1
|
Glendinning JI, Williams N. Prolonged Consumption of glucose syrup enhances glucose tolerance in mice. Physiol Behav 2022; 256:113954. [PMID: 36055416 DOI: 10.1016/j.physbeh.2022.113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
There is debate about the metabolic impact of sugar-sweetened beverages. Here, we tested the hypothesis that ad lib consumption of glucose (Gluc) or high-fructose (HiFruc) syrups improves glucose tolerance in mice. We provided C57BL/6 mice with a control (chow and water) or experimental (chow, water and sugar solution) diet across two consecutive 28-day exposure periods, and monitored changes in body composition, glucose tolerance, cephalic-phase insulin release (CPIR) and insulin sensitivity. The sugar solutions contained 11% concentrations of Gluc or HiFruc syrup; these syrups were derived from either corn starch or cellulose. In Experiment 1, consumption of the Gluc diets reliably enhanced glucose tolerance, while consumption of the HiFruc diets did not. Mice on the Gluc diets exhibited higher CPIR (relative to baseline) by the end of exposure period 1, whereas mice on the control and HiFruc diets did not do so until the end of exposure period 2. Mice on the Gluc diets also exhibited higher insulin sensitivity than control mice at the end of exposure period 2, while mice on the HiFruc diets did not. In Experiment 2, we repeated the previous experiment, but limited testing to the corn-based Gluc and HiFruc syrups. We found, once again, that consumption of the Gluc (but not the HiFruc) diet enhanced glucose tolerance, in part by increasing CPIR and insulin sensitivity. These results show that mice can adapt metabolically to high glucose diets, and that this adaptation process involves upregulating at least two components of the insulin response system.
Collapse
Affiliation(s)
- John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027.
| | - Niki Williams
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027
| |
Collapse
|
2
|
Morimoto J, Senior A, Ruiz K, Wali JA, Pulpitel T, Solon-Biet SM, Cogger VC, Raubenheimer D, Le Couteur DG, Simpson SJ, Eberhard J. Sucrose and starch intake contribute to reduced alveolar bone height in a rodent model of naturally occurring periodontitis. PLoS One 2019; 14:e0212796. [PMID: 30865648 PMCID: PMC6415785 DOI: 10.1371/journal.pone.0212796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/08/2019] [Indexed: 12/01/2022] Open
Abstract
While there is a burgeoning interest in the effects of nutrition on systemic inflammatory diseases, how dietary macronutrient balance impacts local chronic inflammatory diseases in the mouth has been largely overlooked. Here, we used the Geometric Framework for Nutrition to test how the amounts of dietary macronutrients and their interactions, as well as carbohydrate type (starch vs sucrose vs resistant starch) influenced periodontitis-associated alveolar bone height in mice. Increasing intake of carbohydrates reduced alveolar bone height, while dietary protein had no effect. Whether carbohydrate came from sugar or starch did not influence the extent of alveolar bone height. In summary, the amount of carbohydrate in the diet modulated periodontitis-associated alveolar bone height independent of the source of carbohydrates.
Collapse
Affiliation(s)
- Juliano Morimoto
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- Programa de Pós-Graduação em Ecologia e Conservação, Federal University of Paraná, Curitiba, Brazil
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alistair Senior
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Mathematics and Statistics, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - Kate Ruiz
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney Dental School, Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Jibran A. Wali
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - Samantha M. Solon-Biet
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - Victoria C. Cogger
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- Centre for Education and Research on Ageing, Concord, New South Wales, Australia
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - David G. Le Couteur
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- Centre for Education and Research on Ageing, Concord, New South Wales, Australia
- Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales, Australia
| | - Joerg Eberhard
- Charles Perkins Centre, Camperdown, New South Wales, Australia
- The University of Sydney Dental School, Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
3
|
Sideratou T, Atkinson F, Campbell GJ, Petocz P, Bell-Anderson KS, Brand-Miller J. Glycaemic Index of Maternal Dietary Carbohydrate Differentially Alters Fto and Lep Expression in Offspring in C57BL/6 Mice. Nutrients 2018; 10:E1342. [PMID: 30241328 PMCID: PMC6213875 DOI: 10.3390/nu10101342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022] Open
Abstract
Maternal diet and gestational hyperglycaemia have implications for offspring health. Leptin (LEP) and fat mass and obesity-associated (FTO) alleles are known to influence body fat mass in humans, potentially via effects on appetite. We hypothesized that expression of Fto, Lep, and other appetite-related genes (Argp, Npy, Pomc, Cart, Lepr) in the offspring of female mice are influenced by the glycaemic index (GI) of carbohydrates in the maternal diet. C57BL/6 mice were randomly assigned to low or high GI diets and mated with chow-fed males at eight weeks of age. Male pups were weaned at four weeks and randomly divided into two groups, one group following their mother's diet (LL and HH), and one following the standard chow diet (LC and HC) to 20 weeks. Fto expression was 3.8-fold higher in the placenta of mothers fed the high GI diet (p = 0.0001) and 2.5-fold higher in the hypothalamus of 20-week old offspring fed the high GI (HH vs. LL, p < 0.0001). By contrast, leptin gene (Lep) expression in visceral adipose tissue was 4.4-fold higher in four-week old offspring of low GI mothers (LC vs. HC, p < 0.0001) and 3.3-fold higher in visceral adipose tissue of 20-week old animals (LL vs. HH, p < 0.0001). Plasma ghrelin and leptin levels, and hypothalamic appetite genes were also differentially regulated by maternal and offspring diet. These findings provide the first evidence in an animal model that maternal high GI dietary carbohydrates that are digested and absorbed faster may contribute to programming of appetite in offspring.
Collapse
Affiliation(s)
- Theodora Sideratou
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Fiona Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Grace J Campbell
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Peter Petocz
- Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Kim S Bell-Anderson
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| | - Jennie Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Campbell GJ, Senior AM, Bell-Anderson KS. Metabolic Effects of High Glycaemic Index Diets: A Systematic Review and Meta-Analysis of Feeding Studies in Mice and Rats. Nutrients 2017; 9:E646. [PMID: 28640233 PMCID: PMC5537766 DOI: 10.3390/nu9070646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 12/24/2022] Open
Abstract
Low glycaemic index (LGI) diets are often reported to benefit metabolic health, but the mechanism(s) responsible are not clear. This review aimed to systematically identify studies investigating metabolic effects of high glycaemic index (HGI) versus LGI diets in mice and rats. A meta-analysis was conducted to calculate an overall effect size, Hedge's standardised mean differences (hereafter d), for each trait, with moderator variables considered in subsequent meta-regressions. Across 30 articles, a HGI diet increased five of the seven traits examined: body weight (d = 0.55; 95% confidence interval: 0.31, 0.79), fat mass (d = 1.08; 0.67, 1.49), fasting circulating insulin levels (d = 0.40; 0.09, 0.71), and glucose (d = 0.80; 0.35, 1.25) and insulin (d = 1.14; 0.50, 1.77) area under the curve during a glucose tolerance test. However, there was substantial heterogeneity among the effects for all traits and the small number of studies enabled only limited investigation of possible confounding factors. HGI diets favour body weight gain, increased adiposity and detrimentally affect parameters of glucose homeostasis in mice and rats, but these effects may not be a direct result of GI per se; rather they may be due to variation in other dietary constituents, such as dietary fibre, a factor which is known to reduce the GI of food and promote health via GI-independent mechanisms.
Collapse
Affiliation(s)
- Grace J Campbell
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Alistair M Senior
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kim S Bell-Anderson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Lindqvist A, Shcherbina L, Fischer AHT, Wierup N. Ghrelin Is a Regulator of Glucagon-Like Peptide 1 Secretion and Transcription in Mice. Front Endocrinol (Lausanne) 2017; 8:135. [PMID: 28674521 PMCID: PMC5475379 DOI: 10.3389/fendo.2017.00135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/01/2017] [Indexed: 01/23/2023] Open
Abstract
The gut hormones ghrelin, glucagon-like peptide 1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) have been intensively studied for their role in metabolism. It is, however, not well known whether the hormones interplay and regulate the secretion of each other. In this study, we studied the effect of ghrelin on GLP-1, GIP, and insulin secretion during an oral glucose tolerance test (OGTT) in mice. Intravenous administration of ghrelin caused increased GLP-1 secretion during the OGTT. On the other hand, ghrelin had no effect on circulating levels of glucose, insulin, and GIP. Furthermore, ghrelin treatment reduced proglucagon mRNA expression in GLUTag cells. The effect of ghrelin on GLP-1 secretion and proglucagon transcription was reinforced by the presence of GHS-R1a in human and mouse ileal L-cells, as well as in GLUTag cells. In summary, ghrelin is a regulator of GLP-1 secretion and transcription, and interfering with GHS-R1a signaling may be a way forward to enhance endogenous GLP-1 secretion in subjects with type 2 diabetes.
Collapse
Affiliation(s)
- Andreas Lindqvist
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Liliya Shcherbina
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
- *Correspondence: Nils Wierup,
| |
Collapse
|
6
|
Morris JL, Bridson TL, Alim MA, Rush CM, Rudd DM, Govan BL, Ketheesan N. Development of a diet-induced murine model of diabetes featuring cardinal metabolic and pathophysiological abnormalities of type 2 diabetes. Biol Open 2016; 5:1149-62. [PMID: 27402965 PMCID: PMC5004603 DOI: 10.1242/bio.016790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The persistent rise in global incidence of type 2 diabetes (T2D) continues to have significant public health and economic implications. The availability of relevant animal models of T2D is critical to elucidating the complexity of the pathogenic mechanisms underlying this disease and the implications this has on susceptibility to T2D complications. Whilst many high-fat diet-induced rodent models of obesity and diabetes exist, growing appreciation of the contribution of high glycaemic index diets on the development of hyperglycaemia and insulin resistance highlight the requirement for animal models that more closely represent global dietary patterns reflective of modern society. To that end, we sought to develop and validate a murine model of T2D based on consumption of an energy-dense diet containing moderate levels of fat and a high glycaemic index to better reflect the aetiopathogenesis of T2D. Male C57BL/6 mice were fed an energy-dense (ED) diet and the development of pathological features used in the clinical diagnosis of T2D was assessed over a 30-week period. Compared with control mice, 87% of mice fed an ED diet developed pathognomonic signs of T2D including glucose intolerance, hyperglycaemia, glycosylated haemoglobin (HbA1c) and glycosuria within 30 weeks. Furthermore, dyslipidaemia, chronic inflammation, alterations in circulating leucocytes and renal impairment were also evident in ED diet-fed mice compared with mice receiving standard rodent chow. Longitudinal profiling of metabolic and biochemical parameters provide support of an aetiologically and clinically relevant model of T2D that will serve as a valuable tool for mechanistic and therapeutic studies investigating the pathogenic complications of T2D.
Collapse
Affiliation(s)
- Jodie L Morris
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Tahnee L Bridson
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Md Abdul Alim
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Catherine M Rush
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Donna M Rudd
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Brenda L Govan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Natkunam Ketheesan
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
7
|
Hodgson K, Govan B, Ketheesan N, Morris J. Dietary composition of carbohydrates contributes to the development of experimental type 2 diabetes. Endocrine 2013; 43:447-51. [PMID: 23325363 DOI: 10.1007/s12020-013-9874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/05/2013] [Indexed: 12/17/2022]
Abstract
Evidence has emerged supporting a link between high glycaemic index (GI) diets and type 2 diabetes (T2D). The aim of this study was to determine if dietary GI influences the development of hyperglycaemia in C57BL/6 mice to more closely reflect T2D. Male C57BL/6 mice (n=30) were randomly divided into 3 dietary groups consisting of either standard rodent chow (4.8 % fat, 20 % protein), or a high fat (HF) diet (21-23 % fat, 19 % protein) with low GI (15.4 % starch; HF-LG) or high GI (50.5 % dextrose; HF-HG) ad libitum for 10 weeks. Body weight, blood glucose, glucose tolerance, and circulating cholesterol and triglyceride levels were measured for the duration of the study. We found that increasing the GI of a moderately HF diet induces severe hyperglycaemia and insulin resistance in C57BL/6 mice, reflective of criteria for diagnosis of T2D, whilst littermates consuming an equivalent low GI diet maintain glucose homeostasis. This study demonstrates the significant contribution of both dietary carbohydrate and fat composition in the aetiopathogenesis of T2D.
Collapse
|
8
|
Belobrajdic DP, King RA, Christophersen CT, Bird AR. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats. Nutr Metab (Lond) 2012; 9:93. [PMID: 23098187 PMCID: PMC3541085 DOI: 10.1186/1743-7075-9-93] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/14/2012] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED BACKGROUND Animal studies show that diets containing resistant starch (RS) at levels not achievable in the human diet result in lower body weight and/or adiposity in rodents. We aimed to determine whether RS dose-dependently reduces adiposity in obesity-prone (OP) and obesity-resistant (OR) rats. METHODS Male Sprague-Dawley rats (n=120) were fed a moderate-fat, high-energy diet for 4 wk. Rats that gained the most weight (40%) were classified as obesity-prone (OP) and obesity-resistant (OR) rats were the 40% that gained the least weight. OP and OR rats were randomly allocated to one of six groups (n=8 for each phenotype). One group was killed for baseline measurements, the other five groups were allocated to AIN-93 based diets that contained 0, 4, 8, 12 and 16% RS (as high amylose maize starch) for 4 wk. These diets were matched for total carbohydrate content. At 0, 4 and 7 wk from the start of the study insulin sensitivity was calculated by homeostasis model assessment of insulin resistance (HOMA-IR) and adiposity was determined by dual-energy X-ray absorptiometry (DXA). At 8 wk, rats were euthanized and fat pad weights, intestinal digesta short chain fatty acid (SCFA) pools and plasma gut hormone levels were determined. RESULTS Obesity prone rats gained less weight with 4, 12 and 16% RS compared to 0% RS, but the effect in OR animals was significant only at 16% RS. Irrespective of phenotype, diets containing ≥8% RS reduced adiposity compared to 0% RS. Energy intake decreased by 9.8 kJ/d for every 4% increase in RS. All diets containing RS increased total SCFA pools in the caecum and lowered plasma GIP concentrations compared to the 0% RS, whereas plasma GLP-1 and PYY were increased when the diet contained at least 8% RS. Insulin sensitivity was not affected by RS. CONCLUSION RS in amounts that could be potentially consumed by humans were effective in reducing adiposity and weight gain in OP and OR rats, due in part to a reduction in energy intake, and changes in gut hormones and large bowel carbohydrate fermentation.
Collapse
Affiliation(s)
- Damien P Belobrajdic
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Food Futures Flagship, Adelaide, Australia
- CSIRO Animal Food and Health Sciences, Adelaide, Australia
| | - Roger A King
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Food Futures Flagship, Adelaide, Australia
- CSIRO Animal Food and Health Sciences, Adelaide, Australia
| | - Claus T Christophersen
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Food Futures Flagship, Adelaide, Australia
- CSIRO Animal Food and Health Sciences, Adelaide, Australia
| | - Anthony R Bird
- Commonwealth Scientific & Industrial Research Organisation (CSIRO) Food Futures Flagship, Adelaide, Australia
- CSIRO Animal Food and Health Sciences, Adelaide, Australia
| |
Collapse
|
9
|
Runchey SS, Pollak MN, Valsta LM, Coronado GD, Schwarz Y, Breymeyer KL, Wang C, Wang CY, Lampe JW, Neuhouser ML. Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study. Eur J Clin Nutr 2012; 66:1146-52. [PMID: 22892437 PMCID: PMC3463643 DOI: 10.1038/ejcn.2012.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND/OBJECTIVES The effect of a low glycemic load (GL) diet on insulin-like growth factor-1 (IGF-1) concentration is still unknown but may contribute to lower chronic disease risk. We aimed to assess the impact of GL on concentrations of IGF-1 and IGF-binding protein-3 (IGFBP-3). SUBJECTS/METHODS We conducted a randomized, controlled crossover feeding trial in 84 overweight obese and normal weight healthy individuals using two 28-day weight-maintaining high- and low-GL diets. Measures were fasting and post-prandial concentrations of insulin, glucose, IGF-1 and IGFBP-3. In all 80 participants completed the study and 20 participants completed post-prandial testing by consuming a test breakfast at the end of each feeding period. We used paired t-tests for diet component and linear mixed models for biomarker analyses. RESULTS The 28-day low-GL diet led to 4% lower fasting concentrations of IGF-1 (10.6 ng/ml, P=0.04) and a 4% lower ratio of IGF-1/IGFBP-3 (0.24, P=0.01) compared with the high-GL diet. The low-GL test breakfast led to 43% and 27% lower mean post-prandial glucose and insulin responses, respectively; mean incremental areas under the curve for glucose and insulin, respectively, were 64.3±21.8 (mmol/l/240 min; P<0.01) and 2253±539 (μU/ml/240 min; P<0.01) lower following the low- compared with the high-GL test meal. There was no effect of GL on mean homeostasis model assessment for insulin resistance or on mean integrated post-prandial concentrations of glucose-adjusted insulin, IGF-1 or IGFBP-3. We did not observe modification of the dietary effect by adiposity. CONCLUSIONS Low-GL diets resulted in 43% and 27% lower post-prandial responses of glucose and insulin, respectively, and modestly lower fasting IGF-1 concentrations. Further intervention studies are needed to weigh the impact of dietary GL on risk for chronic disease.
Collapse
Affiliation(s)
- S S Runchey
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|