DL, Buendia MA, Chapman MA, Durai HH, Stanwood GD. Deletion of Gαq in the telencephalon alters specific neurobehavioral outcomes. Synapse 2015; 69:434-45. [PMID: 25963901 DOI: 10.1002/syn.21830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| | - Matthew A Buendia
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Michelle A Chapman
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Gregg D Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, 32303
| |
Collapse
|
11
|
Atomoxetine reverses locomotor hyperactivity, impaired novel object recognition, and prepulse inhibition impairment in mice lacking pituitary adenylate cyclase-activating polypeptide. Neuroscience 2015; 297:95-104. [DOI: 10.1016/j.neuroscience.2015.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022]
|
12
|
Jiang L, O'Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, Ehrlich ME, Schütz G, Gantois I, Lawrence AJ, Drago J. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis 2015; 76:137-158. [PMID: 25684539 DOI: 10.1016/j.nbd.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022] Open
Abstract
D1-dopamine receptors (Drd1a) are highly expressed in the deep layers of the cerebral cortex and the striatum. A number of human diseases such as Huntington disease and schizophrenia are known to have cortical pathology involving dopamine receptor expressing neurons. To illuminate their functional role, we exploited a Cre/Lox molecular paradigm to generate Emx-1(tox) MUT mice, a transgenic line in which cortical Drd1a-expressing pyramidal neurons were selectively ablated. Emx-1(tox) MUT mice displayed prominent forelimb dystonia, hyperkinesia, ataxia on rotarod testing, heightened anxiety-like behavior, and age-dependent abnormalities in a test of social interaction. The latter occurred in the context of normal working memory on testing in the Y-maze and for novel object recognition. Some motor and behavioral abnormalities in Emx-1(tox) MUT mice overlapped with those in CamKIIα(tox) MUT transgenic mice, a line in which both striatal and cortical Drd1a-expressing cells were ablated. Although Emx-1(tox) MUT mice had normal striatal anatomy, both Emx-1(tox) MUT and CamKIIα(tox) MUT mice displayed selective neuronal loss in cortical layers V and VI. This study shows that loss of cortical Drd1a-expressing cells is sufficient to produce deficits in multiple motor and behavioral domains, independent of striatal mechanisms. Primary cortical changes in the D1 dopamine receptor compartment are therefore likely to model a number of core clinical features in disorders such as Huntington disease and schizophrenia.
Collapse
Affiliation(s)
- Luning Jiang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Claire O'Leary
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hyun Ah Kim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jim Massalas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Michelle E Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Günter Schütz
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ilse Gantois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Gallo A, Bouchard C, Rompré PP. Animals with a schizophrenia-like phenotype are differentially sensitive to the motivational effects of cannabinoid agonists in conditioned place preference. Behav Brain Res 2014; 268:202-12. [PMID: 24755307 DOI: 10.1016/j.bbr.2014.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/05/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Cannabis is the most consumed illicit drug worldwide, but among patients with a diagnosis of schizophrenia, this consumption is higher suggesting that they are differentially sensitive to cannabis. We chose to study this problematic using a neurodevelopmental model of schizophrenia: neonatal ventral hippocampus lesions (NVHL). In a first study, we compared the locomotor response to novelty, a mild stress and two doses of amphetamine (0.75 and 1.5 mg/kg) in sham and NVHL rats at post-natal day 35 (PD35) or 56 (PD56). In a second study, we investigated the valence of the motivational effect of Delta-9-tetrahydrocannabinnol (THC, 0.5 mg/kg, i.p.) and the cannabinoid receptor agonist, WIN55,212-2 (WIN, 1 mg/kg, i.p.), using the conditioned place preference paradigm; we used a biased procedure that comprised 12 days of testing with 3 paired-conditioning. The effects of this dose of WIN were also measured on locomotor activity. Results confirmed that the adult NVHL animals displayed a stronger locomotor response to the two doses of amphetamine, but not to novelty and a mild stress. In adult NVHL, but not sham animals, WIN stimulated locomotor activity and produced a conditioned place aversion. At the dose tested, THC tended to produce an aversion in adult sham but not NVHL animals. Taken together these findings show that adult animals with a schizophrenia-like phenotype are differentially sensitive to the motivational effect of cannabinoids.
Collapse
Affiliation(s)
- A Gallo
- Faculté de médicine, Département de Psychiatrie, Université de Montréal, Montréal, Québec, Canada
| | - C Bouchard
- Faculté de médecine, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - P-P Rompré
- Faculté de médecine, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada; FRQ-S Research Center in Behavioural Neurobiology, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
14
|
De Luca MA. Habituation of the responsiveness of mesolimbic and mesocortical dopamine transmission to taste stimuli. Front Integr Neurosci 2014; 8:21. [PMID: 24624065 PMCID: PMC3941202 DOI: 10.3389/fnint.2014.00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
The presentation of novel, remarkable, and unpredictable tastes increases dopamine (DA) transmission in different DA terminal areas such as the nucleus accumbens (NAc) shell and core and the medial prefrontal cortex (mPFC), as estimated by in vivo microdialysis studies in rats. This effect undergoes adaptive regulation, as there is a decrease in DA responsiveness after a single pre-exposure to the same taste. This phenomenon termed habituation has been described as peculiar to NAc shell but not to NAc core and mPFC DA transmission. On this basis, it has been proposed that mPFC DA codes for generic motivational stimulus value and, together with the NAc core DA, is more consistent with a role in the expression of motivation. Conversely, NAc shell DA is specifically activated by unfamiliar or novel taste stimuli and rewards, and might serve to associate the sensory properties of the rewarding stimulus with its biological effect (Bassareo etal., 2002; Di Chiara etal., 2004). Notably, habituation of the DA response to intraoral sweet or bitter tastes is not associated with a reduction in hedonic or aversive taste reactions, thus indicating that habituation is unrelated to satiety-induced hedonic devaluation and that it is not influenced by DA alteration or depletion. This mini-review describes specific circumstances of disruption of the habituation of NAc shell DA responsiveness (De Luca etal., 2011; Bimpisidis etal., 2013). In particular, we observed an abolishment of NAc shell DA habituation to chocolate (sweet taste) by morphine sensitization and mPFC 6-hydroxy-dopamine hydrochloride (6-OHDA) lesion. Moreover, morphine sensitization was associated with the appearance of the habituation in the mPFC, and with an increased and delayed response of NAc core DA to taste in naive rats, but not in pre-exposed animals. The results here described shed light on the mechanism of the habituation phenomenon of mesolimbic and mesocortical DA transmission, and its putative role as a marker of cortical dysfunction in specific conditions such as addiction.
Collapse
Affiliation(s)
- Maria A De Luca
- Department of Biomedical Sciences, Neuropsychopharmacology Section, University of Cagliari Cagliari, Italy ; National Institute of Neuroscience, University of Cagliari Cagliari, Italy
| |
Collapse
|
15
|
Mitrano DA, Pare JF, Smith Y, Weinshenker D. D1-dopamine and α1-adrenergic receptors co-localize in dendrites of the rat prefrontal cortex. Neuroscience 2013; 258:90-100. [PMID: 24231738 DOI: 10.1016/j.neuroscience.2013.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 01/30/2023]
Abstract
Functional interactions between dopaminergic and noradrenergic systems occur in many brain areas, including the prefrontal cortex (PFC). Biochemical, electrophysiological and behavioral data indicate crosstalk between D1 dopamine receptor (D1R) and α1-adrenergic receptor (α1AR) signaling in the PFC. However, it is unknown whether these interactions occur within the same neurons, or between neurons expressing either receptor. In this study, we used electron microscopy immunocytochemistry to demonstrate that D1Rs and α1ARs co-localize in rat PFC neuronal elements, most prominently in dendrites (60-70%), but also significantly in axon terminals, unmyelinated axons and spines (∼20-30%). Our data also showed that the ratio of plasma membrane-bound to intracellular α1ARs is significantly reduced in D1R-expressing dendrites. Similar results were obtained using either a pan-α1AR or a selective α1bAR antibody to label noradrenergic receptors. Thus, these results demonstrate that D1Rs and α1ARs co-localize in PFC dendrites, thereby suggesting that the catecholaminergic effects on PFC function may be driven, at least in part, by cell-autonomous D1R-α1AR interactions.
Collapse
Affiliation(s)
- D A Mitrano
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - J-F Pare
- Department of Neurology and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Y Smith
- Department of Neurology and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - D Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
16
|
Rebholz H, Zhou M, Nairn AC, Greengard P, Flajolet M. Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry 2013; 74:113-21. [PMID: 23290496 PMCID: PMC3878430 DOI: 10.1016/j.biopsych.2012.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dopamine, crucial for the regulation of motor function and reward, acts through receptors mainly expressed in striatum as well as cortex. Dysregulation of dopaminergic signaling is associated with various neuropsychiatric disorders. Consequently, dopamine-regulating drugs are effectively used in treating these disorders, such as L-DOPA for Parkinson's disease, methylphenidate for attention-deficit/hyperactivity disorder, or antipsychotics for schizophrenia. As a result, there has been much interest in dissecting signaling networks in the two morphologically indistinguishable D1- and D2-receptor-expressing medium spiny neurons. Our previous results highlighted a role for casein kinase 2 (CK2) in the modulation of dopamine D1 receptor (D1R) signaling in cells. METHODS To study the importance of CK2 in vivo, we have selectively knocked out CK2, in either D1- or D2-medium spiny neurons (MSNs) and characterized the mice behaviorally and biochemically (n = 4-18). RESULTS The D1-MSN knockout mice exhibited distinct behavioral phenotypes including novelty-induced hyperlocomotion and exploratory behavior, defective motor control, and motor learning. All of these behavioral traits are indicative of dysregulated dopamine signaling and the underlying mechanism appears to be an alteration of D1R signaling. In support of this hypothesis, D1R levels were upregulated in the knockout mice, as well as phosphorylation of DARPP-32 (dopamine- and cyclic adenosine monophosphate [cAMP]-regulated phospho-protein of 32 kDa), most of the behavioral phenotypes were abolished by the D1R antagonist, SCH23390, and the D2-MSN knockout mice displayed no obvious behavioral phenotype. CONCLUSIONS A single kinase, CK2, in D1-MSNs significantly alters dopamine signaling, a finding that could have therapeutic implications for disorders characterized by dopamine imbalance such as Parkinson's disease, attention-deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- Heike Rebholz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| | - Mingming Zhou
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Research Facilities, CMHC, New Haven, CT 06508, US
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| |
Collapse
|
17
|
Bimpisidis Z, De Luca MA, Pisanu A, Di Chiara G. Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli. Eur J Neurosci 2012; 37:613-22. [PMID: 23216547 DOI: 10.1111/ejn.12068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022]
Abstract
Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC.
Collapse
Affiliation(s)
- Zisis Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
18
|
Flores C. Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. J Psychiatry Neurosci 2011; 36:296-310. [PMID: 21481303 PMCID: PMC3163646 DOI: 10.1503/jpn.100171] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Changes in mesocorticolimbic dopamine (DA) neurons and their target cells can be induced throughout life and are important determinants of individual differences in susceptibility to psychopathology. The goal of my research is to gain insight into the nature of the cellularand molecular mechanism underlying the selective plasticity of mesocorticolimbic DA neurons. Here, I review work showing that the guidance cue netrin-1 is implicated in the organization, plasticity and function of mesocorticolimbic DA neurons in rodents. Developmental variations in netrin-1 receptor function result in selective reorganization of medial prefrontal DA circuitry during adolescence and in an adult phenotype protected against schizophrenia-like dopaminergic and behavioural abnormalities. Furthermore, in adulthood, expression of netrin-1 receptors is upregulated by repeated exposure to stimulant drugs of abuse in DA somatodendritic regions and is necessary for drug-induced behavioural plasticity. I propose that risk factors associated with DA-related adult psychiatric disorders alter netrin-1 function.
Collapse
Affiliation(s)
- Cecilia Flores
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, Montréal, QC, Canada.
| |
Collapse
|
19
|
The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. J Neurosci 2011; 31:8381-94. [PMID: 21653843 DOI: 10.1523/jneurosci.0606-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Netrins are guidance cues involved in neural connectivity. We have shown that the netrin-1 receptor DCC (deleted in colorectal cancer) is involved in the functional organization of the mesocorticolimbic dopamine (DA) system. Adult mice with a heterozygous loss-of-function mutation in dcc exhibit changes in indexes of DA function, including DA-related behaviors. These phenotypes are only observed after puberty, a critical period in the maturation of the mesocortical DA projection. Here, we examined whether dcc heterozygous mice exhibit structural changes in medial prefrontal cortex (mPFC) DA synaptic connectivity, before and after puberty. Stereological counts of tyrosine-hydroxylase (TH)-positive varicosities were increased in the cingulate 1 and prelimbic regions of the pregenual mPFC. dcc heterozygous mice also exhibited alterations in the size, complexity, and dendritic spine density of mPFC layer V pyramidal neuron basilar dendritic arbors. Remarkably, these presynaptic and postsynaptic partner phenotypes were not observed in juvenile mice, suggesting that DCC selectively influences the extensive branching and synaptic differentiation that occurs in the maturing mPFC DA circuit at puberty. Immunolabeling experiments in wild-type mice demonstrated that DCC is segregated to TH-positive fibers innervating the nucleus accumbens, with only scarce DCC labeling in mPFC TH-positive fibers. Netrin had an inverted target expression pattern. Thus, DCC-mediated netrin-1 signaling may influence the formation/maintenance of mesocorticolimbic DA topography. In support of this, we report that dcc heterozygous mice exhibit a twofold increase in the density of mPFC DCC/TH-positive varicosities. Our results implicate DCC-mediated netrin-1 signaling in the establishment of mPFC DA circuitry during puberty.
Collapse
|
20
|
Novick AM, Forster GL, Tejani-Butt SM, Watt MJ. Adolescent social defeat alters markers of adult dopaminergic function. Brain Res Bull 2011; 86:123-8. [PMID: 21741457 PMCID: PMC3156656 DOI: 10.1016/j.brainresbull.2011.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/09/2011] [Accepted: 06/24/2011] [Indexed: 12/29/2022]
Abstract
Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking.
Collapse
Affiliation(s)
- Andrew M. Novick
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43 St., Philadelphia, PA 19104, USA
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| | - Shanaz M. Tejani-Butt
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 South 43 St., Philadelphia, PA 19104, USA
| | - Michael J. Watt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA
| |
Collapse
|
21
|
Fu Y, Zhao Y, Luan W, Dong LY, Dong Y, Lai B, Zhu Y, Zheng P. Sigma-1 receptors amplify dopamine D1 receptor signaling at presynaptic sites in the prelimbic cortex. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:1396-408. [PMID: 20732358 DOI: 10.1016/j.bbamcr.2010.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/28/2010] [Accepted: 08/16/2010] [Indexed: 12/01/2022]
Abstract
Sigma-1 receptors are highly expressed in the brain. The downstream signaling mechanisms associated with the sigma-1 receptor activation have been shown to involve the activation of protein kinase C (PKC), the control of Ca(2) homoeostasis and the regulation of voltage- and ligand-gated ion channels. But few studies examined the regulatory effect of sigma-1 receptors on metabotropic receptor signaling. The present paper studied the regulatory effect of sigma-1 receptors on the signaling of dopamine D1 receptors, one of metabotropic receptors, by examining the effect of sigma-1 receptor agonists on the D1 receptor agonist-induced cAMP-dependent protein kinase (PKA) activation at presynaptic sites using the synaptosomes from the prelimbic cortex. The results showed that sigma-1 receptor agonists alone had no effects on the PKA activity, but could amplify the D1 receptor agonist-induced PKA activation. The sigma-1 receptor agonist also amplified the membrane-permeable analog of cAMP- and the adenylyl cyclase (AC) activator-induced PKA activation, but did not on the D1 receptor agonist-induced AC activation. The conventional PKC (cPKC), especially the PKCβI, and the extracellular Ca(2+) influx through L-type Ca(2+) channels might play key roles in the amplifying effect of the sigma-1 receptor agonists. The activation of PKC by sigma-1 receptor agonists was the upstream event of the increase in the intrasynaptosomal Ca(2+) concentration. These results suggest that sigma-1 receptors may amplify the D1 receptor agonist-induced PKA activation by sigma-1 receptors - cPKC (especially the PKCβI) - L-type Ca(2+) channels - Ca(2+) - AC and/or cAMP signaling pathway.
Collapse
Affiliation(s)
- Yingmei Fu
- State key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Caffeine promotes dopamine D1 receptor-mediated body temperature, heart rate and behavioural responses to MDMA ('ecstasy'). Psychopharmacology (Berl) 2010; 211:15-25. [PMID: 20437223 DOI: 10.1007/s00213-010-1864-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/08/2010] [Indexed: 12/17/2022]
Abstract
RATIONALE Caffeine exacerbates the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') in rats characterised by hyperthermia, tachycardia and lethality. Depletion of central catecholamine stores and dopamine D(1) receptor blockade have been reported to attenuate the ability of caffeine to exacerbate MDMA-induced hyperthermia. OBJECTIVES Here, we investigate whether dopamine D(1) and D(2) receptors mediate the effects of caffeine on MDMA-induced changes in body temperature, heart rate and locomotor activity. METHODS All parameters were recorded continuously in individually housed rats using bioradiotelemetry from 1 h prior to 4 h following caffeine (10 mg/kg, s.c.) and/or MDMA (10 mg/kg, s.c.) administration. RESULTS Co-administration of caffeine with MDMA provoked a switch from MDMA-induced hypothermia and bradycardia to hyperthermia and tachycardia without influencing MDMA-induced hyperlocomotion. Pre-treatment with a specific dopamine D(1/5) antagonist SCH 23390 (1 mg/kg) enhanced MDMA-induced hypothermia and blocked the ability of caffeine to provoke a switch from MDMA-induced hypothermia to hyperthermia. Furthermore, SCH 23390 blocked MDMA-induced hyperactivity and the ability of caffeine to promote a tachycardic response to MDMA. By contrast, pre-treatment with the selective D(2) antagonist, sulpiride (100 mg/kg) blocked MDMA-induced hypothermia, failed to influence the ability of caffeine to promote tachycardia whilst enhancing MDMA-induced hyperactivity. CONCLUSIONS Our results highlight the importance of dopamine D(1) and D(2) receptors in shaping the behavioural and physiological response to MDMA and suggest that the ability of caffeine to provoke MDMA-induced toxicity is associated with the promotion of dopamine D(1) over D(2) receptor-related responses.
Collapse
Affiliation(s)
- Natacha Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, Trinity College Institute of Neuroscience, Trinity College of Dublin, Dublin, 2, Ireland
| | | | | |
Collapse
|
23
|
Lebestky T, Chang JSC, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 2009; 64:522-36. [PMID: 19945394 PMCID: PMC2908595 DOI: 10.1016/j.neuron.2009.09.031] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 01/12/2023]
Abstract
Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal. Here we show that loss-of-function mutations in the D1 dopamine receptor DopR enhance repetitive startle-induced arousal while decreasing sleep-wake arousal (i.e., increasing sleep). These two types of arousal are also inversely influenced by cocaine, whose effects in each case are opposite to, and abrogated by, the DopR mutation. Selective restoration of DopR function in the central complex rescues the enhanced stimulated arousal but not the increased sleep phenotype of DopR mutants. These data provide evidence for at least two different forms of arousal, which are independently regulated by dopamine in opposite directions, via distinct neural circuits.
Collapse
Affiliation(s)
- Tim Lebestky
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Blum K, Chen TJ, Downs BW, Bowirrat A, Waite RL, Braverman ER, Madigan M, Oscar-Berman M, DiNubile N, Gold M. Neurogenetics of dopaminergic receptor supersensitivity in activation of brain reward circuitry and relapse: proposing "deprivation-amplification relapse therapy" (DART). Postgrad Med 2009; 121:176-96. [PMID: 19940429 PMCID: PMC3656125 DOI: 10.3810/pgm.2009.11.2087] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND HYPOTHESIS It is well known that after prolonged abstinence, individuals who use their drug of choice experience a powerful euphoria that often precipitates relapse. While a biological explanation for this conundrum has remained elusive, we hypothesize that this clinically observed "supersensitivity" might be tied to genetic dopaminergic polymorphisms. Another therapeutic conundrum relates to the paradoxical finding that the dopaminergic agonist bromocriptine induces stronger activation of brain reward circuitry in individuals who carry the DRD2 A1 allele compared with DRD2 A2 allele carriers. Because carriers of the A1 allele relative to the A2 allele of the DRD2 gene have significantly lower D2 receptor density, a reduced sensitivity to dopamine agonist activity would be expected in the former. Thus, it is perplexing that with low D2 density there is an increase in reward sensitivity with the dopamine D2 agonist bromocriptine. Moreover, under chronic or long-term therapy with D2 agonists, such as bromocriptine, it has been shown in vitro that there is a proliferation of D2 receptors. One explanation for this relates to the demonstration that the A1 allele of the DRD2 gene is associated with increased striatal activity of L-amino acid decarboxylase, the final step in the biosynthesis of dopamine. This appears to be a protective mechanism against low receptor density and would favor the utilization of an amino acid neurotransmitter precursor like L-tyrosine for preferential synthesis of dopamine. This seems to lead to receptor proliferation to normal levels and results in significantly better treatment compliance only in A1 carriers. PROPOSAL AND CONCLUSION We propose that low D2 receptor density and polymorphisms of the D2 gene are associated with risk for relapse of substance abuse, including alcohol dependence, heroin craving, cocaine dependence, methamphetamine abuse, nicotine sensitization, and glucose craving. With this in mind, we suggest a putative physiological mechanism that may help to explain the enhanced sensitivity following intense acute dopaminergic D2 receptor activation: "denervation supersensitivity." Rats with unilateral depletions of neostriatal dopamine display increased sensitivity to dopamine agonists estimated to be 30 to 100 x in the 6-hydroxydopamine (6-OHDA) rotational model. Given that mild striatal dopamine D2 receptor proliferation occurs (20%-40%), it is difficult to explain the extent of behavioral supersensitivity by a simple increase in receptor density. Thus, the administration of dopamine D2 agonists would target D2 sensitization and attenuate relapse, especially in D2 receptor A1 allele carriers. This hypothesized mechanism is supported by clinical trials utilizing amino acid neurotransmitter precursors, enkephalinase, and catechol-O-methyltransferase (COMT) enzyme inhibition, which have resulted in attenuated relapse rates in reward deficiency syndrome (RDS) probands. If future translational research reveals that dopamine agonist therapy reduces relapse in RDS, it would support the proposed concept, which we term "deprivation-amplification relapse therapy" (DART). This term couples the mechanism for relapse, which is "deprivation-amplification," especially in DRD2 A1 allele carriers with natural D2 agonist therapy utilizing amino acid precursors and COMT and enkepalinase inhibition therapy.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine, University of Florida, Gainesville, FL
- Department of Nutrigenomics, LifeGen, Inc., San Diego, CA and Lederach, PA
| | - Thomas J.H. Chen
- Department of Health and Occupational Safety, Chang Jung Christian University, Taiwan, Republic of China
| | - B. William Downs
- Department of Nutrigenomics, LifeGen, Inc., San Diego, CA and Lederach, PA
| | - Abdalla Bowirrat
- Clinical Neuroscience & Population Genetics, Ziv Government Medical Center, Israel
| | - Roger L. Waite
- Department of Nutrigenomics, LifeGen, Inc., San Diego, CA and Lederach, PA
| | - Eric R. Braverman
- Department of Neurosurgery, Weill Cornell College of Medicine, New York, NY
| | - Margaret Madigan
- Department of Nutrigenomics, LifeGen, Inc., San Diego, CA and Lederach, PA
| | | | - Nicholas DiNubile
- Department of Orthopedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Mark Gold
- Department of Psychiatry, School of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Tilleman H, Kofman O, Nashelsky L, Livneh U, Roz N, Sillaber I, Biegon A, Rehavi M, Brodski C. Critical role of the embryonic mid-hindbrain organizer in the behavioral response to amphetamine and methylphenidate. Neuroscience 2009; 163:1012-23. [PMID: 19635527 DOI: 10.1016/j.neuroscience.2009.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/14/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
The embryonic mid-hindbrain organizer, which is composed of a transient cell population in the brainstem, controls the development of dopaminergic and serotonergic neurons. Different genes determining the position and activity of this embryonic structure have been implicated in dopamine- and serotonin-associated disorders. Mouse mutants with a caudally shifted mid-hindbrain organizer, are hyperactive, show increased numbers of dopaminergic neurons and a reduction in serotonergic cells. In the present study we used these mutants to gain insights into the genetic and developmental mechanisms underlying motor activity and the response to psychostimulants. To this end, we studied the motor activity of these animals after exposure to methylphenidate and amphetamine and characterized their dopaminergic and serotonergic innervation. Saline-treated mutants showed increased locomotion, more stereotypic behavior and a decrease in rearing compared to wild-type mice. This baseline level of activity was similar to behaviors observed in wild-type animals treated with high doses of psychostimulants. In mutants methylphenidate (5 or 30 mg/kg) or amphetamine (2 or 4 mg/kg) did not further increase activity or even caused a decrease of locomotor activity, in contrast to wild-type mice. Fluoxetine (5 or 10 mg/kg) reduced hyperactivity of mutants to levels observed in wild-types. Transmitter measurements, dopamine and serotonin transporter binding assays and autoradiography, indicated a subtle increase in striatal dopaminergic innervation and a marked general decrease of serotonergic innervation in mutants. Taken together, our data suggest that mice with an aberrantly positioned mid-hindbrain organizer show altered sensitivity to psychostimulants and that an increase of serotonergic neurotransmission reverses their hyperactivity. We conclude that the mid-hindbrain organizer, by orchestrating the formation of dopaminergic and serotonergic neurons, is an essential developmental parameter of locomotor activity and psychostimulant response.
Collapse
Affiliation(s)
- H Tilleman
- Department of Morphology, Zlotowski Center for Neuroscience, Division of Basic Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bourhis E, Maheux J, Paquet B, Kagechika H, Shudo K, Rompré PP, Rouillard C, Lévesque D. The transcription factors Nur77 and retinoid X receptors participate in amphetamine-induced locomotor activities. Psychopharmacology (Berl) 2009; 202:635-48. [PMID: 18843482 DOI: 10.1007/s00213-008-1343-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 09/16/2008] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The major substrate underlying amphetamine (AMPH)-induced locomotor activity is associated with dopamine forebrain circuits. Brain regions associated with AMPH-induced locomotor activity express high levels of retinoid receptors. However, the role of these transcription factors in dopamine-mediated effects remains poorly understood. Two nuclear receptor families, the retinoic acid receptors (RAR) and the retinoid X receptors (RXR), transduce retinoic acid signal. RARs are specifically involved in retinoid signaling, whereas RXRs also participate in other signaling pathways as partners for other nuclear receptors such as Nur77, an orphan member of the nuclear receptor family expresses in dopamine system. MATERIALS AND METHODS To explore the role of retinoid receptors and Nur77 in AMPH-induced locomotor activity, we administered selective retinoid receptor drugs in combination with AMPH in adult wild-type and Nur77-deficient mice. At a low dose, AMPH similarly increased ambulatory activity in wild-type and Nur77-deficient mice, while it did not alter non-ambulatory activity. RESULTS AND DISCUSSION At a high dose, AMPH did not alter ambulatory activity anymore, while non-ambulatory activity strongly increased in wild-type mice. Nur77-deficient mice still displayed a higher ambulatory activity with no change in non-ambulatory activity. HX531, a synthetic RXR antagonist, blocks AMPH-induced ambulatory activity, whereas RAR drugs tested remained without effect. Interestingly, the effect of HX531 was abolished in Nur77-deficient mice, suggesting that this orphan nuclear receptor is essential for the action of the RXR drug. CONCLUSION This study shows that RXR and Nur77 participate in AMPH-induced locomotor activity and prompts for further investigations on the role of Nur77 and RXR in addiction and reward-related behaviors.
Collapse
Affiliation(s)
- Emmanuelle Bourhis
- Faculty of Pharmacy, University of Montreal Pavillon Jean-Coutu, C.P. 6128, Succursale Centre-Ville, Montreal Q H3C3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meyer U, Nyffeler M, Schwendener S, Knuesel I, Yee BK, Feldon J. Relative prenatal and postnatal maternal contributions to schizophrenia-related neurochemical dysfunction after in utero immune challenge. Neuropsychopharmacology 2008; 33:441-56. [PMID: 17443130 DOI: 10.1038/sj.npp.1301413] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prenatal exposure to infections represents a risk factor for the emergence of neuropsychiatric disorders in later life, including schizophrenia and autism. However, it remains essentially unknown whether this association is primarily attributable to prenatal and/or postnatal maternal effects on the offspring. Here, we addressed this issue by dissecting the relative contributions of prenatal inflammatory events and postnatal maternal factors in an animal model of prenatal viral-like infection. Pregnant mice were exposed to the inflammatory agent polyriboinosinic-polyribocytidilic acid (PolyI:C; 5 mg/kg, i.v.) or vehicle treatment on gestation day 9, and offspring born to PolyI:C- and vehicle-treated dams were cross fostered to surrogate rearing mothers that had either experienced inflammatory or sham treatment during pregnancy. We demonstrate that a variety of dopamine- and glutamate-related pharmacological and neuroanatomical disturbances emerge after prenatal immune challenge regardless of whether neonates were raised by vehicle- or PolyI:C-exposed surrogate mothers. However, the adoption of prenatal control animals to immune-challenged surrogate mothers was also sufficient to induce specific pharmacological and neuroanatomical abnormalities in the fostered offspring. Multiple schizophrenia-related dysfunctions emerging after prenatal immune challenge are thus mediated by prenatal but not postnatal maternal effects on the offspring, but immunological stress during pregnancy may affect postpartum maternal factors in such a way that being reared by an immune-challenged surrogate mother can confer risk for distinct forms of psychopathology in adult life.
Collapse
Affiliation(s)
- Urs Meyer
- Laboratory of Behavioural Neurobiology, ETH Zurich, Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Grant A, Hoops D, Labelle-Dumais C, Prévost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C. Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Eur J Neurosci 2007; 26:3215-28. [PMID: 18005074 DOI: 10.1111/j.1460-9568.2007.05888.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function.
Collapse
Affiliation(s)
- Alanna Grant
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada, H4H 1R3
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shi WX, Zhang XY, Pun CL, Bunney BS. Clozapine blocks D-amphetamine-induced excitation of dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 2007; 32:1922-8. [PMID: 17299514 DOI: 10.1038/sj.npp.1301334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current antipsychotic drugs are thought to inhibit central dopamine (DA) transmission by blocking DA receptors. Here, we provide evidence that the atypical antipsychotic drug clozapine may produce part of its effect by inhibiting a subset of excitatory inputs to DA neurons. Thus, in chloral hydrate-anesthetized rats, systemic administration of D-amphetamine produced two opposing effects on DA neurons in the ventral tegmental area. Under control conditions, D-amphetamine inhibited the firing of the cell through D2-like receptors. When D2-like receptors were blocked by raclopride, D-amphetamine excited DA neurons, instead of producing no effect. The excitation, expressed as an increase in firing rate and a slow oscillation in firing pattern, was suppressed by the adrenergic alpha1 receptor antagonist prazosin, suggesting an involvement of alpha1 receptors. In rats pretreated with the typical antipsychotic drug haloperidol, D-amphetamine also excited DA neurons. However, when given after clozapine, D-amphetamine produced no significant effects. The failure of D-amphetamine to produce an excitation is not due to an incomplete blockade of D2-like receptors by clozapine because co-treatment with clozapine and raclopride also failed to enable the excitatory effect of D-amphetamine. The suggestion that clozapine inhibits the excitatory effect of D-amphetamine is further supported by the finding that clozapine, given after D-amphetamine, reliably reversed D-amphetamine-induced excitation in raclopride-treated rats. Thus, different from raclopride and haloperidol, clozapine may inhibit DA transmission through two additive mechanisms: blockade of DA receptors and inhibition of an amphetamine-sensitive, excitatory pathway that innervates DA neurons.
Collapse
Affiliation(s)
- Wei-Xing Shi
- Neuropsychopharmacological Research Unit, Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
30
|
Heijtz RD, Kolb B, Forssberg H. Motor inhibitory role of dopamine D1 receptors: implications for ADHD. Physiol Behav 2007; 92:155-60. [PMID: 17585966 DOI: 10.1016/j.physbeh.2007.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dysregulation of dopamine (DA) neurotransmission in frontal-striatal circuitry has been hypothesized to underlie several neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD). The actions of DA are mediated by five distinct receptor subtypes that belong to the G-protein-coupled receptor super-family and are divided into two major classes, D1-like (D1 and D5) and D2-like (D2, D3, and D4). Accumulating evidence implicates the D1 receptor subtype (D1R) in the regulation of motor and cognitive processes. It is generally assumed that D1R is linked to motor activity in a stimulatory fashion. However, recent findings in rodents suggest a potential role of D1R on motor inhibition, which emerges during late postnatal development. Several lines of evidence indicate that the locus of the inhibitory effects involve subregions of the prefrontal cortex (PFC). These results may be relevant for understanding the neurobiology of ADHD.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Karolinska Institutet, Department of Neuroscience, Retzius väg 8, S-171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
31
|
Nicniocaill B, Gratton A. Medial prefrontal cortical alpha1 adrenoreceptor modulation of the nucleus accumbens dopamine response to stress in Long-Evans rats. Psychopharmacology (Berl) 2007; 191:835-42. [PMID: 17294052 DOI: 10.1007/s00213-007-0723-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/22/2007] [Indexed: 12/01/2022]
Abstract
RATIONALE The medial prefrontal cortex (PFC) receives stress-sensitive dopamine (DA) and noradrenergic (NE) projections from the ventral tegmental area and locus coeruleus, respectively, and evidence from various sources point to a complex functional interaction between these two systems. Stress will also stimulate DA transmission in the nucleus accumbens (NAcc), and our previous work has shown that this response is under the indirect inhibitory control of a DA-sensitive mechanism in PFC. OBJECTIVE We examined the possibility that the NAcc DA stress response is also modulated by prefrontal cortical NE. MATERIALS AND METHODS We used voltammetry to study in freely behaving rats the effects of local applications of alpha(1) (benoxathian 0.1, 1, 10 nmol), alpha(2) (SKF86466), and beta(1/2) (alprenolol) receptor selective antagonists into the PFC on the NAcc DA response to tail-pinch stress. RESULTS The NAcc DA stress response was dose-dependently inhibited by local PFC blockade of alpha(1) receptors. Additional tests revealed, however, that the DA stress response in NAcc is unaffected after local alpha(1) receptor activation with cirazoline. Furthermore, at equivalent doses, neither alpha(2) nor beta(1/2) receptor blockade significantly affected the NAcc DA stress response. CONCLUSIONS These data indicate that stress-induced activation of subcortical DA transmission is modulated by the NE input to PFC acting at alpha(1) receptors. They suggest that, under normal circumstances, this system exerts a facilitatory or enabling influence on the NAcc DA stress response.
Collapse
Affiliation(s)
- Brid Nicniocaill
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montréal (Verdun), H4H 1R3, Québec, Canada
| | | |
Collapse
|
32
|
Zhen X, Goswami S, Abdali SA, Frankfurt M, Friedman E. Estrogen-modulated frontal cortical CaMKII activity and behavioral supersensitization induced by prolonged cocaine treatment in female rats. Psychopharmacology (Berl) 2007; 191:323-31. [PMID: 17160679 DOI: 10.1007/s00213-006-0648-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/07/2006] [Indexed: 11/30/2022]
Abstract
RATIONALE Females have been demonstrated repeatedly to be more sensitive to cocaine. The role of the frontal cortex (FCX) in mediating behavioral sensitization and the underlying signaling pathways are unclear. OBJECTIVE The study was designed to characterize the role of FCX calcium/calmodulin-dependent protein kinase II (CaMKII) activity in the behavioral supersensitization observed in female rats after prolonged cocaine exposure. MATERIALS AND METHODS Intact female rats that received cocaine for 9 days followed by 7 days of drug withdrawal constituted the model used for studying the mechanism of supersensitization. RESULTS This cocaine withdrawal treatment resulted in behavioral supersensitization in intact female rats as indicated by an enhanced behavioral response to cocaine challenge assessed on day 16 (7-day withdrawal) and compared to the response on day 9 of cocaine treatment. This treatment regimen did not lead to supersensitization in male or in ovariectomized (OVX) rats. Administration of estrogen to OVX rats restored behavioral supersensitivity to repeated cocaine. FCX CaMKII activity was significantly altered by cocaine in females, and this effect was related to estrogen's presence; cocaine-induced changes in striatal CaMKII activity were, however, less estrogen-sensitive. Furthermore, estrogen-modulated FCX CaMKII activity in cocaine-supersensitized rats was dependent on D(1) dopamine receptor activation. CONCLUSION Estrogen-modulated D(1) dopamine receptor activity mediates the effects of prolonged cocaine exposure on FCX CaMKII, and this, in turn, may contribute to the development of behavioral supersensitivity to repeated cocaine treatment in intact female rats.
Collapse
Affiliation(s)
- Xuechu Zhen
- Department of Physiology/Pharmacology, The City University of New York at CCNY, 138th Street and Convent Avenue, New York, NY 10031, USA.
| | | | | | | | | |
Collapse
|
33
|
Doherty M, Gratton A. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress. Brain Res 2007; 1150:62-8. [PMID: 17395162 DOI: 10.1016/j.brainres.2007.02.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Evidence indicates that dopamine (DA) transmission in nucleus accumbens (NAcc) is modulated by glutamate (GLUT) projections from medial prefrontal cortex (PFC) to NAcc and the ventral tegmental area (VTA). Local NMDA receptor blockade in NAcc has previously been shown to enhance the DA stress response in this region as well as in the VTA. This raises the possibility that the NAcc DA stress response is regulated by GLUT acting at NMDA receptors located on NAcc GABA output neurons that project to the VTA where GABA is known to regulate DA cell activity. Thus, in the present study, we used voltammetry to examine the effects of intra-VTA administration of GABA(A) and GABA(B) agonists and antagonists on restraint stress-induced increases in NAcc DA. The results show that local VTA GABA(B) receptor activation with baclofen (0.01, 0.1 and 1.0 nmol) dose-dependently inhibited the NAcc DA stress response whereas GABA(B) receptor blockade with phaclofen had the opposite effect, resulting in a dose-dependent potentiation of the stress response. A similar potentiation of the NAcc DA stress response was observed following VTA GABA(A) receptor blockade with bicuculline, but only at the highest dose (1.0 nmol). Interestingly, intra-VTA injection of the GABA(A) receptor agonist, muscimol, at the lowest dose (0.01 nmol) but not at the higher doses (0.1 or 1.0 nmol) also potentiated the NAcc DA stress response, suggesting an action mediated primarily at GABA(A) receptors located on non-DA neurons. These results indicate that the NAcc DA stress response is regulated by GABA afferents to VTA DA cells and that this action is differentially mediated by GABA(A) and GABA(B) receptors. The data suggest that the relevant GABA(B) receptors are located on DA neurons whereas the GABA(A) receptors are located on GABA interneurons and perhaps also on DA cells. The present findings are also consistent with the idea that the corticofugal GLUT input to NAcc indirectly regulates stress-induced DA release in this region through the GABA feedback pathway to VTA.
Collapse
Affiliation(s)
- Michael Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Montréal Verdun, Québec, Canada, H4H 1R3
| | | |
Collapse
|
34
|
Schank JR, Ventura R, Puglisi-Allegra S, Alcaro A, Cole CD, Liles LC, Seeman P, Weinshenker D. Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 2006; 31:2221-30. [PMID: 16395294 DOI: 10.1038/sj.npp.1301000] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple lines of evidence demonstrate that the noradrenergic system provides both direct and indirect excitatory drive onto midbrain dopamine (DA) neurons. We used DA beta-hydroxylase (DBH) knockout (Dbh-/-) mice that lack norepinephrine (NE) to determine the consequences of chronic NE deficiency on midbrain DA neuron function in vivo. Basal extracellular DA levels were significantly attenuated in the nucleus accumbens (NAc) and caudate putamen (CP), but not prefrontal cortex (PFC), of Dbh-/- mice, while amphetamine-induced DA release was absent in the NAc and attenuated in the CP and PFC. The decrease in dopaminergic tone was associated with a profound increase in the density of high-affinity state D1 and D2 DA receptors in the NAc and CP, while DA receptors in the PFC were relatively unaffected. As a behavioral consequence of these neurochemical changes, Dbh-/- mice were hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, as measured by locomotor activity and conditioned place preference. Antagonists of DA, but not 5-HT, receptors attenuated the locomotor hypersensitivity to cocaine in Dbh-/- mice. As DBH activity in humans is genetically controlled and the DBH inhibitor disulfiram has shown promise as a pharmacotherapy for cocaine dependence, these results have implications for the influence of genetic and pharmacological DBH inhibition on DA system function and drug addiction.
Collapse
Affiliation(s)
- Jesse R Schank
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Del Arco A, Segovia G, Canales JJ, Garrido P, de Blas M, García-Verdugo JM, Mora F. Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. J Neural Transm (Vienna) 2006; 114:43-8. [PMID: 16955373 DOI: 10.1007/s00702-006-0565-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Environmental enrichment produces changes in spontaneous and psychostimulant-induced motor activity. Dopamine in the prefrontal cortex (PFC), through the activation of D1 receptors, has been suggested to play a role in modulating motor activity. The present study investigated the effects of environmental enrichment on spontaneous motor activity, prefrontal acetylcholine release following local D1 receptor stimulation and D1 receptor expression in the PFC. Male wistar rats (3 months of age) were housed in enriched or isolated conditions during 90 days. Animals were then implanted with guide cannulae to perform microdialysis experiments in the PFC. Spontaneous motor activity and acetylcholine extracellular concentrations were monitored simultaneously. Also spontaneous motor activity was measured in an open field. On completion of the experiments, the density of D1 receptors in the PFC was studied by immunocytochemistry. Rats housed in an enriched environment showed significantly lower spontaneous motor activity in the open field compared to isolated animals. Perfusion of the D1 agonist SKF38393 (50 microM; 40 min) in the PFC produced long lasting increases of spontaneous motor activity and of local dialysate concentrations of acetylcholine in both groups of rats. However, increases of both motor activity and acetylcholine concentrations were significantly lower in enriched compared to isolated animals. Moreover, the density of D1 receptors in the PFC was significantly reduced in animals housed in an enriched environment. These results are the first evidence suggesting that environmental enrichment during adult life changes the function of D1 dopamine receptors in the PFC.
Collapse
Affiliation(s)
- A Del Arco
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Del Arco A, Mora F, Mohammed AH, Fuxe K. Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens. J Neural Transm (Vienna) 2006; 114:185-93. [PMID: 16897609 DOI: 10.1007/s00702-006-0533-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 06/18/2006] [Indexed: 10/24/2022]
Abstract
The aim of the present study was to investigate the effects of stimulation of D2 receptors in the prefrontal cortex (PFC) on spontaneous motor activity and the hyperactivity induced by the psychomimetic phencyclidine (PCP). In addition, the effects of prefrontal D2 stimulation under PCP treatment on dialysate concentrations of acetylcholine, choline, dopamine, DOPAC and HVA in the nucleus accumbens were also investigated. Sprague-Dawley male rats were implanted with guide cannulae to perform bilateral injections into the medial PFC of the D2 agonist quinpirole (1.5 and 5 microg/side). Horizontal and vertical spontaneous motor activity and the motor activity induced by systemic injections of the PCP (5 mg/kg i.p.) were monitored in the open field. PFC injections of quinpirole (1.5 and 5 microg/side) significantly decreased horizontal and vertical spontaneous motor activity in a dose-related manner. These effects were blocked by the D2 antagonist raclopride (5 microg/side). Microinjections of quinpirole (1.5 and 5 microg/side) into the PFC also significantly attenuated the hyperactivity produced by PCP (5 mg/kg i.p.). PCP also increased dialysate concentrations of acetylcholine, and dopamine metabolites in the nucleus accumbens. These increases were also reduced by injections of quinpirole (5 microg/side) into the PFC. These results suggest that the stimulation of prefrontal D2 receptors plays an inhibitory role in regulating spontaneous and PCP-induced motor activity and also in the neurochemical changes produced by PCP in the nucleus accumbens.
Collapse
Affiliation(s)
- A Del Arco
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
37
|
Nakamura S, Ago Y, Hayashi A, Itoh S, Kakuda M, Hashimoto H, Baba A, Matsuda T. Modification of cocaine-induced behavioral and neurochemical effects by serotonin1A receptor agonist/antagonist in mice. Synapse 2006; 60:479-84. [PMID: 16952156 DOI: 10.1002/syn.20323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Administration of cocaine causes a locomotor stimulant effect and increases extracellular levels of serotonin (5-HT) and dopamine (DA) in the brains of rodents. Previous studies show that 5-HT1A receptor agonist and antagonist modify the cocaine-induced behavioral and neurochemical effects in the rats. However, the role of the 5-HT system on the effects of cocaine has not been studied in the prefrontal cortex. The present study examined in ddY-strain male mice the effects of the 5-HT1A receptor agonist osemozotan and the receptor antagonist WAY100635 on cocaine-induced locomotor stimulant effect and increases in extracellular levels of 5-HT and DA in the prefrontal cortex. The cocaine-induced locomotor stimulant effect was attenuated by osemozotan and enhanced by WAY100635. The cocaine-induced increase in extracellular levels of 5-HT was attenuated by osemozotan, and enhanced by WAY100635. The cocaine-induced increase in extracellular levels of DA was enhanced by osemozotan, but not affected by WAY100635. These results suggest that the prefrontal 5-HT system plays a pivotal role in the locomotor stimulant effect of cocaine in mice.
Collapse
Affiliation(s)
- Shigeo Nakamura
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ramos M, Goñi-Allo B, Aguirre N. Administration of SCH 23390 into the medial prefrontal cortex blocks the expression of MDMA-induced behavioral sensitization in rats: an effect mediated by 5-HT2C receptor stimulation and not by D1 receptor blockade. Neuropsychopharmacology 2005; 30:2180-91. [PMID: 15841107 DOI: 10.1038/sj.npp.1300735] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Akin to what has been reported for cocaine, systemic administration of the dopamine D1 receptor antagonist, SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride), blocks the expression but not the induction of 3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization. Since the medial prefrontal cortex (mPFC) appears to regulate the expression of sensitization to cocaine, this study examined whether microinjection of SCH 23390 into the mPFC would alter the expression of MDMA sensitization. Saline or MDMA was administered for 5 consecutive days. After 12 days of withdrawal, rats received a bilateral intra-mPFC microinjection of SCH 23390 or saline followed by an intraperitoneal (i.p.) challenge dose of MDMA. While SCH 23390 enhanced locomotion in MDMA-naïve rats, it completely suppressed the expression of sensitization in MDMA-pretreated animals. Since, SCH 23390 has a fairly good affinity for 5-HT(2C) receptors, we went further to study the role of mPFC D1 and 5-HT(2C) receptors in this, apparently, paradoxical effect shown by SCH 23390. Thus, the microinjection of both SKF 81297 (R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide) and MK 212 (6-chloro-2-(1-piperazinyl)pyrazine hydrochloride), a D1 and 5-HT(2C) receptor agonist, respectively, blocked MDMA sensitization. By contrast, the 5-HT(2C) receptor antagonist, RS 102221 (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione hydrochloride), had no effect in MDMA-naïve or MDMA-sensitized animals, but reversed the effects of SCH 23390 in MDMA-pretreated rats. These results demonstrate that suppression of MDMA-induced sensitization by SCH 23390 is mediated by 5-HT(2C) receptor stimulation in the mPFC and not by the blockade of mPFC D1 receptors. Furthermore, these data indicate that stimulation of 5-HT(2C) receptors by SCH 23390 is not a minor issue and should be considered when interpreting future data.
Collapse
Affiliation(s)
- María Ramos
- Departamento de Farmacología, Facultad de Medicina, Universidad de Navarra, C/Irunlarrea 1, Pamplona 31008, Spain
| | | | | |
Collapse
|
39
|
Paterlini M, Zakharenko SS, Lai WS, Qin J, Zhang H, Mukai J, Westphal KGC, Olivier B, Sulzer D, Pavlidis P, Siegelbaum SA, Karayiorgou M, Gogos JA. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 2005; 8:1586-94. [PMID: 16234811 DOI: 10.1038/nn1562] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 09/19/2005] [Indexed: 02/08/2023]
Abstract
Microdeletions of 22q11.2 represent one of the highest known genetic risk factors for schizophrenia. It is likely that more than one gene contributes to the marked risk associated with this locus. Two of the candidate risk genes encode the enzymes proline dehydrogenase (PRODH) and catechol-O-methyltransferase (COMT), which modulate the levels of a putative neuromodulator (L-proline) and the neurotransmitter dopamine, respectively. Mice that model the state of PRODH deficiency observed in humans with schizophrenia show increased neurotransmitter release at glutamatergic synapses as well as deficits in associative learning and response to psychomimetic drugs. Transcriptional profiling and pharmacological manipulations identified a transcriptional and behavioral interaction between the Prodh and Comt genes that is likely to represent a homeostatic response to enhanced dopaminergic signaling in the frontal cortex. This interaction modulates a number of schizophrenia-related phenotypes, providing a framework for understanding the high disease risk associated with this locus, the expression of the phenotype, or both.
Collapse
Affiliation(s)
- Marta Paterlini
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang TY, Chrétien P, Meaney MJ, Gratton A. Influence of naturally occurring variations in maternal care on prepulse inhibition of acoustic startle and the medial prefrontal cortical dopamine response to stress in adult rats. J Neurosci 2005; 25:1493-502. [PMID: 15703403 PMCID: PMC6725982 DOI: 10.1523/jneurosci.3293-04.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rats, naturally occurring variations in maternal care contribute to the development of individual differences in the behavioral and neuroendocrine responses to stress during adulthood. The dopamine (DA) projection to the medial prefrontal cortex (mPFC) plays an important role in mediating stress responsivity and is thought to be involved also in regulating sensorimotor gating. In the present study, we compared prepulse inhibition (PPI) of acoustic startle as well as the left and right mPFC DA stress responses in the adult offspring of high- and low-licking/grooming (LG) dams. Our data indicate that the offspring of low-LG animals are impaired on measures of PPI compared with high-LG animals. We also observed in low-LG animals a significant blunting of the mPFC DA stress responses that was lateralized to the right hemisphere, whereas in high-LG animals, the left and right mPFC DA stress responses were equally attenuated. Although mPFC levels of DA transporter did not differ between the two groups of animals, mPFC levels of catechol-O-methyl transferase immunoreactivity of low-LG animals were significantly lower than those of high-LG animals. These data provide evidence that variations in maternal care can lead to lasting changes in mPFC DA responsivity to stress and suggest the possibility that such changes in mesocorticolimbic DA function can also lead to deficits in sensorimotor gating.
Collapse
Affiliation(s)
- T Y Zhang
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, Québec, H4H 1R3 Canada
| | | | | | | |
Collapse
|
41
|
Williams JM, Steketee JD. Effects of repeated cocaine on the release and clearance of dopamine within the rat medial prefrontal cortex. Synapse 2005; 55:98-109. [PMID: 15529334 DOI: 10.1002/syn.20093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous data suggest that cocaine-induced dopamine (DA) transmission within the medial prefrontal cortex (mPFC) undergoes time-dependent changes during withdrawal from repeated cocaine administration. The current studies assessed two potential mechanisms that may underlie this neuroadaptation. One set of experiments examined alterations in DA clearance in the mPFC of rats that had been pretreated with four administrations of cocaine (15 mg/kg, i.p.; once per day for 4 days) and were withdrawn 1, 7, or 30 days. No significant changes in mPFC DA uptake into crude mPFC synaptosomes or in mPFC DA transporter levels were observed at any of the time points examined. Uptake assay and Western blotting sensitivity was confirmed with prefrontal 6-hydroxydopamine lesions, which significantly reduced [3H]DA uptake and DA transporter immunoreactivity in mPFC synaptosomes. To evaluate temporal changes in DA release resulting from repeated cocaine, additional experiments utilized in vivo microdialysis to locally infuse KCl (10, 30, or 100 mM) into the mPFC over the same withdrawal time course used in the uptake studies. After 1-7 days of withdrawal, KCl-stimulated DA release was significantly reduced in the mPFC of cocaine-pretreated animals. However, after 30 days of withdrawal the evoked release of DA in the mPFC of saline- and cocaine-pretreated animals was similar. These data suggest that previously reported modulation of cocaine-induced mPFC DA transmission occurring upon withdrawal from repeated cocaine might arise from transient changes in DA releasability rather than clearance. The relevance of these findings is discussed in relation to mPFC involvement in psychostimulant sensitization.
Collapse
Affiliation(s)
- Jason M Williams
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
42
|
Diaz Heijtz R, Scott L, Forssberg H. Alteration of dopamine D1 receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal-striatal circuitry. Eur J Neurosci 2004; 19:945-56. [PMID: 15009142 DOI: 10.1111/j.0953-816x.2004.03154.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine D1 receptors have been implicated in various neurodevelopmental disorders, including attention-deficit/hyperactivity disorder. However, little is known about potential late maturational changes of the motor inhibitory and stimulatory role of these receptors. Here, we investigated the effects of a full and selective D1 receptor agonist, SKF-81297, on motor activity and expression of the plasticity-associated gene, c-fos, in the prefrontal cortex and striatum of juvenile and adolescent male rats. In general, SKF-81297 produced a biphasic effect on motor activity (locomotor and rearing activity), which consisted of an initial short inhibition followed by a long-lasting stimulation. These effects were dose- and age- dependent. The inhibitory phase was more pronounced in adolescent than in juvenile rats whereas the opposite was true for the stimulatory phase. During the initial inhibitory phase of the drug, c-fos mRNA expression was increased in the prefrontal cortex of juvenile rats but reduced in adolescent rats. There was also an increase in c-fos mRNA expression in the medial-dorsal striatum and olfactory tubercle, which was more evident in juvenile rats. In contrast, during the stimulatory phase, c-fos mRNA expression was increased in both the dorsal and ventral striatum, especially in the nucleus accumbens, as well as in the prefrontal cortex, in both age groups. The increase of c-fos mRNA in the dorsal striatum, however, was more pronounced in juvenile rats. These results indicate the presence of two distinct D1 receptor populations within the frontal-striatal circuitry, which have opposite effects on motor activity, and which have different maturational profiles.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Woman and Child Health, Astrid Lindgren Childrenís Hospital, Q2 : 07, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | |
Collapse
|
43
|
Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A. Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci 2004; 19:1863-74. [PMID: 15078560 DOI: 10.1111/j.1460-9568.2004.03286.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While many experiment with drugs, relatively few individuals develop a true addiction. We hypothesized that, in rats, such individual differences in the actions of addictive drugs might be determined by postnatal rearing conditions. To test this idea, we investigated whether stimulant- and stress-induced activation of nucleus accumbens dopamine transmission and dopamine-dependent behaviours might differ among adults rats that had been either repeatedly subjected to prolonged maternal separation or a brief handling procedure or left undisturbed (non-handled) during the first 14 days of life. We found that, in comparison with their handled counterparts, maternally separated and non-handled animals are hyperactive when placed in a novel setting, display a dose-dependent higher sensitivity to cocaine-induced locomotor activity and respond to a mild stressor (tail-pinch) with significantly greater increases in nucleus accumbens dopamine levels. In addition, maternally separated animals were found to sensitize to the locomotor stimulant action of amphetamine when repeatedly stressed under conditions that failed to sensitize handled and non-handled animals. Finally, quantitative receptor autoradiography revealed a lower density of nucleus accumbens-core and striatal dopamine transporter sites in maternally separated animals. Interestingly, we also found greatly reduced D(3) dopamine receptor binding and mRNA levels in the nucleus accumbens-shell of handled animals. Together, these findings provide compelling evidence that disruptions in early postnatal rearing conditions can lead to profound and lasting changes in the responsiveness of mesocorticolimbic dopamine neurons to stress and psychostimulants, and suggest a neurobiological basis for individual differences in vulnerability to compulsive drug taking.
Collapse
Affiliation(s)
- Wayne G Brake
- Department of Psychology, University of California Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
44
|
Isacson R, Kull B, Wahlestedt C, Salmi P. A 68930 and dihydrexidine inhibit locomotor activity and d-amphetamine-induced hyperactivity in rats: a role of inhibitory dopamine d1/5 receptors in the prefrontal cortex? Neuroscience 2004; 124:33-42. [PMID: 14960337 DOI: 10.1016/j.neuroscience.2003.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 12/13/2022]
Abstract
The behavioral and biochemical effects of the full dopamine D(1/5) receptor agonists, dihydrexidine and (1R,3S)-1-aminomethyl-5,6-dihydroxy-3-phenylisochroman HCl (A 68930), were examined in rats. Both A 68930 (0-4.6 mg kg(-1), s.c.) and dihydrexidine (0-8.0 mg kg(-1), s.c.) caused a dose-dependent suppression of locomotor activity, as assessed in an open-field. This locomotor suppression was dose-dependently antagonized by the selective dopamine D(1/5) receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl (SCH 23390; 0-5.0 microg kg(-1), s.c.), but not by the selective dopamine D(2/3) receptor antagonist raclopride (0-25.0 microg kg(-1), s.c.). Furthermore, A 68930 and dihydrexidine did not cause any locomotor activity in habituated rats that displayed a very low base-line activity. Neither did A 68930 nor dihydrexidine produce any excessive stereotypies that could possibly interfere with and mask ambulatory activity. In fact, both A 68930 and dihydrexidine potently blocked hyperactivity produced by d-amphetamine (0-4.0 mg kg(-1), s.c.). Such findings traditionally would be interpreted as a sign of potential antipsychotic properties of A 68930 and dihydrexidine. Examination of neuronal activation, as indexed by the immediate early gene c-fos, showed that A 68930 and dihydrexidine caused a highly significant expression of c-fos in the medial prefrontal cortex. This c-fos expression was sensitive to treatment with SCH 23390, but not with raclopride. The effects of A 68930 and dihydrexidine on c-fos expression in caudate putamen or nucleus accumbens were less marked, or undetectable. The results indicate that stimulation of dopamine D(1/5) receptors, possibly in the medial prefrontal cortex, is associated with inhibitory actions on locomotor activity and d-amphetamine-induced hyperactivity. Assuming an important role of prefrontal dopamine D(1/5) receptors in schizophrenia, such inhibitory actions of dopamine D(1/5) receptor stimulation on psychomotor activation may have interesting clinical implications in the treatment of schizophrenia.
Collapse
Affiliation(s)
- R Isacson
- Center for Genomics and Bioinformatics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
45
|
Sorg BA, Li N, Wu W, Bailie TM. Activation of dopamine D1 receptors in the medial prefrontal cortex produces bidirectional effects on cocaine-induced locomotor activity in rats: effects of repeated stress. Neuroscience 2004; 127:187-96. [PMID: 15219681 DOI: 10.1016/j.neuroscience.2004.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 04/23/2004] [Accepted: 05/13/2004] [Indexed: 11/23/2022]
Abstract
We examined the effects of repeated stress and D1 receptor activation in the medial prefrontal cortex (mPFC) on acute-cocaine-induced locomotor activity in rats. Male rats were given 7 days of either handling (Controls) or a variety of stressors. After 8-17 days' withdrawal, rats received an intra-mPFC microinjection of the full D1 agonist, SKF 81297: 0, 0.03, 0.1 or 0.3 microg/side followed by an i.p. saline or cocaine injection (15 mg/kg, i.p.). The target sites were either the dorsal or ventral mPFC. We also divided rats into either high or low responders based on their locomotor response to an acute cocaine injection. In the dorsal PFC, low responder Control and Stress groups demonstrated an augmentation of cocaine-induced increases in activity after SKF 81297, compared with vehicle, microinjection. In contrast, high responder rats demonstrated a suppression of cocaine-induced increases in activity after intra-mPFC SFK 81297 infusion, with an apparent 10 times higher sensitivity in the Stress group. In the ventral PFC, low responder Controls showed no changes after SKF 81297 infusion, while the Stress group showed an increase in cocaine-induced activity in response to SKF 81297. In high responders given SFK 81297 into the ventral mPFC, cocaine-induced activity was suppressed in Controls, while stress pretreatment rendered animals resistant to SKF 81297 effects. These results indicate that D1 receptor activation effects in the mPFC are bidirectional depending on whether rats have a high or low locomotor response to cocaine. Further, daily stress alters the sensitivity of the mPFC to SKF 81297, which is dependent on whether the dorsal or ventral mPFC is targeted.
Collapse
Affiliation(s)
- B A Sorg
- Alcohol and Drug Abuse Program and Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Stadium Way, Washington State University, Pullman, WA 99164-6520, USA.
| | | | | | | |
Collapse
|
46
|
El-Khodor BF, Flores G, Srivastava LK, Boksa P. Effects of birth insult and stress at adulthood on excitatory amino acid receptors in adult rat brain. Synapse 2004; 54:138-46. [PMID: 15452866 DOI: 10.1002/syn.20073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Birth complications involving fetal hypoxia and stress at adulthood, which are risk factors for schizophrenia, can produce alterations in subcortical dopamine (DA) function in rat models. As adults, rats born either by cesarean section (C-section) or by C-section with added global anoxia show increased stress-induced DA release from nucleus accumbens and increased amphetamine-induced locomotion, compared to vaginally born controls. Moreover, stress at adulthood interacts with these birth insults to modulate DA receptor and transporter levels. Glutamatergic transmission at the level of the nucleus accumbens, prefrontal cortex, and hippocampus are known to modulate subcortical DA activity. Thus, altered excitatory amino acid (EAA) function might contribute to the dopaminergic changes observed in rats after birth insult and/or stress at adulthood. To test this possibility, rats born vaginally, by C-section, or by C-section with 15 min of anoxia, were either repeatedly stressed (15 min of tail pinch daily for 5 days) at adulthood or received no stress, and levels of EAA receptor binding were measured by ligand autoradiography in limbic brain regions. As adults, rats born by C-section showed increases in AMPA receptor binding in nucleus accumbens shell, NMDA receptor binding in cingulate cortex, and kainate receptor binding in the hippocampal CA1 region. Anoxic rats showed increases in CA1 kainate receptor and anterior olfactory NMDA receptor binding. Stress at adulthood increased AMPA receptor binding in several regions of prefrontal cortex and reduced NMDA receptor binding in infralimbic cortex and dentate gyrus, across all birth groups. Two instances of interactions between birth insult and stress at adulthood were observed. Stress reduced cingulate cortex NMDA receptor binding and increased olfactory tubercle kainate receptor binding only in C-sectioned animals, but not in controls. The possibility that the observed EAA receptor changes contribute to dopaminergic dysfunction in these animal models is discussed, in light of known glutamate-DA interactions.
Collapse
Affiliation(s)
- Bassem F El-Khodor
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Verdun, Quebec, Canada H4H 1R3
| | | | | | | |
Collapse
|
47
|
Sullivan RM, Brake WG. What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function. Behav Brain Res 2003; 146:43-55. [PMID: 14643458 DOI: 10.1016/j.bbr.2003.09.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present review surveys a broad range of findings on the functions of the rodent prefrontal cortex (PFC) in the context of the known pathophysiology of attention-deficit/hyperactivity disorder (ADHD). An overview of clinical findings concludes that dysfunction of the right PFC plays a critical role in ADHD and that a number of early developmental factors conspire to increase the risk of the disorder. Rodent studies are described which go far in explaining how the core processes which are deficient in ADHD are mediated by the PFC and that the mesocortical dopamine (DA) system plays a central role in modulating these functions. These studies also demonstrate a surprising degree of cerebral lateralization of prefrontal function in the rat. Importantly, the PFC is highly vulnerable to a wide variety of early developmental insults, which parallel the known risk factors for ADHD. It is suggested that the regulation of physiological and behavioral arousal is a fundamental role of the PFC, upon which many "higher" prefrontal functions are dependent or at least influenced. These right hemispheric arousal systems, of which the mesocortical DA system is a component, are greatly affected by early adverse events, both peri- and postnatally. Abnormal development, particularly of the right PFC and its DAergic afferents, is suggested to contribute directly to the core deficits of ADHD through dysregulation of the right frontostriatal system.
Collapse
Affiliation(s)
- Ron M Sullivan
- Department of Psychiatry, Centre de Recherche Fernand-Seguin, University of Montreal, 7331 rue Hochelaga, Montreal, Que., Canada.
| | | |
Collapse
|
48
|
Bland ST, Hargrave D, Pepin JL, Amat J, Watkins LR, Maier SF. Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology 2003; 28:1589-96. [PMID: 12784102 DOI: 10.1038/sj.npp.1300206] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has previously been shown that inescapable (IS) but not escapable (ES) stress potentiates the rewarding properties of morphine as measured by conditioned place preference and psychomotor activation, and that this potentiation may be mediated by dorsal raphe nucleus (DRN) serotonin (5-HT) neurons. The medial prefrontal cortex (mPFC) has been implicated in both reward and stress, and is a projection region of the DRN. The mPFC also contains dopaminergic afferents from the ventral tegmental area, which has been the focus of many studies exploring both the rewarding properties of drugs and the aversive properties of stress. The role of the mPFC in stress/drug reactivity interactions is largely unknown. The present study used in vivo microdialysis to examine 5-HT and dopamine (DA) efflux in the mPFC of rats during IS, ES or no stress (NS). IS and ES rats received the stressor in yoked pairs. The stressor consisted of tailshocks that could be terminated for both rats by the ES rats. Large increases in 5-HT and DA levels were observed during IS but not ES or NS. DA and 5-HT efflux were also measured 24 h later in the same rats in response to morphine (3 mg/kg) or saline. Sustained increases in 5-HT levels were observed after morphine in rats that had previously received IS but not in rats that had received ES or NS. No changes in DA efflux were observed after morphine. Thus, 5-HT and DA in the mPFC may be involved in stressor controllability effects, and the sensitization of 5-HT neurons by IS extends to the mPFC and to morphine as a challenge.
Collapse
Affiliation(s)
- Sondra T Bland
- Department of Psychology, Center for Neuroscience, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Bast T, Pezze MA, Feldon J. Dopamine receptor blockade in the rat medial prefrontal cortex reduces spontaneous and amphetamine-induced activity and does not affect prepulse inhibition. Behav Pharmacol 2002; 13:669-73. [PMID: 12478219 DOI: 10.1097/00008877-200212000-00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The functions and interactions of cortical and subcortical dopamine systems are of interest because alterations in these systems have been implicated in neuropsychiatric diseases, such as schizophrenia. It has been proposed that prefrontal dopamine transmission may oppose dopamine transmission in subcortical sites, such as the nucleus accumbens. Accordingly, reduced prefrontal dopamine transmission would be expected to enhance or induce behavioral effects that have been associated with stimulation of accumbal dopamine receptors. In rats, spontaneous and amphetamine-induced activity is supported by dopamine receptor stimulation in the nucleus accumbens, while prepulse inhibition (PPI) of the acoustic startle response, which is used to measure sensorimotor gating and is disrupted in schizophrenia, is reduced by increased accumbal dopamine receptor stimulation. In the present experiments, we found that bilateral infusion of the dopamine D1/D2 receptor antagonist cis-flupenthixol dihydrochloride into the medial prefrontal cortex of Wistar rats (25 microg each side) reduced spontaneous activity and completely blocked induction of hyperactivity by systemic administration of D-amphetamine sulfate (1 mg/kg), while not affecting PPI. These findings do not support an antagonism between prefrontal and accumbal dopamine in the control of behavior. Rather, our data demonstrate that prefrontal dopamine transmission may modulate some behavioral processes in a similar way to accumbal dopamine.
Collapse
Affiliation(s)
- T Bast
- Behavioral Neurobiology Laboratory, The Swiss Federal Institute of Technology Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Wu WR, Li N, Sorg BA. Regulation of medial prefrontal cortex dopamine by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors. Neuroscience 2002; 114:507-16. [PMID: 12204218 DOI: 10.1016/s0306-4522(02)00276-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the medial prefrontal cortex, repeated cocaine produces tolerance of the extracellular dopamine response to subsequent cocaine injection. These studies characterized the influence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors on the medial prefrontal cortex dopamine response to acute cocaine, amphetamine and potassium chloride as a first step to assess whether these receptor subtypes may be candidates for mediating dopamine tolerance after repeated cocaine. Local infusion of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) produced an approximate 40% increase in dopamine levels in the medial prefrontal cortex, while a 30 microM dose did not alter basal levels infused over a 3-h period. Thus, 30 microM CNQX was chosen for the remaining experiments, and was infused for 1 h prior to and during all in vivo treatments. Local medial prefrontal cortex infusion of the 30 microM dose blocked the small increase in dopamine levels elicited by systemic saline injection (maximum of 26%), as well as the much larger increase in response to acute cocaine injection (maximum of 340%). Local infusion of D-amphetamine (3 and 30 microM) through the probe increased dopamine to 300 and 600% of basal levels, respectively. Co-infusion of CNQX partially blocked the response for the first 40 min, but dopamine levels recovered by 60 min later. Local infusion of 100 mM potassium chloride elicited a 600% increase in dopamine levels, which was attenuated approximately 50% by CNQX co-infusion. Potassium-stimulated release of dopamine was also measured in vitro in medial prefrontal cortical and striatal tissue. By 30 s after potassium addition, dopamine levels increased to 800% above baseline in the medial prefrontal cortex, and this increase was blocked by the presence of 30 microM CNQX. In contrast, potassium-stimulated dopamine release in striatal tissue was approximately 250% above basal levels, with no effect of CNQX on dopamine release. Locomotor behavior collected during dialysis experiments demonstrated that increased activity induced by local infusion of potassium chloride was severely attenuated by co-infusion of 30 microM CNQX, while no effects of this drug were found for cocaine-elicited behavior. These results suggest a potent influence of glutamate via alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors on extracellular dopamine in the medial prefrontal cortex, and these receptors may regulate dopamine release through a presynaptic mechanism. The findings may help elucidate the role of medial prefrontal cortex dopamine-glutamate interactions in drug abuse and stress- and drug-precipitated psychosis.
Collapse
Affiliation(s)
- W-R Wu
- Alcohol and Drug Abuse Program, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164-6520, USA
| | | | | |
Collapse
|