1
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
3
|
He X, Ji P, Guo R, Ming X, Zhang H, Yu L, Chen Z, Gao S, Guo F. Regulation of the central amygdala on intestinal motility and behavior via the lateral hypothalamus in irritable bowel syndrome model mice. Neurogastroenterol Motil 2023; 35:e14498. [PMID: 36408759 DOI: 10.1111/nmo.14498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Impaired bidirectional communication between the gastrointestinal tract and the central nervous system (CNS) is closely related to the development of irritable bowel syndrome (IBS). Studies in patients with IBS have also shown significant activation of the hypothalamus and amygdala. However, how neural circuits of the CNS participate in and process the emotional and intestinal disorders of IBS remains unclear. METHODS The GABAergic neural pathway projecting from the central amygdala (CeA) to the lateral hypothalamus (LHA) in mice was investigated by retrograde tracking combined with fluorescence immunohistochemistry. Anxiety, depression-like behavior, and intestinal motility were observed in the water-immersion restraint stress group and the control group. Furthermore, the effects of the chemogenetic activation of the GABAergic neural pathway of CeA-LHA on behavior and intestinal motility, as well as the co-expression of orexin-A and c-Fos in the LHA, were explored. KEY RESULTS In our study, Fluoro-Gold retrograde tracking combined with fluorescence immunohistochemistry showed that GABAergic neurons in the CeA were projected to the LHA. The microinjection of the gamma-aminobutyric acid (GABA) receptor antagonist into the LHA relieved anxiety, depression-like behavior, and intestinal motility disorder in the IBS mice. The chemogenetic activation of GABAergic neurons in the CeA-LHA pathway led to anxiety, depression-like behavior, and intestinal motility disorder. In addition, GABAergic neurons in the CeA-LHA pathway inhibited the expression of orexin-A in the LHA, and orexin-A was co-expressed with GABAA receptors. CONCLUSIONS & INFERENCES The CeA-LHA GABAergic pathway might participate in the occurrence and development of IBS by regulating orexin-A neurons.
Collapse
Affiliation(s)
- Xiaoman He
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lizheng Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ziyi Chen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Long-Term Management of Generalised Anxiety Disorder with Low-Dose Continuous Infusions of Flumazenil: A Case Series. Behav Sci (Basel) 2022; 12:bs12110430. [DOI: 10.3390/bs12110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Generalised anxiety disorder (GAD) is a common anxiety disorder associated with social and occupational impairment. Recently, a theory was postulated that dysfunctional gamma aminobutyric acid type A receptors (GABAA) are implicated in anxiety symptomology, which could be corrected by flumazenil, an antagonist at the benzodiazepine binding site on the GABAA receptor. Method: Participants had a primary diagnosis of GAD and were treated initially with an eight-day continuous low-dose flumazenil infusion (total 32 mg at a rate of 4 mg/24 h). Some participants were re-treated with a further four- or eight-day infusion. Treatment response was measured as a 50% reduction in anxiety or stress scores on the Depression Anxiety Stress Scale—21 (DASS-21). Remission was measured as scores ≤3 or ≤7 on the anxiety and stress subscales of the DASS-21, respectively. Results: Eight cases are reported. All cases met the criteria for treatment response on the anxiety and stress subscale of the DASS-21. Remission was achieved in seven participants on the anxiety subscale and in five on the stress subscale. No changes in hepatic, renal, or haematological function were likely attributed to flumazenil. Conclusion: Data suggest that low-dose continuous flumazenil infusion manages GAD symptoms and is safe. Although these results are promising, future randomised control trials are required to confirm these results.
Collapse
|
5
|
Feinstein JS, Gould D, Khalsa SS. Amygdala-driven apnea and the chemoreceptive origin of anxiety. Biol Psychol 2022; 170:108305. [PMID: 35271957 DOI: 10.1016/j.biopsycho.2022.108305] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Although the amygdala plays an important part in the pathogenesis of anxiety and generation of exteroceptive fear, recent discoveries have challenged the directionality of this brain-behavior relationship with respect to interoceptive fear. Here we highlight several paradoxical findings including: (1) amygdala lesion patients who experience excessive fear and panic following inhalation of carbon dioxide (CO2), (2) clinically anxious patients who have significantly smaller (rather than larger) amygdalae and a pronounced hypersensitivity toward CO2, and (3) epilepsy patients who exhibit apnea immediately following stimulation of their amygdala yet have no awareness that their breathing has stopped. The above findings elucidate an entirely novel role for the amygdala in the induction of apnea and inhibition of CO2-induced fear. Such a role is plausible given the strong inhibitory connections linking the central nucleus of the amygdala with respiratory and chemoreceptive centers in the brainstem. Based on this anatomical arrangement, we propose a model of Apnea-induced Anxiety (AiA) which predicts that recurring episodes of apnea are being unconsciously elicited by amygdala activation, resulting in transient spikes in CO2 that provoke fear and anxiety, and lead to characteristic patterns of escape and avoidance behavior in patients spanning the spectrum of anxiety. If this new conception of AiA proves to be true, and activation of the amygdala can repeatedly trigger states of apnea outside of one's awareness, then it remains possible that the chronicity of anxiety disorders is being interoceptively driven by a chemoreceptive system struggling to maintain homeostasis in the midst of these breathless states.
Collapse
Affiliation(s)
- Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104; University of Iowa, Department of Neurology, Iowa City, Iowa, USA, 52242.
| | - Dylan Gould
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104
| |
Collapse
|
6
|
Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020; 5:134852. [PMID: 32163374 PMCID: PMC7213805 DOI: 10.1172/jci.insight.134852] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSeizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODSWe studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTSIn 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONSA focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDINGNational Institute of Neurological Disorders and Stroke - Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.
Collapse
Affiliation(s)
| | | | - Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | - Daniel Tranel
- Iowa Neuroscience Institute
- Department of Psychological and Brain Sciences
- Department of Neurology
| | | | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
7
|
Chen X, van Gerven J, Cohen A, Jacobs G. Human pharmacology of positive GABA-A subtype-selective receptor modulators for the treatment of anxiety. Acta Pharmacol Sin 2019; 40:571-582. [PMID: 30518829 DOI: 10.1038/s41401-018-0185-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
Anxiety disorders arise from disruptions among the highly interconnected circuits that normally serve to process the streams of potentially threatening stimuli. The resulting imbalance among these circuits can cause a fundamental misinterpretation of neural sensory information as threatening and can lead to the inappropriate emotional and behavioral responses observed in anxiety disorders. There is considerable preclinical evidence that the GABAergic system, in general, and its α2- and/or α5-subunit-containing GABA(A) receptor subtypes, in particular, are involved in the pathophysiology of anxiety disorders. However, the clinical efficacy of GABA-A α2-selective agonists for the treatment of anxiety disorders has not been unequivocally demonstrated. In this review, we present several human pharmacological studies that have been performed with the aim of identifying the pharmacologically active doses/exposure levels of several GABA-A subtype-selective novel compounds with potential anxiolytic effects. The pharmacological selectivity of novel α2-subtype-selective GABA(A) receptor partial agonists has been demonstrated by their distinct effect profiles on the neurophysiological and neuropsychological measurements that reflect the functions of multiple CNS domains compared with those of benzodiazepines, which are nonselective, full GABA(A) agonists. Normalizing the undesired pharmacodynamic side effects against the desired on-target effects on the saccadic peak velocity is a useful approach for presenting the pharmacological features of GABA(A)-ergic modulators. Moreover, combining the anxiogenic symptom provocation paradigm with validated neurophysiological and neuropsychological biomarkers may provide further construct validity for the clinical effects of novel anxiolytic agents. In addition, the observed drug effects on serum prolactin levels support the use of serum prolactin levels as a complementary neuroendocrine biomarker to further validate the pharmacodynamic measurements used during the clinical pharmacological study of novel anxiolytic agents.
Collapse
|
8
|
Navratilova E, Ji G, Phelps C, Qu C, Hein M, Yakhnitsa V, Neugebauer V, Porreca F. Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain. Pain 2019; 160:824-832. [PMID: 30681985 PMCID: PMC6424634 DOI: 10.1097/j.pain.0000000000001458] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic pain is associated with neuroplastic changes in the amygdala that may promote hyper-responsiveness to mechanical and thermal stimuli (allodynia and hyperalgesia) and/or enhance emotional and affective consequences of pain. Stress promotes dynorphin-mediated signaling at the kappa opioid receptor (KOR) in the amygdala and mechanical hypersensitivity in rodent models of functional pain. Here, we tested the hypothesis that KOR circuits in the central nucleus of the amygdala (CeA) undergo neuroplasticity in chronic neuropathic pain resulting in increased sensory and affective pain responses. After spinal nerve ligation (SNL) injury in rats, pretreatment with a long-acting KOR antagonist, nor-binaltorphimine (nor-BNI), subcutaneously or through microinjection into the right CeA, prevented conditioned place preference (CPP) to intravenous gabapentin, suggesting that nor-BNI eliminated the aversiveness of ongoing pain. By contrast, systemic or intra-CeA administration of nor-BNI had no effect on tactile allodynia in SNL animals. Using whole-cell patch-clamp electrophysiology, we found that nor-BNI decreased synaptically evoked spiking of CeA neurons in brain slices from SNL but not sham rats. This effect was mediated through increased inhibitory postsynaptic currents, suggesting tonic disinhibition of CeA output neurons due to increased KOR activity as a possible mechanism promoting ongoing aversive aspects of neuropathic pain. Interestingly, this mechanism is not involved in SNL-induced mechanical allodynia. Kappa opioid receptor antagonists may therefore represent novel therapies for neuropathic pain by targeting aversive aspects of ongoing pain while preserving protective functions of acute pain.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Caroline Phelps
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States
| | - Chaoling Qu
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, Li B. Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front Neurosci 2018; 12:562. [PMID: 30154693 PMCID: PMC6103381 DOI: 10.3389/fnins.2018.00562] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
The amygdala is an almond-shaped nucleus located deep and medially within the temporal lobe and is thought to play a crucial role in the regulation of emotional processes. GABAergic neurotransmission inhibits the amygdala and prevents us from generating inappropriate emotional and behavioral responses. Stress may cause the reduction of the GABAergic interneuronal network and the development of neuropsychological diseases. In this review, we summarize the recent evidence investigating the possible mechanisms underlying GABAergic control of the amygdala and its interaction with acute and chronic stress. Taken together, this study may contribute to future progress in finding new approaches to reverse the attenuation of GABAergic neurotransmission induced by stress in the amygdala.
Collapse
Affiliation(s)
- Fan Jie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Guanghao Yin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Modi Yang
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiayin Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Abstract
The amygdala is a limbic brain region that plays a key role in emotional processing, neuropsychiatric disorders, and the emotional-affective dimension of pain. Preclinical and clinical studies have identified amygdala hyperactivity as well as impairment of cortical control mechanisms in pain states. Hyperactivity of basolateral amygdala (BLA) neurons generates enhanced feedforward inhibition and deactivation of the medial prefrontal cortex (mPFC), resulting in pain-related cognitive deficits. The mPFC sends excitatory projections to GABAergic neurons in the intercalated cell mass (ITC) in the amygdala, which project to the laterocapsular division of the central nucleus of the amygdala (CeLC; output nucleus) and serve gating functions for amygdala output. Impairment of these cortical control mechanisms allows the development of amygdala pain plasticity. Mechanisms of abnormal amygdala activity in pain with particular focus on loss of cortical control mechanisms as well as new strategies to correct pain-related amygdala dysfunction will be discussed in the present review.
Collapse
|
11
|
|
12
|
Forcelli PA, Wellman LL, Malkova L. Blockade of glutamatergic transmission in the primate basolateral amygdala suppresses active behavior without altering social interaction. Behav Neurosci 2017; 131:192-200. [PMID: 28221080 DOI: 10.1037/bne0000187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The amygdala is an integrator of affective processing, and a key component of a network regulating social behavior. While decades of lesion studies in nonhuman primates have shown alterations in social interactions after amygdala damage, acute manipulations of the amygdala in primates have been underexplored. We recently reported (Wellman, Forcelli, Aguilar, & Malkova, 2016) that acute pharmacological inhibition of the basolateral complex of the amygdala (BLA) or the central nucleus of the amygdala increased affiliative social interactions in experimental dyads of macaques; this was achieved through microinjection of a GABA-A receptor agonist. Prior studies in rodents have shown similar effects achieved by blocking NMDA receptors or AMPA receptors within the BLA. Here, we sought to determine the role of these receptor systems in the primate BLA in the context of social behavior. In familiar dyads, we microinjected the NMDA receptor antagonist 2-amino-7-phosphonoheptanoic acid (AP7) or the AMPA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) and observed behaviors and social interactions in the immediate postinjection period. In striking contrast with our prior report using GABA agonists, and in contrast with prior reports in rodents using glutamate antagonists, we found that neither NMDA nor AMPA blockade increase social interaction. Both treatments, however, were associated with decreases in locomotion and manipulation and increases in passive behavior. These data suggest that local blockade of glutamatergic neurotransmission in BLA is not the functional equivalent of local activation of GABAergic signaling, and raise interesting questions regarding the functional microcircuitry of the nonhuman primate amygdala in the context of social behavior. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Laurie L Wellman
- Department of Pharmacology and Physiology, Georgetown University
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University
| |
Collapse
|
13
|
Barbas H. General Cortical and Special Prefrontal Connections: Principles from Structure to Function. Annu Rev Neurosci 2015; 38:269-89. [DOI: 10.1146/annurev-neuro-071714-033936] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences; Graduate Program in Neuroscience; School of Medicine; Boston University, Boston, Massachusetts 02215;
| |
Collapse
|
14
|
Abstract
Lines of evidence coming from many branches of neuroscience indicate that anxiety disorders arise from a dysfunction in the modulation of brain circuits which regulate emotional responses to potentially threatening stimuli. The concept of anxiety disorders as a disturbance of emotional response regulation is a useful one as it allows anxiety to be explained in terms of a more general model of aberrant salience and also because it identifies avenues for developing psychological, behavioral, and pharmacological strategies for the treatment of anxiety disorder. These circuits involve bottom-up activity from the amygdala, indicating the presence of potentially threatening stimuli, and top-down control mechanisms originating in the prefrontal cortex, signaling the emotional salience of stimuli. Understanding the factors that control cortical mechanisms may open the way to identification of more effective cognitive behavioral strategies for managing anxiety disorders. The brain circuits in the amygdala are thought to comprise inhibitory networks of γ-aminobutyric acid-ergic (GABAergic) interneurons and this neurotransmitter thus plays a key role in the modulation of anxiety responses both in the normal and pathological state. The presence of allosteric sites on the GABAA receptor allows the level of inhibition of neurons in the amygdala to be regulated with exquisite precision, and these sites are the molecular targets of the principal classes of anxiolytic drugs. Changes in the levels of endogenous modulators of these allosteric sites as well as changes in the subunit composition of the GABAA receptor may represent mechanisms whereby the level of neuronal inhibition is downregulated in pathological anxiety states. Neurosteroids are synthesized in the brain and act as allosteric modulators of the GABAA receptor. Since their synthesis is itself regulated by stress and by anxiogenic stimuli, targeting the neurosteroid-GABAA receptor axis represents an attractive target for the modulation of anxiety.
Collapse
Affiliation(s)
- Philippe Nuss
- Department of Psychiatry, Hôpital St Antoine, AP-HP, Paris, France ; UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre and Marie Curie University, Paris, France
| |
Collapse
|
15
|
Abstract
A limbic brain area, the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety, and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the "nociceptive amygdala") accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6592, USA,
| |
Collapse
|
16
|
Kinkead R, Tenorio L, Drolet G, Bretzner F, Gargaglioni L. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol 2014; 204:3-13. [PMID: 25038523 DOI: 10.1016/j.resp.2014.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The control of breathing is commonly viewed as being a "brainstem affair". As the topic of this special issue of Respiratory Physiology and Neurobiology indicates, we should consider broadening this notion since the act of breathing is also tightly linked to many functions other than close regulation of arterial blood gases. Accordingly, "non-brainstem" structures can exert a powerful influence on the core elements of the respiratory control network and as it is often the case, the importance of these structures is revealed when their dysfunction leads to disease. There is a clear link between respiration and anxiety and key theories of the psychopathology of anxiety (including panic disorders; PD) focus on respiratory control and related CO2 monitoring system. With that in mind, we briefly present the respiratory manifestations of panic disorder and discuss the role of the dorso-medial/perifornical hypothalamus, the amygdalar complex, and the periaqueductal gray in respiratory control. We then present recent advances in basic research indicating how adult rodent previously subjected to neonatal stress may provide a very good model to investigate the pathophysiology of PD.
Collapse
Affiliation(s)
- Richard Kinkead
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada.
| | - Luana Tenorio
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP FCAV at Jaboticabal, SP, Brazil
| | - Guy Drolet
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Canada; Université Laval, Québec, QC, Canada
| | | |
Collapse
|
17
|
Chiou RJ, Kuo CC, Yen CT. Comparisons of terminal densities of cardiovascular function-related projections from the amygdala subnuclei. Auton Neurosci 2013; 181:21-30. [PMID: 24412638 DOI: 10.1016/j.autneu.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
The amygdala is important in higher-level control of cardiovascular functions. In this study, we compared cardiovascular-related projections among the subnuclei of the amygdala. Biotinylated dextran amine was injected into the central, medial, and basolateral nuclei of the amygdala, and the distributions and densities of anterograde-labeled terminal boutons were analyzed. We found that the medial, basolateral, and central nuclei all had projections into the cardiovascular-related areas of the hypothalamus. However, only the central nucleus had a significant direct projection into the medulla. By contrast, the medial nucleus had limited projections, and the basolateral nucleus had no terminals extending into the medulla. We concluded that the medial, central, and basolateral nuclei of the amygdala may influence cardiovascular-related nuclei through monosynaptic connections with cardiovascular-related nuclei in the hypothalamus and medulla.
Collapse
Affiliation(s)
- Ruei-Jen Chiou
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Chung-Chih Kuo
- Department of Physiology, School of Medicine, Tzu Chi University, 701 Chung-Yang Road, Section 3, Hualien 97004, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Hillman KL. Cost-benefit analysis: the first real rule of fight club? Front Neurosci 2013; 7:248. [PMID: 24391531 PMCID: PMC3867679 DOI: 10.3389/fnins.2013.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022] Open
Abstract
Competition is ubiquitous among social animals. Vying against a conspecific to achieve a particular outcome often requires one to act aggressively, but this is a costly and inherently risky behavior. So why do we aggressively compete, or at the extreme, fight against others? Early work suggested that competitive aggression might stem from an innate aggressive tendency, emanating from subcortical structures. Later work highlighted key cortical regions that contribute toward an instrumental aggression network, one that is recruited or suppressed as needed to achieve a goal. Recent neuroimaging work hints that competitive aggression is upmost a cost-benefit decision, in that it appears to recruit many components of traditional, non-social decision-making networks. This review provides a historical glimpse into the neuroscience of competitive aggression, and proposes a conceptual advancement for studying competitive behavior by outlining how utility calculations of contested-for resources are skewed, pre- and post-competition. A basic multi-factorial model of utility assessment is proposed to account for competitive endowment effects that stem from the presence of peers, peer salience and disposition, and the tactical effort required for victory. In part, competitive aggression is a learned behavior that should only be repeated if positive outcomes are achieved. However, due to skewed utility assessments, deviations of associative learning occur. Hence truly careful cost-benefit analysis is warranted before choosing to vie against another.
Collapse
|
19
|
Cattaneo L, Pavesi G. The facial motor system. Neurosci Biobehav Rev 2013; 38:135-59. [PMID: 24239732 DOI: 10.1016/j.neubiorev.2013.11.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/18/2013] [Accepted: 11/02/2013] [Indexed: 12/23/2022]
Abstract
Facial movements support a variety of functions in human behavior. They participate in automatic somatic and visceral motor programs, they are essential in producing communicative displays of affective states and they are also subject to voluntary control. The multiplicity of functions of facial muscles, compared to limb muscles, is reflected in the heterogeneity of their anatomical and histological characteristics that goes well beyond the conventional classification in single facial muscles. Such parcellation in different functional muscular units is maintained throughout the central representation of facial movements from the brainstem up to the neocortex. Facial movements peculiarly lack a conventional proprioceptive feedback system, which is only in part vicariated by cutaneous or auditory afferents. Facial motor activity is the main marker of endogenous affective states and of the affective valence of external stimuli. At the cortical level, a complex network of specialized motor areas supports voluntary facial movements and, differently from upper limb movements, in such network there does not seem to be a prime actor in the primary motor cortex.
Collapse
Affiliation(s)
- Luigi Cattaneo
- Center for Mind/Brain Sciences, University of Trento, Via delle Regole 101, Mattarello, Trento 38123, Italy.
| | - Giovanni Pavesi
- Department of Neuroscience, University of Parma, Via Gramsci 14, Parma 43100, Italy
| |
Collapse
|
20
|
Dimitrov EL, Yanagawa Y, Usdin TB. Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 2013; 521:2373-97. [PMID: 23296594 DOI: 10.1002/cne.23291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/30/2012] [Accepted: 12/27/2012] [Indexed: 01/10/2023]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
21
|
Bowman BR, Kumar NN, Hassan SF, McMullan S, Goodchild AK. Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol 2013; 521:213-32. [PMID: 22740031 DOI: 10.1002/cne.23175] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/02/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
The rostral ventrolateral medulla (RVLM) contains neurons critical for cardiovascular, respiratory, metabolic, and motor control. The activity of these neurons is controlled by inputs from multiple identified brain regions; however, the neurochemistry of these inputs is largely unknown. Gamma-aminobutyric acid (GABA) and enkephalin tonically inhibit neurons within the RVLM. The aim of this study was to identify all brain regions that provide GABAergic or enkephalinergic input to the rat RVLM. Neurons immunoreactive for cholera toxin B (CTB-ir), retrogradely transported from the RVLM, were assessed for expression of glutamic acid decarboxylase (GAD67) or preproenkephalin (PPE) mRNA using in situ hybridization. GAD67 mRNA was expressed in CTB-ir neurons in the following regions: the nucleus of the solitary tract (NTS, 6% of CTB-ir neurons), area postrema (AP, 8%), caudal ventrolateral medulla (17%), midline raphe (40%), ventrolateral periaqueductal gray (VLPAG, 15%), lateral hypothalamic area (LHA, 25%), central nucleus of the amygdala (CeA, 77%), sublenticular extended amygdala (SLEA, 86%), interstitial nucleus of the posterior limb of the anterior commissure (IPAC, 56%), bed nucleus of the stria terminals (BNST, 59%), and medial preoptic area (MPA, 53%). PPE mRNA was expressed in CTB-ir neurons in the following regions: the NTS (14% of CTB-ir neurons), midline raphe (26%), LHA (22%), zona incerta (ZI, 15%), CeA (5%), paraventricular nucleus (PVN, 13%), SLEA (66%), and MPA (26%). Thus, limited brain regions contribute GABAergic and/or enkephalinergic input to the RVLM. Multiple neurochemically distinct pathways originate from these brain regions projecting to the RVLM.
Collapse
Affiliation(s)
- Belinda R Bowman
- Australian School of Advanced Medicine, Macquarie University, 2109, NSW Australia
| | | | | | | | | |
Collapse
|
22
|
Amygdalar connections in the lesser hedgehog tenrec. Brain Struct Funct 2011; 217:141-64. [PMID: 21638204 DOI: 10.1007/s00429-011-0328-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
The present study analyses the overall extrinsic connectivity of the non-olfactory amygdala (Ay) in the lesser hedgehog tenrec. The data were obtained from tracer injections into the lateral and intermediate portions of the Ay as well as several non-amygdalar brain regions. Both the solitary and the parabrachial nucleus receive descending projections from the central nucleus of the Ay, but only the parabrachial nucleus appears to project to the Ay. There is one prominent region in the ventromedial hypothalamus connected reciprocally with the medial and central Ay. Amygdalar afferents clearly arise from the dorsomedial thalamus, the subparafascicular nuclei and the medial geniculate complex (GM). Similar to other subprimate species, the latter projections originate in the dorsal and most caudal geniculate portions and terminate in the dorsolateral Ay. Unusual is the presence of amygdalo-projecting cells in the marginal geniculate zone and their virtual absence in the medial GM. As in other species, amygdalo-striatal projections mainly originate in the basolateral Ay and terminate predominantly in the ventral striatum. Given the poor differentiation of the tenrec's neocortex, there is a remarkable similarity with regard to the amygdalo-cortical connectivity between tenrec and rat, particularly as to prefrontal, limbic and somatosensorimotor areas as well as the rhinal cortex throughout its length. The tenrec's isocortex dorsomedial to the caudal rhinal cortex, on the other hand, may not be connected with the Ay. An absence of such connections is expected for primary auditory and visual fields, but it is unusual for their secondary fields.
Collapse
|
23
|
Abstract
The central amygdala (Ce), particularly its medial sector (CeM), is the main output station of the amygdala for conditioned fear responses. However, there is uncertainty regarding the nature of CeM control over conditioned fear. The present study aimed to clarify this question using unit recordings in rats. Fear conditioning caused most CeM neurons to increase their conditioned stimulus (CS) responsiveness. The next day, CeM cells responded similarly during the recall test, but these responses disappeared as extinction of conditioned fear progressed. In contrast, the CS elicited no significant average change in central lateral (CeL) firing rates during fear conditioning and a small but significant reduction during the recall test. Yet, cell-by-cell analyses disclosed large but heterogeneous CS-evoked responses in CeL. By the end of fear conditioning, roughly equal proportions of CeL cells exhibited excitatory (CeL(+)) or inhibitory (CeL(-)) CS-evoked responses (∼10%). The next day, the proportion of CeL(-) cells tripled with no change in the incidence of CeL(+) cells, suggesting that conditioning leads to overnight synaptic plasticity in an inhibitory input to CeL(-) cells. As in CeM, extinction training caused the disappearance of CS-evoked activity in CeL. Overall, these findings suggest that conditioned freezing depends on increased CeM responses to the CS. The large increase in the incidence of CeL(-) but not CeL(+) cells from conditioning to recall leads us to propose a model of fear conditioning involving the potentiation of an extrinsic inhibitory input (from the amygdala or elsewhere) to CeL, ultimately leading to disinhibition of CeM neurons.
Collapse
|
24
|
Travers JB, Herman K, Travers SP. Suppression of third ventricular NPY-elicited feeding following medullary reticular formation infusions of muscimol. Behav Neurosci 2010; 124:225-33. [PMID: 20364882 DOI: 10.1037/a0018928] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The appetitive component of feeding is controlled by forebrain substrates, but the consummatory behaviors of licking, mastication, and swallowing are organized in the brainstem. The target of forebrain appetitive signals is unclear but likely includes regions of the medullary reticular formation (RF). This study was undertaken to determine the necessity of different RF regions for mastication induced by a descending appetitive signal. We measured solid food intake in response to third ventricular (3V) infusions of the orexigenic peptide neuropeptide Y 3-36 in awake, freely moving rats and determined whether focal RF infusions of the GABAA agonist muscimol suppressed eating. RF infusions were centered in either the lateral tegmental field, comprising the intermediate (IRt) and parvocellular (PCRt) RF, or in the nucleus gigantocellularis (Gi). Infusions of NPY 3-36 (5 microg/5 microl) into 3V significantly increased feeding of solid food over a 90-min period compared with the noninfused condition (4.3 g +/- 0.56 vs. 0.57 g +/- 0.57, p < .001). NPY 3-36-induced food intake was suppressed (1.7 g +/- 0.48) by simultaneous infusions of muscimol (0.6 mM/100 nl) into the IRt/PCRt (p < .01). Coincident with the decrease in feeding was a decrease in the amplitude of anterior digastric muscle contractions in response to intraoral sucrose infusions. In contrast, infusions of muscimol into Gi had no discernible effect on food intake or EMG amplitude. These data suggest that the IRt/PCRt is essential for forebrain-initiated mastication, but that the Gi is not a necessary link in this pathway.
Collapse
Affiliation(s)
- Joseph B Travers
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
25
|
Intrinsic membrane properties of pre-oromotor neurons in the intermediate zone of the medullary reticular formation. Neuroscience 2010; 168:31-47. [PMID: 20338224 DOI: 10.1016/j.neuroscience.2010.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 02/08/2023]
Abstract
Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-aminopyridine (4-AP) sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter firing characteristics to impact pattern generation.
Collapse
|
26
|
Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V. Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 2010; 6:10. [PMID: 20144185 PMCID: PMC2829526 DOI: 10.1186/1744-8069-6-10] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/08/2010] [Indexed: 11/13/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) plays an important role in peripheral and central sensitization. CGRP also is a key molecule in the spino-parabrachial-amygdaloid pain pathway. Blockade of CGRP1 receptors in the spinal cord or in the amygdala has antinociceptive effects in different pain models. Here we studied the electrophysiological mechanisms of behavioral effects of CGRP in the amygdala in normal animals without tissue injury.Whole-cell patch-clamp recordings of neurons in the latero-capsular division of the central nucleus of the amygdala (CeLC) in rat brain slices showed that CGRP (100 nM) increased excitatory postsynaptic currents (EPSCs) at the parabrachio-amygdaloid (PB-CeLC) synapse, the exclusive source of CGRP in the amygdala. Consistent with a postsynaptic mechanism of action, CGRP increased amplitude, but not frequency, of miniature EPSCs and did not affect paired-pulse facilitation. CGRP also increased neuronal excitability. CGRP-induced synaptic facilitation was reversed by an NMDA receptor antagonist (AP5, 50 microM) or a PKA inhibitor (KT5720, 1 microM), but not by a PKC inhibitor (GF109203X, 1 microM). Stereotaxic administration of CGRP (10 microM, concentration in microdialysis probe) into the CeLC by microdialysis in awake rats increased audible and ultrasonic vocalizations and decreased hindlimb withdrawal thresholds. Behavioral effects of CGRP were largely blocked by KT5720 (100 microM) but not by GF109203X (100 microM).The results show that CGRP in the amygdala exacerbates nocifensive and affective behavioral responses in normal animals through PKA- and NMDA receptor-dependent postsynaptic facilitation. Thus, increased CGRP levels in the amygdala might trigger pain in the absence of tissue injury.
Collapse
Affiliation(s)
- Jeong S Han
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Hita Adwanikar
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Zhen Li
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Guangchen Ji
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience & Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| |
Collapse
|
27
|
Schlindwein P, Buchholz HG, Schreckenberger M, Bartenstein P, Dieterich M, Birklein F. Sympathetic activity at rest and motor brain areas: FDG-PET study. Auton Neurosci 2008; 143:27-32. [PMID: 18723403 DOI: 10.1016/j.autneu.2008.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/05/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022]
Abstract
Although recent studies identified brain areas which are involved in short term activation of the sympathetic nervous system, little is known about brain mechanisms which generate the individual variability of basal autonomic activity. In this fluorodeoxyglucose positron emission tomography study (FDG-PET), we aimed to identify brain regions, which covary with function parameters of the autonomic nervous system at rest. Therefore, FDG-PET (Siemens, Germany) was performed twice in 14 healthy resting subjects (7 m, 7 f; mean age 29.5 years) while different parameters of autonomic function were assessed simultaneously: Blood pressure, heart rate, power spectra of heart rate variability (HF/LF ratio) and plasma catecholamines. In order to control for attention, subjects had to focus visual affective neutral presentations during the experiment. Correlation analysis was performed as a region of interest analysis using SPM2 software (p<0.001 uncorrected). Sympathetic activity at rest varied substantially between subjects. There were significant positive correlations between increase of regional cerebral glucose metabolism (rCGM) of the heads of caudate nuclei on both sides and the HF/LF ratio of heart rate variability. Furthermore, significant negative correlations between both heart rate and plasma catecholamines and rCGM decreases of caudate nuclei heads were found. In addition, there was a positive correlation between plasma catecholamines and primary motor cortex activation. Autonomic nervous system at rest seems to be partially interlocked with activity of motor brain regions - the caudate nuclei and the motor cortex. This might have clinical implications for the understanding of stress-related disorders, which are frequently accompanied by increased sympathetic activity as well as muscle tone.
Collapse
Affiliation(s)
- P Schlindwein
- Department of Neurology, Johannes Gutenberg-University Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Cain ME, Denehy ED, Bardo MT. Individual differences in amphetamine self-administration: the role of the central nucleus of the amygdala. Neuropsychopharmacology 2008; 33:1149-61. [PMID: 17568395 PMCID: PMC2742632 DOI: 10.1038/sj.npp.1301478] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rats categorized as high responder (HR), based on their activity in an inescapable novel environment, self-administer more amphetamine than low responder (LR) rats. The current study examined if the central nucleus of the amygdala (ACe) contributes to the elevated response for amphetamine in HR rats. Male Sprague-Dawley rats were classified as HR and LR rats based on their activity in inescapable novelty and novelty place preference, and then were trained to self-administer amphetamine (0.1 mg/kg/infusion). Once stable responding was achieved, rats received microinfusions of the GABA(A) agonist muscimol (0.5 microg/0.5 microl) or phosphate-buffered saline into the ACe immediately before self-administration of amphetamine (0.1, 0.03, 0.01, or 0.001 mg/kg/infusion) or saline. An additional group of rats was trained to lever press for sucrose rather than amphetamine. Based on the inescapable novelty test, HR rats self-administered more amphetamine than LR rats at the 0.03 and 0.01 mg/kg/infusion unit doses; there were no significant individual differences in amphetamine self-administration based on the novelty place preference test. Inactivation of the ACe with muscimol decreased self-administration at the 0.03 and 0.01 mg/kg/infusion unit doses in HR rats, but had no effect on LR rats. ACe inactivation had no reliable effect on inactive lever responding and appeared to be region specific based on anatomical controls. In addition, while inactivation of the ACe decreased responding for sucrose, inactivation did not differentially affect HR and LR rats. These results suggest that the ACe contributes to the elevated rate of amphetamine self-administration in HR rats.
Collapse
Affiliation(s)
- Mary E Cain
- Department of Psychology, Kansas State University, Manhattan, KS 66506-5302, USA.
| | | | | |
Collapse
|
29
|
Rodrigo-Angulo ML, Heredero S, Rodríguez-Veiga E, Reinoso-Suárez F. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Brain Res 2008; 1210:116-25. [PMID: 18407254 DOI: 10.1016/j.brainres.2008.02.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 12/16/2022]
Abstract
The ventral part of the oral pontine reticular nucleus (vRPO) is a demonstrated site of brainstem REM-sleep generation and maintenance. The vRPO has reciprocal connections with structures that control other states of the sleep-wakefulness cycle, many situated in the basal forebrain and the diencephalon. Some of these connections utilize the inhibitory neurotransmitter GABA. The aim of the present work is to map the local origin of the basal forebrain and diencephalon projections to the vRPO whether GABAergic or non-GABAergic. A double-labelling technique combining vRPO injections of the neuronal tracer, cholera-toxin (CTB), with GAD-immunohistochemistry, was used for this purpose in adult cats. All of the numerous CTB-positive neurons in the reticular thalamic and dorsocaudal hypothalamic nuclei were double-labelled (CTB/GAD-positive) neurons. Approximately 15%, 14% and 16% of the CTB-positive neurons in the zona incerta and the dorsal and lateral hypothalamic areas are, respectively, CTB/GAD-positive neurons. However, only some double-labelled neurons were found in other hypothalamic nuclei with abundant CTB-positive neurons, such as the paraventricular nucleus, perifornical area and H1 Forel field. In addition, CTB-positive neurons were abundant in the central amygdaline nucleus, terminal stria bed nuclei, median preoptic nucleus, medial and lateral preoptic areas, dorsomedial and ventromedial hypothalamic nuclei, posterior hypothalamic area and periventricular thalamic nucleus. The GABAergic and non-GABAergic connections described here may be the morphological pillar through which these prosencephalic structures modulate, either by inhibiting or by exciting, the vRPO REM-sleep inducing neurons during the different sleep-wakefulness cycle states.
Collapse
|
30
|
Ruigrok TJH, Apps R. A light microscope-based double retrograde tracer strategy to chart central neuronal connections. Nat Protoc 2007; 2:1869-78. [PMID: 17703197 DOI: 10.1038/nprot.2007.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol describes a double retrograde tracing method to chart divergent projections in the CNS using light microscope techniques. It is based on immunohistochemical visualization of retrograde transport of cholera toxin b-subunit (CTb) and silver enhancement of a gold-lectin conjugate. Production of the gold-lectin is explained in detail, and a technique is offered to record through the injection pipettes, to help guide accurate placement of injections. Visualization of the two tracers results in light brown staining of CTb-labeled neurons and labeling by black particles of gold-lectin-containing neurons. Both types of label are easily recognized in the same neuron. The labeling is permanent and is well suited for studies in which large areas of the brain need to be surveyed. The whole procedure (excluding survival time) takes approximately 5-7 d to complete.
Collapse
Affiliation(s)
- Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
31
|
Lee HS, Eum YJ, Jo SM, Waterhouse BD. Projection patterns from the amygdaloid nuclear complex to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 2007; 1143:116-25. [PMID: 17320060 DOI: 10.1016/j.brainres.2007.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/15/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
The goal of the present study was to identify the projection from the subdivisions of the amygdaloid nuclear complex to specified subregions of the dorsal raphe (DR) nucleus and to attempt to compare the density of amygdaloid input to the DR with that of inputs from other limbic structures. Use of a retrograde tracer, gold-conjugated and inactivated wheatgerm agglutinin-horseradish peroxidase (WGA-apo-HRP-gold), demonstrated that amygdaloid input to midline DR subdivision originates mainly from the medial portion of the medial amygdaloid nucleus, whereas that to lateral wing subdivision derives from the region extending from the lateral portion of the medial amygdaloid nucleus to the commissural stria terminalis. Use of the retrograde tracer Fluorogold (FG) produced relatively large but circumscribed injection sites comprising midline DR as well as portions of lateral wing subdivision and confirmed that the medial amygdaloid nucleus provides the major input to the DR. We also demonstrated that although amygdaloid input was not as extensive as inputs from other limbic structures such as the medial prefrontal cortex or the lateral habenular nucleus, it was comparable to input from the lateral septal nucleus. Based on these observations, we suggest that the medial amygdaloid nucleus provides substantial input to the DR and may contribute an emotional influence on sleep-wakefulness cycle or pain-stress modulation. Furthermore, it seems that the medial amygdaloid-DR projection might be anatomically and functionally distinct from the well-characterized central amygdaloid-periaqeductal gray (PAG) circuit which is essential for conditioned fear.
Collapse
Affiliation(s)
- Hyun S Lee
- Department of Anatomy, College of Medicine, Konkuk University, Chungju, Chungbuk 380-701, South Korea.
| | | | | | | |
Collapse
|
32
|
Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the solitary tract: Efferent projections. J Comp Neurol 2006; 497:223-50. [PMID: 16705681 DOI: 10.1002/cne.20993] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nucleus of the solitary tract (NTS) contains a subpopulation of neurons that express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), which makes them uniquely sensitive to aldosterone. These neurons may drive sodium appetite, which is enhanced by aldosterone. Anterograde and retrograde neural tracing techniques were used to reveal the efferent projections of the HSD2 neurons in the rat. First, the anterograde tracer Phaseolus vulgaris leucoagglutinin was used to label axonal projections from the medial NTS. Then, NTS-innervated brain regions were injected with a retrograde tracer, cholera toxin beta subunit, to determine which sites are innervated by the HSD2 neurons. The HSD2 neurons project mainly to the ventrolateral bed nucleus of the stria terminalis (BSTvl), the pre-locus coeruleus (pre-LC), and the inner division of the external lateral parabrachial nucleus (PBel). They also send minor axonal projections to the midbrain ventral tegmental area, lateral and paraventricular hypothalamic nuclei, central nucleus of the amygdala, and periaqueductal gray matter. The HSD2 neurons do not innervate the ventrolateral medulla, a key brainstem autonomic site. Additionally, our tracing experiments confirmed that the BSTvl receives direct axonal projections from the neighboring A2 noradrenergic neurons in the NTS, and from the same pontine sites that receive major inputs from the HSD2 neurons (PBel and pre-LC). The efferent projections of the HSD2 neurons may provide new insights into the brain circuitry responsible for sodium appetite.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
33
|
Correll CM, Rosenkranz JA, Grace AA. Chronic cold stress alters prefrontal cortical modulation of amygdala neuronal activity in rats. Biol Psychiatry 2005; 58:382-91. [PMID: 16023619 DOI: 10.1016/j.biopsych.2005.04.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 03/29/2005] [Accepted: 04/06/2005] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent studies suggest that long-term exposure to stress can sensitize animals to subsequent novel or acute stressors. Stressors affect amygdala activity, and the prefrontal cortex has been implicated in the regulation of responses to stress. Little is known, however, about how the physiology of amygdala neurons is altered by chronic stressors or the role of the prefrontal cortex in these changes. METHODS We used in vivo extracellular recordings from neurons in the rat central and basolateral amygdala nuclei to examine the effects of chronic stress on the basal firing and responses of amygdala neurons to a novel stressor. Additionally, prefrontal cortical afferents were severed to examine its role in the modulation of the response to stressors. RESULTS Chronic exposure to cold enhanced the sensitivity of central amygdala neurons to footshock. A portion of this may be due to enhanced basolateral amygdala output. Furthermore, prefrontal cortical regulation of this response is weakened by chronic stress. CONCLUSIONS The physiology of the amygdala is altered by chronic stress. Furthermore, the prefrontal cortical regulation of these responses may be weakened after chronic stress. This is a potential biological substrate for abnormal affect upon chronic stress and its effect on affective disorders.
Collapse
Affiliation(s)
- Cynthia M Correll
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
34
|
Chen S, Buckmaster PS. Stereological analysis of forebrain regions in kainate-treated epileptic rats. Brain Res 2005; 1057:141-52. [PMID: 16122711 DOI: 10.1016/j.brainres.2005.07.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 12/18/2022]
Abstract
Patients and models of temporal lobe epilepsy display neuron loss in the hippocampal formation, but neuropathological changes also occur in other forebrain regions. We sought to evaluate the specificity and extent of volume loss of the major forebrain regions in epileptic rats months after kainate-induced status epilepticus. In systematic series of Nissl-stained sections, the areas of major forebrain regions were measured, and volumes were estimated using the Cavalieri principle. In some regions, the optical fractionator method was used to estimate neuron numbers. Most kainate-treated rats showed significant volume loss in the amygdala, olfactory cortex, and septal region, but others displayed different patterns, with significant loss only in the hippocampus or thalamus, for example. Average volume loss was most severe in the amygdala and olfactory cortex (82-83% of controls), especially the caudal parts of both regions. In the piriform cortex (including the endopiriform nucleus) of epileptic rats, an average of approximately one-third of Nissl-stained neurons and one-third of the GABAergic interneurons labeled by in situ hybridization for GAD67 mRNA were lost, and the extent of neuron loss was correlated with the extent of volume loss. Volumetric analysis of major forebrain regions was insensitive to specific neuron loss in subregions such as layer III of the entorhinal cortex and the hilus of the dentate gyrus. These findings provide quantitative evidence that kainate-treated rats tend to display extensive neuron and volume loss in the amygdala and olfactory cortex, although the patterns and extent of loss in forebrain regions vary considerably among individuals. In this status epilepticus-based model, extrahippocampal damage appears to be more extensive and hippocampal damage appears to be less extensive than that reported for patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305-5342, USA
| | | |
Collapse
|
35
|
Jia HG, Zhang GY, Wan Q. A GABAergic projection from the central nucleus of the amygdala to the parabrachial nucleus: an ultrastructural study of anterograde tracing in combination with post-embedding immunocytochemistry in the rat. Neurosci Lett 2005; 382:153-7. [PMID: 15911140 DOI: 10.1016/j.neulet.2005.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/23/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
To determine whether axonal terminals emanating from the central nucleus of amygdala (Ce) to the parabrachial nucleus (PBN) contain gamma-aminobutyric acid (GABA) as their neurotransmitter, an electron microscopic study was performed employing the combined techniques of WGA-HRP anterograde tracing and post-embedding immunocytochemistry for GABA. Our analysis distinguished a large population of GABA immunopositive axonal terminals from the Ce that exhibited symmetrical synaptic contacts with neurons in the lateral parabrachial nucleus. Additionally, most retrogradely labeled dendrites and perikarya received synaptic contacts from GABA immunoreactive terminals, with some of them originating from the Ce. The present study provides the first direct ultrastructural evidence for a monosynaptic, GABAergic link between Ce axons and neurons of the parabrachial nucleus via classical symmetrical synapses.
Collapse
Affiliation(s)
- Hong-Ge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710033, People's Republic of China.
| | | | | |
Collapse
|
36
|
Beveridge TJR, Smith HR, Nader MA, Porrino LJ. Functional effects of cocaine self-administration in primate brain regions regulating cardiovascular function. Neurosci Lett 2004; 370:201-5. [PMID: 15488323 DOI: 10.1016/j.neulet.2004.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 11/23/2022]
Abstract
Cocaine abuse is associated with autonomic dysregulation, such as altered blood pressure and heart rate. Both central and peripheral mechanisms have been implicated in mediating these changes, however, to date, no study has examined functional changes in activity within central autonomic-associated brain regions in response to cocaine in non-human primates. The aim of the present study was to measure local cerebral glucose utilization, in selected autonomic brain regions, in rhesus monkeys that had self-administered cocaine (0.3 mg/kg/infusion) for 5 days (initial) or 100 days (chronic). Measurements were compared with control monkeys, in which responding was maintained by food reinforcement. In general, decreased rates of glucose utilization were observed in targeted areas following both 5 and 100 days of cocaine self-administration compared to control values. However, after initial stages of cocaine exposure, significant reductions in the forebrain were restricted to the bed nucleus of stria terminalis and in the brainstem to the nucleus tractus solitarius and dorsomotor nucleus of the vagus nerve. The pattern of significantly altered functional activity induced by chronic 100-day cocaine self-administration extended within the forebrain to include the paraventricular hypothalamic nucleus, and in the brainstem to include additional autonomic-related nuclei, the nucleus ambiguus and locus coeruleus. These results suggest that even at the initial stages of cocaine self-administration, functional changes in activity occur in autonomic and reward-related brain regions. These alterations progress with prolonged cocaine exposure, and therefore may be involved in mediating changes in central autonomic control and the neuroadaptations reported to result from chronic drug abuse.
Collapse
Affiliation(s)
- Thomas J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
37
|
Barbas H, Saha S, Rempel-Clower N, Ghashghaei T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 2003; 4:25. [PMID: 14536022 PMCID: PMC270042 DOI: 10.1186/1471-2202-4-25] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 10/10/2003] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Experiencing emotions engages high-order orbitofrontal and medial prefrontal areas, and expressing emotions involves low-level autonomic structures and peripheral organs. How is information from the cortex transmitted to the periphery? We used two parallel approaches to map simultaneously multiple pathways to determine if hypothalamic autonomic centres are a key link for orbitofrontal areas and medial prefrontal areas, which have been associated with emotional processes, as well as low-level spinal and brainstem autonomic structures. The latter innervate peripheral autonomic organs, whose activity is markedly increased during emotional arousal. RESULTS We first determined if pathways linking the orbitofrontal cortex with the hypothalamus overlapped with projection neurons directed to the intermediolateral column of the spinal cord, with the aid of neural tracers injected in these disparate structures. We found that axons from orbitofrontal and medial prefrontal cortices converged in the hypothalamus with neurons projecting to brainstem and spinal autonomic centers, linking the highest with the lowest levels of the neuraxis. Using a parallel approach, we injected bidirectional tracers in the lateral hypothalamic area, an autonomic center, to label simultaneously cortical pathways leading to the hypothalamus, as well as hypothalamic axons projecting to low-level brainstem and spinal autonomic centers. We found densely distributed projection neurons in medial prefrontal and orbitofrontal cortices leading to the hypothalamus, as well as hypothalamic axonal terminations in several brainstem structures and the intermediolateral column of the spinal cord, which innervate peripheral autonomic organs. We then provided direct evidence that axons from medial prefrontal cortex synapse with hypothalamic neurons, terminating as large boutons, comparable in size to the highly efficient thalamocortical system. The interlinked orbitofrontal, medial prefrontal areas and hypothalamic autonomic centers were also connected with the amygdala. CONCLUSIONS Descending pathways from orbitofrontal and medial prefrontal cortices, which are also linked with the amygdala, provide the means for speedy influence of the prefrontal cortex on the autonomic system, in processes underlying appreciation and expression of emotions.
Collapse
Affiliation(s)
- Helen Barbas
- Department of Health Sciences, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
38
|
Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2003; 115:1261-79. [PMID: 12453496 DOI: 10.1016/s0306-4522(02)00446-3] [Citation(s) in RCA: 540] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The amygdala has been implicated in processing information about the emotional significance of the environment and in the expression of emotions, through robust pathways with prefrontal, anterior temporal areas, and central autonomic structures. We investigated the anatomic organization and intersection of these pathways in the amygdala in rhesus monkeys with the aid of bidirectional, retrograde and anterograde tracers. Connections of the amygdala with orbitofrontal and medial prefrontal areas were robust and bidirectional, whereas connections with lateral prefrontal areas were sparse, unidirectional and ascending. Orbitofrontal axons terminated densely in a narrow band around the borders of the magnocellular basolateral nucleus, surrounded by projection neurons along a continuum through the nuclei of the basal complex. In contrast, the input and output zones of medial prefrontal areas were intermingled in the amygdala. Moreover, medial prefrontal axonal terminations were expansive, spreading into the parvicellular basolateral nucleus, which is robustly connected with hypothalamic autonomic structures, suggesting that they may influence the expressive emotional system of the amygdala. On the other hand, orbitofrontal axons heavily targeted the intercalated masses, which issue inhibitory projections to the central nucleus, at least in rats and cats. The central nucleus, in turn, issues a significant inhibitory projection to hypothalamic and brainstem autonomic structures. This evidence suggests that orbitofrontal areas exercise control on the internal processing of the amygdala. In addition, the results provided direct evidence that the connections of anterior temporal visual and auditory association cortices occupy overlapping territories with the orbitofrontal cortices particularly in the posterior half of the amygdala, and specifically within the intermediate sector of the basolateral nucleus and in the magnocellular part of the basomedial nucleus (also known as accessory basal), suggesting a closely linked triadic network. This intricate network may be recruited in cognitive tasks that are inextricably linked with emotional associations.
Collapse
Affiliation(s)
- H T Ghashghaei
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Room 431, Boston, MA 02215, USA
| | | |
Collapse
|
39
|
Milner TA, Drake CT, Aicher SA. Cellular relations between mu-opioid receptive, GABAergic and reticulospinal neurons in the rostral ventrolateral medulla. Brain Res 2001; 917:1-14. [PMID: 11602225 DOI: 10.1016/s0006-8993(01)02827-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Physiological studies have suggested that mu-opioid receptor (MOR) activation can both excite and inhibit reticulospinal neurons in the rostral ventrolateral medulla (RVL), possibly via influences on GABAergic neurons. Thus, to determine the cellular relationships of MORs to GABAergic neurons in the RVL, two experimental approaches were used. First, single sections through the RVL were labeled for MOR using immunoperoxidase detection and for GABA using immunogold detection and examined by electron microscopy. These studies revealed that MOR-immunoreactive (IR) terminals were smaller on average than GABA-IR terminals and formed both asymmetric and symmetric synapses, whereas GABA-IR terminals formed exclusively symmetric synapses. MOR and GABA immunoreactivities rarely co-localized. Interactions between axons and terminals containing MOR or GABA immunoreactivity were primarily: (1) direct appositions with each other; or (2) convergence onto a common dendritic target that sometimes contained either MOR or GABA immunoreactivity. Since the identity of these target dendrites mostly was unknown, a second study was designed to determine if they might be reticulospinal neurons. For this study, reticulospinal neurons were identified with a retrograde tracer and both MOR and GABA were localized in the same sections of the RVL. These studies revealed that numerous GABA-IR terminals formed symmetric synapses on the perikarya and proximal dendrites of reticulospinal neurons. In contrast, few MOR-IR terminals contacted reticulospinal perikarya and large dendrites although they were often found nearby. These results provide anatomical evidence that MOR activation by endogenous or exogenous agonists may indirectly alter GABAergic neurotransmission in the RVL either through presynaptic interactions between cells or through competing influences on postsynaptic targets.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA.
| | | | | |
Collapse
|
40
|
Saha S, Batten TF, Henderson Z. A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience 2001; 99:613-26. [PMID: 10974425 DOI: 10.1016/s0306-4522(00)00240-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The central nucleus of the amygdala is involved in the modulation of autonomic, somatic and endocrine functions, as well as behavioural responses to stressful stimuli. Anatomical and physiological studies have suggested that this nucleus sends projections to the nucleus of the solitary tract, the primary site of termination of vagal and glossopharyngeal afferent fibres in the brain stem. To determine the neurochemical nature of the amygdaloid input to the nucleus of the solitary tract, anterograde tracing with biotinylated dextran amine was combined with post-embedding immunogold labelling for GABA and glutamate immunoreactivities and with pre-embedding labelling for the vesicular GABA transporter. Following injection of biotin dextran amine into the central nucleus of the amygdala, anterogradely labelled axons and varicosities were found throughout the rostrocaudal extent of the nucleus of the solitary tract, particularly in the medial, ventral and ventrolateral subnuclei. The anterogradely labelled terminals were found to make predominantly symmetrical synaptic contacts with dendrites, and occasionally onto cell bodies and dendritic spines, and to contain immunoreactivity for GABA and for the vesicular GABA transporter. Immunolabelling of serial sections with antibodies to glutamate showed that none of these axon terminals contained high enough densities of gold particle labelling to suggest that they contained other than low metabolic levels of glutamate immunoreactivity. These results provide conclusive evidence for a GABAergic pathway from the central nucleus of the amygdala to the nucleus of the solitary tract. This GABAergic projection may provide a substrate for inhibition of lower brain stem visceral reflexes, including baroreflex inhibition, through which the central nucleus of the amygdala could participate in cardiovascular regulation related to emotional behaviour and the defence reaction.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, LS2 9JT, Leeds, UK.
| | | | | |
Collapse
|
41
|
Salomé N, Viltart O, Leman S, Sequeira H. Activation of ventrolateral medullary neurons projecting to spinal autonomic areas after chemical stimulation of the central nucleus of amygdala: a neuroanatomical study in the rat. Brain Res 2001; 890:287-95. [PMID: 11164795 DOI: 10.1016/s0006-8993(00)03178-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several studies have shown that the central nucleus of amygdala is involved in cardiovascular regulation. The control of this function may be mediated by activation of the ventrolateral medulla neurons that project to preganglionic neurons located in the intermediolateral nucleus of the spinal cord. The aim of the present study was to examine whether stimulation of the central nucleus of amygdala activated ventrolateral medulla neurons projecting to the intermediolateral nucleus. For this purpose, the injection of a retrograde tracer, the cholera toxin b subunit (CTb), into the intermediolateral nucleus of the T2 segment was combined with immunohistochemical detection of Fos protein following chemical stimulation of the central nucleus of amygdala. Results showed that retrogradely labeled neurons were found throughout the ventrolateral medulla. Moreover, chemical stimulation of the central nucleus of amygdala induced: (1) a decrease of arterial blood pressure; (2) an expression of Fos protein mainly in sub-populations of neurons located in the intermediate and caudal parts of the ventrolateral medulla; (3) a significantly higher number of double labeled neurons (CTb-immunoreactive/Fos-immunoreactive) in the rostral part of the ventrolateral medulla than in the other parts of this region. These results show that the central nucleus of amygdala influences the activity of brainstem neurons projecting to the intermediolateral nucleus. Data were discussed in terms of descending amygdalofugal pathways involved in the hypotension.
Collapse
Affiliation(s)
- N Salomé
- Laboratoire de Neurosciences du Comportement, SN4, Université de Lille 1, 59655 Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
42
|
Jongen-Rêlo AL, Amaral DG. A double labeling technique using WGA-apoHRP-gold as a retrograde tracer and non-isotopic in situ hybridization histochemistry for the detection of mRNA. J Neurosci Methods 2000; 101:9-17. [PMID: 10967357 DOI: 10.1016/s0165-0270(00)00240-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We describe a novel method to study the neurochemical nature of a specific neuronal pathway by using conjugated WGA-apoHRP as a retrograde tracer and non-isotopic in situ hybridization histochemistry to examine the expression of mRNA. The technique was developed to eliminate the reduction of retrograde tracer during the rigorous procedures involved in in situ hybridization. The tracer was injected stereotaxically into the brainstem of Macaca fascicularis monkeys. Sections through the central nucleus of the amygdala were processed for the visualization of the retrogradely transported WGA-apoHRP-gold using a silver enhanced reaction, followed by non radioactive in situ hybridization for the mRNA encoding glutamic acid decarboxylase (GAD67). Numerous retrogradely labeled cells were observed in the central nucleus of the amygdala. Comparison of double-labeled sections with sections processed for the retrograde tracer alone indicated that there was relatively little loss of the retrograde tracer during the in situ hybridization processing. This method provides a relatively simple and reliable tool to study the molecular phenotype of identified projection neurons.
Collapse
Affiliation(s)
- A L Jongen-Rêlo
- Behavioral Neurobiology Laboratory, Swiss Federal Institute of Technology, Zürich, CH-8603, Schwerzenbach, Switzerland
| | | |
Collapse
|
43
|
Abstract
Gaze is an important component of social interaction. The function, evolution and neurobiology of gaze processing are therefore of interest to a number of researchers. This review discusses the evolutionary role of social gaze in vertebrates (focusing on primates), and a hypothesis that this role has changed substantially for primates compared to other animals. This change may have been driven by morphological changes to the face and eyes of primates, limitations in the facial anatomy of other vertebrates, changes in the ecology of the environment in which primates live, and a necessity to communicate information about the environment, emotional and mental states. The eyes represent different levels of signal value depending on the status, disposition and emotional state of the sender and receiver of such signals. There are regions in the monkey and human brain which contain neurons that respond selectively to faces, bodies and eye gaze. The ability to follow another individual's gaze direction is affected in individuals with autism and other psychopathological disorders, and after particular localized brain lesions. The hypothesis that gaze following is "hard-wired" in the brain, and may be localized within a circuit linking the superior temporal sulcus, amygdala and orbitofrontal cortex is discussed.
Collapse
Affiliation(s)
- N J Emery
- Center for Neuroscience, Department of Psychiatry & California Regional Primate Research Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Abstract
N-methyl-D-aspartate (NMDA) receptors are commonly found post-synaptically; they mediate fast excitatory neurotransmission in the central nervous system. In this study, we provide immunocytochemical data supporting the existence of presynaptic NMDA receptors in GABAergic terminals using polyclonal antisera raised against the C-terminus of the NMDAR1 subunit. At the light microscope level, rich plexuses of NMDAR1-positive varicose fibers were found in various nuclei in the basal forebrain (bed nucleus of stria terminalis, septum, parastrial nucleus, vascular organ of the lamina terminalis), thalamus (paraventricular nucleus, midline nuclei), and hypothalamus (parvocellular paraventricular nucleus, arcuate nucleus, preoptic nucleus, suprachiasmatic nucleus). In the brainstem, labeled fibers were much less abundant and were confined to the ventral tegmental area, periaqueductal gray, parabrachial nucleus, and locus coeruleus. At the electron microscope level, NMDAR1-immunoreactive terminals examined in the bed nucleus of stria terminalis, parvocellular paraventricular hypothalamic nucleus, and arcuate nucleus formed symmetric synapses, contained darkly stained large dense-core vesicles, and displayed gamma-aminobutyric acid (GABA) immunoreactivity. Terminals with similar ultrastructural features were found in the paraventricular thalamic nucleus. These findings demonstrate the existence of NMDAR1 subunit immunoreactivity in subsets of GABAergic terminals, which raises questions about the potential roles and mechanisms of activation of presynaptic NMDA heteroreceptors in the rat central nervous system. The pattern of distribution and ultrastructural features of these boutons suggest that they may arise from local GABAergic projections interconnecting a group of brain structures mediating stress responses and/or other endocrine, autonomic, and limbic functions.
Collapse
Affiliation(s)
- M Paquet
- Yerkes Regional Primate Research Center, Division of Neuroscience and Department of Neurology, Emory University, Atlanta, Georgia 30329, USA
| | | |
Collapse
|
45
|
Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats. J Neurosci 1999. [PMID: 10531454 DOI: 10.1523/jneurosci.19-21-09519.1999] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with temporal lobe epilepsy display neuron loss in the hilus of the dentate gyrus. This has been proposed to be epileptogenic by a variety of different mechanisms. The present study examines the specificity and extent of neuron loss in the dentate gyrus of kainate-treated rats, a model of temporal lobe epilepsy. Kainate-treated rats lose an average of 52% of their GAD-negative hilar neurons (putative mossy cells) and 13% of their GAD-positive cells (GABAergic interneurons) in the dentate gyrus. Interneuron loss is remarkably specific; 83% of the missing GAD-positive neurons are somatostatin-immunoreactive. Of the total neuron loss in the hilus, 97% is attributed to two cell types-mossy cells and somatostatinergic interneurons. The retrograde tracer wheat germ agglutinin (WGA)-apoHRP-gold was used to identify neurons with appropriate axon projections for generating lateral inhibition. Previously, it was shown that lateral inhibition between regions separated by 1 mm persists in the dentate gyrus of kainate-treated rats with hilar neuron loss. Retrogradely labeled GABAergic interneurons are found consistently in sections extending 1 mm septotemporally from the tracer injection site in control and kainate-treated rats. Retrogradely labeled putative mossy cells are found up to 4 mm from the injection site, but kainate-treated rats have fewer than controls, and in several kainate-treated rats virtually all of these cells are missing. These findings support hypotheses of temporal lobe epileptogenesis that involve mossy cell and somatostatinergic neuron loss and suggest that lateral inhibition in the dentate gyrus does not require mossy cells but, instead, may be generated directly by GABAergic interneurons.
Collapse
|