1
|
Izumi S, Kawasaki I, Waki F, Nishikawa K, Nishitani N, Deyama S, Kaneda K. Chronic nicotine enhances object recognition memory via inducing long-term potentiation in the medial prefrontal cortex in mice. Neuropharmacology 2025; 273:110435. [PMID: 40154943 DOI: 10.1016/j.neuropharm.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Chronic nicotine administration enhances cognitive functions, including learning and memory, and ameliorates cognitive impairments observed in psychological and neurodegenerative disorders. However, the detailed mechanisms underlying these effects are not fully understood. In this study, we used a novel object recognition (NOR) test and in vitro slice electrophysiology in mice to investigate the involvement of the medial prefrontal cortex (mPFC), a brain region connected to the hippocampus, and the synaptic plasticity within this region in chronic nicotine-induced object recognition memory enhancement. The NOR test revealed that chronic nicotine administration for five consecutive days significantly enhanced object recognition memory in male and female mice. This effect was blocked by intra-mPFC infusion of mecamylamine (Mec), a non-selective nicotinic acetylcholine receptor (nAChR) antagonist. In parallel with these findings, whole-cell recordings demonstrated that chronic nicotine administration significantly increased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio in mPFC layer V pyramidal neurons in male but not female mice. This plastic change was suppressed by systemic injection of Mec or methyllycaconitine, an α7 nAChR antagonist. Furthermore, optogenetic erasure of long-term potentiation (LTP) through chromophore-assisted light inactivation of cofilin, a protein essential for stabilizing spine expansion, suppressed chronic nicotine-induced enhancement of recognition memory. These findings suggest that chronic nicotine administration induces LTP in mPFC pyramidal neurons, likely enhancing object recognition memory.
Collapse
Affiliation(s)
- Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ibuki Kawasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Fuka Waki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Oz M, Kury LA, Sadek B, Mahgoub MO. The role of nicotinic acetylcholine receptors in the pathophysiology and pharmacotherapy of autism spectrum disorder: Focus on α7 nicotinic receptors. Int J Biochem Cell Biol 2024; 174:106634. [PMID: 39094731 DOI: 10.1016/j.biocel.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Postmortem studies have revealed that brains of individuals with autism spectrum disorder (ASD) exhibit abnormalities in various components of the cholinergic system including cholinergic receptors, projections, and nuclei. Deletions in the 15q13.3 region which encompasses CHRNA7, the gene that encodes the α7-nACh receptor, have been linked to various neurodevelopmental disorders, including ASD. In addition, the involvement of α7-nACh receptors in biological phenomena known to play a role in the pathophysiology of ASD such as cognitive functions, learning, memory, neuroinflammation, and oxidative stress, as well as the excitation-inhibition balance in neuronal circuits and maternal immune activation have been reported in previous studies. Furthermore, evolving preclinical and clinical literature supports the potential therapeutic benefits of using selectively acting cholinergic compounds, particularly those targeting the α7-nACh receptor subtype, in the treatment of ASD. This study reviews the previous literature on the involvement of nACh receptors in the pathophysiology of ASD and focuses on the α7-nACh receptor as a potential therapeutic target.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Lina Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mohamed Omer Mahgoub
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates
| |
Collapse
|
3
|
Márquez LA, López Rubalcava C, Galván EJ. Postnatal hypofunction of N-methyl-D-aspartate receptors alters perforant path synaptic plasticity and filtering and impairs dentate gyrus-mediated spatial discrimination. Br J Pharmacol 2024; 181:2701-2724. [PMID: 38631821 DOI: 10.1111/bph.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
- Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
4
|
Kulbatskii D, Shenkarev Z, Bychkov M, Loktyushov E, Shulepko M, Koshelev S, Povarov I, Popov A, Peigneur S, Chugunov A, Kozlov S, Sharonova I, Efremov R, Skrebitsky V, Tytgat J, Kirpichnikov M, Lyukmanova E. Human Three-Finger Protein Lypd6 Is a Negative Modulator of the Cholinergic System in the Brain. Front Cell Dev Biol 2021; 9:662227. [PMID: 34631692 PMCID: PMC8494132 DOI: 10.3389/fcell.2021.662227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Lypd6 is a GPI-tethered protein from the Ly-6/uPAR family expressed in the brain. Lypd6 enhances the Wnt/β-catenin signaling, although its action on nicotinic acetylcholine receptors (nAChRs) have been also proposed. To investigate a cholinergic activity of Lypd6, we studied a recombinant water-soluble variant of the human protein (ws-Lypd6) containing isolated “three-finger” LU-domain. Experiments at different nAChR subtypes expressed in Xenopus oocytes revealed the negative allosteric modulatory activity of ws-Lypd6. Ws-Lypd6 inhibited ACh-evoked currents at α3β4- and α7-nAChRs with IC50 of ∼35 and 10 μM, respectively, and the maximal amplitude of inhibition of 30–50%. EC50 of ACh at α3β4-nAChRs (∼30 μM) was not changed in the presence of 35 μM ws-Lypd6, while the maximal amplitude of ACh-evoked current was reduced by ∼20%. Ws-Lypd6 did not elicit currents through nAChRs in the absence of ACh. Application of 1 μM ws-Lypd6 significantly inhibited (up to ∼28%) choline-evoked current at α7-nAChRs in rat hippocampal slices. Similar to snake neurotoxin α-bungarotoxin, ws-Lypd6 suppressed the long-term potentiation (LTP) in mouse hippocampal slices. Colocalization of endogenous GPI-tethered Lypd6 with α3β4- and α7-nAChRs was detected in primary cortical and hippocampal neurons. Ws-Lypd6 interaction with the extracellular domain of α7-nAChR was modeled using the ensemble protein-protein docking protocol. The interaction of all three Lypd6 loops (“fingers”) with the entrance to the orthosteric ligand-binding site and the loop C of the primary receptor subunit was predicted. The results obtained allow us to consider Lypd6 as the endogenous negative modulator involved in the regulation of the cholinergic system in the brain.
Collapse
Affiliation(s)
- Dmitrii Kulbatskii
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Zakhar Shenkarev
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Maxim Bychkov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Eugene Loktyushov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Mikhail Shulepko
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Sergey Koshelev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Igor Povarov
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Alexander Popov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Institute of Neuroscience, Nizhny Novgorod University, Nizhny Novgorod, Russia
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Anton Chugunov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Irina Sharonova
- Brain Research Department, Research Center of Neurology, Moscow, Russia
| | - Roman Efremov
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-Scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Mikhail Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Lyukmanova
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.,Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Cheng Q, Lamb P, Stevanovic K, Bernstein BJ, Fry SA, Cushman JD, Yakel JL. Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus in vitro and in vivo. J Physiol 2021; 599:4687-4704. [PMID: 34487349 DOI: 10.1113/jp280505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
The activation of α7 nicotinic acetylcholine receptors (nAChRs) has been shown to improve hippocampus-dependent learning and memory. α7 nAChRs are densely expressed among several different cell types in the hippocampus, with high Ca2+ permeability, although it is unclear if α7 nAChRs mobilize differential signalling mechanisms among distinct neuronal populations. To address this question, we compared α7 nAChR agonist-induced responses (i.e. calcium and cAMP changes) between granule cells and GABAergic neurons in the hippocampal dentate gyrus both in vitro and in vivo. In cultured organotypic hippocampal slices, we observed robust intracellular calcium and cAMP increases in dentate granule cells upon activation of α7 nAChRs. In contrast, GABAergic interneurons displayed little change in either calcium or cAMP concentration after α7 nAChR activation, even though they displayed much larger α7 nAChR current responses than those of dentate granule cells. We found that this was due to smaller α7 nAChR-induced Ca2+ rises in GABAergic interneurons. Thus, the regulation of the Ca2+ transients in different cell types resulted in differential subsequent intracellular signalling cascades and likely the ultimate outcome of α7 nAChR activation. Furthermore, we monitored neuronal activities of dentate granule cells and GABAergic interneurons in vivo via optic fibre photometry. We observed enhancement of neuronal activities after nicotine administration in dentate granule cells, but not in GABAergic neurons, which was absent in α7 nAChR-deficient granule cells. In summary, we reveal a mechanism for α7 nAChR-mediated increase of neuronal activity via cell type-specific intracellular signalling pathways. KEY POINTS: α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and regulate a variety of brain functions including learning and memory. Understanding the cellular signalling mechanisms of their activations among different neuronal populations is important for delineating their actions in cognitive function, and developing effective treatment strategies for cognitive deficits. We report that α7 nAChR activation leads to Ca2+ and cAMP increases in granule cells (but not in GABAergic interneurons) in hippocampal dentate gyrus in vitro, a key region for pattern separation during learning. We also found that nicotine enhanced granule cell (but not in GABAergic interneurons) activity in an α7 nAChR-dependent manner via in vivo fibre photometry recording. Based on our findings, we propose that differential responses to α7 nAChR activation between granule cells and GABAergic interneurons is responsible for the increase of excitation by α7 nAChR agonists in hippocampal circuits synergistically.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA.,Biological/Biomedical Research Institute, North Carolina Central University, Durham, NC, USA
| | - Patricia Lamb
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Korey Stevanovic
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Briana J Bernstein
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Sydney A Fry
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| |
Collapse
|
6
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
7
|
Li K, Jiang Y, Li G, Liu T, Yang Z. Novel Multitarget Directed Tacrine Hybrids as Anti-Alzheimer's Compounds Improved Synaptic Plasticity and Cognitive Impairment in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2020; 11:4316-4328. [PMID: 33216529 DOI: 10.1021/acschemneuro.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a complex pathological neurodegenerative disease that seriously threatens human health. Therefore, how to effectively improve and treat AD is an urgent problem. In this study, a novel multitarget derivative based on tacrine (named 9i), which could work simultaneously on more than one pathological target, was used to treat AD model APP/PS1 transgenic mice. After 4 weeks of intragastric administration, cognitive function and synaptic plasticity were significantly improved and β-amyloid (Aβ) plaques that are main pathological hallmarks of AD were decreased in the APP/PS1 mice. On the one hand, 9i inhibited the excessive activation of the Raf/MEK/ERK signaling pathway to alleviate the loss of neurons, which provides a foundation for structural integrity. On the other hand, synaptic associated proteins and the density of synaptic spines were increased in APP/PS1 mice treated with 9i, which provides the basis for the improvement of synaptic plasticity and cognitive impairment. Interestingly, 9i also reduced Aβ plaques in the DG region, which is consistent with previous in vitro experiments showing that 9i inhibited the self-assembly of Aβ fibers, thus protecting neurons from Aβ plaque neurotoxicity. Our results suggest that 9i as a novel compound can effectively improve the cognitive function and the pathological changes of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Guoliang Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Shenkarev ZO, Shulepko MA, Bychkov ML, Kulbatskii DS, Shlepova OV, Vasilyeva NA, Andreev-Andrievskiy AA, Popova AS, Lagereva EA, Loktyushov EV, Koshelev SG, Thomsen MS, Dolgikh DA, Kozlov SA, Balaban PM, Kirpichnikov MP, Lyukmanova EN. Water-soluble variant of human Lynx1 positively modulates synaptic plasticity and ameliorates cognitive impairment associated with α7-nAChR dysfunction. J Neurochem 2020; 155:45-61. [PMID: 32222974 DOI: 10.1111/jnc.15018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 11/30/2022]
Abstract
Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50 ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.
Collapse
Affiliation(s)
- Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Shlepova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| | - Nathalia A Vasilyeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Andreev-Andrievskiy
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Anfisa S Popova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeniya A Lagereva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey G Koshelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow region, Russia
| |
Collapse
|
9
|
Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020; 373:311-324. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT: BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Christopher Daley
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Vanita Gakhar
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Henry S Lange
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joshua D Vardigan
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Pearson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Xiaoping Zhou
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Lee Warren
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Corin O Miller
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Belden
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Andrew J Harvey
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Anton A Grishin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Carolyn J Coles
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Susan M O'Connor
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Fiona Thomson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joseph L Duffy
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Ian M Bell
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Jason M Uslaner
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| |
Collapse
|
10
|
Vorobyov V, Medvinskaya N, Deev A, Sengpiel F, Bobkova N, Lunin S. Spatial memory deficits initiated by agroclavine injection or olfactory bulbectomy in rats are characterized by different levels of long-term potentiation expression in the hippocampus. Int J Neurosci 2020; 130:1225-1229. [PMID: 32072845 DOI: 10.1080/00207454.2020.1732963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: To clarify whether long-term potentiation (LTP) is the mechanism underpinning mnemonic processes. Mathrials and methods: We studied LTP in hippocampal slices from rats whose spatial memory deficit was produced by either olfactory bulbectomy (OBX) or pretreatment with an ergot alkaloid, agroclavine. OBX is accompanied by cholinergic system inhibition whereas agroclavine predominantly activates dopaminergic mediation. The both have been shown to be involved in learning/memory and LTP mechanisms.Results: In OBX- vs. sham-operated rat, we have revealed significant reduction of LTP in hippocampal CA1 region. In contrast, no LTP differences in agroclavine- vs. vehicle-treated rats were observed. Conclusions: These results demonstrate that LTP expression in the hippocampus is dependent on the origin of spatial memory impairment. Furthermore, they suggest that pharmacological and neurodegenerative models of AD might be useful approach for discovery of both AD mechanisms and mixed pathology dementias.
Collapse
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Natalia Medvinskaya
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Frank Sengpiel
- School of Biosciences and Neuroscience & Mental Health Research Institute, Cardiff University, Museum Avenue, Cardiff, UK
| | - Natalia Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Sergey Lunin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
11
|
Fowler CD, Turner JR, Imad Damaj M. Molecular Mechanisms Associated with Nicotine Pharmacology and Dependence. Handb Exp Pharmacol 2019; 258:373-393. [PMID: 31267166 DOI: 10.1007/164_2019_252] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA. .,Translational Research Initiative for Pain and Neuropathy at VCU, Richmond, VA, USA.
| |
Collapse
|
12
|
Zhou L, Fisher ML, Cole RD, Gould TJ, Parikh V, Ortinski PI, Turner JR. Neuregulin 3 Signaling Mediates Nicotine-Dependent Synaptic Plasticity in the Orbitofrontal Cortex and Cognition. Neuropsychopharmacology 2018; 43:1343-1354. [PMID: 29114105 PMCID: PMC5916355 DOI: 10.1038/npp.2017.278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Abstract
Neuregulin 3 (NRG3) and ErbB4 have been linked to nicotine addiction; however, the neuronal mechanisms and behavioral consequences of NRG3-ErbB4 sensitivity to nicotine remain elusive. Recent literature suggests that relapse to smoking is due to a lack of impulsive control, which is thought to be due to altered functioning within the orbitofrontal cortex (OFC). Therefore, we examined circuitry changes within this structure following nicotine application. We report that nicotine controls synaptic plasticity in the OFC through NRG3/ErbB4-dependent regulation of GABAergic inhibition. We observed that both nicotine and NRG3 facilitated the conversion of long-term potentiation into long-term depression at cortical layer 3/5 synapses. Induction of long-term depression by nicotine relied on nicotinic receptor activation and key regulators of NRG3 signaling: (1) release of intracellular calcium, (2) activation of the BACE1 beta-secretase, and (3) ErbB4 receptor activation. Nicotine-induced synaptic plasticity was also associated with accumulation of intracellular GABA and was completely blocked by GABAA/GABAB antagonists. To test whether these mechanisms underlie OFC-dependent behavior, we evaluated the effects of nicotine in the go/no-go task. Nicotine-impaired stimulus discrimination in this task was rescued by pharmacologic disruption of the NRG3 receptor, ErbB4. Altogether, our data indicate that nicotine-induced synaptic plasticity in the OFC and cognitive changes depend on NRG3-ErbB4 signaling. We propose that nicotine activation of this pathway may contribute to nicotine addiction, particularly in individuals with genetic variation in NRG3.
Collapse
Affiliation(s)
- Luyi Zhou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Miranda L Fisher
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Robert D Cole
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Vinay Parikh
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Pavel I Ortinski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
13
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
14
|
Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. J Neurochem 2017; 142 Suppl 2:111-121. [PMID: 28791706 DOI: 10.1111/jnc.14052] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Juhee Haam
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Gasmi S, Rouabhi R, Kebieche M, Boussekine S, Salmi A, Toualbia N, Taib C, Bouteraa Z, Chenikher H, Henine S, Djabri B. Effects of Deltamethrin on striatum and hippocampus mitochondrial integrity and the protective role of Quercetin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16440-16457. [PMID: 28551743 DOI: 10.1007/s11356-017-9218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
The present work is to evaluate the neurotoxicity induced by pyrethroid insecticide "Deltamethrin" at 0.32 mg/kg/day in two main regions of the Wistar rat brain (hippocampus and striatum) and the protective effects of Quercetin at 10 mg/kg/day on this toxicity after 90 days of exposure. The assay of brain parameters showed that Deltamethrin caused a significant increase of mitochondrial metabolite level (proteins, lipids, and carbohydrates) and enzyme activity (glutathione S-transferase and superoxide dismutase); a decreased amount of mitochondrial glutathione level and catalase and glutathione peroxidase activities; and an increase of malondialdehyde (MDA) acid levels of the two regions. Furthermore, mitochondrial functional testing in the brains of treated rats exhibited a significant increase in permeability followed by a mitochondrial swelling. Instead, a statistically significant decrease in mitochondrial respiration (O2 consumption) was recorded in the striatum and hippocampus. Our study showed that the pesticide caused a significant increase of the cytochrome c amount correlated with activation of neuronal apoptosis mechanisms by the significant increase of caspase-3 of hippocampus and striatum. In particular, the results of behavioral tests (open field, classic maze tests of sucrose, and Morris water maze) have significant changes, namely bad behavior of the treated rats, affecting the level of anxiety, learning, and memory, and general motor activity has mainly been shown in treated rats. In addition, the histological cuts clearly confirm cerebral necrosis in the hippocampus and the striatum caused by the pesticide. They allow us to consider the necrotic areas, black spots, reduction, and denaturation of these brain regions in the treated rats. On the other hand, we have studied the protective effects against the neurotoxicity of Deltamethrin (DLM). In this context, after the gavage of Quercetin at the dose of 10 mg/kg/day, we have noticed an improvement in the entire parameters: mitochondrial enzyme, metabolic, histological, and behavioral parameters. This confirmed the improvement of preventive and curative effect of Quercetin against free radicals induced by the DLM.
Collapse
Affiliation(s)
- Salim Gasmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Rachid Rouabhi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria.
| | | | - Samira Boussekine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Aya Salmi
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Nadjiba Toualbia
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Chahinez Taib
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Zina Bouteraa
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Hajer Chenikher
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Sara Henine
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| | - Belgacem Djabri
- Applied Biology Department, Tebessa University, 12000, Tebessa, Algeria
| |
Collapse
|
16
|
Wang J, He X, Guo F, Cheng X, Wang Y, Wang X, Feng Z, Vreugdenhil M, Lu C. Multiple Kinases Involved in the Nicotinic Modulation of Gamma Oscillations in the Rat Hippocampal CA3 Area. Front Cell Neurosci 2017; 11:57. [PMID: 28321180 PMCID: PMC5337687 DOI: 10.3389/fncel.2017.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Neuronal synchronization at gamma band frequency (20–80 Hz, γ oscillations) is closely associated with higher brain function, such as learning, memory and attention. Nicotinic acetylcholine receptors (nAChRs) are highly expressed in the hippocampus, and modulate hippocampal γ oscillations, but the intracellular mechanism underlying such modulation remains elusive. We explored multiple kinases by which nicotine can modulate γ oscillations induced by kainate in rat hippocampal area CA3 in vitro. We found that inhibitors of cyclic AMP dependent kinase (protein kinase A, PKA), protein kinase C (PKC), N-methyl-D-aspartate receptor (NMDA) receptors, Phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinases (ERK), each individually could prevent the γ oscillation-enhancing effect of 1 μM nicotine, whereas none of them affected baseline γ oscillation strength. Inhibition of the serine/threonine kinase Akt increased baseline γ oscillations and partially blocked its nicotinic enhancement. We propose that the PKA-NMDAR-PI3K-ERK pathway modifies cellular properties required for the nicotinic enhancement of γ oscillations, dependent on a PKC-ERK mediated pathway. These signaling pathways provide clues for restoring γ oscillations in pathological conditions affecting cognition. The suppression of γ oscillations at 100 μM nicotine was only dependent on PKA-NMDAR activation and may be due to very high intracellular calcium levels.
Collapse
Affiliation(s)
- JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Pathophysiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoLong He
- Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical School JingZhou, China
| | - Fangli Guo
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiangLin Cheng
- Department of Laboratory Medicine, Yantze University Affiliated Hospital JingZhou, China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoFang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - ZhiWei Feng
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical UniversityXinxinang, China; School of Life Sciences, Birmingham City UniversityBirmingham, UK
| | - ChengBiao Lu
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical SchoolJingZhou, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| |
Collapse
|
17
|
Albiñana E, Luengo JG, Baraibar AM, Muñoz MD, Gandía L, Solís JM, Hernández-Guijo JM. Choline induces opposite changes in pyramidal neuron excitability and synaptic transmission through a nicotinic receptor-independent process in hippocampal slices. Pflugers Arch 2017; 469:779-795. [PMID: 28176016 DOI: 10.1007/s00424-017-1939-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/13/2023]
Abstract
Choline is present at cholinergic synapses as a product of acetylcholine degradation. In addition, it is considered a selective agonist for α5 and α7 nicotinic acetylcholine receptors (nAChRs). In this study, we determined how choline affects action potentials and excitatory synaptic transmission using extracellular and intracellular recording techniques in CA1 area of hippocampal slices obtained from both mice and rats. Choline caused a reversible depression of evoked field excitatory postsynaptic potentials (fEPSPs) in a concentration-dependent manner that was not affected by α7 nAChR antagonists. Moreover, this choline-induced effect was not mimicked by either selective agonists or allosteric modulators of α7 nAChRs. Additionally, this choline-mediated effect was not prevented by either selective antagonists of GABA receptors or hemicholinium, a choline uptake inhibitor. The paired pulse facilitation paradigm, which detects whether a substance affects presynaptic release of glutamate, was not modified by choline. On the other hand, choline induced a robust increase of population spike evoked by orthodromic stimulation but did not modify that evoked by antidromic stimulation. We also found that choline impaired recurrent inhibition recorded in the pyramidal cell layer through a mechanism independent of α7 nAChR activation. These choline-mediated effects on fEPSP and population spike observed in rat slices were completely reproduced in slices obtained from α7 nAChR knockout mice, which reinforces our conclusion that choline modulates synaptic transmission and neuronal excitability by a mechanism independent of nicotinic receptor activation.
Collapse
Affiliation(s)
- E Albiñana
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J G Luengo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - A M Baraibar
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - M D Muñoz
- Servicio de Neurología Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - L Gandía
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain.,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain
| | - J M Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - J M Hernández-Guijo
- Department of Pharmacology and Therapeutic, University Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain. .,Instituto Teófilo Hernando, Facultad de Medicina, University Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
18
|
Hwang ES, Kim HB, Lee S, Kim MJ, Lee SO, Han SM, Maeng S, Park JH. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments. Physiol Behav 2017; 171:243-248. [PMID: 28069458 DOI: 10.1016/j.physbeh.2016.12.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/04/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Abstract
Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future.
Collapse
Affiliation(s)
- Eun-Sang Hwang
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Hyun-Bum Kim
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Seok Lee
- Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Min-Ji Kim
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Republic of Korea
| | - Sung-Ok Lee
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Seung-Moo Han
- Department of Biomedical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin 446-701, Republic of Korea
| | - Sungho Maeng
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Republic of Korea.
| | - Ji-Ho Park
- Department of East-West Medicine, Graduate School of East-West Medical Science, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin 446-701, Republic of Korea.
| |
Collapse
|
19
|
Prince LY, Bacon TJ, Tigaret CM, Mellor JR. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit. Front Synaptic Neurosci 2016; 8:32. [PMID: 27799909 PMCID: PMC5065980 DOI: 10.3389/fnsyn.2016.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.
Collapse
Affiliation(s)
- Luke Y Prince
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Travis J Bacon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|
20
|
Arvaniti M, Jensen MM, Soni N, Wang H, Klein AB, Thiriet N, Pinborg LH, Muldoon PP, Wienecke J, Imad Damaj M, Kohlmeier KA, Gondré-Lewis MC, Mikkelsen JD, Thomsen MS. Functional interaction between Lypd6 and nicotinic acetylcholine receptors. J Neurochem 2016; 138:806-20. [PMID: 27344019 PMCID: PMC5017906 DOI: 10.1111/jnc.13718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Neeraj Soni
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Anders B Klein
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Thiriet
- Laboratory of Experimental and Clinical Neurosciences, University of Poitiers, Poitiers, France
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport & Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristi A Kohlmeier
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
21
|
Tanasic S, Mattusch C, Wagner EM, Eder M, Rupprecht R, Rammes G, Di Benedetto B. Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling. Neuropharmacology 2016; 105:154-163. [DOI: 10.1016/j.neuropharm.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
22
|
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. Physiol Behav 2015; 155:162-71. [PMID: 26687895 DOI: 10.1016/j.physbeh.2015.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/21/2022]
Abstract
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits.
Collapse
|
23
|
Mulcahy MJ, Blattman SB, Barrantes FJ, Lukas RJ, Hawrot E. Resistance to Inhibitors of Cholinesterase 3 (Ric-3) Expression Promotes Selective Protein Associations with the Human α7-Nicotinic Acetylcholine Receptor Interactome. PLoS One 2015; 10:e0134409. [PMID: 26258666 PMCID: PMC4530945 DOI: 10.1371/journal.pone.0134409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel widely expressed in vertebrates and is associated with numerous physiological functions. As transmembrane ion channels, α7-nAChRs need to be expressed on the surface of the plasma membrane to function. The receptor has been reported to associate with proteins involved with receptor biogenesis, modulation of receptor properties, as well as intracellular signaling cascades and some of these associated proteins may affect surface expression of α7-nAChRs. The putative chaperone resistance to inhibitors of cholinesterase 3 (Ric-3) has been reported to interact with, and enhance the surface expression of, α7-nAChRs. In this study, we identified proteins that associate with α7-nAChRs when Ric-3 is expressed. Using α-bungarotoxin (α-bgtx), we isolated and compared α7-nAChR-associated proteins from two stably transfected, human tumor-derived cell lines: SH-EP1-hα7 expressing human α7-nAChRs and the same cell line further transfected to express Ric-3, SH-EP1-hα7-Ric-3. Mass spectrometric analysis of peptides identified thirty-nine proteins that are associated with α7-nAChRs only when Ric-3 was expressed. Significantly, and consistent with reports of Ric-3 function in the literature, several of the identified proteins are involved in biological processes that may affect nAChR surface expression such as post-translational processing of proteins, protein trafficking, and protein transport. Additionally, proteins affecting the cell cycle, the cytoskeleton, stress responses, as well as cyclic AMP- and inositol triphosphate-dependent signaling cascades were identified. These results illuminate how α-bgtx may be used to isolate and identify α7-nAChRs as well as how the expression of chaperones such as Ric-3 can influence proteins associating with α7-nAChRs. These associating proteins may alter activities of α7-nAChRs to expand their functionally-relevant repertoire as well as to affect biogenesis and membrane trafficking of α7-nAChRs.
Collapse
Affiliation(s)
- Matthew J. Mulcahy
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Sydney B. Blattman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research, UCA-CONICET, Buenos Aires, Argentina
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cheng Q, Yakel JL. The effect of α7 nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochem Pharmacol 2015. [PMID: 26212541 DOI: 10.1016/j.bcp.2015.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory, however the cellular mechanism of these actions remains elusive. With help from newly developed biosensors and optogenetic tools, recent studies provide new insights on signaling mechanisms involved in the activation of nAChRs. Here we will review α7 nAChR's action in the tri-synaptic pathway in the hippocampus. The effects of α7 nAChR activation via either exogenous compounds or endogenous cholinergic innervation are detailed for spontaneous and evoked glutamatergic synaptic transmission and synaptic plasticity, as well as the underlying signaling mechanisms. In summary, α7 nAChRs trigger intracellular calcium rise and calcium-dependent signaling pathways to enhance glutamate release and induce glutamatergic synaptic plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| |
Collapse
|
25
|
Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin. Sci Rep 2015; 5:10256. [PMID: 26194093 PMCID: PMC4508546 DOI: 10.1038/srep10256] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD.
Collapse
|
26
|
Vieira-Brock PL, McFadden LM, Nielsen SM, Smith MD, Hanson GR, Fleckenstein AE. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits. Int J Neuropsychopharmacol 2015; 18:pyv073. [PMID: 26164716 PMCID: PMC4675982 DOI: 10.1093/ijnp/pyv073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. METHODS Adolescent or adult male Sprague-Dawley rats received either nicotine water (10-75 μg/mL) or tap water for several weeks. Methamphetamine (4 × 7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. RESULTS Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. CONCLUSIONS Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are attenuated by nicotine in methamphetamine-treated rats.
Collapse
Affiliation(s)
- Paula L Vieira-Brock
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Shannon M Nielsen
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Misty D Smith
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Glen R Hanson
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Annette E Fleckenstein
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT.
| |
Collapse
|
27
|
Alterations in the hippocampal phosphorylated CREB expression in drug state-dependent learning. Behav Brain Res 2015; 292:109-15. [PMID: 26055203 DOI: 10.1016/j.bbr.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
The present study investigated the possible alterations of hippocampal CREB phosphorylation in drug state-dependent memory retrieval. One-trial step-down passive avoidance task was used to assess memory retrieval in adult male NMRI mice. Pre-training administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol (1g/kg, i.p) or nicotine (0.7 mg/kg, s.c.) reversed ethanol-induced amnesia, indicating ethanol- or ethanol-nicotine induced state-dependent learning (STD). Using Western blot analysis, it was found that the p-CREB/CREB ratio in the hippocampus increased in the mice that showed successful memory retrieval as compared with untrained mice. In contrast, pre-training administration of ethanol (1g/kg, i.p.) decreased the hippocampal p-CREB/CREB ratio in comparison with the control group. The hippocampal p-CREB/CREB ratio enhanced in ethanol- and ethanol-nicotine induced STD. Moreover, memory impairment induced by pre-training administration of WIN (1 mg/kg, i.p.) improved in the animals that received pre-test administration of WIN (1 mg/kg, i.p.), ethanol (0.5 g/kg, i.p.) or nicotine (0.7 mg/kg, s.c.), suggesting a cross STD between the drugs. The p-CREB/CREB ratio in the hippocampus decreased in the of WIN-induced amnesia and STD groups in comparison with the control group. In addition, cross state-dependent learning between WIN and ethanol or nicotine was associated with the increase of the hippocampal p-CREB/CREB ratio. It can be concluded that phosphorylation of CREB in the hippocampus is a critical event underlying the interaction of co-administration of drugs on memory retrieval in passive avoidance learning.
Collapse
|
28
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
29
|
Cheng Q, Yakel JL. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 2015; 95:405-14. [PMID: 25937212 DOI: 10.1016/j.neuropharm.2015.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The activation of α7 nAChRs has been shown to improve hippocampal-dependent learning and memory. However, the molecular mechanism of α7 nAChRs' action remains elusive. We previously reported that activation of α7 nAChRs induced a prolonged enhancement of glutamatergic synaptic transmission in a PKA-dependent manner. Here, we investigated any connection between the activation of the α7 nAChR and cAMP signaling in hippocampal neurons. To address this question, we employed a FRET-based biosensor to measure the intracellular cAMP levels directly via live cell imaging. We found that application of the α7 nAChR-selective agonist choline, in the presence of the α7 nAChR positive allosteric modulator PNU-120596, induced a significant change in emission ratio of F535/F470, which indicated an increase in intracellular cAMP levels. This choline-induced increase was abolished by the α7 nAChR antagonist MLA and the calcium chelator BAPTA, suggesting that the cAMP increase depends on the α7 nAChR activation and subsequent intracellular calcium rise. The selective AC1 inhibitor CB-6673567 and siRNA-mediated deletion of AC1 both blocked the choline-induced cAMP increase, suggesting that calcium-dependent AC1 is required for choline's action. Furthermore, α7 nAChR activation stimulated the phosphorylation of synapsin, which serves as a downstream effector to regulate neurotransmitter release. Our findings provide the first direct evidence to link activation of α7 nAChRs to a cAMP rise via AC1, which defines a new signaling pathway employed by α7 nAChRs. Our study sheds light into potential molecular mechanisms of the positive cognitive actions of α7 nAChR agonists and development of therapeutic treatments for cognitive impairments.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA.
| |
Collapse
|
30
|
John D, Shelukhina I, Yanagawa Y, Deuchars J, Henderson Z. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Res 2014; 1601:15-30. [PMID: 25553616 PMCID: PMC4350854 DOI: 10.1016/j.brainres.2014.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.
Collapse
Affiliation(s)
- Danielle John
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Irina Shelukhina
- Department of Molecular Basis of Neurosignaling, Laboratory of Molecular Toxinology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, Russia
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zaineb Henderson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via PKA activation. J Neurosci 2014; 34:124-33. [PMID: 24381273 DOI: 10.1523/jneurosci.2973-13.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission.
Collapse
|
32
|
Huang YY, Levine A, Kandel DB, Yin D, Colnaghi L, Drisaldi B, Kandel ER. D1/D5 receptors and histone deacetylation mediate the Gateway Effect of LTP in hippocampal dentate gyrus. Learn Mem 2014; 21:153-60. [PMID: 24549570 PMCID: PMC3929850 DOI: 10.1101/lm.032292.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We find that a single injection of cocaine does not alter LTP. However, pretreatment with nicotine followed by a single injection of cocaine causes a substantial enhancement of LTP. This priming effect of nicotine is unidirectional: There is no enhancement of LTP if cocaine is administrated prior to nicotine. The facilitation induced by nicotine and cocaine can be blocked by oral administration of the dopamine D1/D5 receptor antagonist (SKF 83566) and enhanced by the D1/D5 agonist (SKF 38393). Application of the histone deacetylation inhibitor suberoylanilide hydroxamic acid (SAHA) simulates the priming effect of nicotine on cocaine. By contrast, the priming effect of nicotine on cocaine is blocked in genetically modified mice that are haploinsufficient for the CREB-binding protein (CBP) and possess only one functional CBP allele and therefore exhibit a reduction in histone acetylation. These results demonstrate that the DG of the hippocampus is an important brain region contributing to the priming effect of nicotine on cocaine. Moreover, both activation of dopamine-D1 receptor/PKA signaling pathway and histone deacetylation/CBP mediated transcription are required for the nicotine priming effect in the DG.
Collapse
Affiliation(s)
- Yan-You Huang
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory. Neurobiol Learn Mem 2014; 109:151-9. [PMID: 24457151 DOI: 10.1016/j.nlm.2014.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/30/2022]
Abstract
Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories.
Collapse
|
34
|
Klyubin I, Ondrejcak T, Hayes J, Cullen WK, Mably AJ, Walsh DM, Rowan MJ. Neurotransmitter receptor and time dependence of the synaptic plasticity disrupting actions of Alzheimer's disease Aβ in vivo. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130147. [PMID: 24298149 PMCID: PMC3843879 DOI: 10.1098/rstb.2013.0147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many endogenous factors influence the time course and extent of the detrimental effects of amyloid β-protein (Aβ) on synaptic function. Here, we assessed the impact of varying endogenous glutamatergic and cholinergic transmission by pharmacological means on the disruption of plasticity at hippocampal CA3-to-CA1 synapses in the anaesthetized rat. NMDA receptors (NMDARs) are considered critical in mediating Aβ-induced inhibition of long-term potentiation (LTP). However, intracerebroventricular injection of Aβ1-42 inhibited not only NMDAR-dependent LTP but also voltage-activated Ca(2+)-dependent LTP induced by strong conditioning stimulation during NMDAR blockade. On the other hand, another form of NMDAR-independent synaptic plasticity, endogenous acetylcholine-induced muscarinic receptor-dependent long-term enhancement, was not hindered by Aβ1-42. Interestingly, augmenting endogenous acetylcholine activation of nicotinic receptors prior to the injection of Aβ1-42 prevented the inhibition of NMDAR-dependent LTP, whereas the same intervention when introduced after the infusion of Aβ was ineffective. We also examined the duration of action of Aβ, including water soluble Aβ from Alzheimer's disease (AD) brain. Remarkably, the inhibition of LTP induction caused by a single injection of sodium dodecyl sulfate-stable Aβ dimer-containing AD brain extract persisted for at least a week. These findings highlight the need to increase our understanding of non-NMDAR mechanisms and of developing novel means of overcoming, rather than just preventing, the deleterious synaptic actions of Aβ.
Collapse
Affiliation(s)
- Igor Klyubin
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Jennifer Hayes
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - William K. Cullen
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Alexandra J. Mably
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institute of Medicine, 77-Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institute of Medicine, 77-Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael J. Rowan
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| |
Collapse
|
35
|
Parameshwaran K, Buabeid MA, Bhattacharya S, Uthayathas S, Kariharan T, Dhanasekaran M, Suppiramaniam V. Long term alterations in synaptic physiology, expression of β2 nicotinic receptors and ERK1/2 signaling in the hippocampus of rats with prenatal nicotine exposure. Neurobiol Learn Mem 2013; 106:102-11. [DOI: 10.1016/j.nlm.2013.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 01/22/2023]
|
36
|
Gould TJ, Leach PT. Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiol Learn Mem 2013; 107:108-32. [PMID: 23973448 DOI: 10.1016/j.nlm.2013.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/27/2022]
Abstract
Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: (1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, (2) how nicotine usurps the cellular mechanisms of synaptic plasticity, (3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal deficits in learning, and (4) the role of genetics and developmental stage (i.e., adolescence) in these effects.
Collapse
Affiliation(s)
- Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
37
|
Kawai HD, La M, Kang HA, Hashimoto Y, Liang K, Lazar R, Metherate R. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex. Synapse 2013; 67:455-68. [PMID: 23401204 DOI: 10.1002/syn.21647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Enhancement of sound-evoked responses in auditory cortex (ACx) following administration of systemic nicotine is known to depend on activation of extracellular-signaling regulated kinase (ERK), but the nature of this enhancement is not clear. Here, we show that systemic nicotine increases the density of cells immunolabeled for phosphorylated (activated) ERK (P-ERK) in mouse primary ACx (A1). Cortical injection of dihydro-β-erythroidine reduced nicotine-induced P-ERK immunolabel, suggesting a role for nicotinic acetylcholine receptors located in A1 and containing α4 and β2 subunits. P-ERK expressing cells were distributed mainly in layers 2/3 and more sparsely in lower layers, with many cells exhibiting immunolabel within pyramidal-shaped somata and proximal apical dendrites. About one-third of P-ERK positive cells also expressed calbindin. In the thalamus, P-ERK immunopositive cells were found in the nonlemniscal medial geniculate (MG) and adjacent nuclei, but were absent in the lemniscal MG. Pairing broad spectrum acoustic stimulation (white noise) with systemic nicotine increased P-ERK immunopositive cell density in ACx as well as the total amount of P-ERK protein, particularly the phosphorylated form of ERK2. However, narrow spectrum (tone) stimulation paired with nicotine increased P-ERK immunolabel preferentially at a site within A1 where the paired frequency was characteristic frequency (CF), relative to a second site with a spectrally distant CF (two octaves above or below the paired frequency). Together, these results suggest that ERK is activated optimally where nicotinic signaling and sound-evoked neural activity converge.
Collapse
Affiliation(s)
- Hideki D Kawai
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Lenz B, Klafki HW, Hillemacher T, Frieling H, Clepce M, Gossler A, Thuerauf N, Winterer G, Kornhuber J, Bleich S. ERK1/2 protein and mRNA levels in human blood are linked to smoking behavior. Addict Biol 2012; 17:1026-35. [PMID: 21070506 DOI: 10.1111/j.1369-1600.2010.00264.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From studies in cultured cells and animal models, nicotine and alcohol are known to regulate extracellular signal-regulated kinase 1 and 2 (ERK1/2). Alterations of ERK1/2 are thought to contribute to the drugs' rewarding effects. Accumulating evidence supports the importance of ERK1/2 in the molecular pathophysiology of depression and affective regulation in the hippocampus. We recently showed that the expression and phosphorylation of cyclic adenosine monophosphate response element (CRE)-binding protein (CREB) in human buffy coat were associated with smoking behavior. Because ERK1/2 is known to effect phosphorylation of CREB, the aim of the present study was to further elucidate whether cigarette smoking leads to alterations in terms of ERK1/2 in human buffy coat as well. In a comparison of 53 smokers with 146 non-smoking controls, we found significantly higher levels of ERK1/2 protein (P=0.004). In contrast, phospho-ERK1/2, phospho-/total-ERK1/2 ratio, mRNA-ERK1 and mRNA-ERK2 were not significantly different. Multiple regression analysis revealed a significant relation among the number of cigarettes smoked daily (R(2)=0.266, P=0.003), the Fagerström Test for Nicotine Dependence score (R(2)=0.149, P=0.032) and the mRNA expression of ERK1. Moreover, our analysis suggests that the mRNA expression of ERK2 might be linked to mood (model summary: R(2)=0.087, P=0.019; mRNA-ERK2: P=0.026). Given that the ERK1/2 signaling pathway plays an important role in the physiology and pathophysiology of affective and addictive behavior, our findings provide a rationale basis for additional mechanistic studies that may lead to the development of novel signaling pathway selective therapeutics in humans.
Collapse
Affiliation(s)
- Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
40
|
Nakauchi S, Sumikawa K. Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice. Eur J Neurosci 2012; 35:1381-95. [PMID: 22462479 DOI: 10.1111/j.1460-9568.2012.08056.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We examined the role of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in the induction of long-term potentiation (LTP). Theta-burst stimulation (TBS), mimicking the brain's naturally occurring theta rhythm, induced robust LTP in hippocampal slices from α7 and β2 knockout mice. This suggests TBS is capable of inducing LTP without activation of α7- or β2-containing nAChRs. However, when weak TBS was applied, the modulatory effects of nicotinic receptors on LTP induction became visible. We showed that during weak TBS, activation of α7 nAChRs occurs by the release of ACh, contributing to LTP induction. Additionally, bath-application of nicotine activated β2-containing nAChRs to promote LTP induction. Despite predicted nicotine-induced desensitization, synaptically mediated activation of α7 nAChRs still occurs in the presence of nicotine and contributed to LTP induction. Optical recording of single-stimulation-evoked excitatory activity with a voltage-sensitive dye revealed enhanced excitatory activity in the presence of nicotine. This effect of nicotine was robust during high-frequency stimulation, and was accompanied by enhanced burst excitatory postsynaptic potentials. Nicotine-induced enhancement of excitatory activity was observed in slices from α7 knockout mice, but was absent in β2 knockout mice. These results suggest that the nicotine-induced enhancement of excitatory activity is mediated by β2-containing nAChRs, and is related to the nicotine-induced facilitation of LTP induction. Thus, our study demonstrates that the activation of α7- and β2-containing nAChRs differentially facilitates LTP induction via endogenously released ACh and exogenous nicotine, respectively, in the hippocampal CA1 region of mice.
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
41
|
Kapai NA, Bukanova JV, Solntseva EI, Skrebitsky VG. Donepezil in a narrow concentration range augments control and impaired by beta-amyloid peptide hippocampal LTP in NMDAR-independent manner. Cell Mol Neurobiol 2012; 32:219-26. [PMID: 21968642 PMCID: PMC11498455 DOI: 10.1007/s10571-011-9751-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/18/2011] [Indexed: 01/27/2023]
Abstract
Acetylcholinesterase (AChE) inhibitor donepezil is widely used for the treatment of Alzheimer's disease (AD). The mechanisms of therapeutic effects of the drug are not well understood. The ability of donepezil to reverse a known pathogenic effect of β-amyloid peptide (Abeta), namely, the impairment of hippocampal long-term potentiation (LTP), was not studied yet. The goal of the present study was to study the influence of donepezil in 0.1-10 μM concentrations on control and Abeta-impaired hippocampal LTP. Possible involvement of N-methyl-D: -aspartate receptors (NMDARs) into mechanisms of donepezil action was also studied. LTP of population spike (PS) was studied in the CA1 region of rat hippocampal slices. Change of LTP by donepezil treatment had a bell-shaped dose-response curve. The drug in concentrations of 0.1 and 1 μM did not change LTP while in concentration of 0.5 μM significantly increased it, and in concentration of 5 and 10 μM suppressed LTP partially or completely. Abeta (200 nM) markedly suppressed LTP. Addition of 0.1, 0.5 or 1 μM donepezil to Abeta solution caused a restoration of LTP. N-methyl-D: -aspartate (NMDA) currents were studied in acutely isolated pyramidal neurons from CA1 region of rat hippocampus. Neither Abeta, nor 0.5 μM donepezil were found to change NMDA currents, while 10 μM donepezil rapidly and reversibly depressed it. Results suggest that donepezil augments control and impaired by Abeta hippocampal LTP in NMDAR-independent manner. In general, our findings extend the understanding of mechanisms of therapeutic action of donepezil, especially at an early stage of AD, and maybe taken into account while considering the possibility of donepezil overdose.
Collapse
Affiliation(s)
- Nadezhda A. Kapai
- Department of Brain Research, Center of Neurology RAMS, 5 per. Obukha, 105064 Moscow, Russia
| | - Julia V. Bukanova
- Department of Brain Research, Center of Neurology RAMS, 5 per. Obukha, 105064 Moscow, Russia
| | - Elena I. Solntseva
- Department of Brain Research, Center of Neurology RAMS, 5 per. Obukha, 105064 Moscow, Russia
| | - Vladimir G. Skrebitsky
- Department of Brain Research, Center of Neurology RAMS, 5 per. Obukha, 105064 Moscow, Russia
| |
Collapse
|
42
|
Parameshwaran K, Buabeid MA, Karuppagounder SS, Uthayathas S, Thiruchelvam K, Shonesy B, Dityatev A, Escobar MC, Dhanasekaran M, Suppiramaniam V. Developmental nicotine exposure induced alterations in behavior and glutamate receptor function in hippocampus. Cell Mol Life Sci 2012; 69:829-41. [PMID: 22033836 PMCID: PMC11114542 DOI: 10.1007/s00018-011-0805-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/11/2011] [Indexed: 12/24/2022]
Abstract
In the developing brain, nicotinic acetylcholine receptors (nAChRs) are involved in cell survival, targeting, formation of neural and sensory circuits, and development and maturation of other neurotransmitter systems. This regulatory role is disrupted when the developing brain is exposed to nicotine, which occurs with tobacco use during pregnancy. Prenatal nicotine exposure has been shown to be a strong risk factor for memory deficits and other behavioral aberrations in the offspring. The molecular mechanisms underlying these neurobehavioral outcomes are not clearly elucidated. We used a rodent model to assess behavioral, neurophysiological, and neurochemical consequences of prenatal nicotine exposure in rat offspring with specific emphasis on the hippocampal glutamatergic system. Pregnant dams were infused with nicotine (6 mg/kg/day) subcutaneously from the third day of pregnancy until birth. Results indicate that prenatal nicotine exposure leads to increased anxiety and depressive-like effects and impaired spatial memory. Synaptic plasticity in the form of long-term potentiation (LTP), basal synaptic transmission, and AMPA receptor-mediated synaptic currents were reduced. The deficit in synaptic plasticity was paralleled by declines in protein levels of vesicular glutamate transporter 1 (VGLUT1), synaptophysin, AMPA receptor subunit GluR1, phospho(Ser845) GluR1, and postsynaptic density 95 (PSD-95). These results suggest that prenatal nicotine exposure by maternal smoking could result in alterations in the glutamatergic system in the hippocampus contributing to the abnormal neurobehavioral outcomes.
Collapse
Affiliation(s)
- Kodeeswaran Parameshwaran
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Manal A. Buabeid
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
| | | | - Subramaniam Uthayathas
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
| | - Karikaran Thiruchelvam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
| | - Brian Shonesy
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
| | - Alexander Dityatev
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, 16163 Genoa, Italy
| | | | | | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849 USA
| |
Collapse
|
43
|
Intskirveli I, Metherate R. Nicotinic neuromodulation in auditory cortex requires MAPK activation in thalamocortical and intracortical circuits. J Neurophysiol 2012; 107:2782-93. [PMID: 22357798 DOI: 10.1152/jn.01129.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) by systemic nicotine enhances sensory-cognitive function and sensory-evoked cortical responses. Although nAChRs mediate fast neurotransmission at many synapses in the nervous system, nicotinic regulation of cortical processing is neuromodulatory. To explore potential mechanisms of nicotinic neuromodulation, we examined whether intracellular signal transduction involving mitogen-activated protein kinase (MAPK) contributes to regulation of tone-evoked responses in primary auditory cortex (A1) in the mouse. Systemic nicotine enhanced characteristic frequency (CF) tone-evoked current-source density (CSD) profiles in A1, including the shortest-latency (presumed thalamocortical) current sink in layer 4 and longer-latency (presumed intracortical) sinks in layers 2-4, by increasing response amplitudes and decreasing response latencies. Microinjection of the MAPK kinase (MEK) inhibitor U0126 into the thalamus, targeting the auditory thalamocortical pathway, blocked the effect of nicotine on the initial (thalamocortical) CSD component but did not block enhancement of longer-latency (intracortical) responses. Conversely, microinjection of U0126 into supragranular layers of A1 blocked nicotine's effect on intracortical, but not thalamocortical, CSD components. Simultaneously with enhancement of CF-evoked responses, responses to spectrally distant (nonCF) stimuli were reduced, implying nicotinic "sharpening" of frequency receptive fields, an effect also blocked by MEK inhibition. Consistent with these physiological results, acoustic stimulation with nicotine produced immunolabel for activated MAPK in A1, primarily in layer 2/3 cell bodies. Immunolabel was blocked by intracortical microinjection of the nAChR antagonist dihydro-β-erythroidine, but not methyllycaconitine, implicating α4β2*, but not α7, nAChRs. Thus activation of MAPK in functionally distinct forebrain circuits--thalamocortical, local intracortical, and long-range intracortical--underlies nicotinic neuromodulation of A1.
Collapse
Affiliation(s)
- Irakli Intskirveli
- Department of Neurobiology and Behavior and Center for Hearing Research, University of California, Irvine, CA, USA
| | | |
Collapse
|
44
|
Rehni AK, Singh TG, Arora S. SU-6656, a Selective Src Kinase Inhibitor, Attenuates Mecamylamine-Precipitated Nicotine Withdrawal Syndrome in Mice. Nicotine Tob Res 2011; 14:407-14. [DOI: 10.1093/ntr/ntr228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
46
|
Bliss TVP, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clinics (Sao Paulo) 2011; 66 Suppl 1:3-17. [PMID: 21779718 PMCID: PMC3118435 DOI: 10.1590/s1807-59322011001300002] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.
Collapse
|
47
|
Shiflett MW, Balleine BW. Contributions of ERK signaling in the striatum to instrumental learning and performance. Behav Brain Res 2010; 218:240-7. [PMID: 21147168 DOI: 10.1016/j.bbr.2010.12.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
The striatum is critical for learning and decision making; however, the molecular mechanisms that govern striatum function are not fully understood. The extracellular signal regulated kinase (ERK) cascade is an important signaling pathway that underlies synaptic plasticity, cellular excitability, learning and arousal. This review focuses on the role of ERK signaling in striatum function. ERK is activated in the striatum by coordinated dopamine and glutamate receptor signaling, where it underlies corticostriatal synaptic plasticity and influences striatal cell excitability. ERK activation in the dorsal striatum is necessary for action-outcome learning and performance of goal-directed actions. In the ventral striatum, ERK is necessary for the motivating effects of reward-associated stimuli on instrumental performance. Dysregulation of ERK signaling in the striatum by repeated drug exposure contributes to the development of addictive behavior. These results highlight the importance of ERK signaling in the striatum as a critical substrate for learning and as a regulator of ongoing behavior. Furthermore, they suggest that ERK may be a suitable target for therapeutics to treat disorders of learning and decision making that arise from compromised striatum function.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology, Rutgers University, 301 Smith Hall, 101 Warren St., Newark, NJ 07102, USA.
| | | |
Collapse
|
48
|
Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res 2010; 221:505-14. [PMID: 21130117 DOI: 10.1016/j.bbr.2010.11.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Acetylcholine is an essential excitatory neurotransmitter in the central nervous system and undertakes a vital role in cognitive function. Consequently, there is ample evidence to suggest the involvement of both nicotinic and muscarinic acetylcholine receptors in the modulation of synaptic plasticity, which is believed to be the molecular correlate of learning and memory. In the hippocampus in particular, multiple subtypes of both nicotinic and muscarinic receptors are present at presynaptic and postsynaptic loci of both principal neurons and inhibitory interneurons, where they exert profound bi-directional influences on synaptic transmission. Further evidence points to a role for cholinergic activation in the induction and maintenance of synaptic plasticity, and key influences on hippocampal network oscillations. The present review examines these multiple roles of acetylcholine in hippocampal plasticity.
Collapse
Affiliation(s)
- Benjamin D Drever
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
49
|
Lagostena L, Danober L, Challal S, Lestage P, Mocaër E, Trocmé-Thibierge C, Cherubini E. Modulatory effects of S 38232, a non alpha-7 containing nicotine acetylcholine receptor agonist on network activity in the mouse hippocampus. Neuropharmacology 2009; 58:806-15. [PMID: 20004675 DOI: 10.1016/j.neuropharm.2009.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/16/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Extracellular field potentials (fEPSPs) and whole cell patch-clamp recordings were used to test the effect of S 38232, a newly developed potent non-alpha7 nicotinic acetylcholine receptors (nAChR) agonist, on synaptic transmission in hippocampal slices obtained from adult mice. S 38232 increased the amplitude of fEPSPs, evoked in stratum radiatum by Schaffer collateral stimulation. This effect was potentiated by picrotoxin, suggesting that S 38232 exerts at least in part its effect on GABAergic interneurons. The action of S 38232 was mediated by non-alpha7 containing nAChRs since it was prevented by DHbetaE (1muM) but not by alpha-BTX (100nM). A similar potentiating effect on fEPSPs was observed when nicotine (1muM) was applied to hippocampal slices obtained from alpha7 -/- mice in the presence of picrotoxin. The potentiating effect of S 38232 was probably presynaptic in origin since it was associated with a significant reduction in paired-pulse ratio. In addition, in patch clamp experiments, S 38232 enhanced the frequency (but not the amplitude) of spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs, sIPSCs) recorded from CA1 principal cells. Moreover, it enhanced the frequency of miniature IPSCs but not EPSCs, suggesting that it was acting on nAChRs located on presynaptic/pre-terminal regions of GABAergic interneurons. The effect of S 38232 on GABAergic signaling was concentration-dependent with an EC(50) of 43muM. In conclusions, we present evidence that the new nicotine ligand S 38232, by selectively activating non-alpha7 nAChRs located on principal cells and GABAergic interneurons, influences network activity and information processing in the hippocampus.
Collapse
Affiliation(s)
- Laura Lagostena
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|