1
|
Wang X, Liu X, Su Y, Shen H. Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms. Int J Mol Sci 2025; 26:896. [PMID: 39940666 PMCID: PMC11817427 DOI: 10.3390/ijms26030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The intensification of global climate change and industrialization has exacerbated abiotic stresses on crops, particularly rice, posing significant threats to food security and human health. The mechanisms by which rice responds to these stresses are complex and interrelated. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying rice's response to various abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal pollution. We emphasize the molecular mechanisms and structural roles of key proteins involved in these stress responses, such as the roles of SLAC1 and QUAC1 in stomatal regulation, HKT and SOS proteins in salinity stress, heat shock proteins (HSPs) and heat stress transcription factors (HSFs) in temperature stress, and Nramp and ZIP transport proteins in response to heavy metal stress. This review elucidates the complex response networks of rice to various abiotic stresses, highlighting the key proteins and their related molecular mechanisms, which may further help to improve the strategies of molecular breeding.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Xuelei Liu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Yonglin Su
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
2
|
Yang J, Wang J, Yang D, Xia W, Wang L, Wang S, Zhao H, Chen L, Hu H. Genome-Wide Analysis of CSL Family Genes Involved in Petiole Elongation, Floral Petalization, and Response to Salinity Stress in Nelumbo nucifera. Int J Mol Sci 2024; 25:12531. [PMID: 39684243 DOI: 10.3390/ijms252312531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Lotus (Nelumbo nucifera), a perennial aquatic plant, endures various environmental stresses. Its diverse ornamental traits make it an ideal model for studying multigene family functional differentiation and abiotic stress responses. The cellulose synthase-like (CSL) gene family includes multiple subfamilies and holds potentially pivotal roles in plant growth, development, and stress responses. Thus, understanding this family is essential for uncovering the attributes of ancient dicotyledonous lotus species and offering new genetic resources for targeted genetic improvement. Herein, we conducted a genome-wide NnCSL gene identification study, integrating tissue-specific expression analysis, RNA-seq, and qRT-PCR validation. We identified candidate NnCSL genes linked to petiole elongation, floral petalization, salinity stress responses, and potential co-expressed TFs. 22 NnCSL genes were categorized into six subfamilies: NnCSLA, NnCSLB, NnCSLC, NnCSLD, NnCSLE, and NnCSLG. Promoter regions contain numerous cis-acting elements related to growth, development, stress responses, and hormone regulation. Nineteen NnCSL genes showed specific differential expression in LPA (large plant architecture) versus SPA (small plant architecture): petioles, petalized carpels (CP) and normal carpels (C), and petalized stamens (SP) and normal stamens (S). Notably, most NnCSLC, NnCSLA, and NnCSLB subfamily genes play diverse roles in various aspects of lotus growth and development, while NnCSLE and NnCSLG are specifically involved in carpel petalization and petiole elongation, respectively. Additionally, 11 candidate NnCSL genes responsive to salinity stress were identified, generally exhibiting antagonistic effects on growth and developmental processes. These findings provide an important theoretical foundation and novel insights for the functional study of NnCSL genes in growth, development, and stress resistance in lotus.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Juan Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Dongmei Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Wennian Xia
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Sha Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Zhang G, Yang Z, Zhou S, Zhu J, Liu X, Luo J. Cellulose synthase-like OsCSLD4: a key regulator of agronomic traits, disease resistance, and metabolic indices in rice. PLANT CELL REPORTS 2024; 43:264. [PMID: 39414689 DOI: 10.1007/s00299-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
KEY MESSAGE Cellulose synthase-like OsCSLD4 plays a pivotal role in regulating diverse agronomic traits, enhancing resistance against bacterial leaf blight, and modulating metabolite indices based on the multi-omics analysis in rice. To delve deeper into this complex network between agronomic traits and metabolites in rice, we have compiled a dataset encompassing genome, phenome, and metabolome, including 524 diverse accessions, 11 agronomic traits, and 841 metabolites, enabling us to pinpoint eight hotspots through GWAS. We later discovered four distinct metabolite categories, encompassing 15 metabolites that are concurrently present on the QTL qC12.1, associated with leaf angle of flag and spikelet length, and finally focused the cellulose synthase-like OsCSLD4, which was pinpointed through a rigorous process encompassing sequence variation, haplotype, ATAC, and differential expression across diverse tissues. Compared to the wild type, csld4 exhibited significant reductions in the plant height, flag leaf length, leaf width, spikelet length, 1000-grain weight, grain width, grain thickness, fertility, yield per plant, and bacterial blight resistance. However, there were significant increase in tiller numbers, degree of leaf rolling, flowering period, growth period, grain length, and empty kernel rate. Furthermore, the content of four polyphenol metabolites, excluding metabolite N-feruloyltyramine (mr1268), notably rose, whereas the levels of the other three polyphenol metabolites, smiglaside C (mr1498), 4-coumaric acid (mr1622), and smiglaside A (mr1925) decreased significantly in mutant csld4. The content of amino acid L-tyramine (mr1446) exhibited a notable increase, whereas the alkaloid trigonelline (mr1188) displayed a substantial decrease among the mutants. This study offered a comprehensive multi-omics perspective to analyze the genetic mechanism of OsCSLD4, and breeders can potentially enhance rice's yield, bacterial leaf blight resistance, and metabolite content, leading to more sustainable and profitable rice production.
Collapse
Affiliation(s)
- Guofang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhuang Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shen Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jinjin Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xianqing Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jie Luo
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- Yazhou Bay National Laboratory, Sanya, 572025, China.
| |
Collapse
|
4
|
Das S, Bhati V, Dewangan BP, Gangal A, Mishra GP, Dikshit HK, Pawar PAM. Combining Fourier-transform infrared spectroscopy and multivariate analysis for chemotyping of cell wall composition in Mungbean (Vigna radiata (L.) Wizcek). PLANT METHODS 2024; 20:135. [PMID: 39223669 PMCID: PMC11367897 DOI: 10.1186/s13007-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Dissection of complex plant cell wall structures demands a sensitive and quantitative method. FTIR is used regularly as a screening method to identify specific linkages in cell walls. However, quantification and assigning spectral bands to particular cell wall components is still a major challenge, specifically in crop species. In this study, we addressed these challenges using ATR-FTIR spectroscopy as it is a high throughput, cost-effective and non-destructive approach to understand the plant cell wall composition. This method was validated by analysing different varieties of mungbean which is one of the most important legume crops grown widely in Asia. RESULTS Using standards and extraction of a specific component of cell wall components, we assigned 1050-1060 cm-1 and 1390-1420 cm-1 wavenumbers that can be widely used to quantify cellulose and lignin, respectively, in Arabidopsis, Populus, rice and mungbean. Also, using KBr as a diluent, we established a method that can relatively quantify the cellulose and lignin composition among different tissue types of the above species. We further used this method to quantify cellulose and lignin in field-grown mungbean genotypes. The ATR-FTIR-based study revealed the cellulose content variation ranges from 27.9% to 52.3%, and the lignin content variation ranges from 13.7% to 31.6% in mungbean genotypes. CONCLUSION Multivariate analysis of FT-IR data revealed differences in total cell wall (600-2000 cm-1), cellulose (1000-1100 cm-1) and lignin (1390-1420 cm-1) among leaf and stem of four plant species. Overall, our data suggested that ATR-FTIR can be used for the relative quantification of lignin and cellulose in different plant species. This method was successfully applied for rapid screening of cell wall composition in mungbean stem, and similarly, it can be used for screening other crops or tree species.
Collapse
Affiliation(s)
- Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| | - Vikrant Bhati
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Apurva Gangal
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prashant Anupama Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
5
|
Li D, Fan L, Shu Q, Guo F. Ectopic expression of OsWOX9A alters leaf anatomy and plant architecture in rice. PLANTA 2024; 260:30. [PMID: 38879830 DOI: 10.1007/s00425-024-04463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Ectopic expression of OsWOX9A induces narrow adaxially rolled rice leaves with larger bulliform cells and fewer large veins, probably through regulating the expression of auxin-related and expansin genes. The WUSCHEL-related homeobox (WOX) family plays a pivotal role in plant development by regulating genes involved in various aspects of growth and differentiation. OsWOX9A (DWT1) has been linked to tiller growth, uniform plant growth, and flower meristem activity. However, its impact on leaf growth and development in rice has not been studied. In this study, we investigated the biological role of OsWOX9A in rice growth and development using transgenic plants. Overexpression of OsWOX9A conferred narrow adaxially rolled rice leaves and altered plant architecture. These plants exhibited larger bulliform cells and fewer larger veins compared to wild-type plants. OsWOX9A overexpression also reduced plant height, tiller number, and seed-setting rate. Comparative transcriptome analysis revealed several differentially expressed auxin-related and expansin genes in OsWOX9A overexpressing plants, consistent with their roles in leaf and plant development. These results indicate that the ectopic expression of OsWOX9A may have multiple effects on the development and growth of rice, providing a more comprehensive picture of how the WOX9 subfamily contributes to leaf development and plant architecture.
Collapse
Affiliation(s)
- Dandan Li
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Longjiang Fan
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
| | - Qingyao Shu
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Sanya, 572025, China.
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China.
| |
Collapse
|
6
|
Sun L, Xu H, Song J, Yang X, Wang X, Liu H, Pang M, Hu Y, Yang Q, Ning X, Liang S, Zhang S, Luan W. OsNAC103, a NAC Transcription Factor, Positively Regulates Leaf Senescence and Plant Architecture in Rice. RICE (NEW YORK, N.Y.) 2024; 17:15. [PMID: 38358523 PMCID: PMC10869678 DOI: 10.1186/s12284-024-00690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Leaf senescence, the last stage of leaf development, is essential for crop yield by promoting nutrition relocation from senescence leaves to new leaves and seeds. NAC (NAM/ATAF1/ATAF2/CUC2) proteins, one of the plant-specific transcription factors, widely distribute in plants and play important roles in plant growth and development. Here, we identified a new NAC member OsNAC103 and found that it plays critical roles in leaf senescence and plant architecture in rice. OsNAC103 mRNA levels were dramatically induced by leaf senescence as well as different phytohormones such as ABA, MeJA and ACC and abiotic stresses including dark, drought and high salinity. OsNAC103 acts as a transcription factor with nuclear localization signals at the N terminal and a transcriptional activation signal at the C terminal. Overexpression of OsNAC103 promoted leaf senescence while osnac103 mutants delayed leaf senescence under natural condition and dark-induced condition, meanwhile, senescence-associated genes (SAGs) were up-regulated in OsNAC103 overexpression (OsNAC103-OE) lines, indicating that OsNAC103 positively regulates leaf senescence in rice. Moreover, OsNAC103-OE lines exhibited loose plant architecture with larger tiller angles while tiller angles of osnac103 mutants decreased during the vegetative and reproductive growth stages due to the response of shoot gravitropism, suggesting that OsNAC103 can regulate the plant architecture in rice. Taken together, our results reveal that OsNAC103 plays crucial roles in the regulation of leaf senescence and plant architecture in rice.
Collapse
Affiliation(s)
- Lina Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Hanqin Xu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Juan Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaoying Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - XinYi Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Haiyan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Mengzhen Pang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Qi Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaotong Ning
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
7
|
Qiao L, Wu Q, Yuan L, Huang X, Yang Y, Li Q, Shahzad N, Li H, Li W. SMALL PLANT AND ORGAN 1 ( SPO1) Encoding a Cellulose Synthase-like Protein D4 (OsCSLD4) Is an Important Regulator for Plant Architecture and Organ Size in Rice. Int J Mol Sci 2023; 24:16974. [PMID: 38069299 PMCID: PMC10707047 DOI: 10.3390/ijms242316974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Qilong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Liuzhen Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Xudong Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Yutao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Nida Shahzad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| | - Haifeng Li
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China (X.H.); (Y.Y.); (Q.L.); (N.S.)
| |
Collapse
|
8
|
Guo D, Chen L, Liu S, Jiang W, Ye Q, Wu Z, Wang X, Hu X, Zhang Z, He H, Hu L. Curling Leaf 1, Encoding a MYB-Domain Protein, Regulates Leaf Morphology and Affects Plant Yield in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3127. [PMID: 37687373 PMCID: PMC10490398 DOI: 10.3390/plants12173127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The leaf is the main site of photosynthesis and is an important component in shaping the ideal rice plant architecture. Research on leaf morphology and development will lay the foundation for high-yield rice breeding. In this study, we isolated and identified a novel curling leaf mutant, designated curling leaf 1 (cl1). The cl1 mutant exhibited an inward curling phenotype because of the defective development of sclerenchymatous cells on the abaxial side. Meanwhile, the cl1 mutant showed significant reductions in grain yield and thousand-grain weight due to abnormal leaf development. Through map-based cloning, we identified the CL1 gene, which encodes a MYB transcription factor that is highly expressed in leaves. Subcellular localization studies confirmed its typical nuclear localization. Transcriptome analysis revealed a significant differential expression of the genes involved in photosynthesis, leaf morphology, yield formation, and hormone metabolism in the cl1 mutant. Yeast two-hybrid assays demonstrated that CL1 interacts with alpha-tubulin protein SRS5 and AP2/ERF protein MFS. These findings provide theoretical foundations for further elucidating the mechanisms of CL1 in regulating leaf morphology and offer genetic resources for practical applications in high-yield rice breeding.
Collapse
Affiliation(s)
- Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lianghai Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenxiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zheng Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiaoqing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Xiafei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Zelin Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China; (L.C.); (S.L.)
| | - Lifang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; (D.G.); (W.J.); (Q.Y.); (Z.W.); (X.W.); (X.H.); (Z.Z.)
| |
Collapse
|
9
|
Peng S, Liu Y, Xu Y, Zhao J, Gao P, Liu Q, Yan S, Xiao Y, Zuo SM, Kang H. Genome-Wide Association Study Identifies a Plant-Height-Associated Gene OsPG3 in a Population of Commercial Rice Varieties. Int J Mol Sci 2023; 24:11454. [PMID: 37511211 PMCID: PMC10380248 DOI: 10.3390/ijms241411454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Plant height is one of the most crucial components of plant structure. However, due to its complexity, the genetic architecture of rice plant height has not been fully elucidated. In this study, we performed a genome-wide association study (GWAS) to determine rice plant height using 178 commercial rice varieties and identified 37 loci associated with rice plant height (LAPH). Among these loci, in LAPH2, we identified a polygalacturonase gene, OsPG3, which was genetically and functionally associated with rice plant height. The rice plant exhibits a super dwarf phenotype when the knockout of the OsPG3 gene occurs via CRISPR-Cas9 gene-editing technology. RNA-Seq analysis indicated that OsPG3 modulates the expression of genes involved in phytohormone metabolism and cell-wall-biosynthesis pathways. Our findings suggest that OsPG3 plays a vital role in controlling rice plant height by regulating cell wall biosynthesis. Given that rice architecture is one of the most critical phenotypes in rice breeding, OsPG3 has potential in rice's molecular design breeding toward an ideal plant height.
Collapse
Affiliation(s)
- Shasha Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchen Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Peng Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shi-Min Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
10
|
Zheng R, Meng X, Hu Q, Yang B, Cui G, Li Y, Zhang S, Zhang Y, Ma X, Song X, Liang S, Li Y, Li J, Yu H, Luan W. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1343-1360. [PMID: 36719169 PMCID: PMC10281609 DOI: 10.1111/pbi.14020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Bo Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Guicai Cui
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yingying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yu Zhang
- Institute for Advance StudiesWuhan UniversityWuhanChina
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Xiaoguang Song
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant BiologyInstitute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
| |
Collapse
|
11
|
Wu SZ, Chaves AM, Li R, Roberts AW, Bezanilla M. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. J Cell Biol 2023; 222:e202212117. [PMID: 37071416 PMCID: PMC10120407 DOI: 10.1083/jcb.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Rongrong Li
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
12
|
Li F, Wang K, Zhang X, Han P, Liu Y, Zhang J, Peng T, Li J, Zhao Y, Sun H, Du Y. BPB1 regulates rice ( Oryza sative L.) panicle length and panicle branch development by promoting lignin and inhibiting cellulose accumulation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:41. [PMID: 37312745 PMCID: PMC10248638 DOI: 10.1007/s11032-023-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/24/2023] [Indexed: 06/15/2023]
Abstract
Panicle structure is one of the most important agronomic traits directly related to rice yield. This study identified a rice mutant basal primary branch 1 (bpb1), which exhibited a phenotype of reduced panicle length and arrested basal primary branch development. In addition, lignin content was found to be increased while cellulose content was decreased in bpb1 young panicles. Map-based cloning methods characterized the gene BPB1, which encodes a peptide transporter (PTR) family transporter. Phylogenetic tree analysis showed that the BPB1 family is highly conserved in plants, especially the PTR2 domain. It is worth noting that BPB1 is divided into two categories based on monocotyledonous and dicotyledonous plants. Transcriptome analysis showed that BPB1 mutation can promote lignin synthesis and inhibit cellulose synthesis, starch and sucrose metabolism, cell cycle, expression of various plant hormones, and some star genes, thereby inhibiting rice panicle length, resulting in basal primary branch development stagnant phenotypes. In this study, BPB1 provides new insights into the molecular mechanism of rice panicle structure regulation by BPB1 by regulating lignin and cellulose content and several transcriptional metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01389-x.
Collapse
Affiliation(s)
- Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ke Wang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Peijie Han
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ye Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yafan Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450046 Henan Province China
| |
Collapse
|
13
|
Chen X, Yang S, Ma J, Huang Y, Wang Y, Zeng J, Li J, Li S, Long D, Xiao X, Sha L, Wu D, Fan X, Kang H, Zhang H, Zhou Y, Cheng Y. Manganese and copper additions differently reduced cadmium uptake and accumulation in dwarf Polish wheat (Triticum polonicum L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130998. [PMID: 36860063 DOI: 10.1016/j.jhazmat.2023.130998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of manganese (Mn) and copper (Cu) on dwarf Polish wheat under cadmium (Cd) stress by evaluating plant growth, Cd uptake, translocation, accumulation, subcellular distribution, and chemical forms, and the expression of genes participating in cell wall synthesis, metal chelation, and metal transport. Compared with the control, Mn deficiency and Cu deficiency increased Cd uptake and accumulation in roots, and Cd levels in root cell wall and soluble fractions, but inhibited Cd translocation to shoots. Mn addition reduced Cd uptake and accumulation in roots, and Cd level in root soluble fraction. Cu addition did not affect Cd uptake and accumulation in roots, while it caused a decrease and an increase of Cd levels in root cell wall and soluble fractions, respectively. The main Cd chemical forms (water-soluble Cd, pectates and protein integrated Cd, and undissolved Cd phosphate) in roots were differently changed. Furthermore, all treatments distinctly regulated several core genes that control the main component of root cell walls. Several Cd absorber (COPT, HIPP, NRAMP, and IRT) and exporter genes (ABCB, ABCG, ZIP, CAX, OPT, and YSL) were differently regulated to mediate Cd uptake, translocation, and accumulation. Overall, Mn and Cu differently influenced Cd uptake and accumulation; Mn addition is an effective treatment for reducing Cd accumulation in wheat.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Jinjiang 610066, Sichuan, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China.
| |
Collapse
|
14
|
Xu Y, Yan S, Jiang S, Bai L, Liu Y, Peng S, Chen R, Liu Q, Xiao Y, Kang H. Identification of a Rice Leaf Width Gene Narrow Leaf 22 ( NAL22) through Genome-Wide Association Study and Gene Editing Technology. Int J Mol Sci 2023; 24:4073. [PMID: 36835485 PMCID: PMC9962836 DOI: 10.3390/ijms24044073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Rice leaf width (RLW) is a crucial determinant of photosynthetic area. Despite the discovery of several genes controlling RLW, the underlying genetic architecture remains unclear. In order to better understand RLW, this study conducted a genome-wide association study (GWAS) on 351 accessions from the rice diversity population II (RDP-II). The results revealed 12 loci associated with leaf width (LALW). In LALW4, we identified one gene, Narrow Leaf 22 (NAL22), whose polymorphisms and expression levels were associated with RLW variation. Knocking out this gene in Zhonghua11, using CRISPR/Cas9 gene editing technology, resulted in a short and narrow leaf phenotype. However, seed width remained unchanged. Additionally, we discovered that the vein width and expression levels of genes associated with cell division were suppressed in nal22 mutants. Gibberellin (GA) was also found to negatively regulate NAL22 expression and impact RLW. In summary, we dissected the genetic architecture of RLW and identified a gene, NAL22, which provides new loci for further RLW studies and a target gene for leaf shape design in modern rice breeding.
Collapse
Affiliation(s)
- Yuchen Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China
| | - Su Jiang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shasha Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rubin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Zhang X, Wang Y, Wang X, Zhu Z, Zhang X, Jia L, Li Y, Tian W, Chen H, Zhu X, He G, Sang X. A very-long-chain fatty acid synthesis gene, SD38, influences plant height by activating ethylene biosynthesis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1084-1097. [PMID: 36196616 DOI: 10.1111/tpj.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
As an important trait in crop breeding, plant height is associated with lodging resistance and yield. With the identification and cloning of several semi-dwarfing genes, increasing numbers of semi-dwarf cultivars have emerged, which has led to a 'green revolution' in rice (Oryza sativa) production. In this study, we identified a rice semi-dwarf mutant, semi-dwarf 38 (sd38), which showed significantly reduced cell length. SD38 encodes a fatty acid elongase, β-ketoacyl-CoA synthase, which is involved in the synthesis of very-long-chain fatty acids (VLCFAs). Expression analysis showed that SD38 was localized on the membrane of the endoplasmic reticulum, and was expressed in all analyzed tissues with differential abundance. The mutation of SD38 affected lipid metabolism in the sd38 mutant. A functional complementarity test in Saccharomyces cerevisiae indicated that SD38 was capable of complementing the deficiency of ELO3p activity in BY4741-elo3 knockout yeast cells by participating in the synthesis of C24:0 VLCFA. Significant changes were observed in the expression of genes involved in ethylene synthesis, which resulted in reduced content of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the sd38 mutant. Exogenously supplied VLCFA (C24:0) increased the expression levels of OsACS3, OsACS4, and OsACO7 and the plant height of sd38 mutant seedlings, similar to the effect of exogenous application of ACC and ethephon. These results reveal a relationship among VLCFAs, ethylene biosynthesis, and plant height and improve our understanding of plant height development in crops.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ying Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaowen Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhu Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xuefei Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Luqi Jia
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yangyang Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Weijiang Tian
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hongyan Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaoyan Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
16
|
Wang J, Li J, Lin W, Deng B, Lin L, Lv X, Hu Q, Liu K, Fatima M, He B, Qiu D, Ma X. Genome-wide identification and adaptive evolution of CesA/Csl superfamily among species with different life forms in Orchidaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:994679. [PMID: 36247544 PMCID: PMC9559377 DOI: 10.3389/fpls.2022.994679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Orchidaceae, with more than 25,000 species, is one of the largest flowering plant families that can successfully colonize wide ecological niches, such as land, trees, or rocks, and its members are divided into epiphytic, terrestrial, and saprophytic types according to their life forms. Cellulose synthase (CesA) and cellulose synthase-like (Csl) genes are key regulators in the synthesis of plant cell wall polysaccharides, which play an important role in the adaptation of orchids to resist abiotic stresses, such as drought and cold. In this study, nine whole-genome sequenced orchid species with three types of life forms were selected; the CesA/Csl gene family was identified; the evolutionary roles and expression patterns of CesA/Csl genes adapted to different life forms and abiotic stresses were investigated. The CesA/Csl genes of nine orchid species were divided into eight subfamilies: CesA and CslA/B/C/D/E/G/H, among which the CslD subfamily had the highest number of genes, followed by CesA, whereas CslB subfamily had the least number of genes. Expansion of the CesA/Csl gene family in orchids mainly occurred in the CslD and CslF subfamilies. Conserved domain analysis revealed that eight subfamilies were conserved with variations in orchids. In total, 17 pairs of CesA/Csl homologous genes underwent positive selection, of which 86%, 14%, and none belonged to the epiphytic, terrestrial, and saprophytic orchids, respectively. The inter-species collinearity analysis showed that the CslD genes expanded in epiphytic orchids. Compared with terrestrial and saprophytic orchids, epiphytic orchids experienced greater strength of positive selection, with expansion events mostly related to the CslD subfamily, which might have resulted in strong adaptability to stress in epiphytes. Experiments on stem expression changes under abiotic stress showed that the CslA might be a key subfamily in response to drought stress for orchids with different life forms, whereas the CslD might be a key subfamily in epiphytic and saprophytic orchids to adapt to freezing stress. This study provides the basic knowledge for the further systematic study of the adaptive evolution of the CesA/Csl superfamily in angiosperms with different life forms, and research on orchid-specific functional genes related to life-history trait evolution.
Collapse
Affiliation(s)
- Jingjing Wang
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Li
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ban Deng
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bizhu He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, Lu X, Wang F, Zhang G, Xiao Y, Tang W, Deng H. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. FRONTIERS IN PLANT SCIENCE 2022; 13:980424. [PMID: 36226281 PMCID: PMC9548992 DOI: 10.3389/fpls.2022.980424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Plant cell wall is a complex and changeable structure, which is very important for plant growth and development. It is clear that cell wall polysaccharide synthases have critical functions in rice growth and abiotic stress, yet their role in plant response to pathogen invasion is poorly understood. Here, we describe a dwarf and narrowed leaf in Hejiang 19 (dnl19) mutant in rice, which shows multiple growth defects such as reduced plant height, enlarged lamina joint angle, curled leaf morphology, and a decrease in panicle length and seed setting. MutMap analysis, genetic complementation and gene knockout mutant show that cellulose synthase-like D4 (OsCSLD4) is the causal gene for DNL19. Loss function of OsCSLD4 leads to a constitutive activation of defense response in rice. After inoculation with rice blast and bacterial blight, dnl19 displays an enhanced disease resistance. Widely targeted metabolomics analysis reveals that disruption of OsCSLD4 in dnl19 resulted in significant increase of L-valine, L-asparagine, L-histidine, L-alanine, gentisic acid, but significant decrease of L-aspartic acid, malic acid, 6-phosphogluconic acid, glucose 6-phosphate, galactose 1-phosphate, gluconic acid, D-aspartic acid. Collectively, our data reveals the importance of OsCSLD4 in balancing the trade-off between rice growth and defense.
Collapse
Affiliation(s)
- Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Zhongliang Yin
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yubo Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Sai Cao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wei Yao
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jinling Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China
- State Key Laboratory of Hybrid Rice, Changsha, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha, China
| |
Collapse
|
18
|
Ma W, Cui S, Lu Z, Yan X, Cai L, Lu Y, Cai K, Zhou H, Ma R, Zhou S, Wang X. YTH Domain Proteins Play an Essential Role in Rice Growth and Stress Response. PLANTS 2022; 11:plants11172206. [PMID: 36079588 PMCID: PMC9460353 DOI: 10.3390/plants11172206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
As the most prevalent epi-transcriptional modification, m6A modifications play essential roles in regulating RNA fate. The molecular functions of YTH521-B homology (YTH) domain proteins, the most known READER proteins of m6A modifications, have been well-studied in animals. Although plants contain more YTH domain proteins than other eukaryotes, little is known about their biological importance. In dicot species Arabidopsis thaliana, the YTHDFA clade members ECT2/3/4 and CPSF30-L are well-studied and important for cell proliferation, plant organogenesis, and nitrate transport. More emphasis is needed on the biological functions of plant YTH proteins, especially monocot YTHs. Here we presented a detailed phylogenetic relationship of eukaryotic YTH proteins and clustered plant YTHDFC clade into three subclades. To determine the importance of monocot YTH proteins, YTH knockout mutants and RNAi-induced knockdown plants were constructed and used for phenotyping, transcriptomic analysis, and stress treatments. Knocking out or knocking down OsYTHs led to the downregulation of multicellular organismal regulation genes and resulted in growth defects. In addition, loss-of-function ythdfa mutants led to better salinity tolerance whereas ythdfc mutants were more sensitive to abiotic stress. Overall, our study establishes the functional relevance of rice YTH genes in plant growth regulation and stress response.
Collapse
Affiliation(s)
- Weiwei Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Xiaofeng Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Long Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongfa Lu
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Kefeng Cai
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Huacheng Zhou
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Rongrong Ma
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (S.Z.); (X.W.)
| | - Xiaole Wang
- Institute of Crop Sciences, Ningbo Academy of Agricultural Sciences, Ningbo 315000, China
- Correspondence: (S.Z.); (X.W.)
| |
Collapse
|
19
|
Pancaldi F, van Loo EN, Schranz ME, Trindade LM. Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:870818. [PMID: 35519813 PMCID: PMC9062648 DOI: 10.3389/fpls.2022.870818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The Cellulose synthase superfamily synthesizes cellulose and different hemicellulosic polysaccharides in plant cell walls. While much has been discovered about the evolution and function of these genes, their genomic architecture and relationship with gene (sub-)functionalization and evolution remains unclear. By using 242 genomes covering plant evolution from green algae to eudicots, we performed a large-scale analysis of synteny, phylogenetic, and functional data of the CesA superfamily. Results revealed considerable gene copy number variation across species and gene families, and also two patterns - singletons vs. tandem arrays - in chromosomic gene arrangement. Synteny analysis revealed exceptional conservation of gene architecture across species, but also lineage-specific patterns across gene (sub-)families. Synteny patterns correlated with gene sub-functionalization into primary and secondary CesAs and distinct CslD functional isoforms. Furthermore, a genomic context shift of a group of cotton secondary CesAs was associated with peculiar properties of cotton fiber synthesis. Finally, phylogenetics suggested that primary CesA sequences appeared before the secondary CesAs, while phylogenomic analyses unveiled the genomic trace of the CslD duplication that initiated the CslF family. Our results describe in detail the genomic architecture of the CesA superfamily in plants, highlighting its crucial relevance for gene diversification and sub-functionalization, and for understanding their evolution.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics group, Wageningen University & Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Zhao X, Sun XF, Zhao LL, Huang LJ, Wang PC. Morphological, transcriptomic and metabolomic analyses of Sophora davidii mutants for plant height. BMC PLANT BIOLOGY 2022; 22:144. [PMID: 35337273 PMCID: PMC8951708 DOI: 10.1186/s12870-022-03503-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/02/2022] [Indexed: 05/28/2023]
Abstract
Sophora davidii is an important plant resource in the karst region of Southwest China, but S. davidii plant-height mutants are rarely reported. Therefore, we performed phenotypic, anatomic structural, transcriptomic and metabolomic analyses to study the mechanisms responsible for S. davidii plant-height mutants. Phenotypic and anatomical observations showed that compared to the wild type, the dwarf mutant displayed a significant decrease in plant height, while the tall mutant displayed a significant increase in plant height. The dwarf mutant cells were smaller and more densely arranged, while those of the wild type and the tall mutant were larger and loosely arranged. Transcriptomic analysis revealed that differentially expressed genes (DEGs) involved in cell wall biosynthesis, expansion, phytohormone biosynthesis, signal transduction pathways, flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched in the S. davidii plant-height mutants. Metabolomic analysis revealed 57 significantly differential metabolites screened from both the dwarf and tall mutants. A total of 8 significantly different flavonoid compounds were annotated to LIPID MAPS, and three metabolites (chlorogenic acid, kaempferol and scopoletin) were involved in phenylpropanoid biosynthesis and flavonoid biosynthesis. These results shed light on the molecular mechanisms of plant height in S. davidii mutants and provide insight for further molecular breeding programs.
Collapse
Affiliation(s)
- Xin Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiao-Fu Sun
- Weining Plateau Grassland Test Station, Weining, 553100, China
| | - Li-Li Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Li-Juan Huang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pu-Chang Wang
- Guizhou Institute of Prataculture, Guiyang, 550006, China.
| |
Collapse
|
21
|
Omics: a tool for resilient rice genetic improvement strategies. Mol Biol Rep 2022; 49:5075-5088. [PMID: 35298758 DOI: 10.1007/s11033-022-07189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Rice is pivotal pyramid of about half of the world population. Bearing small genome size and worldwide utmost food crop rice has been known as ideal cereal crop for genome research. Currently, decreasing water table and soil fatigue are big challenges and intense consequences in changing climate. Whole sequenced genome of rice sized 389 Mb of which 95% is covered with excellent mapping order. Sequenced rice genome helps in molecular biology and transcriptomics of cereals as it provides whole genome sequence of indica and japonica sub species. Through rice genome sequencing and functional genomics, QTLs or genes, genetic variability and halophyte blocks for agronomic characters were identified which have proved much more useful in molecular breeding and direct selection. There are different numbers of genes or QTLs identified for yield related traits i.e., 6 QTLs/genes for plant architecture, 6 for panicle characteristics, 4 for grain number, 1 gene/QTL for tiller, HGW, grain filling and shattering. QTLS/genes for grain quality, biotic stresses and for abiotic stresses are 7, 23 and 13 respectively. Low yield, inferior quality and susceptibility to biotic and abiotic stresses of a crop is due to narrow genetic background of new evolving rice verities. Wild rice provides genetic resources for improvement of these characters, molecular and genomics tool at different stages can overcome these stresses and improve yield and quality of rice crop.
Collapse
|
22
|
Zhao H, Li Z, Wang Y, Wang J, Xiao M, Liu H, Quan R, Zhang H, Huang R, Zhu L, Zhang Z. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:468-484. [PMID: 34664356 PMCID: PMC8882776 DOI: 10.1111/pbi.13729] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 05/09/2023]
Abstract
Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.
Collapse
Affiliation(s)
- Hui Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zixuan Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yayun Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jiayi Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Minggang Xiao
- Biotechnology Research InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Hai Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Haiwen Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Li Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijin Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
23
|
Morphological Characterization and Transcriptome Analysis of New Dwarf and Narrow-Leaf ( dnl2) Mutant in Maize. Int J Mol Sci 2022; 23:ijms23020795. [PMID: 35054982 PMCID: PMC8775757 DOI: 10.3390/ijms23020795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Lodging is the primary factor limiting high yield under a high plant density. However, an optimal plant height and leaf shape can effectively decrease the lodging risk. Here we studied an ethyl methanesulfonate (EMS)-induced dwarf and a narrow-leaf mutant, dnl2. Gene mapping indicated that the mutant was controlled by a gene located on chromosome nine. Phenotypic and cytological observations revealed that dnl2 showed inhibited cell growth, altered vascular bundle patterning, and disrupted secondary cell wall structure when compared with the wild-type, which could be the direct cause of the dwarf and narrow-leaf phenotype. The phytohormone levels, especially auxin and gibberellin, were significantly decreased in dnl2 compared to the wild-type plants. Transcriptome profiling of the internodes of the dnl2 mutant and wild-type revealed a large number of differentially expressed genes enriched in the cell wall biosynthesis, remodeling, and hormone biosynthesis and signaling pathways. Therefore, we suggest that crosstalk between hormones (the altered vascular bundle and secondary cell wall structure) may contribute to the dwarf and narrow-leaf phenotype by influencing cell growth. These results provide a foundation for DNL2 gene cloning and further elucidation of the molecular mechanism of the regulation of plant height and leaf shape in maize.
Collapse
|
24
|
Su S, Hong J, Chen X, Zhang C, Chen M, Luo Z, Chang S, Bai S, Liang W, Liu Q, Zhang D. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2304-2318. [PMID: 34800075 PMCID: PMC8541776 DOI: 10.1111/pbi.13661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Panicle architecture is a key determinant of grain yield in cereals, but the mechanisms governing panicle morphogenesis and organ development remain elusive. Here, we have identified a quantitative trait locus (qPA1) associated with panicle architecture using chromosome segment substitution lines from parents Nipponbare and 9311. The panicle length, branch number and grain number of Nipponbare were significantly higher than CSSL-9. Through map-based cloning and complementation tests, we confirmed that qPA1 was identical to SD1 (Semi Dwarf1), which encodes a gibberellin 20-oxidase enzyme participating in gibberellic acid (GA) biosynthesis. Transcript analysis revealed that SD1 was widely expressed during early panicle development. Analysis of sd1/osga20ox2 and gnp1/ osga20ox1 single and double mutants revealed that the two paralogous enzymes have non-redundant functions during panicle development, likely due to differences in spatiotemporal expression; GNP1 expression under control of the SD1 promoter could rescue the sd1 phenotype. The DELLA protein SLR1, a component of the GA signalling pathway, accumulated more highly in sd1 plants. We have demonstrated that SLR1 physically interacts with the meristem identity class I KNOTTED1-LIKE HOMEOBOX (KNOX) protein OSH1 to repress OSH1-mediated activation of downstream genes related to panicle development, providing a mechanistic link between gibberellin and panicle architecture morphogenesis.
Collapse
Affiliation(s)
- Su Su
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuwei Chang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouChina
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental SciencesState Key Laboratory of Hybrid RiceSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Agriculture, Food and WineUniversity of AdelaideUrrbraeSAAustralia
| |
Collapse
|
25
|
Yu L, Nie Y, Jiao J, Jian L, Zhao J. The Sequencing-Based Mapping Method for Effectively Cloning Plant Mutated Genes. Int J Mol Sci 2021; 22:ijms22126224. [PMID: 34207582 PMCID: PMC8226582 DOI: 10.3390/ijms22126224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
A forward genetic approach is a powerful tool for identifying the genes underlying the phenotypes of interest. However, the conventional map-based cloning method is lengthy, requires a large mapping population and confirmation of many candidate genes in a broad genetic region to clone the causal variant. The whole-genome sequencing method clones the variants with a certain failure probability for multiple reasons, especially for heterozygotes, and could not be used to clone the mutation of epigenetic modifications. Here, we applied the highly complementary characteristics of these two methods and developed a sequencing-based mapping method (SBM) for identifying the location of plant variants effectively with a small population and low cost, which is very user-friendly for most popular laboratories. This method used the whole-genome sequencing data of two pooled populations to screen out enough markers. These markers were used to identify and narrow the candidate region by analyzing the marker-indexes and recombinants. Finally, the possible mutational sites were identified using the whole-genome sequencing data and verified in individual mutants. To elaborate the new method, we displayed the cloned processes in one Arabidopsis heterozygous mutant and two rice homozygous mutants. Thus, the sequencing-based mapping method could clone effectively different types of plant mutations and was a powerful tool for studying the functions of plant genes in the species with known genomic sequences.
Collapse
|
26
|
Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential. Sci Rep 2021; 11:6894. [PMID: 33767346 PMCID: PMC7994632 DOI: 10.1038/s41598-021-86389-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
Collapse
|
27
|
Zhang X, Wang Y, Zhu X, Wang X, Zhu Z, Li Y, Xie J, Xiong Y, Yang Z, He G, Sang X. Curled Flag Leaf 2, Encoding a Cytochrome P450 Protein, Regulated by the Transcription Factor Roc5, Influences Flag Leaf Development in Rice. FRONTIERS IN PLANT SCIENCE 2021; 11:616977. [PMID: 33643332 PMCID: PMC7907467 DOI: 10.3389/fpls.2020.616977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 05/28/2023]
Abstract
Moderate curling generally causes upright leaf blades, which favors the establishment of ideal plant architecture and increases the photosynthetic efficiency of the population, both of which are desirable traits for super hybrid rice (Oryza sativa L.). In this study, we identified a novel curled-leaf mutant, curled flag leaf 2 (cfl2), which shows specific curling at the base of the flag leaf owing to abnormal epidermal development, caused by enlarged bulliform cells and increased number of papillae with the disordered distribution. Map-based cloning reveals that CFL2 encodes a cytochrome P450 protein and corresponds to the previously reported OsCYP96B4. CFL2 was expressed in all analyzed tissues with differential abundance and was downregulated in the clf1 mutant [a mutant harbors a mutation in the homeodomain leucine zipper IV (HD-ZIP IV) transcription factor Roc5]. Yeast one-hybrid and transient expression assays confirm that Roc5 could directly bind to the cis-element L1 box in the promoter of CFL2 before activating CFL2 expression. RNA sequencing reveals that genes associated with cellulose biosynthesis and cell wall-related processes were significantly upregulated in the cfl2 mutant. The components of cell wall, such as lignin, cellulose, and some kinds of monosaccharide, were altered dramatically in the cfl2 mutant when compared with wild-type "Jinhui10" (WT). Taken together, CFL2, as a target gene of Roc5, plays an important role in the regulation of flag leaf shape by influencing epidermis and cell wall development.
Collapse
|
28
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
29
|
Xi H, Liu J, Li Q, Chen X, Liu C, Zhao Y, Yao J, Chen D, Si J, Liu C, Zhang L. Genome-wide identification of Cellulose-like synthase D gene family in Dendrobium catenatum. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hangxian Xi
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Qing Li
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Yuxue Zhao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinbo Yao
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, PR China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Hangzhou, Zhejiang, PR China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, PR China
| |
Collapse
|
30
|
Kandpal M, Vishwakarma C, Krishnan K, Chinnusamy V, Pareek A, Sharma MK, Sharma R. Gene Expression Dynamics in Rice Peduncles at the Heading Stage. Front Genet 2020; 11:584678. [PMID: 33343630 PMCID: PMC7744745 DOI: 10.3389/fgene.2020.584678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Improving grain yield in the staple food crop rice has been long sought goal of plant biotechnology. One of the traits with significant impact on rice breeding programs is peduncle elongation at the time of heading failing which leads to significant reduction in grain yield due to incomplete panicle exsertion. To decipher transcriptional dynamics and molecular players underlying peduncle elongation, we performed RNA sequencing analysis of elongating and non-elongating peduncles in two Indian cultivars, Swarna and Pokkali, at the time of heading. Along with genes associated with cell division and cell wall biosynthesis, we observed significant enrichment of genes associated with auxins, gibberellins, and brassinosteroid biosynthesis/signaling in the elongating peduncles before heading in both the genotypes. Similarly, genes associated with carbohydrate metabolism and mobilization, abiotic stress response along with cytokinin, abscisic acid, jasmonic acid, and ethylene biosynthesis/signaling were enriched in non-elongating peduncles post heading. Significant enrichment of genes belonging to key transcription factor families highlights their specialized roles in peduncle elongation and grain filling before and after heading, respectively. A comparison with anther/pollen development-related genes provided 76 candidates with overlapping roles in anther/pollen development and peduncle elongation. Some of these are important for carbohydrate remobilization to the developing grains. These can be engineered to combat with incomplete panicle exsertion in male sterile lines and manipulate carbohydrate dynamics in grasses. Overall, this study provides baseline information about potential target genes for engineering peduncle elongation with implications on plant height, biomass composition and grain yields in rice.
Collapse
Affiliation(s)
- Manu Kandpal
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chandrapal Vishwakarma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kushagra Krishnan
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj K. Sharma
- Grass Genetics and Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Grass Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
32
|
Characterization of a Novel Rice Dynamic Narrow-Rolled Leaf Mutant with Deficiencies in Aromatic Amino Acids. Int J Mol Sci 2020; 21:ijms21041521. [PMID: 32102218 PMCID: PMC7073152 DOI: 10.3390/ijms21041521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022] Open
Abstract
The leaf blade is the main photosynthetic organ and its morphology is related to light energy capture and conversion efficiency. We isolated a novel rice Dynamic Narrow-Rolled Leaf 1 (dnrl1) mutant showing reduced width of leaf blades, rolled leaves and lower chlorophyll content. The narrow-rolled leaf phenotype resulted from the reduced number of small longitudinal veins per leaf, smaller size and irregular arrangement of bulliform cells compared with the wild-type. DNRL1 was mapped to chromosome 7 and encoded a putative 3-deoxy-7-phosphoheptulonate synthase (DAHPS) which catalyzes the conversion of phosphoenolpyruvate and D-erythrose 4-phosphate to DAHP and phosphate. Sequence analysis revealed that a single base substitution (T–A) was detected in dnrl1, leading to a single amino acid change (L376H) in the coding protein. The mutation led to a lower expression level of DNRL1 as well as the lower activity of DAHPS in the mutant compared with the wild type. Genetic complementation and over-expression of DNRL1 could rescue the narrow-rolled phenotype. DNRL1 was constitutively expressed in all tested organs and exhibited different expression patterns from other narrow-rolled leaf genes. DNRL1-GFP located to chloroplasts. The lower level of chlorophyll in dnrl1 was associated with the downregulation of the genes responsible for chlorophyll biosynthesis and photosynthesis. Furthermore, dnrl1 showed significantly reduced levels of aromatic amino acids including Trp, Phe and Tyr. We conclude that OsDAHPS, encoded by DNRL1, plays a critical role in leaf morphogenesis by mediating the biosynthesis of amino acids in rice.
Collapse
|
33
|
CRISPR/Cas9-Induced Mutagenesis of Semi-Rolled Leaf1,2 Confers Curled Leaf Phenotype and Drought Tolerance by Influencing Protein Expression Patterns and ROS Scavenging in Rice (Oryza sativa L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110728] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rice leaf morphology is an essential agronomic trait to develop drought-tolerant genotypes for adequate and stable crop production in drought-prone areas. Here, rolled leaf mutant plants were acquired by CRISPR/Cas9-based mutagenesis of Semi-rolled leaf1,2 (SRL1 and SRL2) genes, and isobaric tags for relative and absolute quantification (iTRAQ) based proteomic analysis was performed to analyze the subsequent proteomic regulation events. Homozygous mutants exhibit decreased chlorophyll content, transpiration rate, stomatal conductance, vascular bundles (VB), stomatal number, and agronomic traits with increased panicle number and bulliform cells (BCs). Under drought stress, mutant plants displayed lower malondialdehyde (MDA) content while higher survival rate, abscisic acid (ABA) content, superoxide dismutase (SOD), catalase (CAT) activities, and grain filling percentage compare with their wild type (WT). Proteomic results revealed that 270 proteins were significantly downregulated, and 107 proteins were upregulated in the mutant line compared with WT. Proteins related to lateral organ boundaries’ (LOB) domain (LBD) were downregulated, whereas abiotic stress-responsive proteins were upregulated in the CRISPR mutant. LBD proteins (Q5KQR7, Q6K713, Q7XGL4, Q8LQH4), probable indole-3-acetic acid-amido synthetase (Q60EJ6), putative auxin transporter-like protein 4 (Q53JG7), Monoculm 1 (Q84MM9) and AP2 (Apetala2) domain-containing protein (Q10A97) were found to be hub-proteins. The hybrids developed from mutant restorers showed a semi-rolled leaf phenotype with increased panicle number, grain number per panicle, and yield per plant. Our findings reveal the intrinsic value of genome editing and expand the knowledge about the network of proteins for leaf rolling and drought avoidance in rice.
Collapse
|
34
|
Xiao Y, You S, Kong W, Tang Q, Bai W, Cai Y, Zheng H, Wang C, Jiang L, Wang C, Zhao Z, Wan J. A GARP transcription factor anther dehiscence defected 1 (OsADD1) regulates rice anther dehiscence. PLANT MOLECULAR BIOLOGY 2019; 101:403-414. [PMID: 31420780 DOI: 10.1007/s11103-019-00911-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 05/18/2023]
Abstract
Anther dehiscence, one of the essential steps in pollination and double fertilization, is regulated by a complex signaling pathway encompassing hormones and environmental factors. However, key components underlying the signaling pathway that regulate anther dehiscence remain largely elusive. Here, we isolated a rice mutant anther dehiscence defected 1 (Osadd1) that exhibited defects in anther dehiscence and glume open. Map-based cloning revealed that OsADD1 encoded a GARP (Golden2, ARR-B and Psr1) transcription factor. Sequence analysis showed that a single base deletion in Osadd1 mutant resulted in pre-termination of the GARP domain. OsADD1 was constitutively expressed in various tissues, with more abundance in the panicles. The major genes associated with anther dehiscence were affected in the Osadd1 mutant, and the expression level of the cellulose synthase-like D sub-family 4 (OsCSLD4) was significantly decreased. We demonstrate that OsADD1 regulated the expression of OsCSLD4 by binding to its promoter, and affects rice anther dehiscence.
Collapse
Affiliation(s)
- Yanjia Xiao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimin You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyi Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianying Tang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenting Bai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaolong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Fu X, Xu J, Zhou M, Chen M, Shen L, Li T, Zhu Y, Wang J, Hu J, Zhu L, Gao Z, Dong G, Guo L, Ren D, Chen G, Lin J, Qian Q, Zhang G. Enhanced Expression of QTL qLL9/DEP1 Facilitates the Improvement of Leaf Morphology and Grain Yield in Rice. Int J Mol Sci 2019; 20:E866. [PMID: 30781568 PMCID: PMC6412340 DOI: 10.3390/ijms20040866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/22/2023] Open
Abstract
In molecular breeding of super rice, it is essential to isolate the best quantitative trait loci (QTLs) and genes of leaf shape and explore yield potential using large germplasm collections and genetic populations. In this study, a recombinant inbred line (RIL) population was used, which was derived from a cross between the following parental lines: hybrid rice Chunyou84, that is, japonica maintainer line Chunjiang16B (CJ16); and indica restorer line Chunhui 84 (C84) with remarkable leaf morphological differences. QTLs mapping of leaf shape traits was analyzed at the heading stage under different environmental conditions in Hainan (HN) and Hangzhou (HZ). A major QTL qLL9 for leaf length was detected and its function was studied using a population derived from a single residual heterozygote (RH), which was identified in the original population. qLL9 was delimitated to a 16.17 kb region flanked by molecular markers C-1640 and C-1642, which contained three open reading frames (ORFs). We found that the candidate gene for qLL9 is allelic to DEP1 using quantitative real-time polymerase chain reaction (qRT-PCR), sequence comparison, and the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR/Cas9) genome editing techniques. To identify the effect of qLL9 on yield, leaf shape and grain traits were measured in near isogenic lines (NILs) NIL-qLL9CJ16 and NIL-qLL9C84, as well as a chromosome segment substitution line (CSSL) CSSL-qLL9KASA with a Kasalath introgressed segment covering qLL9 in the Wuyunjing (WYJ) 7 backgrounds. Our results showed that the flag leaf lengths of NIL-qLL9C84 and CSSL-qLL9KASA were significantly different from those of NIL-qLL9CJ16 and WYJ 7, respectively. Compared with NIL-qLL9CJ16, the spike length, grain size, and thousand-grain weight of NIL-qLL9C84 were significantly higher, resulting in a significant increase in yield of 15.08%. Exploring and pyramiding beneficial genes resembling qLL9C84 for super rice breeding could increase both the source (e.g., leaf length and leaf area) and the sink (e.g., yield traits). This study provides a foundation for future investigation of the molecular mechanisms underlying the source⁻sink balance and high-yield potential of rice, benefiting high-yield molecular design breeding for global food security.
Collapse
Affiliation(s)
- Xue Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Mengyu Zhou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Minmin Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Lan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ting Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yuchen Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jiajia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jianrong Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
36
|
Zhao M, Yang JX, Mao TY, Zhu HH, Xiang L, Zhang J, Chen LQ. Detection of Highly Differentiated Genomic Regions Between Lotus ( Nelumbo nucifera Gaertn.) With Contrasting Plant Architecture and Their Functional Relevance to Plant Architecture. FRONTIERS IN PLANT SCIENCE 2018; 9:1219. [PMID: 30177946 PMCID: PMC6110191 DOI: 10.3389/fpls.2018.01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 05/13/2023]
Abstract
The lotus (Nelumbo nucifera Gaertn.) is one of the most economically and ornamentally important perennial aquatic plants. Plant architecture is an important trait for lotus classification, cultivation, breeding, and applications. In this study, traits representing plant architecture were measured in 390 lotus germplasms for 3 years. According to the phenotypic distribution, 21 large architecture (LA) and 22 small architecture (SA) germplasms exhibiting extreme phenotypes were selected as representatives of plant architecture. Microscopy analyses revealed that LA lotuses possessed far more vertical cells and longer cell lengths than SA lotuses, and there was a closer linear relationship between vertical cell number and plant architecture than cell length and plant architecture. Furthermore, based on whole genome re-sequencing data from 10 LA and 10 SA lotus germplasms, fixation index (FST) genome scan identified 11.02 Mb of genomic regions that were highly differentiated between the LA and SA lotus groups. Chi-square test revealed that 17,154 single nucleotide polymorphisms (SNPs) and 1,554 insertions and deletions (InDels) showed distinct allelic distribution between the LA and SA lotus groups within these regions. A total of 126 variants with distinct allelic distribution in the highly differentiated region were predicted to cause amino acid changes in 60 genes. Among the 41 genes with functional annotation, the expression patterns of six genes involved in cell division and cell wall construction were confirmed using quantitative reverse-transcription PCR (qRT-PCR). In addition, 34 plant architecture-associated InDel markers were developed and verified in the remaining 11 LA and 12 SA lotus plant architecture representatives. This study identified promising functional markers and candidates for molecular breeding and will facilitate further elucidation of the genetic mechanisms underlying plant architecture in the lotus.
Collapse
Affiliation(s)
- Mei Zhao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Ju-Xiang Yang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Tian-Yu Mao
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Huan-Huan Zhu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Jie Zhang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| | - Long-Qing Chen
- Southwest Engineering Technology and Research Center of Landscape Architecture, State Forestry Administration, Southwest Forestry University, Kunming, China
| |
Collapse
|
37
|
Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model. PLANTA 2018; 247:1-26. [PMID: 29110072 DOI: 10.1007/s00425-017-2798-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/15/2017] [Indexed: 05/04/2023]
Abstract
This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., Ltd., Wuhan, 430206, China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
38
|
Zhu Z, Li X, Wei Y, Guo S, Sha A. Identification of a Novel QTL for Panicle Length From Wild Rice ( Oryza minuta) by Specific Locus Amplified Fragment Sequencing and High Density Genetic Mapping. FRONTIERS IN PLANT SCIENCE 2018; 9:1492. [PMID: 30459776 PMCID: PMC6232755 DOI: 10.3389/fpls.2018.01492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/25/2018] [Indexed: 05/17/2023]
Abstract
Wild rice possesses a large number of valuable genes that have been lost or do not exist in cultivated rice. To exploit the desirable gene controlling panicle length (PL) in wild rice Oryza minuta, a recombinant inbred line (RIL) population was constructed that was derived from a cross between the long panicle introgression line K1561 with Oryza minuta segments and a short panicle accession G1025. Specific Locus Amplified Fragment (SLAF) sequencing technology was used to uncover single nucleotide polymorphisms (SNPs) and construct the high-density genetic linkage map. Using 201 RIL populations, a high-density genetic map was developed, and spanned 2781.76 cM with an average genetic distance 0.45 cM. The genetic map was composed of 5, 521 markers on 12 chromosomes. Based on this high-density genome map, quantitative trait loci (QTL) for PL were analyzed for 2 years under four environments. Seven QTLs were detected, which were distributed within chromosomes 4, 9, and 10, respectively. pl4.1 was detected twice, and pl10.1 was only detected once. Although pl9.1 was only detected once, it was very near pl9.2 in the genetic map which was detected three times. Thus, we speculate one major QTL exists in the region of pl9.1 and pl9.2 to control PL (temporarily referred to as pl9). pl9 is a potentially novel allele derived from Oryza minuta, and it can be used for genetic improvement of cultivar rice.
Collapse
Affiliation(s)
- Zhengzheng Zhu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Yu Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Sibin Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
- *Correspondence: Sibin Guo, Aihua Sha,
| | - Aihua Sha
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- *Correspondence: Sibin Guo, Aihua Sha,
| |
Collapse
|
39
|
Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:904-923. [PMID: 28960566 DOI: 10.1111/tpj.13728] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.
Collapse
Affiliation(s)
- Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min-Juan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mao-Mao Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Feng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chun-Hai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
40
|
Li Y, Yang T, Dai D, Hu Y, Guo X, Guo H. Evolution, gene expression profiling and 3D modeling of CSLD proteins in cotton. BMC PLANT BIOLOGY 2017; 17:119. [PMID: 28693426 PMCID: PMC5504666 DOI: 10.1186/s12870-017-1063-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Among CESA-like gene superfamily, the cellulose synthase-like D (CSLD) genes are most similar to cellulose synthase genes and have been reported to be involved in tip-growing cell and stem development. However, there has been no genome-wide characterization of this gene subfamily in cotton. We thus sought to analyze the evolution and functional characterization of CSLD proteins in cotton based on fully sequenced cotton genomes. RESULTS A total of 23 full-length CSLD proteins were identified in Gossypium raimondii, Gossypium arboreum and Gossypium hirsutum. The phylogenetic tree divided the CSLD proteins into five clades with strong support: CSLD1, CSLD2/3, CSLD4, CSLD5 and CSLD6. The total expression of GhCSLD genes was the highest in androecium & gynoecium (mostly contributed by CSLD1 and CSLD4) compared with other CSL genes. CSLD1 and CSLD4 were only highly expressed in androecium & gynoecium (A&G), and showed tissue-specific expression. The total expression of CSLD2/3, 5 and 6 was highest in the specific tissues. These results suggest that CSLD genes showed the different pattern of expression. Cotton CSLD proteins were subjected to different evolutionary pressures, and the CSLD1 and CSLD4 proteins exhibited episodic and long-term shift positive selection. The predicted three-dimensional structure of GrCSLD1 suggested that GrCSLD1 belongs to glycosyltransferase family 2. The amino acid residues under positive selection in the CSLD1 lineage are positioned in a region adjacent to the class-specific region (CSR), β1-strand and transmembrane helices (TMHs) in the GrCSLD1structure. CONCLUSION Our results characterized the CSLD proteins by an integrated approach containing phylogeny, transcriptional profiling and 3D modeling. The study added to the understanding about the importance of the CSLD family and provide a useful reference for selecting candidate genes and their associations with the biosynthesis of the cell wall in cotton.
Collapse
Affiliation(s)
- Yanpeng Li
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Tiegang Yang
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Dandan Dai
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Ying Hu
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Xiaoyang Guo
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| | - Hongxia Guo
- Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, No. 116, Huayuan Road, Zhengzhou, 450002 China
- Scientific Observing and Experimental Station of Crop Cultivation in Central Plain, Ministry of Agriculture, No. 116, Huayuan Road, Zhengzhou, 450002 China
| |
Collapse
|
41
|
MULTI-TILLERING DWARF1, a new allele of BRITTLE CULM 12, affects plant height and tiller in rice. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-015-0981-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Li YY, Shen A, Xiong W, Sun QL, Luo Q, Song T, Li ZL, Luan WJ. Overexpression of OsHox32 Results in Pleiotropic Effects on Plant Type Architecture and Leaf Development in Rice. RICE (NEW YORK, N.Y.) 2016; 9:46. [PMID: 27624698 PMCID: PMC5021653 DOI: 10.1186/s12284-016-0118-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/06/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Class III homeodomain Leu zipper (HD-Zip III) gene family plays important roles in plant growth and development. Here, we analyze the function of OsHox32, an HD-Zip III family member, and show that it exhibits pleiotropic effects on regulating plant type architecture and leaf development in rice. RESULTS Transgenic lines overexpressing OsHox32 (OsHox32-OV) produce narrow leaves that roll towards the adaxial side. Histological analysis revealed a decreased number of bulliform cells in OsHox32-OV lines. In addition, the angle between the leaf and culm was reduced, resulting in an erect plant phenotype. The height of the plants was reduced, resulting in a semi-dwarf phenotype. In addition, the chlorophyll level was reduced, resulting in a decrease in the photosynthetic rate, but water use efficiency was significantly improved, presumably due to the rolled leaf phenotype. OsHox32 exhibited constitutive expression in different organs, with higher mRNA levels in the stem, leaf sheath, shoot apical meristems and young roots, suggesting a role in plant-type and leaf development. Moreover, OsHox32 mRNA levels were higher in light and lower in the dark under both long-day and short-day conditions, indicating that OsHox32 may be associated with light regulation. Photosynthesis-associated and chlorophyll biosynthesis-associated genes were down-regulated to result in the reduction of photosynthetic capacity in OsHox32-OV lines. mRNA level of six rice YABBY genes is up-regulated or down-regulated by OsHox32, suggesting that OsHox32 may regulate the architecture of plant type and leaf development by controlling the expression of YABBY genes in rice. In addition, OsHox32 mRNA level was induced by the phytohormones, indicating that OsHox32 may be involved in phytohormones regulatory pathways. CONCLUSIONS OsHox32, an HD-Zip III family member, plays pleiotropic effects on plant type architecture and leaf development in rice.
Collapse
Affiliation(s)
- Ying-ying Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Ao Shen
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Wei Xiong
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Qiong-lin Sun
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Qian Luo
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Ting Song
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Zheng-long Li
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| | - Wei-jiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387 People’s Republic of China
| |
Collapse
|
43
|
Wu Y, Luo L, Chen L, Tao X, Huang M, Wang H, Chen Z, Xiao W. Chromosome mapping, molecular cloning and expression analysis of a novel gene response for leaf width in rice. Biochem Biophys Res Commun 2016; 480:394-401. [PMID: 27771249 DOI: 10.1016/j.bbrc.2016.10.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 11/25/2022]
Abstract
Genetic analysis revealed that narrow leaf, small panicle, thin and slender stems as well as low fertility rate of an Indica rice variety were recessive traits and controlled by a single gene. Applying map-based cloning strategy, a novel narrow leaf gene, which was named nal11 was delimited to an interval of 58.3 kb between the InDel markers N10 and InD5016. There are 9 genes in the mapping interval, and only a heat shock DNAJ protein encode gene (Os07g09450) has a specific G to T SNP, which was occurred at the last base of the second exon of Os07g09450 in ZYX. 5' and 3' RACE result shown that there were two transcripts in NAL11, and the SNP in nal11 leads to a variable shear of mRNA. In addition, this type of mRNA alternative splicing together with a stop codon closely followed the SNP which caused termination of translation destroyed the DNAJ domain of nal11's product. These results suggested that the heat shock DNAJ gene was most likely to be the candidate gene of nal11. The results of RT-PCR and real-time PCR further verified that the SNP in the ZYX-nal11 gene affects mRNA splicing pattern. Phenotype of ZYX may be caused by a statistically significant reduction in the total number of small veins in leaf, size and number of small vascular bundles and cells in stems, similar to several previous reported mutations. The basic molecular information we provide here will be useful for further investigations of the physiological function of the heat shock DNAJ gene, which will be helpful in better understanding the role of the DNAJ family in regulation of plant type traits such as leaf width of rice.
Collapse
Affiliation(s)
- Yahui Wu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lixin Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Likai Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xingxing Tao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin MS, Beahan CT, Kopischke M, Fuchs R, Lipka V, Niks RE, Bulone V, Chowdhury J, Little A, Burton RA, Bacic A, Fincher GB, Schweizer P. The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. THE NEW PHYTOLOGIST 2016; 212:421-33. [PMID: 27352228 DOI: 10.1111/nph.14065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/10/2016] [Indexed: 05/20/2023]
Abstract
Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.
Collapse
Affiliation(s)
- Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Stefanie Lueck
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Goetz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Annika Johrde
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - René Fuchs
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Rients E Niks
- Plant Sciences, Wageningen University, PO Box 386, Wageningen, 6700AJ, the Netherlands
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- Division of Glycocience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Jamil Chowdhury
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany.
| |
Collapse
|
45
|
Liu J, Luo M, Yan X, Yu C, Li S. Characterization of genes coding for galacturonosyltransferase-like (GATL) proteins in rice. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice (Oryza sativa L.). Biochem Biophys Res Commun 2014; 457:133-40. [PMID: 25522878 DOI: 10.1016/j.bbrc.2014.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
To better understand the genetic of rice agronomic traits, we selected two different rice germplasms in phenotypes, Xian80 and Suyunuo, to construct genetic population for QTL analysis. A total of 25 QTLs for six traits were found in a 175 F2 population. Major QTLs, qPH12,qLW12.2, qLL12 and qGW12.1, explaining 50.00%, 57.08%, 15.41% and 22.51% phenotypic variation for plant height, leaf width, leaf length and grain width, respectively, were located on the same interval of chromosome 12 flanking SSR markers RM519 and RM1103. In consideration of the great effects on plant height and leaf width, the locus was named DNL1 (Dwarf and Narrowed Leaf 1). Using a segregating population derived from F2 heterozygous individuals, a total of 1363 dwarfism and narrowed-leaf individuals was selected for screening recombinants. By high-resolution linkage analysis in 141 recombination events, DNL1 was narrowed to a 62.39kb region of InDel markers ID12M28 and HF43. The results of ORF analysis in target region and nucleotide sequence alignment indicated that DNL1 encodes cellulose synthase-like D4 protein, and a single nucleotide substitution (C2488T) in dnl1 result in decrease in plant height and leaf width. Bioinformatical analysis demonstrated that a conserved role for OsCSLD4 in the regulation of plant growth and development. Expression analysis for OsCSLDs showed OsCSLD4 highly expressed in roots, while other CSLD members had comparatively lower expression levels. However, no clear evidence about CSLD4/DNL1 expression was associated with its function.
Collapse
|
47
|
Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2014; 14:158. [PMID: 24906444 PMCID: PMC4062502 DOI: 10.1186/1471-2229-14-158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/27/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND The shape of grass leaves possesses great value in both agronomy and developmental biology research. Leaf rolling is one of the important traits in rice (Oryza sativa L.) breeding. MYB transcription factors are one of the largest gene families and have important roles in plant development, metabolism and stress responses. However, little is known about their functions in rice. RESULTS In this study, we report the functional characterization of a rice gene, OsMYB103L, which encodes an R2R3-MYB transcription factor. OsMYB103L was localized in the nucleus with transactivation activity. Overexpression of OsMYB103L in rice resulted in a rolled leaf phenotype. Further analyses showed that expression levels of several cellulose synthase genes (CESAs) were significantly increased, as was the cellulose content in OsMYB103L overexpressing lines. Knockdown of OsMYB103L by RNA interference led to a decreased level of cellulose content and reduced mechanical strength in leaves. Meanwhile, the expression levels of several CESA genes were decreased in these knockdown lines. CONCLUSIONS These findings suggest that OsMYB103L may target CESA genes for regulation of cellulose synthesis and could potentially be engineered for desirable leaf shape and mechanical strength in rice.
Collapse
Affiliation(s)
- Chunhua Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing 100871, China
| | - Lili Hao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Rao Y, Li Y, Qian Q. Recent progress on molecular breeding of rice in China. PLANT CELL REPORTS 2014; 33:551-64. [PMID: 24442397 PMCID: PMC3976512 DOI: 10.1007/s00299-013-1551-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 05/22/2023]
Abstract
Molecular breeding of rice for high yield, superior grain quality, and strong environmental adaptability is crucial for feeding the world's rapidly growing population. The increasingly cloned quantitative trait loci and genes, genome variations, and haplotype blocks related to agronomically important traits in rice have provided a solid foundation for direct selection and molecular breeding, and a number of genes have been successfully introgressed into mega varieties of rice. Here we summarize China's great achievements in molecular breeding of rice in the following five traits: high yield, biotic stress resistance, abiotic stress resistance, quality and physiology. Further, the prospect of rice breeding by molecular design is discussed.
Collapse
Affiliation(s)
- Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - Yuanyuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
49
|
Moon S, Kim SR, Zhao G, Yi J, Yoo Y, Jin P, Lee SW, Jung KH, Zhang D, An G. Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. PLANT PHYSIOLOGY 2013; 161:663-75. [PMID: 23263792 PMCID: PMC3561011 DOI: 10.1104/pp.112.210948] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/13/2012] [Indexed: 05/21/2023]
Abstract
The pollen wall consists of an exine and an intine. The mechanism underlying its formation is not well understood. Glycosyltransferases catalyze the modification of biological molecules by attaching a single or multiple sugars and play key roles in a wide range of biological processes. We examined the role of GLYCOSYLTRANSFERASE1 (OsGT1) in pollen wall development in rice (Oryza sativa). This gene is highly expressed in mature pollen, and plants containing alleles caused by transfer DNA insertion do not produce homozygous progeny. Reciprocal crosses between OsGT1/osgt1 and the wild type indicated that the mutation leads to a male gametophyte defect. Microscopic analyses revealed that osgt1 pollen developed normally to the pollen mitosis stage but failed to produce mature grains. In osgt1 pollen, intine structure was disrupted. In addition, starch and protein levels were much lower in the mutant grains. Recombinant OsGT1 transferred glucose from UDP-glucose to the third and seventh positions of quercetin, a universal substrate of glycosyltransferases. Consistent with the role of OsGT1, an OsGT1-green fluorescent protein fusion protein was localized to the Golgi apparatus. Taken together, our results suggest that OsGT1 is a Golgi-localized glycosyltransferase essential for intine construction and pollen maturation, providing new insight into male reproductive development.
Collapse
|
50
|
Yoo CM, Quan L, Blancaflor EB. Divergence and Redundancy in CSLD2 and CSLD3 Function During Arabidopsis Thaliana Root Hair and Female Gametophyte Development. FRONTIERS IN PLANT SCIENCE 2012; 3:111. [PMID: 22661983 PMCID: PMC3361707 DOI: 10.3389/fpls.2012.00111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/08/2012] [Indexed: 05/21/2023]
Abstract
The Arabidopsis cellulose synthase-like D (CSLD) 2 and 3 genes are known to function in root hair development. Here, we show that these genes also play a role in female gametophyte development because csld2 csld3 double mutants were observed to have low seed set that could be traced to defects in female transmission efficiency. Cell biological studies of csld2 csld3 ovules showed synergid cell degeneration during megagametogenesis and reduced pollen tube penetration during fertilization. Although CSLD2 and CSLD3 function redundantly in female gametophyte development, detailed analyses of root hair phenotypes of progeny from genetic crosses between csld2 and csld3, suggest that CSLD3 might play a more prominent role than CSLD2 in root hair development. Phylogenetic and gene duplication studies of CSLD2 and CSLD3 homologs in Arabidopsis lyrata, Populus, Medicago, maize, and Physcomitrella were further performed to investigate the course of evolution for these genes. Our analyses indicate that the ancestor of land plants possibly contained two copies of CSLD genes, one of which developed into the CSLD5 lineage in flowering plants, and the other formed the CSLD1/2/3/4 clade. In addition, CSLD2 and CSLD3 likely originated from a recent genome-wide duplication event explaining their redundancy. Moreover, sliding-window dN/dS analysis showed that most of the coding regions of CSLD2 and CSLD3 have been under strong purifying selection pressure. However, the region that encodes the N-terminus of CSLD3 has been under relatively relaxed selection pressure as indicated by its high dN/dS value, suggesting that CSLD3 might have gained additional functions through more frequent non-synonymous sequence changes at the N-terminus, which could partly explain the more prominent role of CSLD3 during root hair development compared to CSLD2.
Collapse
Affiliation(s)
- Cheol-Min Yoo
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Li Quan
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Elison B. Blancaflor, Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA. e-mail:
| |
Collapse
|