1
|
Frank K, Nagy E, Taller J, Wolf I, Polgár Z. Characterisation of the complete chloroplast genome of Solanum tuberosum cv. White Lady. Biol Futur 2024; 75:401-410. [PMID: 39251554 DOI: 10.1007/s42977-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
Potato (Solanum tuberosum) is considered worldwide as one of the most important non-cereal food crops. As a result of its adaptability and worldwide production area, potato displays a vast phenotypical variability as well as genomic diversity. Chloroplast genomes have long been a core issue in plant molecular evolution and phylogenetic studies, and have an important role in revealing photosynthetic mechanisms, metabolic regulations and the adaptive evolution of plants. We sequenced the complete chloroplast genome of the Hungarian cultivar White Lady, which is 155 549 base pairs (bp) in length and is characterised by the typical quadripartite structure composed of a large- and small single-copy region (85 991 bp and 18 374 bp, respectively) interspersed by two identical inverted repeats (25 592 bp). The genome consists of 127 genes of which 82 are protein-coding, eight are ribosomal RNAs and 37 are transfer RNAs. The overall gene content and distribution of the genes on the White Lady chloroplast was the same as found in other potato chloroplasts. The alignment of S. tuberosum chloroplast genome sequences resulted in a highly resolved tree, with 10 out of the 13 nodes recovered having bootstrap values over 90%. By comparing the White Lady chloroplast genome with available S. tuberosum sequences we found that gene content and synteny are highly conserved. The new chloroplast sequence can support further studies of genetic diversity, resource conservation, evolution and applied agricultural research. The new sequence can support further potato genetic diversity and evolutionary studies, resource conservation, and also applied agricultural research.
Collapse
Affiliation(s)
- Krisztián Frank
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary.
| | - Erzsébet Nagy
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Hungarian University of Agricultural and Life Sciences, Keszthely, Hungary
| | - János Taller
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Hungarian University of Agricultural and Life Sciences, Keszthely, Hungary
| | - István Wolf
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary
| | - Zsolt Polgár
- Potato Research Centre, MATE Agrárcsoport Kft., Keszthely, Hungary
- Department of Agronomy, Hungarian University of Agricultural and Life Sciences, Georgikon Campus, Keszthely, Hungary
| |
Collapse
|
2
|
Deng S, Fan C, Lu Z, Yang H. The complete chloroplast genome of Gardenia stenophylla Merr (Rubiaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2024; 9:1039-1043. [PMID: 39139657 PMCID: PMC11321098 DOI: 10.1080/23802359.2024.2389918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Gardenia stenophylla Merr, a member of the genus Gardenia in the family Rubiaceae, possesses significant medicinal and ornamental value and is widely distributed in China. This study reports the newly sequenced chloroplast genome of Gardenia stenophylla Merr. The complete chloroplast genome of Gardenia stenophylla Merr (155,109 bp, GC content of 37.5%) was shown to have a typical quadripartite structure, containing a pair of inverted repeat regions (IRs) of 28,802 bp separated by a large single-copy (LSC) region of 85,396 bp and a small single-copy (SSC) region of 18,109 bp. The chloroplast genome contained 151 genes encoding 106 proteins, 37 tRNAs, and eight rRNAs. The Gardenia stenophylla Merr chloroplast genome displayed the closest phylogenetic relationship to Gardenia jasminoides and Gardenia jasminoides var. grandiflora. These data will assist in future molecular phylogenetics of the Rubiaceae.
Collapse
Affiliation(s)
| | - Cunzhong Fan
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Ziyun Lu
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Huilin Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
3
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
4
|
Liu W, Wang Z, Tian Y, Ji B. The complete chloroplast genome sequence of Vincetoxicum mongolicum (Apocynaceae), a perennial medicinal herb. Genet Mol Biol 2023; 46:e20220303. [PMID: 37272836 DOI: 10.1590/1678-4685-gmb-2022-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Vincetoxicum mongolicum Maxim. (1876), is a perennial medicinal herb, widely distributed in the Loess Plateau of China. Here, we sequenced, assembled, and annotated the complete chloroplast (cp) genome of V. mongolicum, and compared the highly variable gene regions and phylogenetic positions between V. mongolicum and other related species. Results showed that the complete cp genome of V. mongolicum was 160,157 bp in length, containing a large single copy (LSC) region of 91,263 bp, a pair of inverted repeats (IR) region of 23,892 bp, and a small single copy (SSC) region of 21,110 bp. The GC content accounts for 37.8%, and we annotated 131 single genes, which include 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. By comparing and analyzing the variable region of the cp gene of V. mongolicum and other Vincetoxicum, we found that the variable sequences of rpoC1-rpoB, ycf4-cemA, ndhF, ndhF-rpl32, and rpl32-ccsA fragments were highly significant, which could be targeted as the DNA barcodes for evidence of V. mongolicum and its relatives in Apocynaceae. Maximum-likelihood (ML) phylogenetic tree analysis elucidated that V. mongolicum was sister to V. pycnostelma with strong support. Our results provide useful information for future phylogenetic studies and plastid super-barcodes of the family Apocynaceae.
Collapse
Affiliation(s)
- Wangsuo Liu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, Ningxia, China
- Ningxia Technical College of Wine and Desertification Prevention, Department of hydraulic engineering, Yinchuan, China
| | - Zhanjun Wang
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, Ningxia, China
- Ningxia Academy of Agriculture and Forestry Science, Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Yinchuan, Ningxia, China
| | - Ying Tian
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, Ningxia, China
- Ningxia Academy of Agriculture and Forestry Science, Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Yinchuan, Ningxia, China
| | - Bo Ji
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, Ningxia, China
- Ningxia Academy of Agriculture and Forestry Science, Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation, Yinchuan, Ningxia, China
| |
Collapse
|
5
|
Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, Chen S. Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan Plateau. BMC PLANT BIOLOGY 2022; 22:195. [PMID: 35413790 PMCID: PMC9004202 DOI: 10.1186/s12870-022-03577-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The genus Swertia is of great medicinal importance and one of the most taxonomically challenging taxa within Gentianaceae, largely due to the morphological similarities of species within this genus and with its closely related genera. Previous molecular studies confirmed its polyphyly but suffered from low phylogenetic resolutions because only limited sequence loci were used. Thus, we conducted the structural, gene evolutionary, and phylogenetic analyses of 11 newly obtained plastomes of Swertia. Our result greatly improved the phylogenetic resolutions in Swertia, shed new light on the plastome evolution and phylogenetic relationships of this genus. RESULTS The 11 Swertia plastomes together with the published seven species proved highly similar in overall size, structure, gene order, and content, but revealed some structural variations caused by the expansion and contraction of the IRb region into the LSC region, due to the heterogeneous length of the ψycf1. The gene rps16 was found to be in a state flux with pseudogenes or completely lost. Similar situation was also documented in other genera of Gentianaceae. This might imply loss of the gene in the common ancestor of Gentianaceae. The distribution plot of ENC vs. GC3 showed all these plastomes arranging very close in the Wright line with an expected ENC value (49-52%), suggesting the codon usage of Swertia was mainly constrained by a GC mutation bias. Most of the genes remained under the purifying selection, however, the cemA was identified under positive selection, possibly reflecting an adaptive response to low CO2 atmospheric conditions during the Late Miocene. Our phylogenomic analyses, based on 74 protein-coding genes (CDS), supported the polyphyly of Swertia with its close allies in the subtribe Swertiinae, presumably due to recent rapid radiation. The topology inferred from our phylogenetic analyses partly supported the current taxonomic treatment. Finally, several highly variable loci were identified, which can be used in future phylogenetic studies and accurate identification of medicinal genuineness of Swertia. CONCLUSIONS Our study confirmed the polyphyly of Swertia and demonstrated the power of plastome phylogenomics in improvement of phylogenetic resolution, thus contributing to a better understanding of the evolutionary history of Swertia.
Collapse
Affiliation(s)
- Qian Cao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingbo Gao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaolei Ma
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faqi Zhang
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Rui Xing
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaofeng Chi
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shilong Chen
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
6
|
Drenched Silicon Suppresses Disease and Insect Pests in Coffee Plant Grown in Controlled Environment by Improving Physiology and Upregulating Defense Genes. Int J Mol Sci 2022; 23:ijms23073543. [PMID: 35408899 PMCID: PMC8998747 DOI: 10.3390/ijms23073543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Plant disease and insect pests are major limiting factors that reduce crop production worldwide. The ornamental indoor cultivation cash crop dwarf coffee Punica arabica ‘Pacas’ is also troubled by these issues. Silicon (Si) is one of the most abundant elements in the lithosphere and positively impacts plant health by effectively mitigating biotic and abiotic stresses. Several studies have shown that Si activates plant defense systems, although the specific nature of the involvement of Si in biochemical processes that lead to resistance is unclear. In our study, Si significantly promoted the growth and development of dwarf coffee seedlings grown in plant growth chambers. More than that, through natural infection, Si suppressed disease and insect pests by improving physiology (e.g., the strong development of the internal structures of roots, stems, and leaves; higher photosynthetic efficiency; more abundant organic matter accumulation; the promotion of root activity; the efficient absorption and transfer of mineral elements; and various activated enzymes) and up-regulating defense genes (CaERFTF11 and CaERF13). Overall, in agriculture, Si may potentially contribute to global food security and safety by assisting in the creation of enhanced crop types with optimal production as well by mitigating plant disease and insect pests. In this sense, Si is a sustainable alternative in agricultural production.
Collapse
|
7
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
8
|
Djerrab D, Bertrand B, Breitler JC, Léran S, Dechamp E, Campa C, Barrachina C, Conejero G, Etienne H, Sulpice R. Photoperiod-dependent transcriptional modifications in key metabolic pathways in Coffea arabica. TREE PHYSIOLOGY 2021; 41:302-316. [PMID: 33080620 PMCID: PMC7874067 DOI: 10.1093/treephys/tpaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/20/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Photoperiod length induces in temperate plants major changes in growth rates, morphology and metabolism with, for example, modifications in the partitioning of photosynthates to avoid starvation at the end of long nights. However, this has never been studied for a tropical perennial species adapted to grow in a natural photoperiod close to 12 h/12 h all year long. We grew Coffea arabica L., an understorey perennial evergreen tropical species in its natural 12 h/12 h and in a short 8 h/16 h photoperiod, and we investigated its responses at the physiological, metabolic and transcriptomic levels. The expression pattern of rhythmic genes, including core clock genes, was affected by changes in photoperiod. Overall, we identified 2859 rhythmic genes, of which 89% were also rhythmic in Arabidopsis thaliana L. Under short-days, plant growth was reduced, and leaves were thinner with lower chlorophyll content. In addition, secondary metabolism was also affected with chlorogenic acid and epicatechin levels decreasing, and in agreement, the genes involved in lignin synthesis were overexpressed and those involved in the flavanol pathway were underexpressed. Our results show that the 8 h/16 h photoperiod induces drastic changes in morphology, metabolites and gene expression, and the responses for gene expression are similar to those observed in the temperate annual A. thaliana species. Short photoperiod induces drastic changes in gene expression, metabolites and leaf structure, some of these responses being similar to those observed in A. thaliana.
Collapse
Affiliation(s)
- Doâa Djerrab
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR IPME, F-34398 Montpellier, France
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
| | | | - Jean-Christophe Breitler
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR IPME, F-34398 Montpellier, France
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
| | - Sophie Léran
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR IPME, F-34398 Montpellier, France
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
| | - Eveline Dechamp
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR IPME, F-34398 Montpellier, France
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
| | - Claudine Campa
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
- IRD, UMR IPME, F-34394 Montpellier, France
| | - Célia Barrachina
- MGX, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, 34000 Montpellier, France
| | - Geneviève Conejero
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Hervé Etienne
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR IPME, F-34398 Montpellier, France
- UMR IPME, Université de Montpellier, CIRAD, IRD, F-34398 Montpellier, France
| | - Ronan Sulpice
- National University of Ireland, Plant Systems Biology Lab, Ryan Institute, School of Natural Sciences, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
9
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2020; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
10
|
Ly SN, Garavito A, De Block P, Asselman P, Guyeux C, Charr JC, Janssens S, Mouly A, Hamon P, Guyot R. Chloroplast genomes of Rubiaceae: Comparative genomics and molecular phylogeny in subfamily Ixoroideae. PLoS One 2020; 15:e0232295. [PMID: 32353023 PMCID: PMC7192488 DOI: 10.1371/journal.pone.0232295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/11/2020] [Indexed: 11/19/2022] Open
Abstract
In Rubiaceae phylogenetics, the number of markers often proved a limitation with authors failing to provide well-supported trees at tribal and generic levels. A robust phylogeny is a prerequisite to study the evolutionary patterns of traits at different taxonomic levels. Advances in next-generation sequencing technologies have revolutionized biology by providing, at reduced cost, huge amounts of data for an increased number of species. Due to their highly conserved structure, generally recombination-free, and mostly uniparental inheritance, chloroplast DNA sequences have long been used as choice markers for plant phylogeny reconstruction. The main objectives of this study are: 1) to gain insight in chloroplast genome evolution in the Rubiaceae (Ixoroideae) through efficient methodology for de novo assembly of plastid genomes; and, 2) to test the efficiency of mining SNPs in the nuclear genome of Ixoroideae based on the use of a coffee reference genome to produce well-supported nuclear trees. We assembled whole chloroplast genome sequences for 27 species of the Rubiaceae subfamily Ixoroideae using next-generation sequences. Analysis of the plastid genome structure reveals a relatively good conservation of gene content and order. Generally, low variation was observed between taxa in the boundary regions with the exception of the inverted repeat at both the large and short single copy junctions for some taxa. An average of 79% of the SNP determined in the Coffea genus are transferable to Ixoroideae, with variation ranging from 35% to 96%. In general, the plastid and the nuclear genome phylogenies are congruent with each other. They are well-resolved with well-supported branches. Generally, the tribes form well-identified clades but the tribe Sherbournieae is shown to be polyphyletic. The results are discussed relative to the methodology used and the chloroplast genome features in Rubiaceae and compared to previous Rubiaceae phylogenies.
Collapse
Affiliation(s)
- Serigne Ndiawar Ly
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Andrea Garavito
- Departamento Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | | | - Pieter Asselman
- Meise Botanic Garden, Meise, Belgium
- University of Ghent, Ghent, Belgium
| | - Christophe Guyeux
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Claude Charr
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | | | - Arnaud Mouly
- Laboratory Chrono-Environment, UMR CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France
- Besançon Botanic Garden, Université de Bourgogne Franche-Comté, Besançon, France
| | - Perla Hamon
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales, Colombia
| |
Collapse
|
11
|
Park J, Kim Y, Xi H, Heo KI, Min J, Woo J, Lee D, Seo Y, Kim YH. The complete chloroplast genomes of two cold hardness coffee trees, Coffea arabica L. (Rubiaceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1715883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Kyoung-In Heo
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Juhyeon Min
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongwook Woo
- Stronghold Technology, Inc, Seoul, Republic of Korea
| | - Dukgou Lee
- Stronghold Technology, Inc, Seoul, Republic of Korea
| | - Youmi Seo
- Stronghold Technology, Inc, Seoul, Republic of Korea
| | | |
Collapse
|
12
|
Park J, Kim Y, Xi H, Heo KI. The complete chloroplast genome of coffee tree, Coffea arabica L. 'Blue Mountain' (Rubiaceae). Mitochondrial DNA B Resour 2019; 4:2436-2437. [PMID: 33365575 PMCID: PMC7687557 DOI: 10.1080/23802359.2019.1636729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/22/2019] [Indexed: 11/09/2022] Open
Abstract
We presented complete chloroplast genome of Coffea arabica BM1 which is 155,189 bp long and has four subregions: 85,159 bp of large single copy (LSC), and 18,135 bp of small single copy (SSC) regions are separated by 25,946 bp of inverted repeat (IR) regions including 131 genes (86 protein-coding genes, 8 rRNAs, and 37 tRNAs). The overall GC content of the chloroplast genome is 37.4% and those in the LSC, SSC, and IR regions are 35.4, 31.3, and 43.0%, respectively. Low level of cultivar specific sequence variations was found among seven coffee chloroplast genomes.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Kyeong-In Heo
- InfoBoss Co., Ltd., Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China. FORESTS 2019. [DOI: 10.3390/f10070587] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quercus bawanglingensis Huang, Li et Xing, an endemic evergreen oak of the genus Quercus (Fagaceae) in China, is currently listed in the Red List of Chinese Plants as a vulnerable (VU) plant. No chloroplast (cp) genome information is currently available for Q. bawanglingensis, which would be essential for the establishment of guidelines for its conservation and breeding. In the present study, the cp genome of Q. bawanglingensis was sequenced and assembled into double-stranded circular DNA with a length of 161,394 bp. Two inverted repeats (IRs) with a total of 51,730 bp were identified, and the rest of the sequence was separated into two single-copy regions, namely, a large single-copy (LSC) region (90,628 bp) and a small single-copy (SSC) region (19,036 bp). The genome of Q. bawanglingensis contains 134 genes (86 protein-coding genes, 40 tRNAs and eight rRNAs). More forward (29) than inverted long repeats (21) are distributed in the cp genome. A simple sequence repeat (SSR) analysis showed that the genome contains 82 SSR loci, involving 84.15% A/T mononucleotides. Sequence comparisons among the nine complete cp genomes, including the genomes of Q. bawanglingensis, Q. tarokoensis Hayata (NC036370), Q. aliena var. acutiserrata Maxim. ex Wenz. (KU240009), Q. baronii Skan (KT963087), Q. aquifolioides Rehd. et Wils. (KX911971), Q. variabilis Bl. (KU240009), Fagus engleriana Seem. (KX852398), Lithocarpus balansae (Drake) A. Camus (KP299291) and Castanea mollissima Bl. (HQ336406), demonstrated that the diversity of SC regions was higher than that of IR regions, which might facilitate identification of the relationships within this extremely complex family. A phylogenetic analysis showed that Fagus engleriana and Trigonobalanus doichangensis form the basis of the produced evolutionary tree. Q. bawanglingensis and Q. tarokoensis, which belong to the group Ilex, share the closest relationship. The analysis of the cp genome of Q. bawanglingensis provides crucial genetic information for further studies of this vulnerable species and the taxonomy, phylogenetics and evolution of Quercus.
Collapse
|
14
|
Min J, Kim Y, Xi H, Heo KI, Park J. The complete chloroplast genome of coffee tree, Coffea arabica L. 'Typica' (Rubiaceae). Mitochondrial DNA B Resour 2019; 4:2240-2241. [PMID: 33365492 PMCID: PMC7687381 DOI: 10.1080/23802359.2019.1624213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 10/27/2022] Open
Abstract
We presented complete chloroplast genome of Coffea arabica L. 'Typica' which is 155,187 bp long and has four subregions: 85,159 bp of large single copy (LSC) and 18,135 bp of small single copy (SSC) regions are separated by 25,946 bp of inverted repeat (IR) regions including 131 genes (86 protein-coding genes, eight rRNAs, and 37 tRNAs). The overall GC content of the chloroplast genome is 37.4% and those in the LSC, SSC, and IR regions are 35.4%, 31.3%, and 43.0%, respectively. Interestingly, almost most of sequence variations identified against five coffee chloroplast genomes are insertions and deletions.
Collapse
Affiliation(s)
- Juhyeon Min
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Kyeong-In Heo
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
15
|
Guyeux C, Charr JC, Tran HTM, Furtado A, Henry RJ, Crouzillat D, Guyot R, Hamon P. Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. PLoS One 2019; 14:e0216347. [PMID: 31188829 PMCID: PMC6561552 DOI: 10.1371/journal.pone.0216347] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Chloroplast sequences are widely used for phylogenetic analysis due to their high degree of conservation in plants. Whole chloroplast genomes can now be readily obtained for plant species using new sequencing methods, giving invaluable data for plant evolution However new annotation methods are required for the efficient analysis of this data to deliver high quality phylogenetic analyses. In this study, the two main tools for chloroplast genome annotation were compared. More consistent detection and annotation of genes were produced with GeSeq when compared to the currently used Dogma. This suggests that the annotation of most of the previously annotated chloroplast genomes should now be updated. GeSeq was applied to species related to coffee, including 16 species of the Coffea and Psilanthus genera to reconstruct the ancestral chloroplast genomes and to evaluate their phylogenetic relationships. Eight genes in the plant chloroplast pan genome (consisting of 92 genes) were always absent in the coffee species analyzed. Notably, the two main cultivated coffee species (i.e. Arabica and Robusta) did not group into the same clade and differ in their pattern of gene evolution. While Arabica coffee (Coffea arabica) belongs to the Coffea genus, Robusta coffee (Coffea canephora) is associated with the Psilanthus genus. A more extensive survey of related species is required to determine if this is a unique attribute of Robusta coffee or a more widespread feature of coffee tree species.
Collapse
Affiliation(s)
- Christophe Guyeux
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Claude Charr
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Hue T. M. Tran
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | | | - Romain Guyot
- Institut de Recherche pour le Développement, UMR IPME, CIRAD, Université de Montpellier, Montpellier, France
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Perla Hamon
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Toniutti L, Breitler JC, Guittin C, Doulbeau S, Etienne H, Campa C, Lambot C, Herrera Pinilla JC, Bertrand B. An Altered Circadian Clock Coupled with a Higher Photosynthesis Efficiency Could Explain the Better Agronomic Performance of a New Coffee Clone When Compared with a Standard Variety. Int J Mol Sci 2019; 20:ijms20030736. [PMID: 30744144 PMCID: PMC6386876 DOI: 10.3390/ijms20030736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
In a context where climate change is threatening coffee productivity, the management of coffee leaf rust is a challenging issue. Major resistant genes, which have been used for many years, are systematically being overcome by pathogens. Developing healthy plants, able to defend themselves and be productive even when attacked by the pathogen, should be part of a more sustainable alternative approach. We compared one hybrid (GPFA124), selected for its good health in various environments including a reduced rust incidence, and the cv. 'Caturra', considered as a standard in terms of productivity and quality but highly susceptible to rust, for phenotypic variables and for the expression of genes involved in the circadian clock and in primary photosynthetic metabolism. The GPFA124 hybrid showed increased photosynthetic electron transport efficiency, better carbon partitioning, and higher chlorophyll content. A strong relationship exists between chlorophyll a fluorescence and the expression of genes related to the photosynthetic electron transport chain. We also showed an alteration of the amplitude of circadian clock genes in the clone. Our work also indicated that increased photosynthetic electron transport efficiency is related to the clone's better performance. Chlorophyll a fluorescence measurement is a good indicator of the coffee tree's physiological status for the breeder. We suggest a connection between the circadian clock and carbon metabolism in coffee tree.
Collapse
Affiliation(s)
- Lucile Toniutti
- CIRAD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097 Tours CEDEX 2, France.
| | - Jean-Christophe Breitler
- CIRAD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
| | - Charlie Guittin
- IRD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
| | | | - Hervé Etienne
- CIRAD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
| | - Claudine Campa
- IRD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
| | - Charles Lambot
- Nestlé R&D Tours, 101 AV. G. Eiffel, Notre Dame d'Oé, BP 49716, 37097 Tours CEDEX 2, France.
| | | | - Benoît Bertrand
- CIRAD, IPME, 34 398 Montpellier, France.
- UMR IPME, Univ. Montpellier, IRD, CIRAD, 34 398 Montpellier, France.
| |
Collapse
|
17
|
Park J, Xi H, Kim Y, Heo KI, Nho M, Woo J, Seo Y, Yang JH. The complete chloroplast genome of cold hardiness individual of Coffea arabicaL. (Rubiaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1586472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Kyeong-In Heo
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | | | - Jongwook Woo
- Stronghold Technology, Inc., Seoul, Republic of Korea
| | - Youmi Seo
- Stronghold Technology, Inc., Seoul, Republic of Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
18
|
Park J, Kim Y, Xi H, Nho M, Woo J, Seo Y. The complete chloroplast genome of high production individual tree of Coffea arabicaL. (Rubiaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1600386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | | | - Jongwook Woo
- Stronghold Technology, Inc., Seoul, Republic of Korea
| | - Youmi Seo
- Stronghold Technology, Inc., Seoul, Republic of Korea
| |
Collapse
|
19
|
Park J, Kim Y, Xi H, Heo KI. The complete chloroplast genome of ornamental coffee tree, Coffea arabicaL. (Rubiaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1584060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Kyeong-In Heo
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
20
|
Sathishkumar R, Kumar SR, Hema J, Baskar V. Green Biotechnology: A Brief Update on Plastid Genome Engineering. ADVANCES IN PLANT TRANSGENICS: METHODS AND APPLICATIONS 2019. [PMCID: PMC7120283 DOI: 10.1007/978-981-13-9624-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant genetic engineering has become an inevitable tool in the molecular breeding of crops. Significant progress has been made in the generation of novel plastid transformation vectors and optimized transformation protocols. There are several advantages of plastid genome engineering over conventional nuclear transformation. Some of the advantages include multigene engineering by expression of biosynthetic pathway genes as operons, extremely high-level expression of protein accumulation, lack of transgene silencing, etc. Transgene containment owing to maternal inheritance is another important advantage of plastid genome engineering. Chloroplast genome modification usually results in alteration of several thousand plastid genome copies in a cell. Several therapeutic proteins, edible vaccines, antimicrobial peptides, and industrially important enzymes have been successfully expressed in chloroplasts so far. Here, we critically recapitulate the latest developments in plastid genome engineering. Latest advancements in plastid genome sequencing are briefed. In addition, advancement of extending the toolbox for plastid engineering for selected applications in the area of molecular farming and production of industrially important enzyme is briefed.
Collapse
Affiliation(s)
- Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| | | | - Jagadeesan Hema
- Department of Biotechnology, PSG College of Technology, Coimbatore, Tamil Nadu India
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu India
| |
Collapse
|
21
|
Li J, Zhang D, Ouyang K, Chen X. The complete chloroplast genome of the miracle tree Neolamarckia cadamba and its comparison in Rubiaceae family. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1496034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Jingjian Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, PR China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, PR China
| | - Deng Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Kunxi Ouyang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, PR China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, PR China
| |
Collapse
|
22
|
Zhou C, Duarte T, Silvestre R, Rossel G, Mwanga ROM, Khan A, George AW, Fei Z, Yencho GC, Ellis D, Coin LJM. Insights into population structure of East African sweetpotato cultivars from hybrid assembly of chloroplast genomes. Gates Open Res 2018; 2:41. [PMID: 33062940 PMCID: PMC7536352 DOI: 10.12688/gatesopenres.12856.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2018] [Indexed: 03/31/2024] Open
Abstract
Background: The chloroplast (cp) genome is an important resource for studying plant diversity and phylogeny. Assembly of the cp genomes from next-generation sequencing data is complicated by the presence of two large inverted repeats contained in the cp DNA. Methods: We constructed a complete circular cp genome assembly for the hexaploid sweetpotato using extremely low coverage (<1×) Oxford Nanopore whole-genome sequencing (WGS) data coupled with Illumina sequencing data for polishing. Results: The sweetpotato cp genome of 161,274 bp contains 152 genes, of which there are 96 protein coding genes, 8 rRNA genes and 48 tRNA genes. Using the cp genome assembly as a reference, we constructed complete cp genome assemblies for a further 17 sweetpotato cultivars from East Africa and an I. triloba line using Illumina WGS data. Analysis of the sweetpotato cp genomes demonstrated the presence of two distinct subpopulations in East Africa. Phylogenetic analysis of the cp genomes of the species from the Convolvulaceae Ipomoea section Batatas revealed that the most closely related diploid wild species of the hexaploid sweetpotato is I. trifida. Conclusions: Nanopore long reads are helpful in construction of cp genome assemblies, especially in solving the two long inverted repeats. We are generally able to extract cp sequences from WGS data of sufficiently high coverage for assembly of cp genomes. The cp genomes can be used to investigate the population structure and the phylogenetic relationship for the sweetpotato.
Collapse
Affiliation(s)
- Chenxi Zhou
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Tania Duarte
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | | - Awais Khan
- International Potato Center, P.O. Box 1558, Lima 12, Peru
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Andrew W. George
- Data61, CSIRO, Ecosciences Precinct, Brisbane, QLD, 4102, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - G. Craig Yencho
- Department of Horticulture, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - David Ellis
- International Potato Center, P.O. Box 1558, Lima 12, Peru
| | - Lachlan J. M. Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
23
|
Amiryousefi A, Hyvönen J, Poczai P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS One 2018; 13:e0196069. [PMID: 29694416 PMCID: PMC5919006 DOI: 10.1371/journal.pone.0196069] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.
Collapse
Affiliation(s)
- Ali Amiryousefi
- Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Péter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
24
|
Fishbein M, Livshultz T, Straub SCK, Simões AO, Boutte J, McDonnell A, Foote A. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. AMERICAN JOURNAL OF BOTANY 2018; 105:495-513. [PMID: 29733432 DOI: 10.1002/ajb2.1067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY We provide the largest phylogenetic analyses to date of Apocynaceae in terms of taxa and molecular data as a framework for analyzing the evolution of vegetative and reproductive traits. METHODS We produced maximum-likelihood phylogenies of Apocynaceae using 21 plastid loci sampled from 1045 species (nearly 25% of the family) and complete plastomes from 73 species. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Apocynaceae. KEY RESULTS We obtained a well-supported phylogeny of Apocynaceae, resolving poorly understood tribal and subtribal relationships (e.g., among Amsonieae and Hunterieae, within Asclepiadeae), rejecting monophyly of Melodineae and Odontadenieae, and placing previously unsampled and enigmatic taxa (e.g., Pycnobotrya). We provide new insights into the evolution of Apocynaceae, including frequent shifts between herbaceousness and woodiness, reversibility of twining, integrated evolution of the corolla and gynostegium, and ancestral baccate fruits. CONCLUSIONS Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are sensitive to choice of phylogenetic frameworks and models.
Collapse
Affiliation(s)
- Mark Fishbein
- Department of Plant Biology, Ecology& Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Tatyana Livshultz
- Department of Biodiversity, Earth & Environmental Sciences & Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - André O Simões
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, CP. 6109, 13083-970, Campinas São Paulo, Brazil
| | - Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Angela McDonnell
- Department of Plant Biology, Ecology& Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
- Department of Biology, Bucknell University, Lewisburg, PA, 17837, USA
| | - Abbey Foote
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| |
Collapse
|
25
|
Evolution of sexual systems and growth habit in Mussaenda (Rubiaceae): Insights into the evolutionary pathways of dioecy. Mol Phylogenet Evol 2018; 123:113-122. [PMID: 29454889 DOI: 10.1016/j.ympev.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
Abstract
Dioecy is a rare sexual system that is thought to represent an "evolutionary dead end". While many studies have addressed the evolution of dioecy and/or its relationship with the evolution of the woody habit, few have explored the relationship between dioecy and climbing habit, and their effects on diversification rates. Here, we study the evolution of sexual systems and growth habit in Mussaenda (Rubiaceae) using a robust phylogeny of the genus based on eight plastid regions and a broad sampling of taxa (92 of the 132 species were sampled). A time-calibrated tree was constructed to estimate diversification rates in different clades and its correlates with focal characters. More specifically, we assess evolutionary correlations between dioecy and climbing habit and their respective influences on diversification rates. Ancestral character state reconstructions revealed that distyly is the most likely ancestral state in Mussaenda. Distyly has subsequently given rise to dioecy, short-styled floral monomorphism, and long-styled floral monomorphism. Dioecy has evolved independently at least four times from distyly, and has reversed to homostylous hermaphroditism at least twice, which does not support the "evolutionary dead end" hypothesis. A significant correlation between the evolution of dioecy and climbing growth form was found in Mussaenda. It is possible that a strong association between high net diversification rates and dioecy may exist in Mussaenda, but no association was found with climbing habit.
Collapse
|
26
|
Tao X, Ma L, Zhang Z, Liu W, Liu Z. Characterization of the complete chloroplast genome of alfalfa ( Medicago sativa ) (Leguminosae). GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Gichira AW, Li Z, Saina JK, Long Z, Hu G, Gituru RW, Wang Q, Chen J. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection. PeerJ 2017; 5:e2846. [PMID: 28097059 PMCID: PMC5228516 DOI: 10.7717/peerj.2846] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022] Open
Abstract
Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.
Collapse
Affiliation(s)
- Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Josphat K Saina
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Zhicheng Long
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangwan Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Robert W Gituru
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
28
|
Characterization of the complete chloroplast genome of Emmenopterys henryi (Gentianales: Rubiaceae), an endangered relict tree species endemic to China. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-016-0681-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Yuan C, Zhong W, Mou F, Gong Y, Pu D, Ji P, Huang H, Yang Z, Zhang C. The complete chloroplast genome sequence and phylogenetic analysis of Chuanminshen ( Chuanminshenviolaceum Sheh et Shan). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:35-41. [PMID: 28250582 PMCID: PMC5313399 DOI: 10.1007/s12298-016-0395-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/17/2016] [Accepted: 11/18/2016] [Indexed: 05/25/2023]
Abstract
Chloroplast genome sequences are very useful for species identification and phylogenetics. Chuanminshen (Chuanminshen violaceum Sheh et Shan) is an important traditional Chinese medicinal plant, for which the phylogenetic position is still controversial. In this study, the complete chloroplast genome of Chuanminshen violaceum Sheh et Shan was determined. The total size of Chuanminshen chloroplast genome was 154,529 bp with 37.8% GC content. It has the typical quadripartite structure, a large single copy (17,800 bp) and a small single copy (84,171 bp) and a pair of inverted repeats (26,279 bp). The whole genome harbors 132 genes, which includes 85 protein coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes. Thirty-nine SSR loci, 32 tandem repeats and 49 dispersed repeats were found. Phylogenetic analyses results with the help of MEGA showed a new insight for the Chuanminshen phylogenetic relationship with the reported chloroplast genomes in Apiales plants.
Collapse
Affiliation(s)
- Can Yuan
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Wenjuan Zhong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Fangsheng Mou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Yiyun Gong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Deqiang Pu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Peicheng Ji
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Haiyan Huang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Zehu Yang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| | - Chao Zhang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610300 China
| |
Collapse
|
30
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
31
|
Cho KS, Cheon KS, Hong SY, Cho JH, Im JS, Mekapogu M, Yu YS, Park TH. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum. PLANT CELL REPORTS 2016; 35:2113-23. [PMID: 27417695 DOI: 10.1007/s00299-016-2022-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/29/2016] [Indexed: 05/09/2023]
Abstract
Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Kyeong-Sik Cheon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su-Young Hong
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ji-Hong Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Ju-Seong Im
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Manjulatha Mekapogu
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Yei-Soo Yu
- Phygen Genomics Institute, Baekgoong Plaza 1, Bundang-gu, Seongnam, 13558, Republic of Korea
| | - Tae-Ho Park
- Department of Horticulture and Institute of Life and Environment, Daegu University, Gyeongsan, 38453, Republic of Korea.
| |
Collapse
|
32
|
Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2016; 201:85-94. [PMID: 27448724 DOI: 10.1016/j.jplph.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot City, Daklak Province, Viet Nam
| | - Than Zaw Tun Sai
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
33
|
Tran HT, Lee LS, Furtado A, Smyth H, Henry RJ. Advances in genomics for the improvement of quality in coffee. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3300-3312. [PMID: 26919810 DOI: 10.1002/jsfa.7692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Tm Tran
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
- Western Highlands Agriculture & Forestry Science Institute (WASI), Daklak, Vietnam
| | - L Slade Lee
- Southern Cross University, East Lismore, NSW 2480, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Heather Smyth
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Robert J Henry
- Queensland Alliance for Agri culture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
34
|
Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016; 17:134. [PMID: 27339192 PMCID: PMC4918201 DOI: 10.1186/s13059-016-1004-2] [Citation(s) in RCA: 873] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA.
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming Yu
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, South 40th St, Philadelphia, PA, 19104-6030, USA
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Givnish TJ, Zuluaga A, Marques I, Lam VKY, Gomez MS, Iles WJD, Ames M, Spalink D, Moeller JR, Briggs BG, Lyon SP, Stevenson DW, Zomlefer W, Graham SW. Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica. Cladistics 2016; 32:581-605. [DOI: 10.1111/cla.12153] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- Thomas J. Givnish
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Alejandro Zuluaga
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
- Departamento de Biología; Universidad del Valle; Cali Colombia
| | - Isabel Marques
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
- Department of Agriculture (Botany); High Polytechnic School of Huesca; University of Zaragoza; Carretera de Cuarte Km 1 Huesca E22071 Spain
| | - Vivienne K. Y. Lam
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - Marybel Soto Gomez
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| | - William J. D. Iles
- University and Jepson Herbaria; University of California-Berkeley; Berkeley CA 94720 USA
| | - Mercedes Ames
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Daniel Spalink
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Jackson R. Moeller
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Stephanie P. Lyon
- Department of Botany; University of Wisconsin-Madison; Madison WI 53706 USA
| | | | - Wendy Zomlefer
- Department of Plant Biology; University of Georgia; Athens GA 30602 USA
| | - Sean W. Graham
- Department of Botany; University of British Columbia; Vancouver Canada V6T 1Z4
| |
Collapse
|
36
|
Mofatto LS, Carneiro FDA, Vieira NG, Duarte KE, Vidal RO, Alekcevetch JC, Cotta MG, Verdeil JL, Lapeyre-Montes F, Lartaud M, Leroy T, De Bellis F, Pot D, Rodrigues GC, Carazzolle MF, Pereira GAG, Andrade AC, Marraccini P. Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC PLANT BIOLOGY 2016; 16:94. [PMID: 27095276 PMCID: PMC4837521 DOI: 10.1186/s12870-016-0777-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/13/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Drought is a widespread limiting factor in coffee plants. It affects plant development, fruit production, bean development and consequently beverage quality. Genetic diversity for drought tolerance exists within the coffee genus. However, the molecular mechanisms underlying the adaptation of coffee plants to drought are largely unknown. In this study, we compared the molecular responses to drought in two commercial cultivars (IAPAR59, drought-tolerant and Rubi, drought-susceptible) of Coffea arabica grown in the field under control (irrigation) and drought conditions using the pyrosequencing of RNA extracted from shoot apices and analysing the expression of 38 candidate genes. RESULTS Pyrosequencing from shoot apices generated a total of 34.7 Mbp and 535,544 reads enabling the identification of 43,087 clusters (41,512 contigs and 1,575 singletons). These data included 17,719 clusters (16,238 contigs and 1,575 singletons) exclusively from 454 sequencing reads, along with 25,368 hybrid clusters assembled with 454 sequences. The comparison of DNA libraries identified new candidate genes (n = 20) presenting differential expression between IAPAR59 and Rubi and/or drought conditions. Their expression was monitored in plagiotropic buds, together with those of other (n = 18) candidates genes. Under drought conditions, up-regulated expression was observed in IAPAR59 but not in Rubi for CaSTK1 (protein kinase), CaSAMT1 (SAM-dependent methyltransferase), CaSLP1 (plant development) and CaMAS1 (ABA biosynthesis). Interestingly, the expression of lipid-transfer protein (nsLTP) genes was also highly up-regulated under drought conditions in IAPAR59. This may have been related to the thicker cuticle observed on the abaxial leaf surface in IAPAR59 compared to Rubi. CONCLUSIONS The full transcriptome assembly of C. arabica, followed by functional annotation, enabled us to identify differentially expressed genes related to drought conditions. Using these data, candidate genes were selected and their differential expression profiles were confirmed by qPCR experiments in plagiotropic buds of IAPAR59 and Rubi under drought conditions. As regards the genes up-regulated under drought conditions, specifically in the drought-tolerant IAPAR59, several corresponded to orphan genes but also to genes coding proteins involved in signal transduction pathways, as well as ABA and lipid metabolism, for example. The identification of these genes should help advance our understanding of the genetic determinism of drought tolerance in coffee.
Collapse
Affiliation(s)
- Luciana Souto Mofatto
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Fernanda de Araújo Carneiro
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Natalia Gomes Vieira
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Karoline Estefani Duarte
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Ramon Oliveira Vidal
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Jean Carlos Alekcevetch
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | - Michelle Guitton Cotta
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
| | | | | | | | | | | | - David Pot
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| | - Gustavo Costa Rodrigues
- />Embrapa Informática Agropecuária, UNICAMP, Av. André Tosello n° 209, CP 6041, 13083-886 Campinas, SP Brazil
| | - Marcelo Falsarella Carazzolle
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Gonçalo Amarante Guimarães Pereira
- />Laboratório de Genômica e Expressão (LGE), Departamento de Genética e Evolução, Instituto de Biologia/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP Brazil
| | - Alan Carvalho Andrade
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />present address: Embrapa Café, INOVACAFÉ, Campus UFLA, 37200-000 Lavras, MG Brazil
| | - Pierre Marraccini
- />Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), Parque Estação Biológica, CP 02372, 70770-917, Brasilia, DF Brazil
- />CIRAD UMR AGAP, F-34398 Montpellier, France
| |
Collapse
|
37
|
Luo Z, Duan T, Yuan S, Chen S, Bai X, Zhang D. Reproductive isolation between sympatric sister species, Mussaenda kwangtungensis and M. pubescens var. alba. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:859-870. [PMID: 25545748 DOI: 10.1111/jipb.12325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Reproductive isolation defines the biological species concept and plays a key role in the formation and maintenance of species. The relative contributions of different isolating stages has been suggested to be closely associated with phylogenetic relatedness. Few studies have focused on the relative contributions of pre- versus post-zygotic mechanisms, and even fewer have been conducted under strict phylogenetic frameworks. Pre- and post-zygotic reproductive isolation stages have been investigated in the sister species Mussaenda kwangtungensis and M. pubescens var. alba. The two species have partly overlapping distribution ranges and flowering times, while the principal pollinators differed strikingly for them, demonstrating strong pre-zygotic isolations. Natural hybrids were detected by simple sequence repeat markers and their maternal parents were identified based on chloroplast gene sequences. Five out of 81 individuals were suggested to be hybrids that fall into the categories F2, BC1, and BC2 by the NewHybrids analysis. Interspecific crossings resulted in significantly reduced fruit set and seed germination rates. Phylogenetic analysis revealed short Kimura-2-parameter distance between M. kwangtungensis and M. pubescens var. alba. These findings strongly supported the hypothesis that for species with a closer phylogenetic relationship, pre-zygotic isolation plays an important part in limiting gene exchange in sympatric areas.
Collapse
Affiliation(s)
- Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tingting Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Chen
- Beneficial Insects Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiufeng Bai
- Department of Cell Biology, the Third Military Medical University, Chongqing, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
38
|
Talat F, Wang K. Comparative Bioinformatics Analysis of the Chloroplast Genomes of a Wild Diploid Gossypium and Two Cultivated Allotetraploid Species. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:47-56. [PMID: 28959299 DOI: 10.15171/ijb.1231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton.G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. Present study was conducted in order to analyse the sequence of its chloroplast. OBJECTIVES Present study was conducted to study and compare the complete chloroplast sequence of G. thurberi, analyses of its genome structure, gene content and organization, repeat sequence and codon usage and comparison with two cultivated allotetraploid sequenced cotton species. MATERIALS AND METHODS The available sequence was assembled by DNAman (Version 8.1.2.378). Gene annotation was mainly performed by DOGMA. The map of genome structure and gene distribution were carried out using OGDRAW V1.1. Relative synonymous codon usage (RSCU) of different codons in each gene sample was calculated by codonW in Mobyle. To determine the repeat sequence and location, an online version of REPuter was used. RESULTS The G. thurberi chloroplast (cp) genome is 160264 bp in length with conserved quadripartite structure. Single copy region of cp genome is separated by the two inverted regions. The large single copy region is 88,737 bp, and the small single copy region is 20,271 bp whereas the inverted repeat is 25,628 bp each. The plastidic genome has 113 single genes and 20 duplicated genes. The singletones encode 79 proteins, 4 ribosomal RNA genes and 30 transfer RNA genes. CONCLUSIONS Amongst all plastidic genes only 18 genes appeared to have 1-2 introns and when compared with cpDNA of two cultivated allotetraploid, rps18 was the only duplicated gene in G.thurberi. Despite the high level of conservation in cp genome SSRs ,these are useful in analysis of genetic diversity due to their greater efficiency as opposed to genomic SSRs. Low GC content is a significant feature of plastidic genomes, which is possibly formed after endosymbiosis by DNA replication and repair.
Collapse
Affiliation(s)
- Farshid Talat
- West Azerbaijan Agricultural and Natural Resources Research Center, AREEO, Urmia, Iran.,Cotton Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China
| | - Kunbo Wang
- Cotton Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China
| |
Collapse
|
39
|
Redwan RM, Saidin A, Kumar SV. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC PLANT BIOLOGY 2015; 15:196. [PMID: 26264372 PMCID: PMC4534033 DOI: 10.1186/s12870-015-0587-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/03/2015] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. RESULTS In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus. CONCLUSIONS The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.
Collapse
Affiliation(s)
- R M Redwan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - A Saidin
- Novocraft Technology Sdn. Bhd., 3 Two Square, Seksyen 19, Petaling Jaya, Selangor, Malaysia.
| | - S V Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
40
|
Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, Zheng C, Zheng W, Cheng T, Shi J. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. FRONTIERS IN PLANT SCIENCE 2015; 6:447. [PMID: 26136762 PMCID: PMC4468836 DOI: 10.3389/fpls.2015.00447] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 05/03/2023]
Abstract
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.
Collapse
Affiliation(s)
- Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Liming Yang
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Guangxin Liu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Yu Sheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Chen Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Weiwei Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| |
Collapse
|
41
|
Yang JB, Li DZ, Li HT. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour 2014; 14:1024-31. [PMID: 24620934 DOI: 10.1111/1755-0998.12251] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022]
Abstract
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.
Collapse
Affiliation(s)
- Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | |
Collapse
|
42
|
Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. THE PLANT CELL 2013; 25:3711-25. [PMID: 24143802 PMCID: PMC3877813 DOI: 10.1105/tpc.113.113373] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/09/2013] [Accepted: 09/26/2013] [Indexed: 05/18/2023]
Abstract
Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Systematic and Evolutionary Botany, University of Vienna, A-1030 Vienna, Austria
- Address correspondence to
| | - Kai F. Müller
- Institute for Evolution and Biodiversity, University of Muenster, D-48149 Muenster, Germany
| | - Claude W. de Pamphilis
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, D-53115 Bonn, Germany
| | - Norman J. Wickett
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, Pennsylvania 16802
- Chicago Botanic Garden, Glencoe, Illinois 60022
| | - Yan Zhang
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Susanne S. Renner
- Department of Biology, Ludwig Maximilian University, D-80638 Munich, Germany
| | - Gerald M. Schneeweiss
- Department of Systematic and Evolutionary Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
43
|
Ku C, Chung WC, Chen LL, Kuo CH. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids. PLoS One 2013; 8:e68518. [PMID: 23825699 PMCID: PMC3688999 DOI: 10.1371/journal.pone.0068518] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/30/2013] [Indexed: 11/19/2022] Open
Abstract
The Madagascar periwinkle (Catharanthusroseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a reference-assisted approach to assemble the complete plastome of C. roseus, which could be applied to other C. roseus-related studies. The C. roseus plastome is the second completely sequenced plastome in the asterid order Gentianales. We performed comparative analyses with two other representative sequences in the same order, including the complete plastome of Coffeaarabica (from the basal Gentianales family Rubiaceae) and the nearly complete plastome of Asclepiassyriaca (Apocynaceae). The results demonstrated considerable variations in gene content and plastome organization within Apocynaceae, including the presence/absence of three essential genes (i.e., accD, clpP, and ycf1) and large size changes in non-coding regions (e.g., rps2-rpoC2 and IRb-ndhF). To find plastome markers of potential utility for Catharanthus breeding and phylogenetic analyses, we identified 41 C. roseus-specific simple sequence repeats. Furthermore, five intergenic regions with high divergence between C. roseus and three other euasterids I taxa were identified as candidate markers. To resolve the euasterids I interordinal relationships, 82 plastome genes were used for phylogenetic inference. With the addition of representatives from Apocynaceae and sampling of most other asterid orders, a sister relationship between Gentianales and Solanales is supported.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chia Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Ling Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
44
|
Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 2013; 8:e57607. [PMID: 23460883 PMCID: PMC3584094 DOI: 10.1371/journal.pone.0057607] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/22/2013] [Indexed: 12/23/2022] Open
Abstract
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
Collapse
Affiliation(s)
- Jun Qian
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyuan Song
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Gao
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Zhu
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Xu
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Pang
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Yao
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Sun
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian’en Li
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuyuan Li
- Guangzhou Pharmaceutical Holding Limited, Guangzhou, China
| | - Juyan Liu
- Guangzhou Pharmaceutical Holding Limited, Guangzhou, China
| | - Haibin Xu
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (HX); (SC)
| | - Shilin Chen
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medicinal Sciences, Beijing, China
- * E-mail: (HX); (SC)
| |
Collapse
|
45
|
Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J, Xu H, Chen S. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 2013. [PMID: 23460883 DOI: 10.1371/journal.pone0057607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
Collapse
Affiliation(s)
- Jun Qian
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nair RR, Nandhini MB, Monalisha E, Murugan K, Sethuraman T, Nagarajan S, Rao NSP, Ganesh D. Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 2012; 8:1096-104. [PMID: 23251044 PMCID: PMC3523224 DOI: 10.6026/97320630081096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 01/27/2023] Open
Abstract
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A(3), T(3), G(3), C(3), GC(3)) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC(3) plot grouped majority of the analyzed genes on or just below the left side of the expected GC(3) curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.
Collapse
Affiliation(s)
- Rahul R Nair
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Manivasagam B Nandhini
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Elango Monalisha
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| | - Kavitha Murugan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Thilaga Sethuraman
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Sangeetha Nagarajan
- Plant Genetic Improvement Laboratory, Department of Biotechnology, SPK Centre for Environmental
Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627 412, Tirunelveli District, Tamil Nadu. India
| | - Nayani Surya Prakash Rao
- Division of Plant Breeding, Central Coffee Research Institute, Coffee Research Station Post 577 117, Chikmagalur District, Karnataka, India
| | - Doss Ganesh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar 625 021, Madurai, Tamil Nadu, India
| |
Collapse
|
47
|
Huotari T, Korpelainen H. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes. Gene 2012; 508:96-105. [PMID: 22841789 DOI: 10.1016/j.gene.2012.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 02/02/2023]
|
48
|
Wang Y, Ding J, Daniell H, Hu H, Li X. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. PLANT MOLECULAR BIOLOGY 2012; 80:177-87. [PMID: 22733202 DOI: 10.1007/s11103-012-9938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | |
Collapse
|
49
|
Liu J, Qi ZC, Zhao YP, Fu CX, Jenny Xiang QY. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales--influences of gene partitions and taxon sampling. Mol Phylogenet Evol 2012; 64:545-62. [PMID: 22643288 DOI: 10.1016/j.ympev.2012.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 12/30/2022]
Abstract
The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions.
Collapse
Affiliation(s)
- Juan Liu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
50
|
Yi DK, Lee HL, Sun BY, Chung MY, Kim KJ. The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids. Mol Cells 2012; 33:497-508. [PMID: 22555800 PMCID: PMC3887725 DOI: 10.1007/s10059-012-2281-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/11/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
This study reports the complete chloroplast (cp) DNA sequence of Eleutherococcus senticosus (GenBank: JN 637765), an endangered endemic species. The genome is 156,768 bp in length, and contains a pair of inverted repeat (IR) regions of 25,930 bp each, a large single copy (LSC) region of 86,755 bp and a small single copy (SSC) region of 18,153 bp. The structural organization, gene and intron contents, gene order, AT content, codon usage, and transcription units of the E. senticosus chloroplast genome are similar to that of typical land plant cp DNA. We aligned and analyzed the sequences of 86 coding genes, 19 introns and 113 intergenic spacers (IGS) in three different taxonomic hierarchies; Eleutherococcus vs. Panax, Eleutherococcus vs. Daucus, and Eleutherococcus vs. Nicotiana. The distribution of indels, the number of polymorphic sites and nucleotide diversity indicate that positional constraint is more important than functional constraint for the evolution of cp genome sequences in Asterids. For example, the intron sequences in the LSC region exhibited base substitution rates 5-11-times higher than that of the IR regions, while the intron sequences in the SSC region evolved 7-14-times faster than those in the IR region. Furthermore, the Ka/Ks ratio of the gene coding sequences supports a stronger evolutionary constraint in the IR region than in the LSC or SSC regions. Therefore, our data suggest that selective sweeps by base collection mechanisms more frequently eliminate polymorphisms in the IR region than in other regions. Chloroplast genome regions that have high levels of base substitutions also show higher incidences of indels. Thirty-five simple sequence repeat (SSR) loci were identified in the Eleutherococcus chloroplast genome. Of these, 27 are homopolymers, while six are di-polymers and two are tri-polymers. In addition to the SSR loci, we also identified 18 medium size repeat units ranging from 22 to 79 bp, 11 of which are distributed in the IGS or intron regions. These medium size repeats may contribute to developing a cp genome-specific gene introduction vector because the region may use for specific recombination sites.
Collapse
Affiliation(s)
- Dong-Keun Yi
- School of Life Sciences, Korea University, Seoul 136-701,
Korea
| | - Hae-Lim Lee
- School of Life Sciences, Korea University, Seoul 136-701,
Korea
| | | | | | - Ki-Joong Kim
- School of Life Sciences, Korea University, Seoul 136-701,
Korea
| |
Collapse
|