1
|
Zhang P, Wang Y, Zhu G, Zhu H. Developing carotenoids-enhanced tomato fruit with multi-transgene stacking strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108575. [PMID: 38554536 DOI: 10.1016/j.plaphy.2024.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
As natural dominant pigments, carotenoids and their derivatives not only contribute to fruit color and flavor quality but are regarded as phytochemicals beneficial to human health because of various bioactivities. Tomato is one of the most important vegetables as well as a main dietary source of carotenoids. So, it's of great importance to generate carotenoid-biofortified tomatoes. The carotenoid biosynthesis pathway is a network co-regulated by multiple enzymes and regulatory genes. Here, we assembled four binary constructs containing different combinations of four endogenous carotenoids metabolic-related genes, including SlORHis, SlDXS, SlPSY, and SlBHY by using a high efficiency multi-transgene stacking system and a series of fruit-specific promotors. Transgenic lines overexpression SlORHis alone, three genes (SlORHis/SlDXS/SlPSY), two genes (SlORHis/SlBHY), and all these four genes (SlORHis/SlDXS/SlPSY/SlBHY) were enriched with carotenoids to varying degrees. Notably, overexpressing SlORHis alone showed comparable effects with simultaneous overexpression of the key regulatory enzyme coding genes SlDXS, SlPSY, and SlORHis in promoting carotenoid accumulation. Downstream carotenoid derivatives zeaxanthin and violaxanthin were detected only in lines containing SlBHY. In addition, the sugar content and total antioxidant capacity of these carotenoids-enhanced tomatoes was also increased. These data provided useful information for the future developing of biofortified tomatoes with different carotenoid profiles, and confirmed a promising system for generation of nutrients biofortified tomatoes by multiple engineering genes stacking strategy.
Collapse
Affiliation(s)
- Peiyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Yifan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China; Sichuan Advanced Agricultural & Industrial Institute, China Agriculture University, Chengdu, 611430, Sichuan, PR China.
| |
Collapse
|
2
|
Wu Y, Yuan Y, Jiang W, Zhang X, Ren S, Wang H, Zhang X, Zhang Y. Enrichment of health-promoting lutein and zeaxanthin in tomato fruit through metabolic engineering. Synth Syst Biotechnol 2022; 7:1159-1166. [PMID: 36101899 PMCID: PMC9445293 DOI: 10.1016/j.synbio.2022.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Carotenoids constitute a large group of natural pigments widely distributed in nature. These compounds not only provide fruits and flowers with distinctive colors, but also have significant health benefits for humans. Lutein and zeaxanthin, both oxygen-containing carotenoids, are considered to play vital roles in promoting ocular development and maintaining eye health. However, humans and mammals cannot synthesize these carotenoid derivatives, which can only be taken from certain fruits or vegetables. Here, by introducing four endogenous synthetic genes, SlLCYE, SlLCYB, SlHYDB, and SlHYDE under fruit-specific promoters, we report the metabolic engineering of lutein/zeaxanthin biosynthesis in tomato fruit. Transgenic lines overexpression of one (SlLCYE), two (SlLCYE and SlLCYB; SlLCYB and SlHYDB), and all these four synthetic genes re-established the lutein/zeaxanthin biosynthetic pathways in the ripe tomato fruit and thus resulted in various types of carotenoid riched lines. Metabolic analyses of these engineered tomato fruits showed the strategy involved expression of SlLCYE tends to produce α-carotene and lutein, as well as a higher content of β-carotene and zeaxanthin was detected in lines overexpressing SlLCYB. In addition, the different combinations of engineered tomatoes with riched carotenoids showed higher antioxidant capacity and were associated with a significantly extended shelf life during postharvest storage. This work provides a successful example of accurate metabolic engineering in tomato fruit, suggesting the potential utility for synthetic biology to improve agronomic traits in crops. These biofortified tomato fruits could be also exploited as new research subjects for studying the health benefits of carotenoid derivatives.
Collapse
|
3
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
4
|
Barja MV, Ezquerro M, Beretta S, Diretto G, Florez-Sarasa I, Feixes E, Fiore A, Karlova R, Fernie AR, Beekwilder J, Rodríguez-Concepción M. Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. THE NEW PHYTOLOGIST 2021; 231:255-272. [PMID: 33590894 DOI: 10.1111/nph.17283] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/08/2021] [Indexed: 05/28/2023]
Abstract
Geranylgeranyl diphosphate (GGPP) produced by GGPP synthase (GGPPS) serves as a precursor for many plastidial isoprenoids, including carotenoids. Phytoene synthase (PSY) converts GGPP into phytoene, the first committed intermediate of the carotenoid pathway. Here we used biochemical, molecular, and genetic tools to characterise the plastidial members of the GGPPS family in tomato (Solanum lycopersicum) and their interaction with PSY isoforms. The three tomato GGPPS isoforms found to localise in plastids (SlG1, 2 and 3) exhibit similar kinetic parameters. Gene expression analyses showed a preferential association of individual GGPPS and PSY isoforms when carotenoid biosynthesis was induced during root mycorrhization, seedling de-etiolation and fruit ripening. SlG2, but not SlG3, physically interacts with PSY proteins. By contrast, CRISPR-Cas9 mutants defective in SlG3 showed a stronger impact on carotenoid levels and derived metabolic, physiological and developmental phenotypes compared with those impaired in SlG2. Double mutants defective in both genes could not be rescued. Our work demonstrates that the bulk of GGPP production in tomato chloroplasts and chromoplasts relies on two cooperating GGPPS paralogues, unlike other plant species such as Arabidopsis thaliana, rice or pepper, which produce their essential plastidial isoprenoids using a single GGPPS isoform.
Collapse
Affiliation(s)
- M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Miguel Ezquerro
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Stefano Beretta
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Elisenda Feixes
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Jules Beekwilder
- BU Bioscience, Wageningen University and Research, Wageningen, 6700AA, the Netherlands
| | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, 46022, Spain
| |
Collapse
|
5
|
Timerbaev V, Dolgov S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato. PLANTA 2019; 250:1307-1323. [PMID: 31270599 DOI: 10.1007/s00425-019-03227-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
The tomato ELIP gene promoter is mainly active in the ripening fruit. Considering its high activity, the promoter could be used for molecular breeding of plants in the future. The ability to obtain new varieties of transgenic plants with economically valuable traits relies on a high level of target gene expression, which is largely controlled by a gene promoter. Hence, research aimed at finding and characterizing new tissue-specific promoters that direct gene expression in specific plant tissues or at certain developmental stages has become the most important field of plant biotechnology. Here, we cloned and characterized the promoter of the early light-inducible protein (ELIP) gene from tomato (Solanum lycopersicum cv. Yalf). ELIPs are produced in the presence of light and putatively function in the chloroplast-to-chromoplast conversion, playing a photorepairing role in the photosynthetic system. Analysis of the promoter sequence revealed multiple cis-acting elements related to light responsiveness, and other motifs involved in plant hormone response and circadian control. To determine the functionality of the promoter, seven 5'-deletion variants were fused with the β-glucuronidase (GUS) reporter gene and introduced into tomato. Histochemical analysis of transgenic tomato plants revealed different levels of GUS activity in most analyzed tissues, depending on the promoter fragment used. The intensity of staining was considerably higher in ripening fruits than in unripe and non-fruit tissues. Quantitative analysis indicated that the level of GUS activity with the longest (full-length) version of the ELIP promoter in ripened fruits was comparable to that in plants expressing the constitutive CaMV35S promoter. Further, the location of both negative and positive regulatory motifs was identified. The described ELIP promoter is a potential tool for various applications in plant biotechnology.
Collapse
Affiliation(s)
- Vadim Timerbaev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia.
- Nikita Botanical Gardens-National Scientific Center, Russian Academy of Sciences, Yalta, 298648, Russia.
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Sergey Dolgov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Russia
- Nikita Botanical Gardens-National Scientific Center, Russian Academy of Sciences, Yalta, 298648, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| |
Collapse
|
6
|
D’Andrea L, Rodriguez-Concepcion M. Manipulation of Plastidial Protein Quality Control Components as a New Strategy to Improve Carotenoid Contents in Tomato Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1071. [PMID: 31543891 PMCID: PMC6739439 DOI: 10.3389/fpls.2019.01071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/07/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids such as β-carotene (pro-vitamin A) and lycopene accumulate at high levels during tomato (Solanum lycopersicum L.) fruit ripening, contributing to the characteristic color and nutritional quality of ripe tomatoes. Besides their role as pigments in chromoplast-harboring tissues such as ripe fruits, carotenoids are important for photosynthesis and photoprotection in the chloroplasts of photosynthetic tissues. Interestingly, recent work in Arabidopsis thaliana (L.) Heynh. has unveiled a critical role of chloroplast protein quality control components in the regulation of carotenoid biosynthesis. The accumulation (i.e. degradation rate) and activity (i.e. folding status) of phytoene synthase (PSY) and other Arabidopsis biosynthetic enzymes is modulated by chaperones such as Orange (OR) and Hsp70 in coordination with the stromal Clp protease complex. OR and Clp protease were recently shown to also influence PSY stability and carotenoid accumulation in tomato. Here we show how manipulating the levels of plastid-localized Hsp70 in transgenic tomato plants can also impact the accumulation of carotenoids in ripe fruit. The resulting carotenoid profile and chromoplast ultrastructure, however, are different from those obtained in tomatoes from transgenic lines with increased OR activity. These results suggest that different chaperone families target different processes related to carotenoid metabolism and accumulation during tomato ripening. We further discuss other possible targets for future manipulation in tomato based on the knowledge acquired in Arabidopsis.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- *Correspondence: Manuel Rodriguez-Concepcion,
| |
Collapse
|
7
|
Vazquez-Vilar M, Orzaez D, Patron N. DNA assembly standards: Setting the low-level programming code for plant biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:33-41. [PMID: 29907307 DOI: 10.1016/j.plantsci.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/28/2023]
Abstract
Synthetic Biology is defined as the application of engineering principles to biology. It aims to increase the speed, ease and predictability with which desirable changes and novel traits can be conferred to living cells. The initial steps in this process aim to simplify the encoding of new instructions in DNA by establishing low-level programming languages for biology. Together with advances in the laboratory that allow multiple DNA molecules to be efficiently assembled together into a desired order in a single step, this approach has simplified the design and assembly of multigene constructs and has even facilitated the automated construction of synthetic chromosomes. These advances and technologies are now being applied to plants, for which there are a growing number of software and wetware tools for the design, construction and delivery of DNA molecules and for the engineering of endogenous genes. Here we review the efforts of the past decade that have established synthetic biology workflows and tools for plants and discuss the constraints and bottlenecks of this emerging field.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Spain.
| | - Nicola Patron
- Department of Engineering Biology, The Earlham Institute, Norwich Research Park, Norfolk, NR1 7UZ, UK.
| |
Collapse
|
8
|
D’Andrea L, Simon-Moya M, Llorente B, Llamas E, Marro M, Loza-Alvarez P, Li L, Rodriguez-Concepcion M. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1557-1568. [PMID: 29385595 PMCID: PMC5888976 DOI: 10.1093/jxb/erx491] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/15/2017] [Indexed: 05/18/2023]
Abstract
Profound metabolic and structural changes are required for fleshy green fruits to ripen and become colorful and tasty. In tomato (Solanum lycopersicum), fruit ripening involves the differentiation of chromoplasts, specialized plastids that accumulate carotenoid pigments such as β-carotene (pro-vitamin A) and lycopene. Here, we explored the role of the plastidial Clp protease in chromoplast development and carotenoid accumulation. Ripening-specific silencing of one of the subunits of the Clp proteolytic complex resulted in β-carotene-enriched fruits that appeared orange instead of red when ripe. Clp-defective fruit displayed aberrant chromoplasts and up-regulated expression of nuclear genes encoding the tomato homologs of Orange (OR) and ClpB3 chaperones, most probably to deal with misfolded and aggregated proteins that could not be degraded by the Clp protease. ClpB3 and OR chaperones protect the carotenoid biosynthetic enzymes deoxyxylulose 5-phosphate synthase and phytoene synthase, respectively, from degradation, whereas OR chaperones additionally promote chromoplast differentiation by preventing the degradation of carotenoids such as β-carotene. We conclude that the Clp protease contributes to the differentiation of chloroplasts into chromoplasts during tomato fruit ripening, acting in co-ordination with specific chaperones that alleviate protein folding stress, promote enzyme stability and accumulation, and prevent carotenoid degradation.
Collapse
Affiliation(s)
- Lucio D’Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Miguel Simon-Moya
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mónica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Mediterranean Technology Park, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Mediterranean Technology Park, Castelldefels, Barcelona, Spain
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Fowler DK, Stewart S, Seredick S, Eisen JS, Stankunas K, Washbourne P. A MultiSite Gateway Toolkit for Rapid Cloning of Vertebrate Expression Constructs with Diverse Research Applications. PLoS One 2016; 11:e0159277. [PMID: 27500400 PMCID: PMC4976983 DOI: 10.1371/journal.pone.0159277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Recombination-based cloning is a quick and efficient way to generate expression vectors. Recent advancements have provided powerful recombinant DNA methods for molecular manipulations. Here, we describe a novel collection of three-fragment MultiSite Gateway cloning system-compatible vectors providing expanded molecular tools for vertebrate research. The components of this toolkit encompass a broad range of uses such as fluorescent imaging, dual gene expression, RNA interference, tandem affinity purification, chemically-inducible dimerization and lentiviral production. We demonstrate examples highlighting the utility of this toolkit for producing multi-component vertebrate expression vectors with diverse primary research applications. The vectors presented here are compatible with other Gateway toolkits and collections, facilitating the rapid generation of a broad range of innovative DNA constructs for biological research.
Collapse
Affiliation(s)
- Daniel K. Fowler
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Scott Stewart
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Steve Seredick
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kryn Stankunas
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Philip Washbourne
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
10
|
Sagor GHM, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1116-26. [PMID: 26402509 PMCID: PMC11388862 DOI: 10.1111/pbi.12480] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 05/19/2023]
Abstract
Enhancement of sugar content and sweetness is desirable in some vegetables and in almost all fruits; however, biotechnological methods to increase sugar content are limited. Here, a completely novel methodological approach is presented that produces sweeter tomato fruits but does not have any negative effects on plant growth. Sucrose-induced repression of translation (SIRT), which is mediated by upstream open reading frames (uORFs), was initially reported in Arabidopsis AtbZIP11, a class S basic region leucine zipper (bZIP) transcription factor gene. Here, two AtbZIP11 orthologous genes, SlbZIP1 and SlbZIP2, were identified in tomato (Solanum lycopersicum). SlbZIP1 and SlbZIP2 contained four and three uORFs, respectively, in the cDNA 5'-leader regions. The second uORFs from the 5' cDNA end were conserved and involved in SIRT. Tomato plants were transformed with binary vectors in which only the main open reading frames (ORFs) of SlbZIP1 and SlbZIP2, without the SIRT-responsive uORFs, were placed under the control of the fruit-specific E8 promoter. Growth and morphology of the resulting transgenic tomato plants were comparable to those of wild-type plants. Transgenic fruits were approximately 1.5-fold higher in sugar content (sucrose/glucose/fructose) than nontransgenic tomato fruits. In addition, the levels of several amino acids, such as asparagine and glutamine, were higher in transgenic fruits than in wild-type fruits. This was expected because SlbZIP transactivates the asparagine synthase and proline dehydrogenase genes. This 'sweetening' technology is broadly applicable to other plants that utilize sucrose as a major translocation sugar.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Thomas Berberich
- Laboratory Center, Biodiversity and Climate Research Center, Frankfurt am Main, Germany
| | - Shun Tanaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Manabu Nishiyama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Koji Muramoto
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, Japan
| |
Collapse
|
11
|
Llorente B, D'Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, Andilla J, Loza-Alvarez P, Rodriguez-Concepcion M. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:107-19. [PMID: 26648446 DOI: 10.1111/tpj.13094] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/23/2015] [Accepted: 11/23/2015] [Indexed: 05/19/2023]
Abstract
Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.
Collapse
Affiliation(s)
- Briardo Llorente
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| | - M Aguila Ruiz-Sola
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| | - Esther Botterweg
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| | - Jordi Andilla
- Institut de Ciencies Fotoniques (ICFO), Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Pablo Loza-Alvarez
- Institut de Ciencies Fotoniques (ICFO), Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics, (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Cerdanyola del Valles (Barcelona), Spain
| |
Collapse
|
12
|
Juarez P, Fernandez-del-Carmen A, Rambla JL, Presa S, Mico A, Granell A, Orzaez D. Evaluation of unintended effects in the composition of tomatoes expressing a human immunoglobulin A against rotavirus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8158-8168. [PMID: 25065456 DOI: 10.1021/jf502292g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The production of neutralizing immunoglobulin A (IgA) in edible fruits as a means of oral passive immunization is a promising strategy for the inexpensive treatment of mucosal diseases. This approach is based on the assumption that the edible status remains unaltered in the immunoglobulin-expressing fruit, and therefore extensive purification is not required for mucosal delivery. However, unintended effects associated with IgA expression such as toxic secondary metabolites and protein allergens cannot be dismissed a priori and need to be investigated. This paper describes a collection of independent transgenic tomato lines expressing a neutralizing human IgA against rotavirus, a mucosal pathogen producing severe diarrhea episodes. This collection was used to evaluate possible unintended effects associated with recombinant IgA expression. A comparative analysis of protein and secondary metabolite profiles using wild type lines and other commercial varieties failed to find unsafe features significantly associated with IgA expression. Preliminary, the data indicate that formulations derived from IgA tomatoes are as safe for consumption as equivalent formulations derived from wild type tomatoes.
Collapse
MESH Headings
- Allergens/adverse effects
- Allergens/genetics
- Allergens/metabolism
- Antibodies, Neutralizing/adverse effects
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Dietary Proteins/adverse effects
- Dietary Proteins/metabolism
- Food, Genetically Modified/adverse effects
- Fruit/adverse effects
- Fruit/chemistry
- Fruit/genetics
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Humans
- Immunization, Passive/adverse effects
- Immunoglobulin A/adverse effects
- Immunoglobulin A/genetics
- Immunoglobulin A/metabolism
- Least-Squares Analysis
- Solanum lycopersicum/adverse effects
- Solanum lycopersicum/chemistry
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Plant Proteins/adverse effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/adverse effects
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Principal Component Analysis
- Recombinant Proteins/adverse effects
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Rotavirus/growth & development
- Rotavirus/immunology
- Rotavirus Infections/immunology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/virology
- Secondary Metabolism
- Spain
Collapse
Affiliation(s)
- Paloma Juarez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientı́ficas, Universidad Politécnica de Valencia , Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C. Accumulation of anthocyanins in tomato skin extends shelf life. THE NEW PHYTOLOGIST 2013; 200:650-655. [PMID: 24102530 DOI: 10.1111/nph.12524] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/21/2013] [Indexed: 05/21/2023]
Abstract
Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life.
Collapse
Affiliation(s)
- Laura Bassolino
- Plant Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Yang Zhang
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | | | - Claudia Kiferle
- Plant Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Pierdomenico Perata
- Plant Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
14
|
Estornell LH, Pons C, Martínez A, O'Connor JE, Orzaez D, Granell A. A VIN1 GUS::GFP fusion reveals activated sucrose metabolism programming occurring in interspersed cells during tomato fruit ripening. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1113-21. [PMID: 23598179 DOI: 10.1016/j.jplph.2013.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 05/22/2023]
Abstract
The tomato is a model for fleshy fruit development and ripening. Here we report on the identification of a novel unique cell autonomous/cellular pattern of expression that was detected in fruits of transgenic tomato lines carrying a GFP GUS driven by the fruit specific vacuolar invertase promoter VIN1. The VIN1 promoter sequence faithfully reproduced the global endogenous VIN expression by conferring a biphasic pattern of expression with a second phase clearly associated to fruit ripening. A closer view revealed a salt and pepper pattern of expression characterized by individual cells exhibiting a range of expression levels (from high to low) surrounded by cells with no expression. This type of pattern was detected across different fruit tissues and cell types with some preferences for vascular, sub-epidermal layer and the inner part of the fruit. Cell ability to show promoter activity was neither directly associated with overall ripening - as we find VIN+ and - VIN- cells at all stages of ripening, nor with cell size. Nevertheless the number of cells with active VIN-driven expression increased with ripening and the activity of the VIN promoter seems to be inversely correlated with cell size in VIN+ cells. Gene expression analysis of FACS-sorted VIN+ cells revealed a transcriptionally distinct subpopulation of cells defined by increased expression of genes related to sucrose metabolism, and decreased activity in protein synthesis and chromatin remodeling. This finding suggests that local micro heterogeneity may underlie some aspects (i.e. the futile cycles involving sucrose metabolism) of an otherwise more uniform looking ripening program.
Collapse
Affiliation(s)
- Leandro Hueso Estornell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Production of pharmaceutical proteins in solanaceae food crops. Int J Mol Sci 2013; 14:2753-73. [PMID: 23434646 PMCID: PMC3588013 DOI: 10.3390/ijms14022753] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.
Collapse
|
16
|
Fernandez-Moreno JP, Orzaez D, Granell A. VIGS: a tool to study fruit development in Solanum lycopersicum. Methods Mol Biol 2013; 975:183-96. [PMID: 23386304 DOI: 10.1007/978-1-62703-278-0_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A visually traceable system for fast analysis of gene functions based on Fruit-VIGS methodology is described. In our system, the anthocyanin accumulation from purple transgenic tomato lines provides the appropriate background for fruit-specific gene silencing. The tomato Del/Ros1 background ectopically express Delila (Del) and Rosea1 (Ros1) transgenes under the control of fruit ripening E8 promoter, activating specifically anthocyanin biosynthesis during tomato fruit ripening. The Virus-Induced Gene Silencing (VIGS) of Delila and Rosea1 produces a color change in the silenced area easily identifiable. Del/Ros1 VIGS is achieved by agroinjection of an infective clone of Tobacco Rattle Virus (pTRV1 and pTRV2 binary plasmids) directly into the tomato fruit. The infective clone contains a small fragment of Del and Ros1 coding regions (named DR module). The co-silencing of reporter Del/Ros1 genes and a gene of interest (GOI) in the same region enables us to identify the precise region where silencing is occurring. The function of the GOI is established by comparing silenced sectors of fruits where both GOI and reporter DR genes have been silenced with fruits in which only the reporter DR genes have been silenced. The Gateway vector pTRV2_DR_GW was developed to facilitate the cloning of different GOIs together with DR genes. Our tool is particularly useful to study genes involved in metabolic processes during fruit ripening, which by themselves would not produce a visual phenotype.
Collapse
|
17
|
Hiwasa-Tanase K, Kuroda H, Hirai T, Aoki K, Takane K, Ezura H. Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development. PLANT CELL REPORTS 2012; 31:1415-1424. [PMID: 22481231 DOI: 10.1007/s00299-012-1257-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
UNLABELLED Fruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development. KEY MESSAGE Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.
Collapse
Affiliation(s)
- Kyoko Hiwasa-Tanase
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Guillet C, Aboul-Soud MAM, Le Menn A, Viron N, Pribat A, Germain V, Just D, Baldet P, Rousselle P, Lemaire-Chamley M, Rothan C. Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development. PLoS One 2012; 7:e36795. [PMID: 22615815 PMCID: PMC3355170 DOI: 10.1371/journal.pone.0036795] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5' SlPPC2 promoter deletions fused to LUC in fruits at the 8(th) day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5' UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars.
Collapse
Affiliation(s)
- Carine Guillet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Mourad A. M. Aboul-Soud
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Aline Le Menn
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Nicolas Viron
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Anne Pribat
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Véronique Germain
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Daniel Just
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Pierre Baldet
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Patrick Rousselle
- Unité de Génétique et d’Amélioration des Fruits et Légumes, Institut National de la Recherche Agronomique, Montfavet, France
| | - Martine Lemaire-Chamley
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| | - Christophe Rothan
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Villenave d’Ornon, France
- Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Université Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
19
|
Juárez P, Presa S, Espí J, Pineda B, Antón MT, Moreno V, Buesa J, Granell A, Orzaez D. Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:341-352. [PMID: 22070155 DOI: 10.1111/j.1467-7652.2011.00666.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Edible fruits are inexpensive biofactories for human health-promoting molecules that can be ingested as crude extracts or partially purified formulations. We show here the production of a model human antibody for passive protection against the enteric pathogen rotavirus in transgenically labelled tomato fruits. Transgenic tomato plants expressing a recombinant human immunoglobulin A (hIgA_2A1) selected against the VP8* peptide of rotavirus SA11 strain were obtained. The amount of hIgA_2A1 protein reached 3.6 ± 0.8% of the total soluble protein in the fruit of the transformed plants. Minimally processed fruit-derived products suitable for oral intake showed anti-VP8* binding activity and strongly inhibited virus infection in an in vitro virus neutralization assay. In order to make tomatoes expressing hIgA_2A1 easily distinguishable from wild-type tomatoes, lines expressing hIgA_2A1 transgenes were sexually crossed with a transgenic tomato line expressing the genes encoding Antirrhinum majus Rosea1 and Delila transcription factors, which confer purple colour to the fruit. Consequently, transgenically labelled purple tomato fruits expressing hIgA_2A1 have been developed. The resulting purple-coloured extracts from these fruits contain high levels of recombinant anti-rotavirus neutralizing human IgA in combination with increased amounts of health-promoting anthocyanins.
Collapse
Affiliation(s)
- Paloma Juárez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Estornell LH, Granell A, Orzaez D. Exploiting Multisite Gateway and pENFRUIT plasmid collection for fruit genetic engineering. Methods Mol Biol 2012; 847:351-368. [PMID: 22351021 DOI: 10.1007/978-1-61779-558-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
MultiSite Gateway cloning techniques based on homologous recombination facilitate the combinatorial assembly of basic genetic pieces (i.e., promoters, CDS, and terminators) into gene expression or gene silencing cassettes. pENFRUIT is a collection of MultiSite Triple Gateway Entry vectors dedicated to genetic engineering in fruits. It comprises a number of fruit-operating promoters as well as C-terminal tags adapted to the Gateway standard. In this way, flanking regulatory/labeling sequences can be easily Gateway-assembled with a given gene of interest for its ectopic expression or silencing in fruits. The resulting gene constructs can be analyzed in stable transgenic plants or in transient expression assays, the latter allowing fast testing of the increasing number of combinations arising from MultiSite methodology. A detailed description of the use of MultiSite cloning methodology for the assembly of pENFRUIT elements is presented.
Collapse
|
21
|
Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 2011; 30:80-8. [PMID: 21871680 DOI: 10.1016/j.tibtech.2011.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/20/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022]
Abstract
Genetic engineering methods based on the use of transgenes have been successfully adopted to improve crops. A novel all-native DNA gene technology consists of the creation of intragenic constructs by isolating genetic elements from a crop, rearranging them in vitro, and inserting them back into the plant. The ever-increasing genomic information and the elucidation of the molecular mechanisms that control fruit development could be exploited to confer the desired fruit phenotypes using endogenous DNA. The spatial/temporal regulation of genes can be modified by using appropriate endogenous regulatory elements, such as fruit-specific promoters. In addition, intragenic silencing can be employed to downregulate fruit-related genes. Here, we describe the available tools for intragenic manipulation of early phases of fleshy fruit initiation.
Collapse
|
22
|
Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 2011; 6:e21622. [PMID: 21750718 PMCID: PMC3131274 DOI: 10.1371/journal.pone.0021622] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/03/2011] [Indexed: 12/12/2022] Open
Abstract
Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop ("braid") topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.
Collapse
Affiliation(s)
- Alejandro Sarrion-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Erica Elvira Falconi
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Sara I. Zandalinas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Paloma Juárez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Asun Fernández-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia (UPV), Valencia, Spain
| |
Collapse
|
23
|
Quadrana L, Rodriguez MC, López M, Bermúdez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asis R, Rossi M, Asurmendi S, Carrari F. Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. PLANT PHYSIOLOGY 2011; 156:1278-91. [PMID: 21531899 PMCID: PMC3135922 DOI: 10.1104/pp.111.177345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/27/2011] [Indexed: 05/18/2023]
Abstract
Since the advent of the postgenomic era, efforts have focused on the development of rapid strategies for annotating plant genes of unknown function. Given its simplicity and rapidity, virus-induced gene silencing (VIGS) has become one of the preeminent approaches for functional analyses. However, several problems remain intrinsic to the use of such a strategy in the study of both metabolic and developmental processes. The most prominent of these is the commonly observed phenomenon of "sectoring" the tissue regions that are not effectively targeted by VIGS. To better discriminate these sectors, an effective marker system displaying minimal secondary effects is a prerequisite. Utilizing a VIGS system based on the tobacco rattle virus vector, we here studied the effect of silencing the endogenous phytoene desaturase gene (pds) and the expression and subsequent silencing of the exogenous green fluorescence protein (gfp) on the metabolism of Arabidopsis (Arabidopsis thaliana) leaves and tomato (Solanum lycopersicum) fruits. In leaves, we observed dramatic effects on primary carbon and pigment metabolism associated with the photobleached phenotype following the silencing of the endogenous pds gene. However, relatively few pleiotropic effects on carbon metabolism were observed in tomato fruits when pds expression was inhibited. VIGS coupled to gfp constitutive expression revealed no significant metabolic alterations after triggering of silencing in Arabidopsis leaves and a mild effect in mature green tomato fruits. By contrast, a wider impact on metabolism was observed in ripe fruits. Silencing experiments with an endogenous target gene of interest clearly demonstrated the feasibility of cosilencing in this system; however, carefully constructed control experiments are a prerequisite to prevent erroneous interpretation.
Collapse
|
24
|
Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res 2011; 20:1285-92. [PMID: 21359850 DOI: 10.1007/s11248-011-9495-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.
Collapse
|
25
|
McCurdy DW, Dibley S, Cahyanegara R, Martin A, Patrick JW. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. MOLECULAR PLANT 2010; 3:1049-63. [PMID: 20833733 DOI: 10.1093/mp/ssq050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hexoses accumulate to high concentrations (∼ 200 mM) in storage parenchyma cells of tomato fruit. Hexoses are sourced from the fruit apoplasm as hydrolysis products of phloem-imported sucrose. Three hexose transporters (LeHT1, LeHT2, LeHT3), expressed in fruit storage parenchyma cells, may contribute to hexose uptake by these cells. An analysis of their full-length sequences demonstrated that all three transporters belong to the STP sub-family of monosaccharide transporters that localize to plasma membranes. Heterologous expression of LeHT1 (and previously LeHT2, Gear et al., 2000), but not LeHT3, rescued a hexose transport-impaired yeast mutant when raised on glucose or fructose as the sole carbon source. Biochemically, LeHT1, similarly to LeHT2, exhibited transport properties consistent with a high-affinity glucose/H(+) symporter. Significantly, LeHT1 and LeHT2 also functioned as low-affinity fructose/H(+) symporters with apparent K(m) values commensurate with those of fruit tissues. A substantial reduction (80-90%) in fruit expression levels of all LeHT genes by RNAi-mediated knockdown caused a 55% decrease in fruit hexose accumulation. In contrast, photoassimilate production by source leaves and phloem transport capacity to fruit were unaffected by transporter knockdown. Collectively, these findings demonstrate that LeHTs play key roles in driving accumulation of hexoses into storage parenchyma cells during tomato fruit development.
Collapse
Affiliation(s)
- David W McCurdy
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
26
|
Gilchrist E, Haughn G. Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 2010; 9:103-10. [DOI: 10.1093/bfgp/elp059] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Fernandez AI, Viron N, Alhagdow M, Karimi M, Jones M, Amsellem Z, Sicard A, Czerednik A, Angenent G, Grierson D, May S, Seymour G, Eshed Y, Lemaire-Chamley M, Rothan C, Hilson P. Flexible tools for gene expression and silencing in tomato. PLANT PHYSIOLOGY 2009; 151:1729-40. [PMID: 19812183 PMCID: PMC2785966 DOI: 10.1104/pp.109.147546] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/30/2009] [Indexed: 05/18/2023]
Abstract
As a genetic platform, tomato (Solanum lycopersicum) benefits from rich germplasm collections and ease of cultivation and transformation that enable the analysis of biological processes impossible to investigate in other model species. To facilitate the assembly of an open genetic toolbox designed to study Solanaceae, we initiated a joint collection of publicly available gene manipulation tools. We focused on the characterization of promoters expressed at defined time windows during fruit development, for the regulated expression or silencing of genes of interest. Five promoter sequences were captured as entry clones compatible with the versatile MultiSite Gateway format: PPC2, PG, TPRP, and IMA from tomato and CRC from Arabidopsis (Arabidopsis thaliana). Corresponding transcriptional fusions were made with the GUS gene, a nuclear-localized GUS-GFP reporter, and the chimeric LhG4 transcription factor. The activity of the promoters during fruit development and in fruit tissues was confirmed in transgenic tomato lines. Novel Gateway destination vectors were generated for the transcription of artificial microRNA (amiRNA) precursors and hairpin RNAs under the control of these promoters, with schemes only involving Gateway BP and LR Clonase reactions. Efficient silencing of the endogenous phytoene desaturase gene was demonstrated in transgenic tomato lines producing a matching amiRNA under the cauliflower mosaic virus 35S or PPC2 promoter. Lastly, taking advantage of the pOP/LhG4 two-component system, we found that well-characterized flower-specific Arabidopsis promoters drive the expression of reporters in patterns generally compatible with heterologous expression. Tomato lines and plasmids will be distributed through a new Nottingham Arabidopsis Stock Centre service unit dedicated to Solanaceae resources.
Collapse
|
28
|
Orzaez D, Granell A. Reverse genetics and transient gene expression in fleshy fruits: overcoming plant stable transformation. PLANT SIGNALING & BEHAVIOR 2009; 4:864-7. [PMID: 19847114 PMCID: PMC2802784 DOI: 10.4161/psb.4.9.9422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fast methods to validate relevant candidate genes associated to fruit ripening are needed specially to associate gene function to the overwhelming amount of leads provided by genomic projects. In tomato, the use of Fruit VIGS in a Del/Ros1 background as described in the Plant Physiology by Orzaez et al. 2009, overcomes the difficulties associated to low efficiency VIGS in tomato and increases the reliability and throughput of this fast reverse genetic assay. The advantages of this transient assay system are discussed here for the case of gene functions associated to fruit ripening and quality traits. The possibility of using other reporters or even the development of transient overexpression assays in the fruit is also discussed.
Collapse
Affiliation(s)
- Diego Orzaez
- Fruit Genomics and Biotechnology Lab, Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | | |
Collapse
|