1
|
Chattopadhyay D, Walker DR, Rich-New ST, Kearney JF, Turnbough, Jr. CL. Crystal structure and induced stability of trimeric BxpB: implications for the assembly of BxpB-BclA complexes in the exosporium of Bacillus anthracis. mBio 2023; 14:e0117223. [PMID: 37382447 PMCID: PMC10470788 DOI: 10.1128/mbio.01172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
The outermost exosporium layer of Bacillus anthracis spores, the causative agents of anthrax, is comprised of a basal layer and an external hair-like nap. The nap includes filaments composed of trimers of the collagen-like glycoprotein BclA. Essentially all BclA trimers are attached to the spore in a process in which part of the 38-residue amino-terminal domain (NTD) of BclA forms an extremely stable interaction with the basal layer protein BxpB. Evidence indicates that the BclA-BxpB interaction is direct and requires trimeric BxpB. To further investigate the nature of the BclA-BxpB interaction, we determined the crystal structure of BxpB. The structure was trimeric with each monomer consisting of 11 β strands with connecting loops. The structure did not include apparently disordered amino acids 1-19, which contain the only two cysteine residues of the 167-residue BxpB. The orientation of the structure reveals regions of BxpB that could be involved in interacting with the BclA NTD and with adjacent cysteine-rich proteins in the basal layer. Furthermore, the BxpB structure closely resembles that of the 134-residue carboxyl-terminal domain of BclA, which forms trimers that are highly resistant to heat and detergent. We demonstrated that BxpB trimers do not share this resistance. However, when BxpB trimers are mixed with a peptide containing residues 20-38 of BclA, they form a complex that is as stable as BclA-BxpB complexes extracted from spores. Together, our results provide new insights into the mechanism of BclA-BxpB attachment and incorporation into the exosporium. IMPORTANCE The B. anthracis exosporium plays major roles in spore survival and infectivity, but the complex mechanism of its assembly is poorly understood. Key steps in this process are the stable attachment of collagen-like BclA filaments to the major basal layer structural protein BxpB and the insertion of BxpB into an underlying basal layer scaffold. The goal of this study is to further elucidate these interactions thereby advancing our understanding of exosporium assembly, a process shared by many spore-forming bacteria including important human pathogens.
Collapse
Affiliation(s)
| | - Dionna R. Walker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shane T. Rich-New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
2
|
Qiu Y, Zhai C, Chen L, Liu X, Yeo J. Current Insights on the Diverse Structures and Functions in Bacterial Collagen-like Proteins. ACS Biomater Sci Eng 2021. [PMID: 33871954 DOI: 10.1021/acsbiomaterials.1c00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dearth of knowledge on the diverse structures and functions in bacterial collagen-like proteins is in stark contrast to the deep grasp of structures and functions in mammalian collagen, the ubiquitous triple-helical scleroprotein that plays a central role in tissue architecture, extracellular matrix organization, and signal transduction. To fill and highlight existing gaps due to the general paucity of data on bacterial CLPs, we comprehensively reviewed the latest insight into their functional and structural diversity from multiple perspectives of biology, computational simulations, and materials engineering. The origins and discovery of bacterial CLPs were explored. Their genetic distribution and molecular architecture were analyzed, and their structural and functional diversity in various bacterial genera was examined. The principal roles of computational techniques in understanding bacterial CLPs' structural stability, mechanical properties, and biological functions were also considered. This review serves to drive further interest and development of bacterial CLPs, not only for addressing fundamental biological problems in collagen but also for engineering novel biomaterials. Hence, both biology and materials communities will greatly benefit from intensified research into the diverse structures and functions in bacterial collagen-like proteins.
Collapse
Affiliation(s)
- Yimin Qiu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chenxi Zhai
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Ling Chen
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Xiaoyan Liu
- National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan 430064, PR China
| | - Jingjie Yeo
- J2 Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
3
|
Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores. Int J Mol Sci 2020; 21:ijms21186696. [PMID: 32933117 PMCID: PMC7555657 DOI: 10.3390/ijms21186696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.
Collapse
|
4
|
Patel VI, Booth JL, Dozmorov M, Brown BR, Metcalf JP. Anthrax Edema and Lethal Toxins Differentially Target Human Lung and Blood Phagocytes. Toxins (Basel) 2020; 12:toxins12070464. [PMID: 32698436 PMCID: PMC7405021 DOI: 10.3390/toxins12070464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Bacillus anthracis, the causative agent of inhalation anthrax, is a serious concern as a bioterrorism weapon. The vegetative form produces two exotoxins: Lethal toxin (LT) and edema toxin (ET). We recently characterized and compared six human airway and alveolar-resident phagocyte (AARP) subsets at the transcriptional and functional levels. In this study, we examined the effects of LT and ET on these subsets and human leukocytes. AARPs and leukocytes do not express high levels of the toxin receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). Less than 20% expressed surface TEM8, while less than 15% expressed CMG2. All cell types bound or internalized protective antigen, the common component of the two toxins, in a dose-dependent manner. Most protective antigen was likely internalized via macropinocytosis. Cells were not sensitive to LT-induced apoptosis or necrosis at concentrations up to 1000 ng/mL. However, toxin exposure inhibited B. anthracis spore internalization. This inhibition was driven primarily by ET in AARPs and LT in leukocytes. These results support a model of inhalation anthrax in which spores germinate and produce toxins. ET inhibits pathogen phagocytosis by AARPs, allowing alveolar escape. In late-stage disease, LT inhibits phagocytosis by leukocytes, allowing bacterial replication in the bloodstream.
Collapse
Affiliation(s)
- Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Brent R. Brown
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (V.I.P.); (J.L.B.); (B.R.B.)
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
5
|
Kumar A, Parveen S, Sharma I, Pathak H, Deshmukh MV, Sharp JA, Kumar S. Structural and mechanistic insights into EchAMP: A antimicrobial protein from the Echidna milk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1260-1274. [PMID: 30951703 DOI: 10.1016/j.bbamem.2019.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antibiotic resistance is a problem that necessitates the identification of new antimicrobial molecules. Milk is known to have molecules with antimicrobial properties (AMPs). Echidna Antimicrobial Protein (EchAMP) is one such lactation specific AMP exclusively found in the milk of Echidna, an egg-laying mammal geographically restricted to Australia and New Guinea. Previous studies established that EchAMP exhibits substantial bacteriostatic activity against multiple bacterial genera. However, the subsequent structural and functional studies were hindered due to the unavailability of pure protein. RESULTS In this study, we expressed EchAMP protein using a heterologous expression system and successfully purified it to >95% homogeneity. The purified recombinant protein exhibits bacteriolytic activity against both Gram-positive and Gram-negative bacteria as confirmed by live-dead staining and scanning electron microscopy. Structurally, this AMP belongs to the family of intrinsically disordered proteins (IDPs) as deciphered by the circular-dichroism, tryptophan fluorescence, and NMR spectroscopy. Nonetheless, EchAMP has the propensity to acquire structure with amphipathic molecules, or membrane mimics like SDS, lipopolysaccharides, and liposomes as again observed through multiple spectroscopic techniques. CONCLUSIONS Recombinant EchAMP exhibits broad-spectrum bacteriolytic activity by compromising the bacterial cell membrane integrity. Hence, we propose that this intrinsically disordered antimicrobial protein interact with the bacterial cell membrane and undergoes conformational changes to form channels in the membrane resulting in cell lysis. GENERAL SIGNIFICANCE EchAMP, the evolutionarily conserved, lactation specific AMP from an oviparous mammal may find application as a broad-spectrum antimicrobial against pathogens that affect mammary gland or otherwise cause routine infections in humans and livestock.
Collapse
Affiliation(s)
- Alok Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Sadiya Parveen
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Isha Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Himani Pathak
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Mandar V Deshmukh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Julie A Sharp
- Instit for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Satish Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India.
| |
Collapse
|
6
|
Bressuire-Isoard C, Broussolle V, Carlin F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol Rev 2018; 42:614-626. [DOI: 10.1093/femsre/fuy021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christelle Bressuire-Isoard
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Véronique Broussolle
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Frédéric Carlin
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| |
Collapse
|
7
|
Deng S, Xu T, Fang Q, Yu L, Zhu J, Chen L, Liu J, Zhou R. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis. Front Immunol 2018; 9:1063. [PMID: 29868022 PMCID: PMC5964162 DOI: 10.3389/fimmu.2018.01063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA-deleted mutant strain ΔsntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔsntA. The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of ΔsntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2′,3′-cyclic nucleotide 2′-phosphodiesterase/3′-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Collapse
Affiliation(s)
- Simin Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tong Xu
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Qiong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Long Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Diseases (MOST), Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| |
Collapse
|
8
|
Booth JL, Duggan ES, Patel VI, Wu W, Burian DM, Hutchings DC, White VL, Coggeshall KM, Dozmorov MG, Metcalf JP. Gene expression profiling of primary human type I alveolar epithelial cells exposed to Bacillus anthracis spores reveals induction of neutrophil and monocyte chemokines. Microb Pathog 2018; 121:9-21. [PMID: 29704667 DOI: 10.1016/j.micpath.2018.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/12/2018] [Accepted: 04/22/2018] [Indexed: 11/18/2022]
Abstract
The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1β (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROβ and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax.
Collapse
Affiliation(s)
- J Leland Booth
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Vineet I Patel
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Wenxin Wu
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Dennis M Burian
- Civil Aerospace Medical Institute, Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169, USA.
| | | | - Vicky L White
- Civil Aerospace Medical Institute, Office of Aviation Medicine, Federal Aviation Administration, Oklahoma City, OK 73169, USA.
| | - K Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
9
|
Garcia BL, Zwarthoff SA, Rooijakkers SHM, Geisbrecht BV. Novel Evasion Mechanisms of the Classical Complement Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2051-60. [PMID: 27591336 DOI: 10.4049/jimmunol.1600863] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.
Collapse
Affiliation(s)
- Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
10
|
Marche MG, Mura ME, Falchi G, Ruiu L. Spore surface proteins of Brevibacillus laterosporus are involved in insect pathogenesis. Sci Rep 2017; 7:43805. [PMID: 28256631 PMCID: PMC5335551 DOI: 10.1038/srep43805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Outer spore envelope proteins of pathogenic bacteria often present specific virulence factors and tools to evade the defence system of their hosts. Brevibacillus laterosporus, a pathogen of invertebrates and an antimicrobial-producing species, is characterised by a unique spore coat and canoe-shaped parasporal body (SC-CSPB) complex surrounding the core spore. In the present study, we identified and characterised major proteins of the SC-CSPB complex of B. laterosporus, and we investigated their entomopathogenic role. Employing a proteomic approach and a B. laterosporus-house fly study model, we found four highly conserved proteins (ExsC, CHRD, CpbA and CpbB) that function as insect virulence factors. CpbA was associated with a significantly higher mortality of flies and greater relative gene expression levels during sporulation, compared to the other SC-CSPB proteins. Taken together, we suggest that spore surface proteins are a part of a complex set of toxins and virulence factors that B. laterosporus employs in its pathogenicity against flies.
Collapse
Affiliation(s)
| | - Maria Elena Mura
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Giovanni Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| | - Luca Ruiu
- Dipartimento di Agraria, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|
11
|
Booth JL, Duggan ES, Patel VI, Langer M, Wu W, Braun A, Coggeshall KM, Metcalf JP. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models. Microbes Infect 2016; 18:615-626. [PMID: 27320392 PMCID: PMC5534360 DOI: 10.1016/j.micinf.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023]
Abstract
The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur.
Collapse
Affiliation(s)
- J Leland Booth
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Vineet I Patel
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Marybeth Langer
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Wenxin Wu
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, D-30625, Hannover, Germany.
| | - K Mark Coggeshall
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division of the Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
12
|
Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. Characterization of the Adherence of Clostridium difficile Spores: The Integrity of the Outermost Layer Affects Adherence Properties of Spores of the Epidemic Strain R20291 to Components of the Intestinal Mucosa. Front Cell Infect Microbiol 2016; 6:99. [PMID: 27713865 PMCID: PMC5031699 DOI: 10.3389/fcimb.2016.00099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the causative agent of the most frequently reported nosocomial diarrhea worldwide. The high incidence of recurrent infection is the main clinical challenge of C. difficile infections (CDI). Formation of C. difficile spores of the epidemic strain R20291 has been shown to be essential for recurrent infection and transmission of the disease in a mouse model. However, the underlying mechanisms of how these spores persist in the colonic environment remains unclear. In this work, we characterized the adherence properties of epidemic R20291 spores to components of the intestinal mucosa, and we assessed the role of the exosporium integrity in the adherence properties by using cdeC mutant spores with a defective exosporium layer. Our results showed that spores and vegetative cells of the epidemic R20291 strain adhered at high levels to monolayers of Caco-2 cells and mucin. Transmission electron micrographs of Caco-2 cells demonstrated that the hair-like projections on the surface of R20291 spores are in close proximity with the plasma membrane and microvilli of undifferentiated and differentiated monolayers of Caco-2 cells. Competitive-binding assay in differentiated Caco-2 cells suggests that spore-adherence is mediated by specific binding sites. By using spores of a cdeC mutant we demonstrated that the integrity of the exosporium layer determines the affinity of adherence of C. difficile spores to Caco-2 cells and mucin. Binding of fibronectin and vitronectin to the spore surface was concentration-dependent, and depending on the concentration, spore-adherence to Caco-2 cells was enhanced. In the presence of an aberrantly-assembled exosporium (cdeC spores), binding of fibronectin, but not vitronectin, was increased. Notably, independent of the exosporium integrity, only a fraction of the spores had fibronectin and vitronectin molecules binding to their surface. Collectively, these results demonstrate that the integrity of the exosporium layer of strain R20291 contributes to selective spore adherence to components of the intestinal mucosa.
Collapse
Affiliation(s)
- Paola Mora-Uribe
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Camila Miranda-Cárdenas
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Iván Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Paula I Rodas
- Facultad de Medicina, Center for Integrative Medicine and Innovative Sciences, Universidad Andres Bello Santiago, Chile
| | - Saeed Banawas
- Department of Biomedical Sciences, Oregon State UniversityCorvallis, OR, USA; Medical Laboratories Department, College of Science Al-Zulfi, Majmaah UniversityAl Majma'ah, Saudi Arabia
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
13
|
Abstract
In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.
Collapse
|
14
|
Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence. PLoS Pathog 2016; 12:e1005678. [PMID: 27304426 PMCID: PMC4909234 DOI: 10.1371/journal.ppat.1005678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. We discovered an immune modulatory mechanism of Bacillus anthracis mediated by the spore surface protein BclA. We showed for the first time that BclA mediated the binding of complement factor H, a major negative regulator of complement, to the surface of spores. The binding led to the down-regulation of complement activities in vitro and in an animal model. Using mice deficient in complement components, we further showed that BclA promoted spore persistence in the mouse lungs and impaired antibody responses against spores in a complement-dependent manner. We further provided evidence suggesting a role of BclA in the development of protective immunity against lethal B. anthracis challenges. These findings draw attention to a previously understudied aspect of the complement system. They suggest that in addition to conferring resistance to complement-mediated killing and phagocytosis, complement inhibition by pathogens have long-term consequences with respect to persistent infections and development of protective immunity. Considering a growing list of microbial pathogens capable of modulating complement activities, our findings have broad implications.
Collapse
|
15
|
Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiol 2016; 59:205-12. [PMID: 27375261 PMCID: PMC4942563 DOI: 10.1016/j.fm.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores.
Collapse
|
16
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
17
|
Powell JD, Hutchison JR, Hess BM, Straub TM. Bacillus anthracis spores germinate extracellularly at air-liquid interface in an in vitro lung model under serum-free conditions. J Appl Microbiol 2015; 119:711-23. [PMID: 26075586 PMCID: PMC4745038 DOI: 10.1111/jam.12872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/02/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Aims To better understand the parameters that govern spore dissemination after lung exposure using in vitro cell systems. Methods and Results We evaluated the kinetics of uptake, germination and proliferation of Bacillus anthracis Sterne spores in association with human primary lung epithelial cells, Calu‐3 and A549 cell lines. We also analysed the influence of various cell culture medium formulations related to spore germination. Conclusions We found negligible spore uptake by epithelial cells, but germination and proliferation of spores in the serum‐free extracellular environment was evident. Spore germination was appreciably higher in immortalized cell cultures than in primary epithelial cells. Additionally, spores still germinated apically at a mucus‐secreting air–liquid interface lung barrier that was devoid of cell culture medium much earlier than medium‐only controls. Significance and Impact of the Study The role of lung epithelial cells in B. anthracis spore dissemination after inhalation remains poorly defined and rather controversial. These results are novel as they show spore germination is appreciably enhanced in the presence of lung cells in vitro, however, the cell line and cell state (air–liquid interface vs submerged in medium) dictates the extent of germination and in some cases proliferation.
Collapse
Affiliation(s)
- J D Powell
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - J R Hutchison
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - B M Hess
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - T M Straub
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
18
|
Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015; 123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 03/29/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. BIOLOGICAL SIGNIFICANCE This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections.
Collapse
Affiliation(s)
- Fernando Díaz-González
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mauro Milano
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Valeria Olguin-Araneda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Shin-Chen Tzeng
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
19
|
Zhao X, Wang Y, Shang Q, Li Y, Hao H, Zhang Y, Guo Z, Yang G, Xie Z, Wang R. Collagen-like proteins (ClpA, ClpB, ClpC, and ClpD) are required for biofilm formation and adhesion to plant roots by Bacillus amyloliquefaciens FZB42. PLoS One 2015; 10:e0117414. [PMID: 25658640 PMCID: PMC4319854 DOI: 10.1371/journal.pone.0117414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/22/2014] [Indexed: 11/18/2022] Open
Abstract
The genes of collagen-like proteins (CLPs) have been identified in a broad range of bacteria, including some human pathogens. They are important for biofilm formation and bacterial adhesion to host cells in some human pathogenic bacteria, including several Bacillus spp. strains. Interestingly, some bacterial CLP-encoding genes (clps) have also been found in non-human pathogenic strains such as B. cereus and B. amyloliquefaciens, which are types of plant-growth promoting rhizobacteria (PGPR). In this study, we investigated a putative cluster of clps in B. amyloliquefaciens strain FZB42 and a collagen-related structural motif containing glycine-X-threonine repeats was found in the genes RBAM_007740, RBAM_007750, RBAM_007760, and RBAM_007770. Interestingly, biofilm formation was disrupted when these genes were inactivated separately. Scanning electron microscopy and hydrophobicity value detection were used to assess the bacterial cell shape morphology and cell surface architecture of clps mutant cells. The results showed that the CLPs appeared to have roles in bacterial autoaggregation, as well as adherence to the surface of abiotic materials and the roots of Arabidopsis thaliana. Thus, we suggest that the CLPs located in the outer layer of the bacterial cell (including the cell wall, outer membrane, flagella, or other associated structures) play important roles in biofilm formation and bacteria-plant interactions. This is the first study to analyze the function of a collagen-like motif-containing protein in a PGPR bacterium. Knocking out each clp gene produced distinctive morphological phenotypes, which demonstrated that each product may play specific roles in biofilm formation. Our in silico analysis suggested that these four tandemly ranked genes might not belong to an operon, but further studies are required at the molecular level to test this hypothesis. These results provide insights into the functions of clps during interactions between bacteria and plants.
Collapse
Affiliation(s)
- Xia Zhao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Yun Wang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
| | - Qianhan Shang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Yuyao Li
- Key Laboratory of Arid and Grassland Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Haiting Hao
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Yubao Zhang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Zhihong Guo
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Guo Yang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Zhongkui Xie
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| | - Ruoyu Wang
- Gaolan Station of Agricultural and Ecological Experiment, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou, China
| |
Collapse
|
20
|
Pizarro-Guajardo M, Olguín-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 2014; 25:18-30. [DOI: 10.1016/j.anaerobe.2013.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/07/2013] [Accepted: 11/14/2013] [Indexed: 01/05/2023]
|
21
|
Agarwal V, Ahl J, Riesbeck K, Blom AM. An alternative role of C1q in bacterial infections: facilitating Streptococcus pneumoniae adherence and invasion of host cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4235-45. [PMID: 24038089 DOI: 10.4049/jimmunol.1300279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen, which evolved numerous successful strategies to colonize the host. In this study, we report a novel mechanism of pneumococcal-host interaction, whereby pneumococci use a host complement protein C1q, primarily involved in the host-defense mechanism, for colonization and subsequent dissemination. Using cell-culture infection assays and confocal microscopy, we observed that pneumococcal surface-bound C1q significantly enhanced pneumococcal adherence to and invasion of host epithelial and endothelial cells. Flow cytometry demonstrated a direct, Ab-independent binding of purified C1q to various clinical isolates of pneumococci. This interaction was seemingly capsule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of pneumococci with pronase E but not sodium periodate significantly reduced C1q binding. Moreover, similar binding was observed using C1 complex as the source of C1q. Furthermore, our data show that C1q bound to the pneumococcal surface through the globular heads and with the host cell-surface receptor(s)/glycosaminoglycans via its N-terminal collagen-like stalk, as the presence of C1q N-terminal fragment and low m.w. heparin but not the C-terminal globular heads blocked C1q-mediated pneumococcal adherence to host cells. Taken together, we demonstrate for the first time, to our knowledge, a unique function of complement protein C1q, as a molecular bridge between pneumococci and the host, which promotes bacterial cellular adherence and invasion. Nevertheless, in some conditions, this mechanism could be also beneficial for the host as it may result in uptake and clearance of the bacteria.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
22
|
Jenkins SA, Xu Y. Characterization of Bacillus anthracis persistence in vivo. PLoS One 2013; 8:e66177. [PMID: 23750280 PMCID: PMC3672131 DOI: 10.1371/journal.pone.0066177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/07/2013] [Indexed: 02/07/2023] Open
Abstract
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.
Collapse
Affiliation(s)
- Sarah A. Jenkins
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Escobar-Cortés K, Barra-Carrasco J, Paredes-Sabja D. Proteases and sonication specifically remove the exosporium layer of spores of Clostridium difficile strain 630. J Microbiol Methods 2013; 93:25-31. [DOI: 10.1016/j.mimet.2013.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
|
24
|
Hauck CR, Borisova M, Muenzner P. Exploitation of integrin function by pathogenic microbes. Curr Opin Cell Biol 2012; 24:637-44. [PMID: 22884865 DOI: 10.1016/j.ceb.2012.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/26/2023]
Abstract
Numerous pathogens express adhesive proteins to directly or indirectly associate with integrins. It is well established that by targeting integrins, microbes not only establish an intimate contact with host tissues, but also trigger cellular responses including bacterial internalization. This review will summarize current knowledge about the role of these integrin-dependent processes during infection and how bacteria assure that they efficiently connect to integrins for host cell invasion or translocation of effector molecules. Furthermore, we will discuss recent insight demonstrating that bacteria can harness the physiological, matrix-binding function of integrins for promoting host colonization. From these combined studies, it is becoming evident that integrins are a common nexus for the manipulation of cellular functions by bacterial pathogens. Approaches to disrupt this connection might be an appropriate means to obtain broad-acting tools to modulate a spectrum of infectious diseases.
Collapse
Affiliation(s)
- Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany.
| | | | | |
Collapse
|
25
|
Gu C, Jenkins SA, Xue Q, Xu Y. Activation of the classical complement pathway by Bacillus anthracis is the primary mechanism for spore phagocytosis and involves the spore surface protein BclA. THE JOURNAL OF IMMUNOLOGY 2012; 188:4421-31. [PMID: 22442442 DOI: 10.4049/jimmunol.1102092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interactions between spores of Bacillus anthracis and macrophages are critical for the development of anthrax infections, as spores are thought to use macrophages as vehicles to disseminate in the host. In this study, we report a novel mechanism for phagocytosis of B. anthracis spores. Murine macrophage-like cell line RAW264.7, bone marrow-derived macrophages, and primary peritoneal macrophages from mice were used. The results indicated that activation of the classical complement pathway (CCP) was a primary mechanism for spore phagocytosis. Phagocytosis was significantly reduced in the absence of C1q or C3. C3 fragments were found deposited on the spore surface, and the deposition was dependent on C1q and Ca(2+). C1q recruitment to the spore surface was mediated by the spore surface protein BclA, as recombinant BclA bound directly and specifically to C1q and inhibited C1q binding to spores in a dose-dependent manner. C1q binding to spores lacking BclA (ΔbclA) was also significantly reduced compared with wild-type spores. In addition, deposition of both C3 and C4 as well as phagocytosis of spores were significantly reduced when BclA was absent, but were not reduced in the absence of IgG, suggesting that BclA, but not IgG, is important in these processes. Taken together, these results support a model in which spores actively engage CCP primarily through BclA interaction with C1q, leading to CCP activation and opsonophagocytosis of spores in an IgG-independent manner. These findings are likely to have significant implications on B. anthracis pathogenesis and microbial manipulation of complement.
Collapse
Affiliation(s)
- Chunfang Gu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Cryptosporidium parvum is an opportunistic pathogen in AIDS patients. It is an intracellular but extracytoplasmic parasite residing in a host cell-derived parasitophorous vacuole. It is still poorly understood how this parasite interacts with host cells. We observed that expression of the integrin α2 (ITGA2) gene in host cells was significantly upregulated upon C. parvum infection, and a higher level of ITGA2 protein was present in the parasite infection sites. The infection could be reduced by the treatment of antibodies against ITGA2 and integrin β1 (ITGB1) subunits, as well as by type I collagen (an integrin α2β1 ligand). We also generated stable knockdown of ITGA2 gene expression in HCT-8 cells and observed consistent reduction of parasite infection in these knockdown cells. Collectively, our evidence indicates that host cell ITGA2 might be involved in interacting with Cryptosporidium during infection, probably acting as part of the regulatory elements upstream of the reported recruiting and reorganization of F actin at the infection sites.
Collapse
|