1
|
Kot A, Koszewska D, Ochman B, Świętochowska E. Clinical Potential of Misshapen/NIKs-Related Kinase (MINK) 1-A Many-Sided Element of Cell Physiology and Pathology. Curr Issues Mol Biol 2024; 46:13811-13845. [PMID: 39727954 PMCID: PMC11727420 DOI: 10.3390/cimb46120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes. It thus contributes to regulating the cell cycle, apoptosis, cytoskeleton organization, cell migration, embryogenesis, or tissue homeostasis. MINK1 plays an important role in immunological responses, inhibiting Th17 and Th1 cell differentiation and regulating NLRP3 inflammasome function. It may be considered a link between ROS and the immunological system, and a potential antiviral target for human enteroviruses. The kinase has been implicated in the pathogenesis of sepsis, rheumatoid arthritis, asthma, SLE, and more. It is also involved in tumorigenesis and drug resistance in cancer. Silencing MINK1 reduces cancer cell migration, suggesting potential for new therapeutic approaches. Targeting MINK1 could be a promising treatment strategy for patients insensitive to current chemotherapies, and could improve their prognosis. Moreover, MINK1 plays an important role in the nervous system and the cardiovascular system development and function. The modulation of MINK1 activity could influence the course of neurodegenerative diseases, including Alzheimer's disease. Further exploration of the activity of the kinase could also help in gaining more insight into factors involved in thrombosis or congenital heart disease. This review aims to summarize the current knowledge on MINK1, highlight its therapeutic and prognostic potential, and encourage more studies in this area.
Collapse
Affiliation(s)
| | | | | | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (A.K.); (D.K.); (B.O.)
| |
Collapse
|
2
|
Yang Q, Liu H, Zhong D, Li Z, Li J, Xiao K, Liu W. Tanc1/2 TPR domain interacts with Myo18a C-terminus and undergoes liquid-liquid phase separation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119650. [PMID: 38092135 DOI: 10.1016/j.bbamcr.2023.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tanc1 and its homologous protein Tanc2 are critical synaptic scaffold proteins which regulate synaptic spine densities and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDDs). In this study, we identified and characterized a novel interaction between Tanc1/2 and Myo18a, mediated by the Tanc1/2 TPR domains and Myo18a coiled-coil domain and C-extension (CCex). Sequence analysis and size exclusion chromatography experiments reveal that high salt disrupts the interaction between Myo18a and Tanc1/2, indicating that the interaction is primarily driven by charge-charge interactions. More importantly, we found that the Tanc1-TPR/Myo18a CCex interaction could undergo liquid-liquid phase separation (LLPS) in both cultured cells and test tubes, which provides the biochemical basis and potential molecular mechanisms for the LLPS-mediated interactions between Myo18a and Tanc1/2.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dengqin Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jianchao Li
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
3
|
Paciello F, Pisani A, Rinaudo M, Cocco S, Paludetti G, Fetoni AR, Grassi C. Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiol Dis 2023; 178:106024. [PMID: 36724860 DOI: 10.1016/j.nbd.2023.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Several studies identified noise-induced hearing loss (NIHL) as a risk factor for sensory aging and cognitive decline processes, including neurodegenerative diseases, such as dementia and age-related hearing loss (ARHL). Although the association between noise- and age-induced hearing impairment has been widely documented by epidemiological and experimental studies, the molecular mechanisms underlying this association are not fully understood as it is not known how these risk factors (aging and noise) can interact, affecting memory processes. We recently found that early noise exposure in an established animal model of ARHL (C57BL/6 mice) accelerates the onset of age-related cochlear dysfunctions. Here, we extended our previous data by investigating what happens in central brain structures (auditory cortex and hippocampus), to assess the relationship between hearing and memory impairment and the possible combined effect of noise and sensory aging on the cognitive domain. To this aim, we exposed juvenile C57BL/6 mice of 2 months of age to repeated noise sessions (60 min/day, pure tone of 100 dB SPL, 10 kHz, 10 consecutive days) and we monitored auditory threshold by measuring auditory brainstem responses (ABR), spatial working memory, by using the Y-maze test, and basal synaptic transmission by using ex vivo electrophysiological recordings, at different time points (1, 4 and 7 months after the onset of noise exposure, corresponding to 3, 6 and 9 months of age). We found that hearing loss, along with accelerated presbycusis onset, can induce persistent synaptic alterations in the auditory cortex. This was associated with decreased memory performance and oxidative-inflammatory injury in the hippocampus, the extra-auditory structure involved in memory processes. Collectively, our data confirm the critical relationship between auditory and memory circuits, suggesting that the combined detrimental effect of noise and sensory aging on hearing function can be considered a high-risk factor for both sensory and cognitive degenerative processes, given that early noise exposure accelerates presbycusis phenotype and induces hippocampal-dependent memory dysfunctions.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Anna Pisani
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Anna Rita Fetoni
- Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Roma, Italy; Department of Neuroscience, Unit of Audiology, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
4
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
5
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
6
|
Garrett L, Da Silva-Buttkus P, Rathkolb B, Gerlini R, Becker L, Sanz-Moreno A, Seisenberger C, Zimprich A, Aguilar-Pimentel A, Amarie OV, Cho YL, Kraiger M, Spielmann N, Calzada-Wack J, Marschall S, Busch D, Schmitt-Weber C, Wolf E, Wurst W, Fuchs H, Gailus-Durner V, Hölter SM, de Angelis MH. Post-synaptic scaffold protein TANC2 in psychiatric and somatic disease risk. Dis Model Mech 2021; 15:273891. [PMID: 34964047 PMCID: PMC8906171 DOI: 10.1242/dmm.049205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the shared genetic aetiology of psychiatric and medical comorbidity in neurodevelopmental disorders (NDDs) could improve patient diagnosis, stratification and treatment options. Rare tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (TANC2)-disrupting variants were disease causing in NDD patients. The post-synaptic scaffold protein TANC2 is essential for dendrite formation in synaptic plasticity and plays an unclarified but critical role in development. We here report a novel homozygous-viable Tanc2-disrupted function model in which mutant mice were hyperactive and had impaired sensorimotor gating consistent with NDD patient psychiatric endophenotypes. Yet, a multi-systemic analysis revealed the pleiotropic effects of Tanc2 outside the brain, such as growth failure and hepatocellular damage. This was associated with aberrant liver function including altered hepatocellular metabolism. Integrative analysis indicates that these disrupted Tanc2 systemic effects relate to interaction with Hippo developmental signalling pathway proteins and will increase the risk for comorbid somatic disease. This highlights how NDD gene pleiotropy can augment medical comorbidity susceptibility, underscoring the benefit of holistic NDD patient diagnosis and treatment for which large-scale preclinical functional genomics can provide complementary pleiotropic gene function information. Summary: Disruption of mouse Tanc2 causes brain and liver abnormality, increasing psychiatric and somatic disease risk long term, highlighting the benefit of holistic diagnosis and treatment approaches for human neurodevelopmental disorder.
Collapse
Affiliation(s)
- Lillian Garrett
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patricia Da Silva-Buttkus
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian Sanz-Moreno
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Seisenberger
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annemarie Zimprich
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Technische Universität München, Freising-Weihenstephan, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yi-Li Cho
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Kraiger
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675 Munich, Germany
| | - Carsten Schmitt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München, and Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany.,Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354 Freising, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Paciello F, Rinaudo M, Longo V, Cocco S, Conforto G, Pisani A, Podda MV, Fetoni AR, Paludetti G, Grassi C. Auditory sensory deprivation induced by noise exposure exacerbates cognitive decline in a mouse model of Alzheimer's disease. eLife 2021; 10:70908. [PMID: 34699347 PMCID: PMC8547960 DOI: 10.7554/elife.70908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Although association between hearing impairment and dementia has been widely documented by epidemiological studies, the role of auditory sensory deprivation in cognitive decline remains to be fully understood. To address this issue we investigated the impact of hearing loss on the onset and time-course of cognitive decline in an animal model of Alzheimer's disease (AD), that is the 3×Tg-AD mice and the underlying mechanisms. We found that hearing loss induced by noise exposure in the 3×Tg-AD mice before the phenotype is manifested caused persistent synaptic and morphological alterations in the auditory cortex. This was associated with earlier hippocampal dysfunction, increased tau phosphorylation, neuroinflammation, and redox imbalance, along with anticipated memory deficits compared to the expected time-course of the neurodegenerative phenotype. Our data suggest that a mouse model of AD is more vulnerable to central damage induced by hearing loss and shows reduced ability to counteract noise-induced detrimental effects, which accelerates the neurodegenerative disease onset.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Longo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Conforto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Pisani
- Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Vittoria Podda
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Otolaryngology Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Wu D, Li Y, Ren Q, Pei S, Wang L, Yang L, Chong Y, Sun S, Hao J, Feng F. TANC1 methylation as a novel biomarker for the diagnosis of patients with anti-tuberculosis drug-induced liver injury. Sci Rep 2021; 11:17423. [PMID: 34465797 PMCID: PMC8408132 DOI: 10.1038/s41598-021-96869-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
We aimed to elucidate the differences in genomic methylation patterns between ADLI and non-ADLI patients to identify DNA methylation-based biomarkers. Genome-wide DNA methylation patterns were obtained using Infinium MethylationEPIC (EPIC) BeadChip array to analyze 14 peripheral blood samples (7 ADLI cases, 7 non-ADLI controls). Changes in the mRNA and DNA methylation in the target genes of another 120 peripheral blood samples (60 ADLI cases, 60 non-ADLI controls) were analyzed by real-time polymerase chain reaction and pyrosequencing, respectively. A total of 308 hypermethylated CpG sites and 498 hypomethylated CpG sites were identified. Significantly, hypermethylated CpG sites cg06961147 and cg24666046 in TANC1 associated with ADLI was identified by genome-wide DNA methylation profiling. The mRNA expression of TANC1 was lower in the cases compared to the controls. Pyrosequencing validated these two differentially methylated loci, which was consistent with the results from the EPIC BeadChip array. Receiver operating characteristic analysis indicated that the area under the curve of TANC1 (cg06961147, cg24666046, and their combinations) was 0.812, 0.842, and 0.857, respectively. These results indicate that patients with ADLI have different genomic methylation patterns than patients without ADLI. The hypermethylated differentially methylated site cg06961147 combined with cg24666046 in TANC1 provides evidence for the diagnosis of ADLI.
Collapse
Affiliation(s)
- Dongxue Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yuhong Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Qi Ren
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Shengfei Pei
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Lin Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Luming Yang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Yingzhi Chong
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Shufeng Sun
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
| | - Jinqi Hao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.,School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou City, 014040, Inner Mongolia, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China. .,School of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
9
|
Kim SG, Lee S, Kim Y, Park J, Woo D, Kim D, Li Y, Shin W, Kang H, Yook C, Lee M, Kim K, Roh JD, Ryu J, Jung H, Um SM, Yang E, Kim H, Han J, Heo WD, Kim E. Tanc2-mediated mTOR inhibition balances mTORC1/2 signaling in the developing mouse brain and human neurons. Nat Commun 2021; 12:2695. [PMID: 33976205 PMCID: PMC8113471 DOI: 10.1038/s41467-021-22908-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.
Collapse
Affiliation(s)
- Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yangsik Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Jieun Park
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Doyeon Woo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyunjeong Kang
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Chaehyun Yook
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Minji Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea
| | - Kyungdeok Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | | | - Jeseung Ryu
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seung Min Um
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.
- Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
10
|
Yang Q, Liu H, Li Z, Wang Y, Liu W. Purification and mutagenesis studies of TANC1 ankyrin repeats domain provide clues to understand mis-sense variants from diseases. Biochem Biophys Res Commun 2019; 514:358-364. [PMID: 31040020 DOI: 10.1016/j.bbrc.2019.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
TANC1 and its close relative TANC2 are two important synaptic scaffold proteins which play critical roles in regulating densities of synaptic spines and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDD). So far, the biochemical properties of TANC1/2 proteins remain largely unknown. In this study, Ankyrin-repeats (AR) domain of TANC1 was expressed and purified using Escherichia coli. (E. coli.) cells, which showed low solubility and stability after removing the maltose binding protein (MBP) tag. Sequence analysis revealed that the TANC1 AR domain is lack of canonical N, C-capping units. By introducing two point mutations in the C-capping unit and replacing the N-capping unit, monomeric and well-folded TANC1 AR domain was purified and characterized by size exclusion chromatography coupled with multi-angle static light scattering (SEC-MALS) and circular dichroism spectroscopy (CD). In addition, mutations from intellectual disability (ID) patients and cancer patients were imported into the TANC1 AR domain. The ID mutant exhibited marginal effects in terms of conformation and protein folding stability changes. By contrast, the cancer mutants dramatically decreased protein solubility. Combined with structural prediction, we speculated that mis-sense variants tested in this study may either affect protein folding or disrupt the interaction between TANC1/2 AR domains and their binding partners.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China.
| |
Collapse
|
11
|
Lu F, Shao G, Wang Y, Guan S, Burlingame AL, Liu X, Liang X, Knox R, Ferriero DM, Jiang X. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol 2017; 299:65-74. [PMID: 28993251 DOI: 10.1016/j.expneurol.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
The N-methyl-d-aspartate-type glutamate receptor (NMDAR)-associated multiprotein complexes are indispensable for synaptic plasticity and cognitive functions. While purification and proteomic analyses of these signaling complexes have been performed in adult rodent and human brain, much less is known about the protein composition of NMDAR complexes in the developing brain and their modifications by neonatal hypoxic-ischemic (HI) brain injury. In this study, the postsynaptic density proteins were prepared from postnatal day 9 naïve, sham-operated and HI-injured mouse cortex. The GluN2B-containing NMDAR complexes were purified by immunoprecipitation with a mouse GluN2B antibody and subjected to mass spectrometry analysis for determination of the GluN2B binding partners. A total of 71 proteins of different functional categories were identified from the naïve animals as native GluN2B-interacting partners in the developing mouse brain. Neonatal HI reshaped the postsynaptic GluN2B interactome by recruiting new proteins, including multiple kinases, into the complexes; and modifying the existing associations within 1h of reperfusion. The early responses of postsynaptic NMDAR complexes and their related signaling networks may contribute to molecular processes leading to cell survival or death, brain damage and/or neurological disorders in term infants with neonatal encephalopathy.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Pediatrics, University of California San Francisco, CA, USA
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Yongqiang Wang
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Shenheng Guan
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA, USA
| | - Xuemei Liu
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Liang
- Central Laboratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, CA, USA; Department of Neurology, University of California San Francisco, CA, USA
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, CA, USA.
| |
Collapse
|
12
|
Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family. Sci Rep 2017; 7:6829. [PMID: 28754924 PMCID: PMC5533708 DOI: 10.1038/s41598-017-05748-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
The emergence of genes implicated across multiple comorbid neurologic disorders allows to identify shared underlying molecular pathways. Recently, investigation of patients with diverse neurologic disorders found TANC1 and TANC2 as possible candidate disease genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing synaptic spines and excitatory synapse strength, their molecular functions remain unknown. Here, we conducted a comprehensive in silico analysis of the TANC protein family to characterize their molecular role and understand possible neurobiological consequences of their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been modeled. The newly predicted N-terminal ATPase domain may function as a regulated molecular switch for downstream signaling. Several putative conserved protein binding motifs allowed to extend the TANC interaction network. Interestingly, we highlighted connections with different signaling pathways converging to modulate neuronal activity. Beyond a known role for TANC family members in the glutamate receptor pathway, they seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This suggests an important role in neuron projection, extension and differentiation.
Collapse
|
13
|
Fetterolf F, Foster KA. Regulation of long-term plasticity induction by the channel and C-terminal domains of GluN2 subunits. Mol Neurobiol 2011; 44:71-82. [PMID: 21604197 DOI: 10.1007/s12035-011-8190-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/09/2011] [Indexed: 12/30/2022]
Abstract
Conventional long-term potentiation (LTP) and long-term depression (LTD) are induced by different patterns of synaptic stimulation, but both forms of synaptic modification require calcium influx through NMDA receptors (NMDARs). A prevailing model (the "calcium hypothesis") suggests that high postsynaptic calcium elevation results in LTP, whereas moderate elevations give rise to LTD. Recently, additional evidence has come to suggest that differential activation of NMDAR subunits also factors in determining which type of plasticity is induced. While the growing amount of data suggest that activation of NMDARs containing specific GluN2 subunits plays an important role in the induction of plasticity, it remains less clear which subunit is tied to which form of plasticity. Additionally, it remains to be determined which properties of the subunits confer upon them the ability to differentially induce long-term plasticity. This review highlights recent studies suggesting differential roles for the subunits, as well as findings that begin to shed light on how two similar subunits may be linked to the induction of opposing forms of plasticity.
Collapse
Affiliation(s)
- Frank Fetterolf
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Ave., Scranton, PA 18510, USA
| | | |
Collapse
|
14
|
Regulation of dendritic spines, spatial memory, and embryonic development by the TANC family of PSD-95-interacting proteins. J Neurosci 2010; 30:15102-12. [PMID: 21068316 DOI: 10.1523/jneurosci.3128-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PSD-95 (postsynaptic density-95) is thought to play important roles in the regulation of dendritic spines and excitatory synapses, but the underlying mechanisms have not been fully elucidated. TANC1 is a PSD-95-interacting synaptic protein that contains multiple domains for protein-protein interactions but whose function is not well understood. In the present study, we provide evidence that TANC1 and its close relative TANC2 regulate dendritic spines and excitatory synapses. Overexpression of TANC1 and TANC2 in cultured neurons increases the density of dendritic spines and excitatory synapses in a manner that requires the PDZ (PSD-95/Dlg/ZO-1)-binding C termini of TANC proteins. TANC1-deficient mice exhibit reduced spine density in the CA3 region of the hippocampus, but not in the CA1 or dentate gyrus regions, and show impaired spatial memory. TANC2 deficiency, however, causes embryonic lethality. These results suggest that TANC1 is important for dendritic spine maintenance and spatial memory, and implicate TANC2 in embryonic development.
Collapse
|
15
|
Liu Y, Sun QA, Chen Q, Lee TH, Huang Y, Wetsel WC, Michelotti GA, Sullenger BA, Zhang X. Targeting inhibition of GluR1 Ser845 phosphorylation with an RNA aptamer that blocks AMPA receptor trafficking. J Neurochem 2008; 108:147-57. [PMID: 19046328 DOI: 10.1111/j.1471-4159.2008.05748.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia coli-expressed glutathione-S-transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein-GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.
Collapse
Affiliation(s)
- Yingmiao Liu
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nonaka H, Takei K, Umikawa M, Oshiro M, Kuninaka K, Bayarjargal M, Asato T, Yamashiro Y, Uechi Y, Endo S, Suzuki T, Kariya KI. MINK is a Rap2 effector for phosphorylation of the postsynaptic scaffold protein TANC1. Biochem Biophys Res Commun 2008; 377:573-578. [PMID: 18930710 DOI: 10.1016/j.bbrc.2008.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/18/2022]
Abstract
Rap1 and Rap2 are similar Ras-like G proteins but perform distinct functions. By the affinity chromatography/mass-spectrometry approach and the yeast two-hybrid screening, we identified Misshapen/NIKs-related kinase (MINK) as a novel Rap2-interacting protein that does not interact with Rap1 or Ras. MINK is a member of the STE20 group of mitogen-activated protein kinase kinase kinase kinases. The interaction between MINK and Rap2 was GTP-dependent and required Phe39 within the effector region of Rap2; the corresponding residue in Rap1 and Ras is Ser. MINK was enriched in the brain, and both MINK and its close relative, Traf2- and Nck-interacting kinase (TNIK), interacted with a postsynaptic scaffold protein containing tetratricopeptide repeats, ankyrin repeats and a coiled-coil region (TANC1) and induced its phosphorylation, under control of Rap2 in cultured cells. These are novel actions of MINK and TNIK, and consistent with a role of MINK as a Rap2 effector in the brain.
Collapse
Affiliation(s)
- Hideo Nonaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kimiko Takei
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Masato Umikawa
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Minoru Oshiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kouichi Kuninaka
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Maitsetseg Bayarjargal
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Tsuyoshi Asato
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yoshito Yamashiro
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Yukiko Uechi
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan; Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Shogo Endo
- Unit for Molecular Neurobiology of Learning and Memory, Initial Research Project, Okinawa Institute of Science and Technology, Japan
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Shinshu University Graduate School of Medicine, Japan
| | - Ken-Ichi Kariya
- Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.
| |
Collapse
|
17
|
Suzuki T, Du F, Tian QB, Zhang J, Endo S. Ca2+/calmodulin-dependent protein kinase IIalpha clusters are associated with stable lipid rafts and their formation traps PSD-95. J Neurochem 2007; 104:596-610. [PMID: 18005004 DOI: 10.1111/j.1471-4159.2007.05035.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relatively large number of post-synaptic density (PSD) proteins, including Ca2+/calmodulin-dependent protein kinase II (CaMKII), have the potential to associate with lipid rafts. We in this study demonstrate that the CaMKIIalpha clusters induced by ionomycin in human embryonic kidney 293 cells, as well as unclustered CaMKIIalpha (Du F., Saitoh F., Tian Q. B., Miyazawa S., Endo S. and Suzuki T, 2006, Biochem. Biophys. Res. Commun 347, 814-820), were associated with lipid rafts. The CaMKIIalpha clusters associated with lipid raft fraction became resistant to treatment with methyl-beta-cyclodextrin and subsequent cold Triton X-100, which suggests the stabilization of CaMKIIalpha cluster-associated lipid rafts. Next, we found that PSD-95, which is also a component of lipid raft fraction and does not interact directly with CaMKII, was trapped by stable CaMKIIalpha cluster-containing structure. Association of PSD-95 with CaMKIIalpha clusters was also observed in cultured neuronal cells. These results suggest the CaMKIIalpha clusters associated with the lipid rafts in the cytoplasmic region play a role in the assembly and stabilization of certain PSD proteins that have the potential to associate with lipid rafts.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Research Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | | | |
Collapse
|
18
|
Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 2006; 26:10006-19. [PMID: 17005864 DOI: 10.1523/jneurosci.2580-06.2006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alpha-internexin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament (NF) triplet proteins (NF-L, NF-M, and NF-H) but has an unknown function. The earlier peak expression of alpha-internexin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that alpha-internexin and neurofilament triplet form separate filament systems. Here, we demonstrate, however, that despite a postnatal decline in expression, alpha-internexin is as abundant as the triplet in the adult CNS and exists in a relatively fixed stoichiometry with these subunits. Alpha-internexin exhibits transport and turnover rates identical to those of triplet proteins in optic axons and colocalizes with NF-M on single neurofilaments by immunogold electron microscopy. Alpha-internexin also coassembles with all three neurofilament proteins into a single network of filaments in quadruple-transfected SW13vim(-) cells. Genetically deleting NF-M alone or together with NF-H in mice dramatically reduces alpha-internexin transport and content in axons throughout the CNS. Moreover, deleting alpha-internexin potentiates the effects of NF-M deletion on NF-H and NF-L transport. Finally, overexpressing a NF-H-LacZ fusion protein in mice induces alpha-internexin and neurofilament triplet to aggregate in neuronal perikarya and greatly reduces their transport and content selectively in axons. Our data show that alpha-internexin and the neurofilament proteins are functionally interdependent. The results strongly support the view that alpha-internexin is a fourth subunit of neurofilaments in the adult CNS, providing a basis for its close relationship with neurofilaments in CNS diseases associated with neurofilament accumulation.
Collapse
|
19
|
Suzuki T, Tian QB, Kuromitsu J, Kawai T, Endo S. Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res 2006; 57:61-85. [PMID: 17049655 DOI: 10.1016/j.neures.2006.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
We previously reported the partial identification by random sequencing of mRNA species that are associated with the postsynaptic density (PSD) fraction prepared from the rat forebrain [Tian et al., 1999. Mol. Brain Res. 72, 147-157]. We report here further characterization by gene chip analysis of the PSD fraction-associated mRNAs, which were prepared in the presence of RNase inhibitor. We found that mRNAs encoding various postsynaptic proteins, such as channels, receptors for neurotransmitters and neuromodulators, proteins involved in signaling, scaffold and adaptor proteins and cytoskeletal proteins, were highly concentrated in the PSD fraction, whereas those encoding housekeeping proteins, such as enzymes in the glycolytic pathway, were not. We extracted approximately 1900 mRNA species that were highly concentrated in the PSD fraction. mRNAs related to certain neuronal diseases were also enriched in the PSD fraction. We also constructed a cDNA library using the PSD fraction-associated mRNAs as templates, and identified 1152 randomly selected clones by sequencing. Our data suggested that the PSD fraction-associated mRNAs are a very useful resource, in which a number of as yet uncharacterized mRNAs are concentrated. Identification and functional characterization of them are essential for complete understanding of synaptic function.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
20
|
Tian QB, Suzuki T, Yamauchi T, Sakagami H, Yoshimura Y, Miyazawa S, Nakayama K, Saitoh F, Zhang JP, Lu Y, Kondo H, Endo S. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur J Neurosci 2006; 23:2864-76. [PMID: 16819975 DOI: 10.1111/j.1460-9568.2006.04846.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned here a full-length cDNA of Dem26[Tian et al. (1999)Mol. Brain Res., 72, 147-157], a member of the low-density lipoprotein (LDL) receptor gene family from the rat brain. We originally named the corresponding protein synaptic LDL receptor-related protein (synLRP) [Tian et al. (2002) Soc. Neurosci. Abstr., 28, 405] and have renamed it LRP4 to accord it systematic nomenclature (GenBank(TM) accession no. AB073317). LRP4 protein interacted with postsynaptic scaffold proteins such as postsynaptic density (PSD)-95 via its C-terminal tail sequence, and associated with N-methyl-D-aspartate (NMDA)-type glutamate receptor subunit. The mRNA of LRP4 was localized to dendrites, as well as somas, of neuronal cells, and the full-length protein of 250 kDa was highly concentrated in the brain and localized to various subcellular compartments in the brain, including synaptic fractions. Immunocytochemical study using cultured cortical neurons suggested surface localization in the neuronal cells both in somas and dendrites. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylated the C-terminal cytoplasmic region of LRP4 at Ser1887 and Ser1900, and the phosphorylation at the latter site suppressed the interaction of the protein with PSD-95 and synapse-associated protein 97 (SAP97). These findings suggest a postsynaptic role for LRP4, a putative endocytic multiligand receptor, and a mechanism in which CaMKII regulates PDZ-dependent protein-protein interactions and receptor dynamics.
Collapse
Affiliation(s)
- Qing-Bao Tian
- Department of Neuroplasticity, Institute on Ageing and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Glutamatergic synapses in the central nervous system are characterized by an electron-dense web underneath the postsynaptic membrane; this web is called the postsynaptic density (PSD). PSDs are composed of a dense network of several hundred proteins, creating a macromolecular complex that serves a wide range of functions. Prominent PSD proteins such as members of the MaGuk or ProSAP/Shank family build up a dense scaffold that creates an interface between clustered membrane-bound receptors, cell adhesion molecules and the actin-based cytoskeleton. Moreover, kinases, phosphatases and several proteins of different signalling pathways are specifically localized within the spine/PSD compartment. Small GTPases and regulating proteins are also enriched in PSDs being the molecular basis for regulated structural changes of cytoskeletal components within the synapse in response to external or internal stimuli, e.g. synaptic activation. This synaptic rearrangement (structural plasticity) is a rapid process and is believed to underlie learning and memory formation. The characterization of synapse/PSD proteins is especially important in the light of recent data suggesting that several mental disorders have their molecular defect at the synapse/PSD level.
Collapse
Affiliation(s)
- T M Boeckers
- Department of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
22
|
Wang L, Piserchio A, Mierke DF. Structural Characterization of the Intermolecular Interactions of Synapse-associated Protein-97 with the NR2B Subunit of N-Methyl-d-aspartate Receptors. J Biol Chem 2005; 280:26992-6. [PMID: 15929985 DOI: 10.1074/jbc.m503555200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synapse-associated protein-97 (SAP97) is important in the proper trafficking and cell surface maintenance of the N-methyl-D-aspartate ionotropic glutamate receptor. The molecular scaffold/receptor interaction is mediated by the association of the C terminus of the NR2B subunit of the N-methyl-D-aspartate receptor with the PDZ domains of SAP97. Here, we characterize the binding of the C terminus of NR2B with the PDZ domains of SAP97 and determine the structure of the PDZ1-NR2B complex employing high-resolution NMR. Based on fluorescence anisotropy, the NR2B subunit binds to the first and second PDZ domains of SAP97, with higher affinity for PDZ2; no appreciable binding to PDZ3 could be measured. The structural features of the NR2B bound to PDZ1 is consistent with the canonical PDZ-binding motif with the glutamic acid at the -3 position of the C terminus (i.e. -E-S-D-V) interacting with the beta2/beta3 loop. Two sites within the loop of PDZ1 were replaced with the corresponding residue from PDZ2, D243G and P245Q. The former mutation, designed to remove a possible Coulombic repulsion between E(-3)(NR2B) and Asp-243 (PDZ1) has only a minimal effect on binding. The P245Q mutation leads to a 2-fold increase in binding affinity of NR2B, approaching that observed for wild-type PDZ2. These results indicate that modification of the beta2/beta3 loop provides an avenue for regulating the ligand specificity of PDZ domains.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physics, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
23
|
Suzuki T, Li W, Zhang JP, Tian QB, Sakagami H, Usuda N, Kondo H, Fujii T, Endo S. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur J Neurosci 2005. [DOI: 10.1111/j.1460-9568.2005.04044.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|