1
|
Banki K, Perl A. Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging. Autoimmun Rev 2025; 24:103781. [PMID: 40010622 DOI: 10.1016/j.autrev.2025.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress. The PPP operates two separate branches, oxidative (OxPPP) and non-oxidative (NOxPPP). While the OxPPP functions in all organisms, the NOxPPP reflects adaptation to niche-specific metabolic requirements. The OxPPP primarily depends on glucose 6-phosphate dehydrogenase (G6PD), whereas transaldolase (TAL) controls the rate and directionality of metabolic flux though the NOxPPP. G6PD is essential for normal development but its partial deficiency protects from malaria. Although men and mice lacking TAL develop normally, they exhibit liver cirrhosis progressing to hepatocellular carcinoma. Mechanistic target of rapamycin-dependent loss of paraoxonase 1 drives autoimmunity and cirrhosis in TAL deficiency, while hepatocarcinogenesis hinges on polyol pathway activation via aldose reductase (AR). Accumulated polyols, such as erythritol, xylitol, and sorbitol, which are commonly used as non-caloric sweeteners, may act as pro-inflammatory oncometabolites under metabolic stress, such as TAL deficiency. The TAL/AR axis is identified as a checkpoint of pathogenesis and target for treatment of metabolic stress-driven systemic autoimmunity with relevance for inflammatory liver, renal and cardiovascular disorders, diabetes, carcinogenesis, and aging.
Collapse
Affiliation(s)
- Katalin Banki
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
2
|
ElKhooly IA, El-Bassossy HM, Mohammed HO, Atwa AM, Hassan NA. Vitamin B1 and calcitriol enhance glibenclamide suppression of diabetic nephropathy: Role of HMGB1/TLR4/NF-κB/TNF-α/Nrf2/α-SMA trajectories. Life Sci 2024; 357:123046. [PMID: 39255926 DOI: 10.1016/j.lfs.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Glibenclamide is one of the most prescribed insulin secretagogues in diabetes due to its low cost, but its efficacy on suppressing diabetic complications is limited. Here, we examine whether addition of either vitamin B1 or calcitriol to glibenclamide could produce more suppression of diabetic nephropathy. Type 2 diabetes was induced by high fructose (10 % in drinking water), high salt (3 % in diet), and high fat diet (25 % in diet) for 3 weeks, followed by single dose of STZ (40 mg/kg, i.p.). Diabetic rats were treated with either glibenclamide (0.6 mg/kg), vitamin B1 (70 mg/kg), glibenclamide/vitamin B1, calcitriol (0.1 μg/kg), or glibenclamide/calcitriol. Addition of either vitamin B1 or calcitriol to glibenclamide therapy enabled more suppression of diabetic nephropathy development as evidenced by more preserved creatinine clearance and less renal damage scores. Combination therapy resulted in mild enhancement in the effect of glibenclamide on glucose tolerance without affecting the area under the curve. Combination therapy was associated with more suppression of inflammatory cascades as evidenced by reducing the expression of high mobility group box-1 (HMGB1), toll-like receptor-4 (TLR4), nuclear factor-kappa B (NF-κB), and tumor necrosis factor-α (TNF-α). In addition, combination therapy enhanced the antioxidant mechanisms as evidenced by increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione content and reducing malondialdehyde and nitric oxide levels. Furthermore, combination therapy provided more suppression of fibrotic pathways as appear from reducing collagen deposition and the expression of α- smooth muscle actin (α-SMA). In conclusion, addition of vitamin B1 or calcitriol to glibenclamide therapy can enhance the therapeutic efficiency of glibenclamide in suppressing diabetic nephropathy progression to the same extend, the protective effect is mediated through modulating HMGB1/TLR4/NF-κB/TNF-α/Nrf2/α-SMA trajectories.
Collapse
Affiliation(s)
- Ibtisam Ahmed ElKhooly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Heba Osama Mohammed
- Human anatomy and embryology department, Faculty of Medicine -Zagazig University, Zagazig 44519, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar 64001, Iraq.
| | - Noura A Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
3
|
Haider R, Asghari M, Aliasl F, Aghaali M, Borujerdi R, Saghafi H, Moradi H. Efficacy and safety of Plantago major seeds in patients with diabetic nephropathy: A randomized open-labeled controlled clinical trial. Explore (NY) 2024; 20:103005. [PMID: 38797623 DOI: 10.1016/j.explore.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Diabetic Nephropathy (DN) is characterized by albuminuria and a declining glomerular filtration rate (GFR) in diabetic patients. Plantago major (plantain) seed powder is traditionally used in these patients. Despite emerging and promising pre-clinical evidence, no clinical study investigated the potential efficacy of this intervention in patients with DN, which is the aim of this study. METHODS In a randomized clinical trial 60 DN patients were recruited from November 2022 to March 2023 and randomly assigned to the plantain group that received standard treatment (Losartan 25 mg twice a day) and plantain seeds' powder (10 gm sachet twice a day) plus sweet almond and the control group was received only standard treatment for 60 days. Proteinuria, as per 24-hour urinary protein, as well as fasting blood sugar (FBS), blood urea nitrogen (BUN), serum creatinine, serum potassium, and quality of life score were measured at baseline and after 60 days as study outcome measures. RESULTS Proteinuria was significantly decreased from 165.04 mg to 135.84 mg (p = 0.026) in the plantain group. The mean level of proteinuria was significantly lower in the plantain group (135.84 vs. 192.04, p = 0.039) compared to the control group after treatment. The plantain group showed more increase in quality of life score after treatment (33.89±9.67 vs 38.28±10.72, p = 0.041). Other outcomes showed no significant difference between the two study groups. CONCLUSION Adjuvant supplementation with plantain seeds powder may decrease proteinuria in patients with diabetic nephropathy. Further studies with larger sample sizes and longer duration are needed to confirm these results.
Collapse
Affiliation(s)
- Romella Haider
- Department of Traditional Persian Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Majid Asghari
- Department of Traditional Persian Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Aliasl
- Department of Persian Medicine, School of Traditional Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Aghaali
- Department of Family and Community Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Razieh Borujerdi
- Department of Traditional Persian Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hossein Saghafi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Hossein Moradi
- Department of Traditional Persian Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, Hu Q. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J 2024; 45:268-283. [PMID: 38036416 DOI: 10.1093/eurheartj/ehad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND AND AIMS Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cβ/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS Macrophage P2Y6R regulates phospholipase Cβ/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.
Collapse
Affiliation(s)
- Yehong Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Chunxiao Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Yuxin Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Xinli Dong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Hui Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| |
Collapse
|
5
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
6
|
Musa M, Zeppieri M, Atuanya GN, Enaholo ES, Topah EK, Ojo OM, Salati C. Nutritional Factors: Benefits in Glaucoma and Ophthalmologic Pathologies. Life (Basel) 2023; 13:1120. [PMID: 37240765 PMCID: PMC10222847 DOI: 10.3390/life13051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Glaucoma is a chronic optic neuropathy that can lead to irreversible functional and morphological damage if left untreated. The gold standard therapeutic approaches in managing patients with glaucoma and limiting progression include local drops, laser, and/or surgery, which are all geared at reducing intraocular pressure (IOP). Nutrients, antioxidants, vitamins, organic compounds, and micronutrients have been gaining increasing interest in the past decade as integrative IOP-independent strategies to delay or halt glaucomatous retinal ganglion cell degeneration. In our minireview, we examine the various nutrients and compounds proposed in the current literature for the management of ophthalmology diseases, especially for glaucoma. With respect to each substance considered, this minireview reports the molecular and biological characteristics, neuroprotective activities, antioxidant properties, beneficial mechanisms, and clinical studies published in the past decade in the field of general medicine. This study highlights the potential benefits of these substances in glaucoma and other ophthalmologic pathologies. Nutritional supplementation can thus be useful as integrative IOP-independent strategies in the management of glaucoma and in other ophthalmologic pathologies. Large multicenter clinical trials based on functional and morphologic data collected over long follow-up periods in patients with IOP-independent treatments can pave the way for alternative and/or coadjutant therapeutic options in the management of glaucoma and other ocular pathologies.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | | | | | - Efioshiomoshi Kings Topah
- Department of Optometry, Faculty of Allied Health Sciences, College of Health Sciences Bayero University, Kano 700006, Kano State, Nigeria
| | - Oluwasola Michael Ojo
- School of Optometry and Vision Sciences, College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara State, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
8
|
Voziyan P, Uppuganti S, Leser M, Rose KL, Nyman JS. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA ADVANCES 2023; 3:100079. [PMID: 37082268 PMCID: PMC10074956 DOI: 10.1016/j.bbadva.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs), particularly in long-lived extracellular matrix proteins, has been implicated in pathogenesis of diabetic complications and in aging. Knowledge about specific locations of AGEs and their precursors within protein primary structure is critical for understanding their physiological and pathophysiological impact. However, the information on specific AGE sites is lacking. Here, we identified sequence positions of four major AGEs, carboxymethyllysine, carboxyethyllysine, 5-hydro-5-methyl imidazolone, and 5-hydro-imidazolone, and an AGE precursor fructosyllysine within the triple helical region of collagen I from cortical bone of human femurs. The presented map provides a basis for site-specific quantitation of AGEs and other non-enzymatic post-translational modifications and identification of those sites affected by aging, diabetes, and other diseases such as osteoporosis; it can also help in guiding future studies of AGE impact on structure and function of collagen I in bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Kristie L. Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
9
|
Hu X, Liu X, Guo Y, Li Y, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effects of Chicken Serum Metabolite Treatment on the Blood Glucose Control and Inflammatory Response in Streptozotocin-Induced Type 2 Diabetes Mellitus Rats. Int J Mol Sci 2022; 24:ijms24010523. [PMID: 36613966 PMCID: PMC9820086 DOI: 10.3390/ijms24010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Chickens can live healthy without adverse effects despite high blood glucose levels. However, the blood biomolecules responsible for maintaining chronic hyperglycemia are unknown. Here, the effects of chicken serum metabolite treatment on blood glucose control and inflammatory response in streptozotocin (STZ)-induced Type 2 Diabetes Mellitus (T2DM) rats were investigated. First, chicken serum treatment reduced the advanced glycation end-products (AGEs) and blood glucose levels in STZ-induced T2DM rats. Second, insulin/glucose-induced acute hypoglycemic/hyperglycemic chickens and the blood biomolecules were screened via nontargeted ultra-performance liquid chromatography with mass spectroscopy (UPLC-MS), identifying 366 key metabolites, including DL-arginine and taurine, as potential markers for chronic hyperglycemia in chickens. Finally, DL-arginine functions for blood glucose control and inflammatory response were evaluated. We found that DL-arginine reduced the levels of blood glucose and AGEs in STZ-induced T2DM rats. In addition, DL-arginine treatment upregulated the glucose transporter type 4 (GLUT4) expression in the muscles and downregulated the advanced glycation end products receptor-1 (AGER1) expression in the liver and nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) expression in the pancreas and thymus tissues. Overall, these results demonstrate that serum metabolite of DL-arginine could maintain blood glucose homeostasis and suppress the inflammatory response in chickens. Therefore, DL-arginine may be a novel target for developing therapeutic agents to regulate hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Xu
- Correspondence: ; Tel.: +86-0514-87997206
| |
Collapse
|
10
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
11
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
12
|
Qian T, Zhao L, Pan X, Sang S, Xu Y, Wang C, Zhong C, Fei G, Cheng X. Association Between Blood Biochemical Factors Contributing to Cognitive Decline and B Vitamins in Patients With Alzheimer's Disease. Front Nutr 2022; 9:823573. [PMID: 35265656 PMCID: PMC8898888 DOI: 10.3389/fnut.2022.823573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Malnutrition, metabolism stress, inflammation, peripheral organs dysfunction, and B vitamins deficiency significantly contribute to the progression and mortality of Alzheimer's disease (AD). However, it is unclear which blood biochemical indicators are most closely related to cognitive decline and B vitamins deficiency (thiamine, folate, vitamin B12) in patients with AD. Methods This was a cross-sectional study of 206 AD patients recruited from six hospitals in China. Thiamine diphosphate (TDP), the bioactive form of thiamine, was measured by high-performance liquid chromatography fluoroscopy (HPLC) at a single center. Levels of biochemical indicators (except TDP) were measured by regular and standard laboratory tests in each hospital. Pearson's rank correlation analysis was used to assess relationships between B vitamins and biochemical indicators. T-test was used to compare the difference between ApoE ε4 and non-ApoE ε4 groups. Differences were considered statistically significant as P < 0.05. Results Among the biochemical results, in AD population, malnutrition indicators (erythrocyte, hemoglobin, serum albumin, and total protein) were most significantly associated with cognitive function, as was free triiodothyronine (FT3) levels which had been observed in previous study. Malnutrition and FT3 levels depend on age but not apolipoprotein E (ApoE) genotype. Meanwhile, Among the B vitamins, TDP was the most significantly associated with malnutrition indicators and FT3. Conclusion Our results indicated that TDP reduction could be a modifiable risk factor for malnutrition and FT3 that contributed to cognitive decline in AD patients. Correcting thiamine metabolism could serve as an optional therapy target for AD treatment.
Collapse
Affiliation(s)
- Ting Qian
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yangqi Xu
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Subramani PA, Shaik FB, Michael RD, Panati K, Narala VR. Thiamine Is a Natural Peroxisome Proliferator–Activated Receptor Gamma (PPAR-γ) Activator. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220127121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
There has been increasing evidence for the correlation between thiamine deficiency and type 2 diabetes (T2D). T2D is a condition in which an individual’s insulin sensitivity is highly compromised. Peroxisome proliferator–activated receptor gamma (PPAR-γ) is a ligand-activated transcription factor etiologically relevant to T2D. We hypothesized that thiamine could be a PPAR-γ ligand and thus activate PPAR-γ and ameliorate T2D.
Objective:
This study aims to establish thiamine as a PPAR-γ ligand via molecular docking and dynamics simulations (MDS) and thiamine’s ability to induce adipogenesis, upregulating PPAR-γ and AP-2 genes using in vitro assays.
Methods:
Thiamine/PPAR-γ binding was studied using Schrödinger’s Glide. The bound complex was simulated in the OPLS 2005 force field using Desmond. 3T3-L1 preadipocyte cells were differentiated in the presence of thiamine and rosiglitazone and stained with Oil Red O. Nuclear protein from the differentiated cells was used to study the binding of the PPAR-γ response element (PPRE) using an ELISA-based assay. mRNA from differentiated cells was used to study the expression of genes using quantitative RT-PCR.
Results:
In silico docking shows that thiamine binds with PPAR-γ. MDS indicate that the interactions between thiamine and PPAR-γ are stable over a significant period. Thiamine induces the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner and enhances the PPRE-binding activity of PPAR-γ. Thiamine treatment significantly increases the mRNA levels of PPAR-γ and AP-2 genes.
Conclusion:
Our results show that thiamine is a PPAR-γ ligand. Animal studies and clinical trials are required to corroborate the results obtained.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- Department of Zoology, Yogi Vemana University, Kadapa, A.P., 516 005, India
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | | | - R. Dinakaran Michael
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa -516 004, India
| | | |
Collapse
|
14
|
Hiding in Plain Sight: Modern Thiamine Deficiency. Cells 2021; 10:cells10102595. [PMID: 34685573 PMCID: PMC8533683 DOI: 10.3390/cells10102595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Thiamine or vitamin B1 is an essential, water-soluble vitamin required for mitochondrial energetics—the production of adenosine triphosphate (ATP). It is a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points and at critical junctures for the glucose, fatty acid, and amino acid pathways. It has a very short half-life, limited storage capacity, and is susceptible to degradation and depletion by a number of products that epitomize modern life, including environmental and pharmaceutical chemicals. The RDA for thiamine is 1.1–1.2 mg for adult females and males, respectively. With an average diet, even a poor one, it is not difficult to meet that daily requirement, and yet, measurable thiamine deficiency has been observed across multiple patient populations with incidence rates ranging from 20% to over 90% depending upon the study. This suggests that the RDA requirement may be insufficient to meet the demands of modern living. Inasmuch as thiamine deficiency syndromes pose great risk of chronic morbidity, and if left untreated, mortality, a more comprehensive understanding thiamine chemistry, relative to energy production, modern living, and disease, may prove useful.
Collapse
|
15
|
Rakotoambinina B, Hiffler L, Gomes F. Pediatric thiamine deficiency disorders in high-income countries between 2000 and 2020: a clinical reappraisal. Ann N Y Acad Sci 2021; 1498:57-76. [PMID: 34309858 PMCID: PMC9290709 DOI: 10.1111/nyas.14669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Often thought to be a nutritional issue limited to low- and middle-income countries (LMICs), pediatric thiamine deficiency (PTD) is perceived as being eradicated or anecdotal in high-income countries (HICs). In HICs, classic beriberi cases in breastfed infants by thiamine-deficient mothers living in disadvantaged socioeconomic conditions are thought to be rare. This study aims to assess PTD in HICs in the 21st century. Literature searches were conducted to identify case reports of PTD observed in HICs and published between 2000 and 2020. The analyzed variables were age, country, underlying conditions, clinical manifestations of PTD, and response to thiamine supplementation. One hundred and ten articles were identified, totaling 389 PTD cases that were classified into four age groups: neonates, infants, children, and adolescents. Eleven categories of PTD-predisposing factors were identified, including genetic causes, lifestyle (diabetes, obesity, and excessive consumption of sweetened beverages), eating disorders, cancer, gastrointestinal disorders/surgeries, critical illness, and artificial nutrition. TD-associated hyperlactatemia and Wernicke encephalopathy were the most frequent clinical manifestations. The circumstances surrounding PTD in HICs differ from classic PTD observed in LMICs and this study delineates its mutiple predisposing factors. Further studies are required to estimate its magnitude. Awareness is of utmost importance in clinical practice.
Collapse
Affiliation(s)
- Benjamin Rakotoambinina
- Cellular Nutrition Research GroupLagny sur MarneFrance
- LRI Isotopic Medicine Physiology LabUniversity of AntananarivoAntananarivoMadagascar
| | | | - Filomena Gomes
- The New York Academy of SciencesNew YorkNew York
- NOVA Medical SchoolUniversidade NOVA de LisboaLisboaPortugal
| |
Collapse
|
16
|
Blood thiamine pyrophosphate concentration and its correlation with the stage of diabetic retinopathy. Int Ophthalmol 2020; 40:3279-3284. [PMID: 32715366 DOI: 10.1007/s10792-020-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess the possible relationship between blood thiamine pyrophosphate (TPP) concentration and stage of diabetic retinopathy (DR). METHODS This comparative cross-sectional study included 80 patients with type 2 diabetes mellitus (T2DM) and 20 age- and gender-matched healthy controls. Diabetic patients were subclassified into four groups each consisting of 20 subjects: no DR, mild-moderate non-proliferative DR (mild-moderate NPDR), severe NPDR, and proliferative DR (PDR). Blood TPP concentration was assessed with high-performance liquid chromatography (HPLC) assay and was correlated with the stage of DR. RESULTS Mean blood TPP concentration was 80.2 ± 14.8 nmol/L in control group. It was, respectively, 69.85 ± 18.1, 64.95 ± 13.4, 61.9 ± 13.4 and 60.75 ± 14.3 nmol/L in no DR, mild-moderate NPDR, severe NPDR and PDR groups. For mild-moderate NPDR, severe NPDR and PDR groups, TPP concentrations were significantly lower compared with controls (p: 0.014, 0.002, 0.001, respectively). Mean TPP concentration for NPDR patients was higher than for PDR patients, but the difference was not significant (p: 0.478). ANOVA revealed a significant difference between TPP concentrations of groups (p: 0.001). Mean TPP concentration decreased with the stage of DR, and number of patients with thiamine deficiency increased gradually with the stage of DR. A negative correlation was found between the TPP level and occurrence of DR (p: 0.000). CONCLUSION The results suggest that lower blood TPP concentrations were associated with higher risk of DR. Thiamine might play an important role in the pathophysiology and progression of DR. Thiamine and its derivatives might represent an approach to the prevention and/or treatment of early DR.
Collapse
|
17
|
Anwar A, Ahmed Azmi M, Siddiqui JA, Panhwar G, Shaikh F, Ariff M. Thiamine Level in Type I and Type II Diabetes Mellitus Patients: A Comparative Study Focusing on Hematological and Biochemical Evaluations. Cureus 2020; 12:e8027. [PMID: 32528766 PMCID: PMC7282352 DOI: 10.7759/cureus.8027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Diabetes has been found to be associated with low levels of thiamine stores in the body, as thiamine directly affects carbohydrate metabolism. Amplified renal clearance of thiamine has been found in both type I and type II diabetic patients. It has been shown that high-dose thiamine therapy may have a therapeutic effect on early-stage diabetic nephropathy. The aim of this study was to evaluate various biochemical parameters and serum thiamine levels in type I and type II diabetic patients and compare them with a healthy control group. Methods A case-control study was carried out in the diabetic out-patient multi-centers in Karachi. A total of 90 participants were selected by using a non-probability convenient sampling technique and divided into three groups, each with 30 subjects. Group A included healthy non-diabetic subjects, while group B included subjects with type I diabetes mellitus (DM), and group C included subjects with type II DM. After receiving informed consent, blood samples were collected from all the participants for hematological and biochemical evaluation. The duration of the study was eight months. Results The study results revealed that the patients with type II DM had significantly higher mean fasting blood sugar (FBS), random blood sugar (RBS), and hemoglobin A1c (HbA1c) levels than those with type I DM or the control group (p<0.001 for all). Furthermore, the patients with type I or II DM had significantly higher mean levels of triglyceride (p<0.001) and total cholesterol (0.013) while significantly lower mean levels of high-density lipoprotein (HDL) (p=0.014) than controls. The study results further revealed that the patients with type I or II DM had significantly lower serum thiamine levels than controls (14.89±4.82 and 7.35±1.90 vs. 69.56±12.75, p<0.001). Conclusion The study results revealed that FBS, RBS, HbA1c, triglyceride, and total cholesterol levels were significantly higher in both type I and type II diabetes patients compared to controls. Furthermore, HDL and serum thiamine levels were found to be significantly lower in both type I and type II diabetic patients than in controls.
Collapse
Affiliation(s)
- Adnan Anwar
- Stereotactic Radiosurgery/Radiation Oncology, Al-Tibri Medical College, Karachi, PAK
- Physiology, Al-Tibri Medical College, Karachi, PAK
| | - Muhammad Ahmed Azmi
- Physiology, Al-Tibri Medical College and Hospital, Karachi, PAK
- Physiology, Isra University, Karachi, PAK
| | - Jamil Ahmed Siddiqui
- Biochemistry, Fazaia Ruth Pfau Medical College, Karachi, PAK
- Biochemistry, Al-Tibri Medical College, Karachi, PAK
| | - Ghazala Panhwar
- Biochemistry, Al-Tibri Medical College and Hospital, Karachi, PAK
| | | | - Madiha Ariff
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
18
|
Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front Endocrinol (Lausanne) 2020; 11:365. [PMID: 32582032 PMCID: PMC7296058 DOI: 10.3389/fendo.2020.00365] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) branches from glucose 6-phosphate (G6P), produces NADPH and ribose 5-phosphate (R5P), and shunts carbons back to the glycolytic or gluconeogenic pathway. The PPP has been demonstrated to be a major regulator for cellular reduction-oxidation (redox) homeostasis and biosynthesis. Enzymes in the PPP are reported to play important roles in many human diseases. In this review, we will discuss the role of the PPP in type 2 diabetes and cancer.
Collapse
|
19
|
Abstract
Significance: Obesity and type 2 diabetes mellitus are increasing globally. There is also increasing associated complications, such as non-alcoholic fatty liver disease (NAFLD) and vascular complications of diabetes. There is currently no licensed treatment for NAFLD and no recent treatments for diabetic complications. New approaches are required, particularly those addressing mechanism-based risk factors for health decline and disease progression. Recent Advances: Dicarbonyl stress is the abnormal accumulation of reactive dicarbonyl metabolites such as methylglyoxal (MG) leading to cell and tissue dysfunction. It is a potential driver of obesity, diabetes, and related complications that are unaddressed by current treatments. Increased formation of MG is linked to increased glyceroneogenesis and hyperglycemia in obesity and diabetes and also down-regulation of glyoxalase 1 (Glo1)-which provides the main enzymatic detoxification of MG. Glo1 functional genomics studies suggest that increasing Glo1 expression and activity alleviates dicarbonyl stress; slows development of obesity, related insulin resistance; and prevents development of diabetic nephropathy and other microvascular complications of diabetes. A new therapeutic approach constitutes small-molecule inducers of Glo1 expression-Glo1 inducers-exploiting a regulatory antioxidant response element in the GLO1 gene. A prototype Glo1 inducer, trans-resveratrol (tRES)-hesperetin (HESP) combination, in corrected insulin resistance, improved glycemic control and vascular inflammation in healthy overweight and obese subjects in clinical trial. Critical Issues: tRES and HESP synergize pharmacologically, and HESP likely overcomes the low bioavailability of tRES by inhibition of intestinal glucuronosyltransferases. Future Directions: Glo1 inducers may now be evaluated in Phase 2 clinical trials for treatment of NAFLD and vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- 1 Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital , Coventry, United Kingdom .,2 Warwick Systems Biology Centre, Senate House, University of Warwick , Coventry, United Kingdom
| | - Paul J Thornalley
- 1 Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital , Coventry, United Kingdom .,2 Warwick Systems Biology Centre, Senate House, University of Warwick , Coventry, United Kingdom
| |
Collapse
|
20
|
Elbarbary NS, Ismail EAR, Zaki MA, Darwish YW, Ibrahim MZ, El-Hamamsy M. Vitamin B complex supplementation as a homocysteine-lowering therapy for early stage diabetic nephropathy in pediatric patients with type 1 diabetes: A randomized controlled trial. Clin Nutr 2019; 39:49-56. [PMID: 30704890 DOI: 10.1016/j.clnu.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Homocysteine levels are elevated in patients with type 1 diabetes mellitus (T1DM) and could induce renal injury. B vitamins have an important role in preventing microvascular complications of diabetes. AIM We performed a randomized-controlled trial of oral supplementation with vitamin B complex as an adjuvant therapy for nephropathy in pediatric T1DM patients and assessed its relation to homocysteine and cystatin C as a marker of nephropathy. METHODS This trial included 80 T1DM patients with microalbuminuria, despite oral angiotensin-converting enzyme inhibitors, aged 12-18 years with at least 5 years disease duration and HbA1c ≤8.5%. Patients were randomly assigned into two groups; intervention group which received oral vitamin B complex (B1, B6 and B12) once daily and placebo group. Both groups were followed-up for 12 weeks with assessment of plasma homocysteine, HbA1c, urinary albumin excretion (UAE) and cystatin C. RESULTS Both groups were well-matched in baseline clinical and laboratory parameters. Baseline homocysteine levels were elevated in both groups compared with reference control values. After 12 weeks, supplementation with vitamin B complex for the intervention group resulted in a significant decrease of homocysteine, fasting blood glucose, HbA1c, triglycerides, total cholesterol, UAE and cystatin C compared with baseline levels (p < 0.001) and with placebo group (p < 0.001). No adverse reactions were reported. Baseline cystatin C was negatively correlated to vitamin B12 (r = -0.77, p = 0.001). CONCLUSIONS Vitamin B complex improved glycemic control and renal function through decreasing homocysteine and could be a safe and effective strategy for treatment of early stage nephropathy in pediatric T1DM. This trial was registered at ClinicalTrials.gov (NCT03594240).
Collapse
Affiliation(s)
| | | | - Mamdouh Ahmed Zaki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Yasser Wagih Darwish
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Zaki Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Manal El-Hamamsy
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Yan MKW, Khalil H. Vitamin supplements in type 2 diabetes mellitus management: A review. Diabetes Metab Syndr 2017; 11 Suppl 2:S589-S595. [PMID: 28420574 DOI: 10.1016/j.dsx.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health challenge that affects countries across the world. The use of pharmacological therapy is often limited in some patients due to a loss of effect over time or development of adverse effects such as weight gain or hypoglycaemia. This has prompted searches into the role of non-pharmacological therapies in T2DM. The availability and use of vitamin supplements in developed countries have increased significantly and there is evidence that certain vitamins may have roles in the management of T2DM. This review examines the literature assessing the use of vitamins A, C, E, D, K and the B group vitamins (B1, B3, B7, B6, B9, B12) in the management of T2DM. No clear evidence supporting the beneficial role of any specific vitamin in the treatment of T2DM was found. Thus, it is recommended that until further studies are conducted to clarify the role of such vitamins in T2DM management, they should not be routinely recommended in clinical practice.
Collapse
Affiliation(s)
| | - Hanan Khalil
- School of Rural Health, Monash University, Victoria, Australia.
| |
Collapse
|
22
|
Ziegler D, Schleicher E, Strom A, Knebel B, Fleming T, Nawroth P, Häring HU, Papanas N, Szendrödi J, Müssig K, Al-Hasani H, Roden M. Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 27103086 DOI: 10.1002/dmrr.2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Shunting of glycolytic intermediates into the pentose phosphate pathway has been suggested to protect from hyperglycaemia-induced microvascular damage. We hypothesized that genetic variability in the gene encoding transketolase, a key pentose phosphate pathway enzyme, contributes to early nerve dysfunction in recent-onset diabetes. METHODS In this cross-sectional study, we assessed nine single nucleotide polymorphisms (SNPs) in the transketolase gene, plasma methylglyoxal concentrations, and clinical and quantitative measures of peripheral nerve function in 165 type 1 and 373 type 2 diabetic patients with a diabetes duration up to 1 year. RESULTS The Total Symptom Score was associated with transketolase SNPs rs7648309, rs62255988, and rs7633966, while peroneal motor nerve conduction velocity (MNCV) correlated only with rs7648309 (P < 0.01). Cold thermal detection threshold (TDT) (foot) was associated with transketolase SNPs rs11130362 and rs7648309, while warm TDT (hand) correlated with rs62255988 and rs7648309 (P < 0.01). After Bonferroni correction, the correlations of transketolase SNP rs7648309 with Total Symptom Score and rs62255988 with warm TDT (hand) remained statistically significant. Among subgroups, men with type 2 diabetes showed the strongest associations. No associations were observed between each of the nine tagged transketolase SNPs and plasma methylglyoxal concentrations. CONCLUSIONS The observed associations of genetic variation in transketolase enzyme with neuropathic symptoms and reduced thermal sensation in recent-onset diabetes suggest a role of pathways metabolizing glycolytic intermediates in early diabetic neuropathy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erwin Schleicher
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Thomas Fleming
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology and Clinical Chemistry, University Hospital Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Julia Szendrödi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
23
|
Raudenska M, Dvorakova V, Pacal L, Chalasova K, Kratochvilova M, Gumulec J, Ruttkay-Nedecky B, Zitka O, Kankova K, Adam V, Masarik M. Levels of heavy metals and their binding protein metallothionein in type 2 diabetics with kidney disease. J Biochem Mol Toxicol 2017; 31. [PMID: 28059470 DOI: 10.1002/jbt.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/11/2022]
Abstract
Hyperglycemia, a major metabolic disturbance present in diabetes, promotes oxidative stress. Activation of antioxidant defense is an important mechanism to prevent cell damage. Levels of heavy metals and their binding proteins can contribute to oxidative stress. Antiradical capacity and levels of metallothionein (MT), metals (zinc and copper), and selected antioxidants (bilirubin, cysteine, and glutathione) were determined in 70 type 2 diabetes mellitus (T2DM) subjects and 80 healthy subjects of Caucasian origin. Single nucleotide polymorphism (rs28366003) in MT gene was detected. Antiradical capacity, conjugated bilirubin, and copper were significantly increased in diabetics, whereas MT and glutathione were decreased. Genotype AA of rs28366003 was associated with higher zinc levels in the diabetic group. The studied parameters were not influenced by renal function. This is the first study comprehensively investigating differences in MT and metals relevant to oxidative stress in T2DM. Ascertained differences indicate increased oxidative stress in T2DM accompanied by abnormalities in non-enzymatic antioxidant defense systems.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Dvorakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Pacal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katarina Chalasova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Katerina Kankova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
24
|
Bartáková V, Pleskačová A, Kuricová K, Pácal L, Dvořáková V, Bělobrádková J, Tomandlová M, Tomandl J, Kaňková K. Dysfunctional protection against advanced glycation due to thiamine metabolism abnormalities in gestational diabetes. Glycoconj J 2016; 33:591-8. [PMID: 27287225 DOI: 10.1007/s10719-016-9688-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
While the pathogenic role of dicarbonyl stress and accelerated formation of advanced glycation end products (AGEs) to glucose intolerance and to the development of diabetic complications is well established, little is known about these processes in gestational diabetes mellitus (GDM), a condition pathogenically quite similar to type 2 diabetes. The aims of the present study were (i) to determine plasma thiamine and erythrocyte thiamine diphosphate (TDP) and transketolase (TKT) activity in pregnant women with and without GDM, (ii) to assess relationships between thiamine metabolism parameters and selected clinical, biochemical and anthropometric characteristics and, finally, (iii) to analyse relationship between variability in the genes involved in the regulation of transmembrane thiamine transport (i.e. SLC19A2 and SLC19A3) and relevant parameters of thiamine metabolism. We found significantly lower plasma BMI adjusted thiamine in women with GDM (P = 0.002, Mann-Whitney) while levels of erythrocyte TDP (an active TKT cofactor) in mid-trimester were significantly higher in GDM compared to controls (P = 0.04, Mann-Whitney). However, mid-gestational TKT activity - reflecting pentose phosphate pathway activity - did not differ between the two groups (P > 0.05, Mann-Whitney). Furthermore, we ascertained significant associations of postpartum TKT activity with SNPs SLC19A2 rs6656822 and SLC19A3 rs7567984 (P = 0.03 and P = 0.007, resp., Kruskal-Wallis). Our findings of increased thiamine delivery to the cells without concomitant increase of TKT activity in women with GDM therefore indicate possible pathogenic role of thiamine mishandling in GDM. Further studies are needed to determine its contribution to maternal and/or neonatal morbidity.
Collapse
Affiliation(s)
- Vendula Bartáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Anna Pleskačová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic.,Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katarína Kuricová
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Veronika Dvořáková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic
| | - Jana Bělobrádková
- Diabetes Centre, Department of Internal Medicine - Gastroenterology, University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Marie Tomandlová
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Josef Tomandl
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, UKB Kamenice 5/A18, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Porta M, Toppila I, Sandholm N, Hosseini SM, Forsblom C, Hietala K, Borio L, Harjutsalo V, Klein BE, Klein R, Paterson AD, Groop PH. Variation in SLC19A3 and Protection From Microvascular Damage in Type 1 Diabetes. Diabetes 2016; 65:1022-30. [PMID: 26718501 PMCID: PMC4806664 DOI: 10.2337/db15-1247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
The risk of long-term diabetes complications is not fully explained by diabetes duration or long-term glycemic exposure, suggesting the involvement of genetic factors. Because thiamine regulates intracellular glucose metabolism and corrects for multiple damaging effects of high glucose, we hypothesized that variants in specific thiamine transporters are associated with risk of severe retinopathy and/or severe nephropathy because they modify an individual's ability to achieve sufficiently high intracellular thiamine levels. We tested 134 single nucleotide polymorphisms (SNPs) in two thiamine transporters (SLC19A2/3) and their transcription factors (SP1/2) for an association with severe retinopathy or nephropathy or their combination in the FinnDiane cohort. Subsequently, the results were examined for replication in the DCCT/EDIC and Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) cohorts. We found two SNPs in strong linkage disequilibrium in the SLC19A3 locus associated with a reduced rate of severe retinopathy and the combined phenotype of severe retinopathy and end-stage renal disease. The association for the combined phenotype reached genome-wide significance in a meta-analysis that included the WESDR cohort. These findings suggest that genetic variations in SLC19A3 play an important role in the pathogenesis of severe diabetic retinopathy and nephropathy and may explain why some individuals with type 1 diabetes are less prone than others to develop microvascular complications.
Collapse
Affiliation(s)
- Massimo Porta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - S Mohsen Hosseini
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kustaa Hietala
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Lorenzo Borio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland National Institute for Health and Welfare, Helsinki, Finland
| | - Barbara E Klein
- Department Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI
| | - Ronald Klein
- Department Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI
| | - Andrew D Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
26
|
Zhu Z, Varadi G, Carter SG. Pharmacokinetics of the transdermal delivery of benfotiamine. Acta Diabetol 2016; 53:317-22. [PMID: 26141141 DOI: 10.1007/s00592-015-0776-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
AIMS Accumulation of advanced glycation endpoints is a trigger to the development of diabetic peripheral neuropathy, which is a common complication of diabetes. Oral administration of benfotiamine (BFT) has shown some preclinical and clinical promise as a treatment for diabetic peripheral neuropathy. The purpose of this study was to evaluate the method of transdermal delivery of BFT as a possible, viable route of administration for the treatment of diabetic peripheral neuropathy. METHODS A single application of 10 mg of BFT was given to guinea pigs topically. The levels of thiamine (T), thiamine monophosphate, thiamine diphosphate, S-benzoylthiamine and BFT were measured in the blood, skin and muscle at different time points within 24 h. RESULTS At the 24-h time point, following the single BFT dose, the T level was increased 10× in the blood, more than 7× in the skin and almost 4× in the muscle compared to the untreated animals. The total T content (total) was increased 7× in the blood, 17× in the skin and 3× in the muscle compared to the untreated animals. CONCLUSIONS This strong increase in the tissue levels of T and the associated metabolic derivatives levels found in the blood and local tissues following a single dose indicate that topically applied BFT may be a viable and advantageous delivery method for the treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Zhen Zhu
- BioChemics Inc., 99 Rosewood Drive, Suite 270, Danvers, MA, 01923-4537, USA.
| | - Gyula Varadi
- BioChemics Inc., 99 Rosewood Drive, Suite 270, Danvers, MA, 01923-4537, USA
| | | |
Collapse
|
27
|
Kuricova K, Pleskacova A, Pacal L, Kankova K. 1,25-Dihydroxyvitamin D increases the gene expression of enzymes protecting from glucolipotoxicity in peripheral blood mononuclear cells and human primary endothelial cells. Food Funct 2016; 7:2537-43. [PMID: 26952188 DOI: 10.1039/c5fo01560j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Besides its classical function as an orchestrator of calcium and phosphorus homeostasis, vitamin D also affects insulin secretion and tissue efficiency. A number of studies have consistently reported the inverse relationship between vitamin D deficiency and type 2 diabetes. Activation of certain metabolic pathways and down-stream transcription factors may protect from glucolipotoxicity and their targeted activation -e.g. by vitamin D - might explain the detrimental role of vitamin D deficiency in diabetes. The aim of the study was to quantify gene and protein expression of selected enzymes involved in the protection from glucolipotoxicity, specifically glyoxalase 1 (GLO1), and other enzymes with antioxidant activity - hemoxygenase (HMOX), thiamin pyrophosphokinase (TPK1) and transketolase (TKT), under normo- and hyperglycemic conditions and upon addition of vitamin D in peripheral blood mononuclear cells (PBMCs) and human umbilical vein endothelial cells (HUVEC). The results of our study indicate that the active form of vitamin D regulates gene expression of enzymes opposing the harmful effect of glucolipotoxicity whose activities appear to be suppressed by hyperglycemia. However, we were unable to confirm this effect on protein expression. While we cannot speculate on the effect of vitamin D on diabetes itself our results support its role in the protection against existing glucolipotoxicity therefore possibly translating into the prevention of development of diabetic complications.
Collapse
Affiliation(s)
- Katarina Kuricova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
28
|
Mapanga RF, Essop MF. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways. Am J Physiol Heart Circ Physiol 2016; 310:H153-73. [DOI: 10.1152/ajpheart.00206.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.
Collapse
Affiliation(s)
- Rudo F. Mapanga
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M. Faadiel Essop
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
29
|
Müller-Krebs S, Nissle K, Tsobaneli J, Zeier M, Kihm LP, Kender Z, Fleming T, Nawroth PP, Reiser J, Schwenger V. Effect of benfotiamine in podocyte damage induced by peritoneal dialysis fluid. Front Med (Lausanne) 2015; 2:10. [PMID: 25806370 PMCID: PMC4354337 DOI: 10.3389/fmed.2015.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/21/2015] [Indexed: 11/18/2022] Open
Abstract
Background: In peritoneal dialysis (PD), residual renal function (RRF) fundamentally contributes to improved quality of life and patient survival. High glucose and advanced glycation end-products (AGE) contribute locally to peritoneal and systemically to renal damage. Integrity of podocyte structure and function is of special importance to preserve RRF. Benfotiamine could counteract the glucose and AGE-mediated toxicity by blocking hyperglycemia-associated podocyte damage via the pentose-phosphate pathway. Methods: A human differentiated podocyte cell line was incubated with control solution (control), 2.5% glucose solution (glucose), and 2.5% peritoneal dialysis fluid (PDF) for 48 h either ±50 μM benfotiamine. Podocyte damage and potential benefit of benfotiamine were analyzed using immunofluorescence, western blot analysis, and a functional migration assay. For quantitation, a semiquantitative score was used. Results: When incubating podocytes with benfotiamine, glucose, and PDF-mediated damage was reduced, resulting in lower expression of AGE and intact podocin and ZO-1 localization. The reorganization of the actin cytoskeleton was restored in the presence of benfotiamine as functional podocyte motility reached control level. Decreased level of inflammation could be shown as well as reduced podocyte apoptosis. Conclusion: These data suggest that benfotiamine protects podocytes from glucose and PDF-mediated dysfunction and damage, in particular, with regard to cytoskeletal reorganization, motility, inflammation, and podocyte survival.
Collapse
Affiliation(s)
| | - Katharina Nissle
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Julia Tsobaneli
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| | - Lars Philipp Kihm
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany ; Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Zoltan Kender
- 2nd Department of Medicine, Semmelweis University , Budapest , Hungary
| | - Thomas Fleming
- Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Peter Paul Nawroth
- Department of Endocrinology, University of Heidelberg , Heidelberg , Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center , Chicago, IL , USA
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
30
|
Gentile G, Mastroluca D, Ruggenenti P, Remuzzi G. Novel effective drugs for diabetic kidney disease? or not? Expert Opin Emerg Drugs 2014; 19:571-601. [PMID: 25376947 DOI: 10.1517/14728214.2014.979151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Diabetes mellitus is increasingly common worldwide and is expected to affect 592 million people by 2035. The kidney is often involved. A key goal in treating diabetes is to reduce the risk of development of kidney disease and, if kidney disease is already present, to delay the progression to end-stage renal disease (ESRD). This represents a social and ethical issue, as a significant proportion of patients reaching ESRD in developing countries do not have access to renal replacement therapy. AREAS COVERED The present review focuses on novel therapeutic approaches for diabetic nephropathy (DN), implemented on the basis of recent insights on its pathophysiology, which might complement the effects of single inhibition of the renin-angiotensin-aldosterone system (RAAS), the cornerstone of renoprotective interventions in diabetes, along with glycemic and blood pressure control. EXPERT OPINION Although a plethora of new treatment options has arisen from experimental studies, the number of novel renoprotective molecules successfully implemented in clinical practice over the last two decades is disappointingly low. Thus, new investigational strategies and diagnostic tools - including the appropriate choice of relevant renal end points and the study of urinary proteome of patients - will be as important as new therapeutic interventions to fight DN. Finally, in spite of huge financial interests in replacing the less expensive ACE inhibitors and angiotensin II receptor blockers with newer drugs, any future therapeutic approach has to be tested on top of - rather than instead of - optimal RAAS blockade.
Collapse
Affiliation(s)
- Giorgio Gentile
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Clinical Research Center for Rare Diseases "Aldo e Cele Daccò" , Villa Camozzi, Via Giambattista Camozzi 3, 24020, Ranica, Bergamo , Italy +39 03545351 ; +39 0354535371 ;
| | | | | | | |
Collapse
|
31
|
Szwergold BS, Miller CB. Potential of Birds to Serve as Pathology-Free Models of Type 2 Diabetes, Part 2: Do High Levels of Carbonyl-Scavenging Amino Acids (e.g., Taurine) and Low Concentrations of Methylglyoxal Limit the Production of Advanced Glycation End-Products? Rejuvenation Res 2014; 17:347-58. [PMID: 24684667 DOI: 10.1089/rej.2014.1561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Cho Y, Shin MJ, Chung HK. Effects of diet modification on meal quality and quality of life in korean diabetic patients: data from Korea national health and nutrition examination survey (2007-2011). Clin Nutr Res 2014; 3:106-14. [PMID: 25136538 PMCID: PMC4135238 DOI: 10.7762/cnr.2014.3.2.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 06/26/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022] Open
Abstract
It is generally accepted that diet modification provides beneficial effects on the management of diabetes. In the present study, we evaluated the effects of diet modification on nutrient intake and quality of life in a large sample of diabetic patients. This study was conducted using data from the Korea National Health and Nutrition Examination Survey IV and V (2007-2010). A total of 2,484 of diabetic patients were included in the analysis. Then, we compared the overall quality of dietary intake between diabetic patients with diet modification and those without dietary modification. The result showed that subjects on diabetic diet (DDG) showed lower levels of total cholesterol, triglyceride, and AST before and after the adjustment for covariates (all p < 0.05). The results of nutrient assessment showed that DDG had lower intakes of total energy, fat, and carbohydrate (all p < 0.05), but higher intakes of energy from protein, vitamin B1, vitamin B2, niacin and vitamin C than NDG. (all p < 0.05). In addition, nutritional adequacy ratio of calcium and vitamin B2 were significantly higher in DDG than those in normal diet group (NDG) (p < 0.05). However, we observed no significant differences in quality of life between two groups. In conclusion, diet modification in diabetic patients seemed to be effective to improve blood lipid profile and the adequacy of nutrient intake without sacrificing the quality of life.
Collapse
Affiliation(s)
- Yoonsu Cho
- Department of Food and Nutrition, Korea University, Seoul 136-703, South Korea
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, South Korea
| | - Min-Jeong Shin
- Department of Food and Nutrition, Korea University, Seoul 136-703, South Korea
- Department of Public Health Sciences, Graduate School, Korea University, Seoul 136-703, South Korea
- Korea University Guro Hospital, Korea University, Seoul 152-703, South Korea
| | - Hye-Kyung Chung
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul 120-749, South Korea
| |
Collapse
|
33
|
Pácal L, Kuricová K, Kaňková K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J Diabetes 2014; 5:288-295. [PMID: 24936250 PMCID: PMC4058733 DOI: 10.4239/wjd.v5.i3.288] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023] Open
Abstract
Growing prevalence of diabetes (type 2 as well as type 1) and its related morbidity due to vascular complications creates a large burden on medical care worldwide. Understanding the molecular pathogenesis of chronic micro-, macro- and avascular complications mediated by hyperglycemia is of crucial importance since novel therapeutic targets can be identified and tested. Thiamine (vitamin B1) is an essential cofactor of several enzymes involved in carbohydrate metabolism and published data suggest that thiamine metabolism in diabetes is deficient. This review aims to point out the physiological role of thiamine in metabolism of glucose and amino acids, to present overview of thiamine metabolism and to describe the consequences of thiamine deficiency (either clinically manifest or latent). Furthermore, we want to explain why thiamine demands are increased in diabetes and to summarise data indicating thiamine mishandling in diabetics (by review of the studies mapping the prevalence and the degree of thiamine deficiency in diabetics). Finally, we would like to summarise the evidence for the beneficial effect of thiamine supplementation in progression of hyperglycemia-related pathology and, therefore, to justify its importance in determining the harmful impact of hyperglycemia in diabetes. Based on the data presented it could be concluded that although experimental studies mostly resulted in beneficial effects, clinical studies of appropriate size and duration focusing on the effect of thiamine supplementation/therapy on hard endpoints are missing at present. Moreover, it is not currently clear which mechanisms contribute to the deficient action of thiamine in diabetes most. Experimental studies on the molecular mechanisms of thiamine deficiency in diabetes are critically needed before clear answer to diabetes community could be given.
Collapse
|
34
|
Al-Attas O, Al-Daghri N, Alokail M, Abd-Alrahman S, Vinodson B, Sabico S. Metabolic Benefits of Six-month Thiamine Supplementation in Patients With and Without Diabetes Mellitus Type 2. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2014; 7:1-6. [PMID: 24550684 PMCID: PMC3921172 DOI: 10.4137/cmed.s13573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 02/01/2023]
Abstract
Thiamine deficiency has been documented to be prevalent in patients with diabetes mellitus, and correction of thiamine deficiency in this population may provide beneficial effects in several cardiometabolic parameters, including prevention of impending complications secondary to chronic hyperglycemia. In this interventional study, we aim to determine whether thiamine supplementation is associated with cardiometabolic improvements in patients with diabetes mellitus type 2 (DMT2). A total of 86 subjects (60 DMT2 and 26 age- and BMI-matched controls) were included and were given thiamine supplements (100 mg/day) for six months. Anthropometrics and metabolic profiles were measured routinely. Serum thiamine and its derivatives were measured using high performance liquid chromatography. In all groups, there was a significant decrease in total cholesterol after three months (p = 0.03) as well as in HDL cholesterol after six months of thiamine supplementation (p = 0.009). Significant improvements were also observed in the mean serum levels of creatinine (p = 0.001), as well as thiamine and its derivatives in both serum and urinary levels across follow-up visits (p-values 0.002 and <0.001, respectively). In the DMT2 group, improvements were observed in lipid profile (mean serum LDL and total cholesterol with p-values 0.008 and 0.006, respectively), serum thiamine (p < 0.001), TMP (p < 0.001), TDP (p < 0.001), urinary thiamine (p < 0.001) and serum creatinine (p < 0.001). Thiamine supplementation is a promising adjuvant therapy for patients with DMT2. Longer clinical trials are needed to determine its protective effect in DMT2 complications.
Collapse
Affiliation(s)
- Omar Al-Attas
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia. ; Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia. ; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasser Al-Daghri
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia. ; Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia. ; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Majed Alokail
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia. ; Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia. ; Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherif Abd-Alrahman
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Benjamin Vinodson
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Zastre JA, Sweet RL, Hanberry BS, Ye S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab 2013; 1:16. [PMID: 24280319 PMCID: PMC4178204 DOI: 10.1186/2049-3002-1-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/09/2013] [Indexed: 02/08/2023] Open
Abstract
The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co-enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health. How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability, homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
Collapse
Affiliation(s)
- Jason A Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, R,C, Wilson Pharmacy Building, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
36
|
Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage. Mol Cell Biochem 2013; 376:103-10. [PMID: 23292031 DOI: 10.1007/s11010-012-1555-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023]
Abstract
Early hyperglycemic insult can lead to permanent, cumulative damage that might be one of the earliest causes for a pre-diabetic situation. Despite this, the early phases of hyperglycemic exposure have been poorly studied. We have previously demonstrated that mitochondrial injury takes place early on upon hyperglycemic exposure. In this work, we demonstrate that just 1 h of hyperglycemic exposure is sufficient to induce increased mitochondrial membrane potential and generation. This is accompanied (and probably caused) by a decrease in the cells' NAD(+)/NADH ratio. Furthermore, we show that the modulation of the activity of parallel pathways to glycolysis can alter the effects of hyperglycemic exposure. Activation of the pentose phosphate pathway leads to diminished effects of glucose on the above parameters, either by removing glucose from glycolysis or by NADPH generation. We also demonstrate that the hexosamine pathway inhibition also leads to a decreased effect of excess glucose. So, this work demonstrates the need for increased focus of study on the reductive status of the cell as one of the most important hallmarks of initial hyperglycemic damage.
Collapse
|
37
|
Larkin JR, Zhang F, Godfrey L, Molostvov G, Zehnder D, Rabbani N, Thornalley PJ. Glucose-induced down regulation of thiamine transporters in the kidney proximal tubular epithelium produces thiamine insufficiency in diabetes. PLoS One 2012; 7:e53175. [PMID: 23285265 PMCID: PMC3532206 DOI: 10.1371/journal.pone.0053175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023] Open
Abstract
Increased renal clearance of thiamine (vitamin B(1)) occurs in experimental and clinical diabetes producing thiamine insufficiency mediated by impaired tubular re-uptake and linked to the development of diabetic nephropathy. We studied the mechanism of impaired renal re-uptake of thiamine in diabetes. Expression of thiamine transporter proteins THTR-1 and THTR-2 in normal human kidney sections examined by immunohistochemistry showed intense polarised staining of the apical, luminal membranes in proximal tubules for THTR-1 and THTR-2 of the cortex and uniform, diffuse staining throughout cells of the collecting duct for THTR-1 and THTR-2 of the medulla. Human primary proximal tubule epithelial cells were incubated with low and high glucose concentration, 5 and 26 mmol/l, respectively. In high glucose concentration there was decreased expression of THTR-1 and THTR-2 (transporter mRNA: -76% and -53% respectively, p<0.001; transporter protein -77% and -83% respectively, p<0.05), concomitant with decreased expression of transcription factor specificity protein-1. High glucose concentration also produced a 37% decrease in apical to basolateral transport of thiamine transport across cell monolayers. Intensification of glycemic control corrected increased fractional excretion of thiamine in experimental diabetes. We conclude that glucose-induced decreased expression of thiamine transporters in the tubular epithelium may mediate renal mishandling of thiamine in diabetes. This is a novel mechanism of thiamine insufficiency linked to diabetic nephropathy.
Collapse
Affiliation(s)
- James R. Larkin
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Fang Zhang
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Lisa Godfrey
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Guerman Molostvov
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Daniel Zehnder
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Paul J. Thornalley
- Warwick Medical School, Clinical Sciences Research Laboratories, University of Warwick, University Hospital, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Król E, Krejpcio Z, Michalak S, Wójciak RW, Bogdański P. Effects of combined dietary chromium(III) propionate complex and thiamine supplementation on insulin sensitivity, blood biochemical indices, and mineral levels in high-fructose-fed rats. Biol Trace Elem Res 2012; 150:350-9. [PMID: 23065486 PMCID: PMC3510416 DOI: 10.1007/s12011-012-9515-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/26/2012] [Indexed: 12/22/2022]
Abstract
Insulin resistance is the first step in glucose intolerance and the development of type 2 diabetes mellitus, thus effective prevention strategies should also include dietary interventions to enhance insulin sensitivity. Nutrients, such as microelement chromium(III) and thiamine, play regulatory roles in carbohydrate metabolism. The objective of this study was to evaluate the insulin-sensitizing potential of the combined supplementary chromium(III) propionate complex (CrProp) and thiamine in insulin resistance animal model (rats fed a high-fructose diet). The experiment was carried out on 40 nine-week-old male Wistar rats divided into five groups (eight animals each). Animals were fed ad libitum: the control diet (AIN-93 M) and high-fructose diets with and without a combination of two levels of CrProp (0.1 and 1 mg Cr/kg body mass/day) and two levels of thiamine (0.5 and 10 mg/kg body mass/day) for 8 weeks. At the end of the experiment rats were sacrificed to collect blood and internal organs for analyses of blood biochemical and hematologic indices as well as tissular microelement levels that were measured using appropriate methods. It was found that both supplementary CrProp and thiamine (given alone) have significant insulin-sensitizing and moderate blood-lipid-lowering properties, while the combined supplementation with these agents does not give synergistic effects in insulin-resistant rats. CrProp given separately increased kidney Cu and Cr levels, while thiamine alone increased hepatic Cu contents and decreased renal Zn and Cu contents.
Collapse
Affiliation(s)
- Ewelina Król
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, 31 Wojska Polskiego, 60-624, Poznan, Poland.
| | | | | | | | | |
Collapse
|
39
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:142-7. [PMID: 22374141 DOI: 10.1097/med.0b013e3283520fe6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Adaikalakoteswari A, Rabbani N, Waspadji S, Tjokroprawiro A, Kariadi SHKS, Adam JMF, Thornalley PJ. Disturbance of B-vitamin status in people with type 2 diabetes in Indonesia--link to renal status, glycemic control and vascular inflammation. Diabetes Res Clin Pract 2012; 95:415-24. [PMID: 22133652 DOI: 10.1016/j.diabres.2011.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetes is associated with mishandling of thiamine in the kidney and development of diabetic nephropathy. The aim of this study is to assess the disturbance of thiamine and other B-vitamin status of patients with type 2 diabetes in Indonesia. METHODS One hundred and fifteen patients with type 2 diabetes with and without microalbuminuria or albuminuria and 39 healthy people were recruited. After a 2-month washout period for B-vitamin supplementation, markers of vitamins B(1), B(6), B(9) and B(12), were determined. RESULTS Fractional excretion of thiamine (22.8 versus 33.5%; P<0.05) and urinary excretion of the vitamin B(6) degradation product 4-pyridoxic acid (0.081 versus 0.133 μmol/g creatinine, P<0.001) was increased in patients with type 2 diabetes with respect to healthy controls. There was also increased total plasma cobalamin (398 versus 547 pmol/l, P<0.001) and holotranscobalamin (74 versus 97 pmol/l, P<0.001) in patients with type 2 diabetes. In multiple regression analysis these were linked to HbA1c, duration of diabetes and systolic blood pressure, and fasting plasma glucose, folate and C-reactive protein, respectively. CONCLUSIONS There was renal mishandling of thiamine, increased degradation of vitamin B(6) and cytosolic metabolic resistance to vitamin B(12) in patients with type 2 diabetes in Indonesia.
Collapse
Affiliation(s)
- Antonysunil Adaikalakoteswari
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Thornalley PJ, Rabbani N. Methylglyoxal modification of LDL: proatherogenicity without oxidation opens new paths to prevent cardiovascular disease. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Chetyrkin S, Mathis M, Pedchenko V, Sanchez OA, McDonald WH, Hachey DL, Madu H, Stec D, Hudson B, Voziyan P. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry 2011; 50:6102-12. [PMID: 21661747 DOI: 10.1021/bi200757d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to α(V)β(3) integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while nonoxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation.
Collapse
Affiliation(s)
- Sergei Chetyrkin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|