1
|
Dominguez-Mozo MI, Galán V, Ramió-Torrentà L, Quiroga A, Quintana E, Villar LM, Costa-Frossard L, Fernández-Velasco JI, Villarrubia N, Garcia-Martinez MA, Arroyo R, Alvarez-Lafuente R. A two-years real-word study with fingolimod: early predictors of efficacy and an association between EBNA-1 IgG titers and multiple sclerosis progression. Front Immunol 2024; 15:1384411. [PMID: 38911861 PMCID: PMC11190074 DOI: 10.3389/fimmu.2024.1384411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Background Although fingolimod, a sphingosine 1-phosphate receptor agonist, has shown to be an effective treatment reducing relapse rate and also slowing down the disability progression in relapsing-remitting multiple sclerosis (RRMS) patients, it is important to quickly identify those suboptimal responders. Objective The main objective was to assess different clinical, radiological, genetic and environmental factors as possible early predictors of response in MS patients treated with fingolimod for 24 months. The secondary objective was to analyze the possible contribution of the environmental factors analyzed to the progression and activity of the disease along the 2-years of follow-up. Methods A retrospective study with 151 patients diagnosed with MS, under fingolimod treatment for 24 months, with serum samples at initiation and six months later, and with clinical and radiological data at initiation and 24 months later, were included in the study. Clinical and radiological variables were collected to establish NEDA-3 (no evidence of disease activity: patients without relapses, disability progression and new T2 lesions or Gd+ lesions) and EDA (evidence of disease activity: patients with relapses and/or progression and/or new T2 lesions or gadolinium-positive [Gd+] lesions) conditions. Human leukocyte antigen II (HLA-II), EBNA-1 IgG and VCA IgG from Epstein-Barr virus (EBV) and antibody titers against Human herpesvirus 6A/B (HHV-6A/B) were also analyzed. Results A total of 151 MS patients fulfilled the inclusion criteria: 27.8% was NEDA-3 (37.5% among those previously treated with high efficacy therapies >24 months). The following early predictors were statistically significantly associated with NEDA-3 condition: sex (male; p=0.002), age at baseline (older; p=0.009), relapses 2-years before fingolimod initiation ≤1 (p=0.010), and absence of Gd+ lesions at baseline (p=0.006). Regarding the possible contribution of the environmental factors included in the study to the activity or the progression of the disease, we only found that EBNA-1 IgG titers decreased in 20.0% of PIRA (progression independent from relapse activity) patients vs. 73.3% of RAW (relapse-associated worsening) patients (p=0.006; O.R. = 11.0). Conclusion MS patients that are male, older, and with a low clinical and radiological activity at fingolimod initiation have a greater probability to reach NEDA-3 condition after two years with this therapy. An intriguing association of EBV with the progression of the disease has also been described, but it should be further study in a larger cohort to confirm these results.
Collapse
Affiliation(s)
- Maria Inmaculada Dominguez-Mozo
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Victoria Galán
- Servicio de Neurología, Hospital Universitario de Toledo, Toledo, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Girona Biomedical Research Institute (IDIBGI), Doctor Josep Trueta University Hospital and Santa Caterina Hospital, Department of Medical Sciences, University of Girona, Red de Enfermedades Inflamatorias (REI), Girona, Spain
| | - Ana Quiroga
- Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Girona Biomedical Research Institute (IDIBGI), Red de Enfermedades Inflamatorias (REI), Girona, Spain
| | - E. Quintana
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Girona Biomedical Research Institute (IDIBGI), Department of Medical Sciences, University of Girona, Girona, Spain
| | - Luisa María Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | | | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - María Angel Garcia-Martinez
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud Madrid, Red Española de Esclerosis Múltiple (REEM), Madrid, Spain
| | - Roberto Alvarez-Lafuente
- Grupo de Investigación de Factores Ambientales en Enfermedades Degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| |
Collapse
|
2
|
Elsayed NS, Aston P, Bayanagari VR, Shukla SK. The gut microbiome molecular mimicry piece in the multiple sclerosis puzzle. Front Immunol 2022; 13:972160. [PMID: 36045671 PMCID: PMC9420973 DOI: 10.3389/fimmu.2022.972160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/11/2022] Open
Abstract
The etiological complexity of multiple sclerosis, an immune-mediated, neurodegenerative disease with multifactorial etiology is still elusive because of an incomplete understanding of the complex synergy between contributing factors such as genetic susceptibility and aberrant immune response. Recently, the disease phenotypes have also been shown to be associated with dysbiosis of the gut microbiome, a dynamic reservoir of billions of microbes, their proteins and metabolites capable of mimicring the autoantigens. Microbial factors could potentially trigger the neuroinflammation and symptoms of MS. In this perspective article, we discussed how microbial molecules resulting from a leaky gut might mimic a host’s autoantigen, potentially contributing to the disease disequilibrium. It further highlights the importance of targeting the gut microbiome for alternate therapeutic options for the treatment of MS.
Collapse
Affiliation(s)
- Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Paula Aston
- Department of Neurology, Marshfield Clinic Health System, Marshfield, WI, United States
| | - Vishnu R. Bayanagari
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- *Correspondence: Sanjay K. Shukla,
| |
Collapse
|
3
|
Yates RL, Pansieri J, Li Q, Bell JS, Yee SA, Palace J, Esiri MM, DeLuca GC. The influence of HLA-DRB1*15 on the relationship between microglia and neurons in multiple sclerosis normal appearing cortical grey matter. Brain Pathol 2021; 32:e13041. [PMID: 34904300 PMCID: PMC9245937 DOI: 10.1111/bpa.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/06/2022] Open
Abstract
Cortical tissue injury is common in multiple sclerosis (MS) and associates with disability progression. We have previously shown that HLA‐DRB1*15 genotype status associates with the extent of cortical inflammatory pathology. In the current study, we sought to examine the influence of HLA‐DRB1*15 on relationships between inflammation and neurodegeneration in MS. Human post‐mortem MS cases (n = 47) and controls (n = 10) were used. Adjacent sections of motor cortex were stained for microglia (Iba1+, CD68+, TMEM119+), lymphocytes (CD3+, CD8+), GFAP+ astrocytes, and neurons (NeuN+). A subset of MS cases (n = 20) and controls (n = 7) were double‐labeled for neurofilament and glutamic acid decarboxylase 65/67 (GAD+) to assess the extent of the inhibitory synaptic loss. In MS cases, microglial protein expression positively correlated with neuron density (Iba1+: r = 0.548, p < 0.001, CD68+: r = 0.498, p = 0.001, TMEM119+ r = 0.437, p = 0.003). This finding was restricted to MS cases not carrying HLA‐DRB1*15. Evidence of a 14% reduction in inhibitory synapses in MS was detected (MS: 0.299 ± 0.006 synapses/μm2 neuronal membrane versus control: 0.348 ± 0.009 synapses/μm2 neuronal membrane, p = 0.005). Neurons expressing inhibitory synapses were 24% smaller in MS cases compared to the control (MS: 403 ± 15 μm2 versus control: 531 ± 29 μm2, p = 0.001), a finding driven by HLA‐DRB1*15+ cases (15+: 376 ± 21 μm2 vs. 15−: 432 ± 22 μm2, p = 0.018). Taken together, our results demonstrate that HLA‐DRB1*15 modulates the relationship between microglial inflammation, inhibitory synapses, and neuronal density in the MS cortex.
Collapse
Affiliation(s)
- Richard L Yates
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan Pansieri
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Qizhu Li
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Jack S Bell
- Salford Royal NHS Foundation Trust, Salford, UK
| | - Sydney A Yee
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Margaret M Esiri
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Ehtesham N, Rafie MZ, Mosallaei M. The global prevalence of familial multiple sclerosis: an updated systematic review and meta-analysis. BMC Neurol 2021; 21:246. [PMID: 34182943 PMCID: PMC8237453 DOI: 10.1186/s12883-021-02267-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Considering that many recent studies have reported the prevalence of familial multiple sclerosis (FMS), we performed an updated meta-analysis of the worldwide prevalence of FMS by the addition of recent publications. METHODS A search in PubMed, Scopus, the ISI Web of Science, and Google Scholar was undertaken up to 20 December 2020. The inclusion criteria were based on the CoCoPop approach (condition, context, and population). Meta-analysis of the qualified studies was conducted by comprehensive meta-analysis ver. 2 software. RESULTS The pooled prevalence of MS in relatives of 16,179 FMS cases was estimated to be 11.8% (95% CI: 10.7-13) based on a random-effects model. The pooled mean age of disease onset in adult probands was calculated to be 28.7 years (95% CI: 27.2 ± 30.2). Regarding 13 studies that reported the data of FMS in pediatrics (n = 877) and adults (n = 6636), the FMS prevalence in pediatrics and adults was 15.5% (95% CI: 13.8-17.4) and 10.8% (95% CI: 8.1-14.2), respectively. The prevalence of FMS in affected males (n = 5243) and females (n = 11,503) was calculated to be 13.7% (95% CI: 10.1-18.2) and 15.4% (95% CI: 10.3-22.4), respectively. The odds ratio of male/female in FMS cases was not statistically significant (OR = 0.9; 95% CI: 0.6-1.2, P = 0.55). Subgroup analysis demonstrated a significant difference in the prevalence of FMS between the geographical areas (P = 0.007). The meta-regression model indicated that the prevalence of FMS is lower with higher latitude and higher MS prevalence (P < 0.001). In contrast, meta-regression based on prevalence day was not statistically significant (P = 0.29). CONCLUSIONS The prevalence of FMS is higher in the pediatric group than that of adults, distinct between geographical areas, and diminishes with the increment of MS prevalence and latitude. Also, the symptoms initiate relatively at younger ages in the FMS cases. Interestingly, our analysis unveiled that FMS is not more prevalent in men than women and the risk of MS development in relatives is not higher when the affected proband is male.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Koodakyar Alley, Daneshjoo Blvd., Evin St, Tehran, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Abstract
A broad scientific consensus has emerged linking multiple sclerosis (MS) risk to multiple independent and interacting DNA variants that are relatively frequent in the population and act in concert with environmental exposures. The multifactorial, polygenic model of heritability provided the rationale and impetus to pursue genome-wide association studies (GWAS), which have been highly successful in uncovering genetic variants influencing susceptibility. Over 200 loci have been firmly associated with MS susceptibility. The main association signal genome-wide maps to the major histocompatibility complex ( MHC) gene cluster in chromosome 6p21. This association has been observed across all populations studied. However, a significant proportion of MS heritability remains unexplained. Decoding the genetics of MS represents a long-standing and important research goal in this disease, as the demonstration of even modest functional genomic effects on risk or the course of MS is likely to reveal fundamental disease mechanisms and possibly yield new therapeutic opportunities.
Collapse
Affiliation(s)
- Ester Canto
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Kiselev I, Bashinskaya V, Baulina N, Kozin M, Popova E, Boyko A, Favorova O, Kulakova O. Genetic differences between primary progressive and relapsing-remitting multiple sclerosis: The impact of immune-related genes variability. Mult Scler Relat Disord 2019; 29:130-136. [DOI: 10.1016/j.msard.2019.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
7
|
Anti-Myelin Oligodendrocyte Glycoprotein and Human Leukocyte Antigens as Markers in Pediatric and Adolescent Multiple Sclerosis: on Diagnosis, Clinical Phenotypes, and Therapeutic Responses. Mult Scler Int 2018; 2018:8487471. [PMID: 30595920 PMCID: PMC6282147 DOI: 10.1155/2018/8487471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
Early-onset (pediatric and adolescent) multiple sclerosis (MS) is a well-established demyelinating disease that accounts for approximately 3-5% of all MS cases. Thus, identifying potential biomarkers that can reflect the pathogenic mechanisms, disease course and prognosis, and therapeutic response in such patients is of paramount importance. Myelin oligodendrocyte glycoprotein (MOG) has been regarded as a putative autoantigen and autoantibody target in patients with demyelinating diseases for almost three decades. However, recent studies have suggested that antibodies against MOG represent a distinct clinical entity of dominantly humoral profile, with a range of clinical phenotypes closely related to the age of onset, specific patterns of disease course, and responses to treatment. Furthermore, the major histocompatibility complex (MHC)—which has been regarded as the “gold standard” for attributing genetic burden in adult MS since the early 1970s—has also emerged as the primary genetic locus in early-onset MS, particularly with regard to the human leukocyte antigen (HLA) alleles DRB1⁎1501 and DRB1⁎0401. Recent studies have investigated the potential interactions among HLA, MOG, and environmental factors, demonstrating that early-onset MS is characterized by genetic, immunogenetic, immunological, and familial trait correlations. In this paper, we review recent evidence regarding HLA-genotyping and MOG antibodies—the two most important candidate biomarkers for early-onset MS—as well as their potential application in the diagnosis and treatment of MS.
Collapse
|
8
|
Tao C, Simpson S, Taylor BV, Blizzard L, Lucas RM, Ponsonby AL, Broadley S, van der Mei I. Onset Symptoms, Tobacco Smoking, and Progressive-Onset Phenotype Are Associated With a Delayed Onset of Multiple Sclerosis, and Marijuana Use With an Earlier Onset. Front Neurol 2018; 9:418. [PMID: 29937751 PMCID: PMC6003245 DOI: 10.3389/fneur.2018.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Age at symptom onset (ASO) is a prognostic factor that could affect the accrual of disability in multiple sclerosis (MS) patients. Some factors are known to influence the risk of multiple sclerosis (MS), but their influence on the ASO is less well-investigated. Objective: Examine the associations between known or emerging MS risk factors and ASO. Methods: This was a multicenter study, incident cases (n = 279) with first clinical diagnosis of demyelinating event aged 18–59 years recruited at four Australian centres (latitudes 27°-43°S), from 1 November 2003 to 31 December 2006. Environmental/behavioral variables and initial symptoms were recorded at baseline interview. Linear regression was used to assess the association between risk factors and ASO. Results: Five factors were significantly associated with ASO: a history of tobacco smoking was associated with 3.05-years later ASO (p = 0.002); a history of marijuana use was associated with 6.03-years earlier ASO (p < 0.001); progressive-onset cases had 5.61-years later ASO (p = 0.001); an initial presentation of bowel & bladder and cerebral dysfunctional were associated with 3.39 (p = 0.017) and 4.37-years (p = 0.006) later ASO, respectively. Other factors, including sex, offspring number, latitude of study site, history of infectious mononucleosis, HLA-DR15 & HLA-A2 genotype, 25(OH)D levels, and ultraviolet radiation exposure were not associated with ASO. Including all five significant variables into one model explained 12% of the total variance in ASO. Conclusion: We found a novel association between a history of tobacco smoking and later onset, whereas marijuana use was associated with earlier onset. Behavioral factors seem important drivers of MS onset timing although much of the variance remains unexplained.
Collapse
Affiliation(s)
- Chunrong Tao
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,Institute for Health & Ageing, Australian Catholic University, Melbourne, VIC, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Canberra, ACT, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Simon Broadley
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | | | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
9
|
Creary LE, Mallempati KC, Gangavarapu S, Caillier SJ, Oksenberg JR, Fernández-Viňa MA. Deconstruction of HLA-DRB1*04:01:01 and HLA-DRB1*15:01:01 class II haplotypes using next-generation sequencing in European-Americans with multiple sclerosis. Mult Scler 2018; 25:772-782. [PMID: 29683085 DOI: 10.1177/1352458518770019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The association between HLA-DRB1*15:01 with multiple sclerosis (MS) susceptibility is well established, but the contribution of the tightly associated HLA-DRB5*01:01 allele has not yet been completely ascertained. Similarly, the effects of HLA-DRB1*04:01 alleles and haplotypes, defined at the full-gene resolution level with MS risk remains to be elucidated. OBJECTIVES To characterize the molecular architecture of class II HLA-DR15 and HLA-DR4 haplotypes associated with MS. METHODS Next-generation sequencing was used to determine HLA-DQB1, HLA-DQA1, and HLA-DRB1/4/5 alleles in 1403 unrelated European-American patients and 1425 healthy unrelated controls. Effect sizes of HLA alleles and haplotypes on MS risk were measured by odds ratio (OR) with 95% confidence intervals. RESULTS HLA-DRB1*15:01:01:01SG (OR = 3.20, p < 2.2E-16), HLA-DRB5*01:01:01 (OR = 2.96, p < 2.2E-16), and HLA-DRB5*01:01:01v1_STR1 (OR = 8.18, p = 4.3E-05) alleles all occurred at significantly higher frequencies in MS patients compared to controls. The most significant predis-posing haplotypes were HLA-DQB1*06:02:01~ HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01 and HLA-DQB1*06:02:01~HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01v1_STR1 (OR = 3.19, p < 2.2E-16; OR = 9.30, p = 9.7E-05, respectively). Analyses of the HLA-DRB1*04 cohort in the absence of HLA-DRB1*15:01 haplotypes revealed that the HLA-DQB1*03:01:01:01~HLA-DQA1*03:03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was protective (OR = 0.64, p = 0.028), whereas the HLA-DQB1*03:02:01~HLA-DQA1*03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was associated with MS susceptibility (OR = 1.66, p = 4.9E-03). CONCLUSION HLA-DR15 haplotypes, including genomic variants of HLA-DRB5, and HLA-DR4 haplotypes affect MS risk.
Collapse
Affiliation(s)
- Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kalyan C Mallempati
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Sridevi Gangavarapu
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Stacy J Caillier
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
10
|
Isobe N, Keshavan A, Gourraud PA, Zhu AH, Datta E, Schlaeger R, Caillier SJ, Santaniello A, Lizée A, Himmelstein DS, Baranzini SE, Hollenbach J, Cree BAC, Hauser SL, Oksenberg JR, Henry RG. Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurol 2017; 73:795-802. [PMID: 27244296 DOI: 10.1001/jamaneurol.2016.0980] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE Although multiple HLA alleles associated with multiple sclerosis (MS) risk have been identified, genotype-phenotype studies in the HLA region remain scarce and inconclusive. OBJECTIVES To investigate whether MS risk-associated HLA alleles also affect disease phenotypes. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional, case-control study comprising 652 patients with MS who had comprehensive phenotypic information and 455 individuals of European origin serving as controls was conducted at a single academic research site. Patients evaluated at the Multiple Sclerosis Center at University of California, San Francisco between July 2004 and September 2005 were invited to participate. Spinal cord imaging in the data set was acquired between July 2013 and March 2014; analysis was performed between December 2014 and December 2015. MAIN OUTCOMES AND MEASURES Cumulative HLA genetic burden (HLAGB) calculated using the most updated MS-associated HLA alleles vs clinical and magnetic resonance imaging outcomes, including age at onset, disease severity, conversion time from clinically isolated syndrome to clinically definite MS, fractions of cortical and subcortical gray matter and cerebral white matter, brain lesion volume, spinal cord gray and white matter areas, upper cervical cord area, and the ratio of gray matter to the upper cervical cord area. Multivariate modeling was applied separately for each sex data set. RESULTS Of the 652 patients with MS, 586 had no missing genetic data and were included in the HLAGB analysis. In these 586 patients (404 women [68.9%]; mean [SD] age at disease onset, 33.6 [9.4] years), HLAGB was higher than in controls (median [IQR], 0.7 [0-1.4] and 0 [-0.3 to 0.5], respectively; P = 1.8 × 10-27). A total of 619 (95.8%) had relapsing-onset MS and 27 (4.2%) had progressive-onset MS. No significant difference was observed between relapsing-onset MS and primary progressive MS. A higher HLAGB was associated with younger age at onset and the atrophy of subcortical gray matter fraction in women with relapsing-onset MS (standard β = -1.20 × 10-1; P = 1.7 × 10-2 and standard β = -1.67 × 10-1; P = 2.3 × 10-4, respectively), which were driven mainly by the HLA-DRB1*15:01 haplotype. In addition, we observed the distinct role of the HLA-A*24:02-B*07:02-DRB1*15:01 haplotype among the other common DRB1*15:01 haplotypes and a nominally protective effect of HLA-B*44:02 to the subcortical gray atrophy (standard β = -1.28 × 10-1; P = 5.1 × 10-3 and standard β = 9.52 × 10-2; P = 3.6 × 10-2, respectively). CONCLUSIONS AND RELEVANCE We confirm and extend previous observations linking HLA MS susceptibility alleles with disease progression and specific clinical and magnetic resonance imaging phenotypic traits.
Collapse
Affiliation(s)
- Noriko Isobe
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Anisha Keshavan
- Department of Neurology, School of Medicine, University of California, San Francisco
| | | | - Alyssa H Zhu
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Esha Datta
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Regina Schlaeger
- Department of Neurology, School of Medicine, University of California, San Francisco2Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stacy J Caillier
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Adam Santaniello
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Antoine Lizée
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Daniel S Himmelstein
- Department of Neurology, School of Medicine, University of California, San Francisco3Biological and Medical Informatics, University of California, San Francisco
| | - Sergio E Baranzini
- Department of Neurology, School of Medicine, University of California, San Francisco3Biological and Medical Informatics, University of California, San Francisco
| | - Jill Hollenbach
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Bruce A C Cree
- Department of Neurology, School of Medicine, University of California, San Francisco
| | - Stephen L Hauser
- Department of Neurology, School of Medicine, University of California, San Francisco4Institute of Human Genetics, University of California, San Francisco
| | - Jorge R Oksenberg
- Department of Neurology, School of Medicine, University of California, San Francisco4Institute of Human Genetics, University of California, San Francisco
| | - Roland G Henry
- Department of Neurology, School of Medicine, University of California, San Francisco5Bioengineering Graduate Group, University of California, San Francisco and Berkeley6Department of Radiology and Biomedical Imaging, University of California, San Francisc
| |
Collapse
|
11
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
12
|
George MF, Briggs FBS, Shao X, Gianfrancesco MA, Kockum I, Harbo HF, Celius EG, Bos SD, Hedström A, Shen L, Bernstein A, Alfredsson L, Hillert J, Olsson T, Patsopoulos NA, De Jager PL, Oturai AB, Søndergaard HB, Sellebjerg F, Sorensen PS, Gomez R, Caillier SJ, Cree BAC, Oksenberg JR, Hauser SL, D'Alfonso S, Leone MA, Martinelli Boneschi F, Sorosina M, van der Mei I, Taylor BV, Zhou Y, Schaefer C, Barcellos LF. Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet 2016; 2:e87. [PMID: 27540591 PMCID: PMC4974846 DOI: 10.1212/nxg.0000000000000087] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/16/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We investigated the association between 52 risk variants identified through genome-wide association studies and disease severity in multiple sclerosis (MS). METHODS Ten unique MS case data sets were analyzed. The Multiple Sclerosis Severity Score (MSSS) was calculated using the Expanded Disability Status Scale at study entry and disease duration. MSSS was considered as a continuous variable and as 2 dichotomous variables (median and extreme ends; MSSS of ≤5 vs >5 and MSSS of <2.5 vs ≥7.5, respectively). Single nucleotide polymorphisms (SNPs) were examined individually and as both combined weighted genetic risk score (wGRS) and unweighted genetic risk score (GRS) for association with disease severity. Random-effects meta-analyses were conducted and adjusted for cohort, sex, age at onset, and HLA-DRB1*15:01. RESULTS A total of 7,125 MS cases were analyzed. The wGRS and GRS were not strongly associated with disease severity after accounting for cohort, sex, age at onset, and HLA-DRB1*15:01. After restricting analyses to cases with disease duration ≥10 years, associations were null (p value ≥0.05). No SNP was associated with disease severity after adjusting for multiple testing. CONCLUSIONS The largest meta-analysis of established MS genetic risk variants and disease severity, to date, was performed. Results suggest that the investigated MS genetic risk variants are not associated with MSSS, even after controlling for potential confounders. Further research in large cohorts is needed to identify genetic determinants of disease severity using sensitive clinical and MRI measures, which are critical to understanding disease mechanisms and guiding development of effective treatments.
Collapse
Affiliation(s)
| | | | - Xiaorong Shao
- Author affiliations are listed at the end of the article
| | | | - Ingrid Kockum
- Author affiliations are listed at the end of the article
| | - Hanne F Harbo
- Author affiliations are listed at the end of the article
| | | | - Steffan D Bos
- Author affiliations are listed at the end of the article
| | - Anna Hedström
- Author affiliations are listed at the end of the article
| | - Ling Shen
- Author affiliations are listed at the end of the article
| | | | | | - Jan Hillert
- Author affiliations are listed at the end of the article
| | - Tomas Olsson
- Author affiliations are listed at the end of the article
| | | | | | | | | | | | - Per S Sorensen
- Author affiliations are listed at the end of the article
| | - Refujia Gomez
- Author affiliations are listed at the end of the article
| | | | - Bruce A C Cree
- Author affiliations are listed at the end of the article
| | | | | | | | | | | | | | | | - Bruce V Taylor
- Author affiliations are listed at the end of the article
| | - Yuan Zhou
- Author affiliations are listed at the end of the article
| | | | | |
Collapse
|
13
|
Laursen JH, Søndergaard HB, Sørensen PS, Sellebjerg F, Oturai AB. Association between age at onset of multiple sclerosis and vitamin D level–related factors. Neurology 2015; 86:88-93. [DOI: 10.1212/wnl.0000000000002075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
|
14
|
Hilven K, Patsopoulos NA, Dubois B, Goris A. Burden of risk variants correlates with phenotype of multiple sclerosis. Mult Scler 2015; 21:1670-80. [PMID: 25948629 DOI: 10.1177/1352458514568174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/19/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND More than 100 common variants underlying multiple sclerosis (MS) susceptibility have been identified, but their effect on disease phenotype is still largely unknown. OBJECTIVE The objective of this paper is to assess whether the cumulative genetic risk score of currently known susceptibility variants affects clinical presentation. METHODS A cumulative genetic risk score was based on four human leukocyte antigen (HLA) and 106 non-HLA risk loci genotyped or imputed in 842 Belgian MS patients and 321 controls. Non-parametric analyses were applied. RESULTS An increased genetic risk is observed for MS patients, including subsets such as oligoclonal band-negative and primary progressive MS patients, compared to controls. Within the patient group, a stronger association between HLA risk variants and the presence of oligoclonal bands, an increased immunoglobulin G (IgG) index and female gender was apparent. Results suggest an association between a higher accumulation of non-HLA risk variants and increased relapse rate as well as shorter relapse-free intervals after disease onset. CONCLUSION MS patients display a significantly increased genetic risk compared to controls, irrespective of disease course or presence of oligoclonal bands. Whereas the cumulative burden of non-HLA risk variants appears to be reflected in the relapses of MS patients, the HLA region influences intrathecal IgG levels.
Collapse
Affiliation(s)
- Kelly Hilven
- Laboratory for Neuroimmunology, Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Belgium
| | - Nikolaos A Patsopoulos
- Department of Neurology, Brigham & Women's Hospital, USA/Harvard Medical School, USA/Broad Institute, USA
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Belgium/Department of Neurology, University Hospitals Leuven, Belgium
| | - An Goris
- Laboratory for Neuroimmunology, Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
15
|
Didonna A, Oksenberg JR. Genetic determinants of risk and progression in multiple sclerosis. Clin Chim Acta 2015; 449:16-22. [PMID: 25661088 DOI: 10.1016/j.cca.2015.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 01/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that represents a primary cause of neurological disability in the young adult population. Converging evidence supports the importance of genetic determinants for MS etiology. However, with the exception of the major histocompatibility complex, their nature has been elusive for more than 20 years. In the last decade, the advent of large genome-wide association studies has significantly improved our understanding of the disease, leading to the golden era of MS genetic research. To date more than 110 genetic variants have been firmly associated to an increased risk of developing MS. A large part of these variants tag genes involved in the regulation of immune response and several of them are shared with other autoimmune diseases, suggesting a common etiological root for this class of disorders. Despite the impressive body of data obtained in the last years, we are still far from fully decoding MS genetic complexity. For example, we ignore how these genetic factors interact with each other and with the environment. Thus, the biggest challenge for the next era of MS research will consist in identifying and characterizing the molecular mechanisms and the cellular pathways in which these risk variants play a role.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jorge R Oksenberg
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Abstract
One of the most consistent findings in multiple sclerosis (MS) is that development of MS is linked with carriage of the class II human leucocyte antigen (HLA) molecule HLA-DRB1*15:01; around 60 % of Caucasian MS patients carry this allele compared to 25-30 % of ethnically matched healthy individuals. However, other HLA molecules have also been linked to the development of MS. In this chapter, the association between different HLA types and susceptibility to MS will be reviewed, and other linkages between the carriage of specific HLA molecules and clinical and experimental findings in MS will be considered.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Riyal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
17
|
Davis MF, Haines JL. The intelligent use and clinical benefits of electronic medical records in multiple sclerosis. Expert Rev Clin Immunol 2014; 11:205-11. [PMID: 25495075 DOI: 10.1586/1744666x.2015.991314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic medical records (EMRs) are being quickly adopted in clinics around the world. This advancement can greatly enhance the clinical care of patients with multiple sclerosis (MS) by providing formats that allow easier review of medical documents and more structured avenues to store relevant information. MS clinicians should be involved with implementing and updating EMRs at their institutions to ensure EMR formats that benefit MS clinics. EMRs also provide opportunities for research studies of MS to access detailed, longitudinal data of MS disease course that would otherwise be difficult to collect.
Collapse
Affiliation(s)
- Mary F Davis
- Brigham Young University, Microbiology and Molecular Biology, 4007 LSB, Provo, UT 84602, USA
| | | |
Collapse
|
18
|
Abolfazli R, Samadzadeh S, Sabokbar T, Siroos B, Armaki SA, Aslanbeiki B, Ghelman M, Taheri T, Shakoori A. Relationship between HLA-DRB1* 11/15 genotype and susceptibility to multiple sclerosis in IRAN. J Neurol Sci 2014; 345:92-6. [DOI: 10.1016/j.jns.2014.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 07/07/2014] [Indexed: 01/21/2023]
|
19
|
Samandary S, Kridane-Miledi H, Sandoval JS, Choudhury Z, Langa-Vives F, Spencer D, Chentoufi AA, Lemonnier FA, BenMohamed L. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum Immunol 2014; 75:715-29. [PMID: 24798939 DOI: 10.1016/j.humimm.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/01/2023]
Abstract
A significant portion of the world's population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) over a half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A(∗)24, HLA-B(∗)27, HLA-B(∗)53 and HLA-B(∗)58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B(∗)44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy.
Collapse
Affiliation(s)
- Sarah Samandary
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Hédia Kridane-Miledi
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Jacqueline S Sandoval
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Zareen Choudhury
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Francina Langa-Vives
- Plate-Forme Technologique, Centre d'Ingénierie Génétique Murine, Département de Biologie du Développement, Institut Pasteur, 75015 Paris, France
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - François A Lemonnier
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Abstract
Familial aggregation and the studies of twins indicate that heredity contributes to multiple sclerosis (MS) risk. Immunologic studies of leukocyte antigens subsequently followed by gene-mapping techniques identified the primary MS susceptibility locus to be within the major histocompatibility complex (MHC). The primary risk allele is HLA-DRB1*15, although other alleles of this gene also influence MS susceptibility. Other genes within the MHC also contribute to MS susceptibility. Genome-wide association studies have identified over 50 additional common variants of genes across the genome. Estimates suggest that there may be as many as 200 genes involved in MS susceptibility. In addition to these common polymorphisms, studies have identified several rare risk alleles in some families. Interestingly, the majority of the genes identified have known immunologic functions and many contribute to the risk of inheriting other autoimmune diseases. Genetic variants in the vitamin D metabolic pathway have also been identified. That vitamin D contributes to MS susceptibility as both an environmental as well as genetic risk factor underscores the importance of this metabolic pathway in disease pathogenesis. Current efforts are focused on understanding how the myriad of genetic risk alleles interact within networks to influence MS risk at family level as well as within populations.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
21
|
Abstract
Multiple sclerosis (MS) patients are classified as either having relapsing onset or progressive onset disease, also known as primary progressive MS (PPMS). Relative to relapsing onset patients, PPMS patients are older at disease onset, are equally likely to be men or women, and have more rapid accumulation of disability that does not respond well to treatments used in relapsing onset MS. Although estimates vary, 5-15% of all MS patients have a PPMS disease course. Genetic variance is a proposed determinant of MS disease course. If distinct genes associated with PPMS were identified study of these genes might lead to an understanding of the biology underlying disease progression and neural degeneration that are the hallmarks of PPMS. These genes and their biological pathways might also represent therapeutic targets. This chapter systematically reviews the PPMS genetic literature. Despite the intuitively appealing notion that differences between PPMS and relapsing onset MS are due to genetics, definite differences associated with these phenotypes at the major histocompatibility complex or elsewhere in the genome have not been found. Recent large-scale genome wide screens identified multiple genes associated with MS susceptibility outside the MHC. The genetic variants identified thus far make only weak individual contributions to MS susceptibility. If the genetic effects that contribute to the differences between PPMS and relapsing MS are similar in magnitude to those that distinguish MS from healthy controls then, given the relative scarcity of the PPMS phenotype, very large datasets will be needed to identify PPMS associated genes. International collaborative efforts could provide the means to identify such genes. Alternately, it is possible that factors other than genetics underlie the differences between these clinical phenotypes.
Collapse
Affiliation(s)
- Bruce A C Cree
- Department of Neurology, University of California, San Francisco, USA.
| |
Collapse
|
22
|
Harbo HF, Isobe N, Berg-Hansen P, Bos SD, Caillier SJ, Gustavsen MW, Mero IL, Celius EG, Hauser SL, Oksenberg JR, Gourraud PA. Oligoclonal bands and age at onset correlate with genetic risk score in multiple sclerosis. Mult Scler 2013; 20:660-8. [PMID: 24099750 DOI: 10.1177/1352458513506503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Many genetic risk variants are now well established in multiple sclerosis (MS), but the impact on clinical phenotypes is unclear. OBJECTIVE To investigate the impact of established MS genetic risk variants on MS phenotypes, in well-characterized MS cohorts. METHODS Norwegian MS patients (n = 639) and healthy controls (n = 530) were successfully genotyped for 61 established MS-associated single nucleotide polymorphisms (SNPs). Data including and excluding Major Histocompatibility Complex (MHC) markers were summed to a MS Genetic Burden (MSGB) score. Study replication was performed in a cohort of white American MS patients (n = 1997) and controls (n = 708). RESULTS The total human leukocyte antigen (HLA) and the non-HLA MSGB scores were significantly higher in MS patients than in controls, in both cohorts (P << 10(-22)). MS patients, with and without cerebrospinal fluid (CSF) oligoclonal bands (OCBs), had a higher MSGB score than the controls; the OCB-positive patients had a slightly higher MSGB than the OCB-negative patients. An early age at symptom onset (AAO) also correlated with a higher MSGB score, in both cohorts. CONCLUSION The MSGB score was associated with specific clinical MS characteristics, such as OCBs and AAO. This study underlines the need for well-characterized, large cohorts of MS patients, and the usefulness of summarizing multiple genetic risk factors of modest effect size in genotype-phenotype analyses.
Collapse
Affiliation(s)
- Hanne F Harbo
- Department of Neurology, Oslo University Hospital, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Balnyte R, Rastenyte D, Vaitkus A, Mickeviciene D, Skrodeniene E, Vitkauskiene A, Uloziene I. The importance of HLA DRB1 gene allele to clinical features and disability in patients with multiple sclerosis in Lithuania. BMC Neurol 2013; 13:77. [PMID: 23837503 PMCID: PMC3716946 DOI: 10.1186/1471-2377-13-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/24/2013] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The association of HLA DRB1 alleles with susceptibility to multiple sclerosis (MS) has been consistently reported although its effect on the clinical features and disability is still unclear probably due to diversity in ethnicity and geographic location of the studied populations. The aim of the present study was to investigate the influence of HLA DRB1 alleles on the clinical features and disability of the patients with MS in Lithuania. METHODS This was a prospective study of 120 patients with MS. HLA DRB1 alleles were genotyped using the polymerase chain reaction. RESULTS The first symptoms of MS in patients with HLA DRB1*15 allele manifested at younger age than in those without this allele (28.32 +/- 5.49 yrs vs. 30.94 +/- 8.43 yrs, respectively, p = 0.043). HLA DRB1*08 allele was more prevalent among relapsing-remitting (RR) MS patients than among patients with progressive course of MS (25.0% vs. 8.3%, respectively, chi^2 = 6.000, p = 0.05). MS patients with this allele had lower relapse rate than those without this allele (1.00 +/- 0.97 and 1.44 +/- 0.85, respectively, p = 0.043). Degree of disability during the last visit was lower among the patients with HLA DRB1*08 allele (EDSS score 3.15 +/- 1.95 vs. 4.49 +/- 1.96, p = 0.006), and higher among those with HLA DRB1*15 allele (EDSS score 4.60 +/- 2.10 vs.4.05 +/- 1.94, p = 0.047) compared to patients without these alleles but there were no significant associations between these alleles and the duration of the disease to disability. HLA DRB1*08 allele (OR = 0.18, 95% CI 0,039-0,8, p = 0.029) was demonstradet to be independent factor to take a longer time to reach an EDSS of 6, while HLA DRB1*01 allele (OR = 5.92, 95% CI 1,30-26,8, p = 0.021) was related in a shorter time to reach and EDSS of 6. Patients with HLA DRB1*08 allele had lower IgG index compared to patients without this allele (0.58 +/- 0.17 and 0.73 +/- 0.31, respectively, p = 0.04), and HLA DRB1*15 allele was more often found among MS patients with oligoclonal bands (OCBs) in cerebrospinal fluid than among those without OCBs (OR 2.3, CI 95% 1.017-5.301; p = 0.043). CONCLUSIONS HLA DRB1*15 allele was related with an earlier manifestation of the first MS symptoms, progressive course of the disease and higher degree of disability. HLA DRB1*08 allele was more prevalent among the RR MS patients and was associated with the lower rate of relapse, degree of disability and IgG index.
Collapse
Affiliation(s)
- Renata Balnyte
- Department of Neurology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Daiva Rastenyte
- Department of Neurology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Antanas Vaitkus
- Department of Neurology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Dalia Mickeviciene
- Department of Neurology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Erika Skrodeniene
- Department of Laboratory Medicine, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| | - Ingrida Uloziene
- Department of Otorinolaryngology, Academy of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus street 9, Kaunas LT 44307, Lithuania
| |
Collapse
|
24
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
25
|
Kalincik T, Guttmann CRG, Krasensky J, Vaneckova M, Lelkova P, Tyblova M, Seidl Z, De Jager PL, Havrdova E, Horakova D. Multiple sclerosis susceptibility loci do not alter clinical and MRI outcomes in clinically isolated syndrome. Genes Immun 2013; 14:244-8. [PMID: 23575354 DOI: 10.1038/gene.2013.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has not yet been established whether genetic predictors of multiple sclerosis (MS) susceptibility also influence disease severity and accumulation of disability. Our aim was to evaluate associations between 16 previously validated genetic susceptibility markers and MS phenotype. Patients with clinically isolated syndrome verified by positive magnetic resonance imaging (MRI) and cerebrospinal fluid findings (n=179) were treated with interferon-β. Disability and volumetric MRI parameters were evaluated regularly for 2 years. Sixteen single-nucleotide polymorphisms (SNPs) previously validated as predictors of MS susceptibility in our cohort and their combined weighted genetic risk score (wGRS) were tested for associations with clinical (conversion to MS, relapses and disability) and MRI disease outcomes (whole brain, grey matter and white matter volumes, corpus callosum cross-sectional area, brain parenchymal fraction, T2 and T1 lesion volumes) 2 years from disease onset using mixed-effect models. We have found no associations between the tested SNPs and the clinical or MRI outcomes. Neither the combined wGRS predicted MS activity and progression over 2-year follow-up period. Power analyses confirmed 90% power to identify clinically relevant changes in all outcome variables. We conclude that the most important MS susceptibility loci do not determine MS phenotype and disease outcomes.
Collapse
Affiliation(s)
- T Kalincik
- Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis: an up-to-date review. Immunol Rev 2012. [PMID: 22725956 DOI: 10.1111/j.1600-065x.2012.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis (MS) is a prevalent inflammatory disease of the central nervous system that often leads to disability in young adults. Treatment options are limited and often only partly effective. The disease is likely caused by a complex interaction between multiple genes and environmental factors, leading to inflammatory-mediated central nervous system deterioration. A series of genomic studies have confirmed a central role for the immune system in the development of MS, including genetic association studies that have now dramatically expanded the roster of MS susceptibility genes beyond the longstanding human leukocyte antigen (HLA) association in MS first identified nearly 40 years ago. Advances in technology together with novel models for collaboration across research groups have enabled the discovery of more than 50 non-HLA genetic risk factors associated with MS. However, with a large proportion of the disease heritability still unaccounted for, current studies are now geared towards identification of causal alleles, associated pathways, epigenetic mechanisms, and gene-environment interactions. This article reviews recent efforts in addressing the genetics of MS and the challenges posed by an ever increasing amount of analyzable data, which is spearheading development of novel statistical methods necessary to cope with such complexity.
Collapse
Affiliation(s)
- Pierre-Antoine Gourraud
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143-0435, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Multiple sclerosis (MS) is a prevalent inflammatory disease of the central nervous system that often leads to disability in young adults. Treatment options are limited and often only partly effective. The disease is likely caused by a complex interaction between multiple genes and environmental factors, leading to inflammatory-mediated central nervous system deterioration. A series of genomic studies have confirmed a central role for the immune system in the development of MS, including genetic association studies that have now dramatically expanded the roster of MS susceptibility genes beyond the longstanding human leukocyte antigen (HLA) association in MS first identified nearly 40 years ago. Advances in technology together with novel models for collaboration across research groups have enabled the discovery of more than 50 non-HLA genetic risk factors associated with MS. However, with a large proportion of the disease heritability still unaccounted for, current studies are now geared towards identification of causal alleles, associated pathways, epigenetic mechanisms, and gene-environment interactions. This article reviews recent efforts in addressing the genetics of MS and the challenges posed by an ever increasing amount of analyzable data, which is spearheading development of novel statistical methods necessary to cope with such complexity.
Collapse
Affiliation(s)
- Pierre-Antoine Gourraud
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| | - Hanne F. Harbo
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stephen L. Hauser
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| | - Sergio E. Baranzini
- Department of Neurology, University of California San Francisco. 513 Parnassus Ave. Room S-256. San Francisco, CA. 94143-0435’
| |
Collapse
|
28
|
Replication study of multiple sclerosis (MS) susceptibility alleles and correlation of DNA-variants with disease features in a cohort of Austrian MS patients. Neurogenetics 2012; 13:181-7. [DOI: 10.1007/s10048-012-0316-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/06/2012] [Indexed: 02/01/2023]
|
29
|
Lundström W, Greiner E, Lundmark F, Westerlind H, Smestad C, Lorentzen ÅR, Kockum I, Link J, Brynedal B, Celius EG, Harbo HF, Masterman T, Hillert J. No influence on disease progression of non-HLA susceptibility genes in MS. J Neuroimmunol 2011; 237:98-100. [DOI: 10.1016/j.jneuroim.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
|
30
|
Abstract
As with susceptibility to disease, it is likely that multiple factors interact to influence the phenotype of multiple sclerosis and long-term disease outcomes. Such factors may include genetic factors, socioeconomic status, comorbid diseases, and health behaviors, as well as environmental exposures. An improved understanding of the influence of these factors on disease course may reap several benefits, such as improved prognostication, allowing us to tailor disease management with respect to intensity of disease-modifying therapies and changes in specific health behaviors, in the broad context of coexisting health issues. Such information can facilitate appropriately adjusted comparisons within and between populations. Elucidation of these factors will require careful study of well-characterized populations in which the roles of multiple factors are considered simultaneously.
Collapse
Affiliation(s)
- Ruth Ann Marrie
- University of Manitoba, Health Sciences Center, GF-533, 820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada.
| |
Collapse
|
31
|
Brynedal B, Hillert J. Entering a new phase of multiple sclerosis genetic epidemiology. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a complex disease, where multiple genetic variants have been found to influence the risk of development. The evidence for environmental-attributable risk is also strong, indicating an interaction of risk factors leading to the development of disease in the individual. An importance of genetic variation within the human leukocyte antigen (HLA) region has been known for almost 40 years, but the search for additional variants connected to susceptibility has been long and largely fruitless. Joint efforts of the MS research community in collecting and sharing results from genetic case control cohorts, together with the technical development, eventually lead to the identification of multiple risk factors for MS as in other complex diseases. The list of identified genetic variants associated with disease is increasingly growing and some leads for functional mechanisms are emerging. Many of the identified regions also harbor associations with other immune-mediated diseases, suggesting common etiology across these various diseases. The great challenge in front of us now is to translate these point-wise indications of genetic effects to functional understanding of how disease develops.
Collapse
Affiliation(s)
- Boel Brynedal
- Department of Neurology, Yale Medical School, New Haven, CT, USA
- Medical & Population Genetics, The Broad Institute, Cambridge, MA, USA
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Depaz R, Granger B, Cournu-Rebeix I, Bouafia A, Fontaine B. Genetics for understanding and predicting clinical progression in multiple sclerosis. Rev Neurol (Paris) 2011; 167:791-801. [PMID: 21683424 DOI: 10.1016/j.neurol.2011.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 02/07/2011] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a dys-immune disease of the central nervous system with highly variable and unpredictable long-term outcome. STATE OF THE ART In the early 1970s association between HLA alleles and MS was established. Very recently, the power of Genome Wide Association Studies (GWAS) enabled the identification of several loci involved in immune functions as genetic risk factors in MS. Recent data suggest that common genetic variations might modulate the clinical phenotype of MS through a regulation of key pathophysiological pathways. PERSPECTIVES Identification of modifier genes might offer an opportunity to explore new relevant therapeutic targets and early prognostic markers. To date, studies of modifier genes in MS are numerous but results are still unclear. This research field may now benefit from large cohorts of patients available for association studies. CONCLUSION In this context, we propose a review of epidemiological and association studies of genetic modifying effect in MS.
Collapse
Affiliation(s)
- R Depaz
- Inserm, CNRS, Centre de Recherche de l'Institut Cerveau-Moelle, Hôpital Pitié-Salpêtrière, Université Pierre-et-Marie-Curie Paris-6, UMR 975-7225, 47, Boulevard de l'Hôpital 75013 Paris, France.
| | | | | | | | | |
Collapse
|
33
|
Romero-Pinel L, Pujal JM, Martínez-Yélamos S, Gubieras L, Matas E, Bau L, Torrabadella M, Azqueta C, Arbizu T. HLA-DRB1: genetic susceptibility and disability progression in a Spanish multiple sclerosis population. Eur J Neurol 2011; 18:337-342. [PMID: 20629714 DOI: 10.1111/j.1468-1331.2010.03148.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The association of HLA-DRB1*15 with susceptibility to multiple sclerosis (MS) has been consistently reported although its effect on the clinical phenotype is still controversial. The objectives of this study are to investigate the influence of the HLA-DRB1 alleles on the genetic susceptibility to MS and to study their impact on disability progression in a Spanish population. METHODS HLA-DRB1 typing was performed by PCR-SSP in 380 patients with sporadic MS and 1088 unrelated healthy controls. Allelic frequencies were compared between groups. We studied the correlation between the different alleles and the progression of MS. RESULTS The HLA-DRB1*15 allele in patients with MS had a statistically significant higher frequency when compared with controls (18.9% in patients vs. 10.1% in controls, Odds ratio (OR)=2.07, 95% CI=1.64-2.60, P<0.001). In the univariate analysis, the DRB1*01 and DRB1*04 alleles were associated with a worse prognosis when considering the time to reach an EDSS of 6, whereas the DRB1*03 was correlated with a better outcome. In the multivariate analysis, the alleles*01 and *04 were demonstrated to be independent factors to have a worse prognosis. CONCLUSIONS HLA-DRB1*15 is associated with MS when comparing patients with unrelated healthy controls in a Spanish population. The HLA-DRB1*01 and HLA-DRB1*04 alleles are related to a worse prognosis when considering the time taken to reach severe disability.
Collapse
Affiliation(s)
- L Romero-Pinel
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - J M Pujal
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - S Martínez-Yélamos
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - L Gubieras
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - E Matas
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - L Bau
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| | - M Torrabadella
- Banc de cordó umbilical, Banc de sang i teixits, Barcelona, Spain
| | - C Azqueta
- Banc de cordó umbilical, Banc de sang i teixits, Barcelona, Spain
| | - T Arbizu
- Multiple Sclerosis Unit, Neurology Department, Hospital Universitari de Bellvitge, IDIBELL
| |
Collapse
|
34
|
|
35
|
Risk conferring genes in multiple sclerosis. FEBS Lett 2011; 585:3789-97. [DOI: 10.1016/j.febslet.2011.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
36
|
HLA (A-B-C and -DRB1) alleles and brain MRI changes in multiple sclerosis: a longitudinal study. Genes Immun 2010; 12:183-90. [PMID: 21179117 DOI: 10.1038/gene.2010.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several major histocompatibility complex (MHC) alleles have been postulated to influence the susceptibility to multiple sclerosis (MS), as well as its clinical/radiological course. In this longitudinal observation, we further explored the impact of human leukocyte antigen (HLA) class I/II alleles on MS outcomes, and we tested the hypothesis that HLA DRB1*1501 might uncover different strata of MS subjects harboring distinct MHC allele associations with magnetic resonance imaging (MRI) measures. Five hundred eighteen MS patients with two-digit HLA typing and at least one brain MRI were recruited for the study. T2-weighted hyperintense lesion volume (T2LV) and brain parenchymal fraction (BPF) were acquired at each time point. The association between allele count and MRI values was determined using linear regression modeling controlling for age, disease duration and gender. Analyses were also stratified by the presence/absence of HLA DRB1*1501. HLA DRB1*04 was associated with higher T2LV (P=0.006); after stratification, its significance remained only in the presence of HLA DRB1*1501 (P=0.012). The negative effect of HLA DRB1*14 on T2LV was exerted in DRB1*1501-negative group (P=0.012). Longitudinal analysis showed that HLA DRB1*10 was significantly protective on T2LV accrual in the presence of HLA DRB1*1501 (P=0.002). Although the majority of our results did not withstand multiple comparison correction, the differential impact of several HLA alleles in the presence/absence of HLA DRB1*1501 suggests that they may interact in determining the different phenotypic expressions of MS.
Collapse
|
37
|
Van der Walt A, Stankovich J, Bahlo M, Taylor BV, Van der Mei IAF, Foote SJ, Rubio JP, Kilpatrick TJ, Butzkueven H. Heterogeneity at the HLA-DRB1 allelic variation locus does not influence multiple sclerosis disease severity, brain atrophy or cognition. Mult Scler 2010; 17:344-52. [PMID: 21149397 DOI: 10.1177/1352458510389101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND HLA-DRB1*1501 (DR15) and other HLA class II alleles increase the risk of developing multiple sclerosis (MS). However, the contribution of genetic heterogeneity to the clinical course of MS remains controversial. We examined the influence of DR15 and other common DRB1 alleles (DRB1*01 (DR1), DRB1*03 (DR3) and DRB1*04 (DR4) on MS severity in a large, Australian, population-based cohort. METHODS We studied the association between common HLA-DRB1 alleles and genotypes and age of onset as well as three clinical disease severity descriptors: Multiple Sclerosis Severity Score, progression index), and the interval between the first and second attack in 978 patients with relapsing remitting MS and secondary progressive MS. We assessed cognition using the Symbol Digit Modalities Test in 811 patients and brain atrophy using the linear magnetic resonance imaging marker, the intercaudate ratio, in 745 patients. RESULTS Carrying DR15 significantly decreased the age of MS onset by 3.2 years in homozygotes and 1.3 years in heterozygotes. Carrying the HLA-DR15, -DR1, -DR3 or -DR4 alone or in combination did not affect clinical disease severity, cognition or cerebral atrophy. CONCLUSIONS This study confirms that heterogeneity of HLA-DRB1 does not influence disease outcome in relapsing MS patients, with the exception of a younger age of onset in HLA-DR15 carriers.
Collapse
Affiliation(s)
- Anneke Van der Walt
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Healy BC, Liguori M, Tran D, Chitnis T, Glanz B, Wolfish C, Gauthier S, Buckle G, Houtchens M, Stazzone L, Khoury S, Hartzmann R, Fernandez-Vina M, Hafler DA, Weiner HL, Guttmann CRG, De Jager PL. HLA B*44: protective effects in MS susceptibility and MRI outcome measures. Neurology 2010; 75:634-40. [PMID: 20713950 DOI: 10.1212/wnl.0b013e3181ed9c9c] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In addition to the main multiple sclerosis (MS) major histocompatibility complex (MHC) risk allele (HLA DRB1*1501), investigations of the MHC have implicated several class I MHC loci (HLA A, HLA B, and HLA C) as potential independent MS susceptibility loci. Here, we evaluate the role of 3 putative protective alleles in MS: HLA A*02, HLA B*44, and HLA C*05. METHODS Subjects include a clinic-based patient sample with a diagnosis of either MS or a clinically isolated syndrome (n = 532), compared to subjects in a bone marrow donor registry (n = 776). All subjects have 2-digit HLA data. Logistic regression was used to determine the independence of each allele's effect. We used linear regression and an additive model to test for correlation between an allele and MRI and clinical measures of disease course. RESULTS After accounting for the effect of HLA DRB1*1501, both HLA A*02 and HLA B*44 are validated as susceptibility alleles (p(A*02) 0.00039 and p(B*44) 0.00092) and remain significantly associated with MS susceptibility in the presence of the other allele. Although A*02 is not associated with MS outcome measures, HLA B*44 demonstrates association with a better radiologic outcome both in terms of brain parenchymal fraction and T2 hyperintense lesion volume (p = 0.03 for each outcome). CONCLUSION The MHC class I alleles HLA A*02 and HLA B*44 independently reduce susceptibility to MS, but only HLA B*44 appears to influence disease course, preserving brain volume and reducing the burden of T2 hyperintense lesions in subjects with MS.
Collapse
Affiliation(s)
- B C Healy
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB 168c, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jensen CJ, Stankovich J, Van der Walt A, Bahlo M, Taylor BV, van der Mei IAF, Foote SJ, Kilpatrick TJ, Johnson LJ, Wilkins E, Field J, Danoy P, Brown MA, Rubio JP, Butzkueven H. Multiple sclerosis susceptibility-associated SNPs do not influence disease severity measures in a cohort of Australian MS patients. PLoS One 2010; 5:e10003. [PMID: 20368992 PMCID: PMC2848851 DOI: 10.1371/journal.pone.0010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/26/2010] [Indexed: 12/02/2022] Open
Abstract
Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13-14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.
Collapse
Affiliation(s)
- Cathy J. Jensen
- Howard Florey Institute, Melbourne, Australia
- Physiology Department, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jim Stankovich
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | - Anneke Van der Walt
- The Royal Melbourne Hospital, Melbourne, Australia
- Centre for Neuroscience, University of Melbourne, Melbourne, Australia
- The Box Hill Hospital, Box Hill, Victoria, Australia
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Bruce V. Taylor
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | - Simon J. Foote
- Menzies Research Institute, University of Tasmania, Hobart, Australia
| | | | | | | | | | - Patrick Danoy
- Diamantina Institute of Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A. Brown
- Diamantina Institute of Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia
- Botnar Research Centre, Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford, United Kingdom
| | | | | | - Helmut Butzkueven
- Howard Florey Institute, Melbourne, Australia
- The Royal Melbourne Hospital, Melbourne, Australia
- The Box Hill Hospital, Box Hill, Victoria, Australia
| |
Collapse
|
40
|
Watson NF, Ton TGN, Koepsell TD, Gersuk VH, Longstreth WT. Does narcolepsy symptom severity vary according to HLA-DQB1*0602 allele status? Sleep 2010; 33:29-35. [PMID: 20120618 DOI: 10.1093/sleep/33.1.29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To investigate associations between HLA-DQB1*0602 allele status and measures of narcolepsy symptom severity. DESIGN Cross-sectional study of population-based narcolepsy patients. SETTING King County, Washington. PARTICIPANTS All prevalent cases (n = 279) of physician-diagnosed narcolepsy ascertained from 2001-2005. INTERVENTIONS N/A. MEASUREMENTS Narcolepsy diagnosis was based on cataplexy status, diagnostic sleep study results, and chart review. The number of HLA-DQB1 alleles was determined from buccal genomic DNA. Symptom severity instruments included the Epworth Sleepiness Scale (ESS), the Ullanlinna Narcolepsy Scale (UNS), age of symptom onset, subjective sleep latency and duration, and various clinical sleep parameters. We used linear regression adjusted for African American race and an extended chi-square test of trend to assess relationships across ordered groups defined by allele number (0, 1, or 2). RESULTS Narcolepsy patients were 63% female and 82% Caucasian, with a mean age of 47.6 years (SD = 17.1). One hundred forty-one (51%) patients had no DQB1*0602 alleles; 117 (42%) had one; and 21 (7%) had two. In the complete narcolepsy sample after adjustment for African American race, we observed a linear relationship between HLA-DQB1*0602 frequency and sleepiness as defined by the ESS (P < 0.01), narcolepsy severity as defined by UNS (P < 0.001), age of symptom onset (P < 0.05), and sleep latency (P < 0.001). In univariate analyses, HLA-DQB1*0602 frequency was also associated with napping (P < 0.05) and increased car and work accidents or near accidents (both P < 0.01). Habitual sleep duration was not associated with HLA status. These race-adjusted associations remained for the ESS (P < 0.05), UNS (P < 0.01), and sleep latency (P < 0.001) when restricting to narcolepsy with cataplexy. CONCLUSIONS Narcolepsy symptom severity varies in a linear manner according to HLA-DQB1*0602 allele status. These findings support the notion that HLA-DQ is a disease-modifying gene.
Collapse
|
41
|
Romero-Pinel L, Martínez-Yélamos S, Gubieras L, Matas E, Bau L, Kremenchutzky M, Arbizu T. Anticipation of age at onset in familial multiple sclerosis. Eur J Neurol 2009; 17:572-5. [PMID: 20002735 DOI: 10.1111/j.1468-1331.2009.02870.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Anticipation of age at onset in the younger generations is a widely known characteristic of many diseases with genetic inheritance. This study was performed to assess whether there is anticipation of age at onset in younger generations of familial multiple sclerosis (MS) in a Spanish population and to compare clinical characteristics of familial and sporadic MS. METHODS We studied a cohort of 1110 patients diagnosed with MS and followed-up in our MS Unit. Patients were considered as familial MS if they had in their family at least one relative of first or second degree diagnosed with MS. Otherwise, patients were considered to have sporadic MS. We compared the age at onset between relatives from different generations, and we also compared the age at onset of familial and sporadic MS. RESULTS A lower age at onset in the younger generations was found (median 22 years vs. 30 years, P < 0.001) and a significant lower age at onset of the disease in familial MS comparing to sporadic MS (median 25 years vs. 29 years, P = 0.042). CONCLUSIONS There is an anticipation of the age at onset of MS in the younger generations of patients with familial MS. There is also a lower age at onset in familial versus sporadic MS.
Collapse
Affiliation(s)
- L Romero-Pinel
- Neurology Department, Multiple Sclerosis Unit, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
42
|
Update on inflammation, neurodegeneration, and immunoregulation in multiple sclerosis: therapeutic implications. Clin Neuropharmacol 2009; 32:121-32. [PMID: 19483479 DOI: 10.1097/wnf.0b013e3181880359] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system of uncertain etiology. There is consensus that a dysregulated immune system plays a critical role in the pathogenesis of MS; therefore, we aim to summarize current hypotheses concerning the complex cellular and molecular interactions involved in the immunopathology of MS. Although CD4+ T lymphocytes have long been implicated in the immunopathology of MS, the role of other T-cell subtypes has been recognized. CD4+ and CD8+ cells have been isolated from different locations within MS lesions and gamma/delta T cells have been isolated from early MS lesions. The prevalent dogma has been that CD4+ TH1 cells release cytokines and mediators of inflammation that may cause tissue damage, although CD4+ TH2 cells may be involved in modulation of these effects. Recent evidence, however, suggests that additional T-cell subsets play a prominent role in MS immunopathology: TH17 cells, CD8+ effector T cells, and CD4+CD25+ regulatory T cells. In addition, laboratory and clinical data are accumulating on the prominent role of B lymphocytes and antigen-presenting cells in MS pathogenesis. On the basis of these observations, new therapeutic approaches for MS will need to focus on resetting multiple components of the immune system.
Collapse
|
43
|
Stankovich J, Butzkueven H, Marriott M, Chapman C, Tubridy N, Tait BD, Varney MD, Taylor BV, Foote SJ, Kilpatrick TJ, Rubio JP. HLA-DRB1 associations with disease susceptibility and clinical course in Australians with multiple sclerosis. ACTA ACUST UNITED AC 2009; 74:17-21. [DOI: 10.1111/j.1399-0039.2009.01262.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Ghabaee M, Bayati A, Amri Saroukolaei S, Sahraian MA, Sanaati MH, Karimi P, Houshmand M, Sadeghian H, Hashemi Chelavi L. Analysis of HLA DR2&DQ6 (DRB1*1501, DQA1*0102, DQB1*0602) haplotypes in Iranian patients with multiple sclerosis. Cell Mol Neurobiol 2009; 29:109-14. [PMID: 18726686 PMCID: PMC11505791 DOI: 10.1007/s10571-008-9302-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is prototype of inflammatory demyelinating disease of the central nervous system .The etiology of MS remains unclear, but according to current data the disease develops in genetically susceptible individuals and may require additional environmental triggers. The human leukocyte antigen (HLA) class II alleles (DRB1*1501, DQA1*0102, DQB1*0602) may have the strongest genetic effect in MS. In this study, the role of these alleles were investigated in 183 Iranian patients with multiple sclerosis and compared with 100 healthy individuals. HLA typing for DRB1*1501, DQA1*0102, DQB1*0602 was performed by polymerase chain reaction (PCR) amplification with sequence-specific primers (PCR-SSP) method. The results show that, HLA DR B1*1501 was significantly more frequent among MS patients (46% vs. 20%, PV = 0.0006) but DQA1*0102 haplotype was negatively associated with MS (30% vs. 50%, PV = 0.0049) and no significant association was found with DQB1*0602 and MS patients in comparison with control group (24% and 30%, PV = 0.43). No significant correlation was observed among these alleles with sex, type of disease; initial symptoms, expanded disability status scale (EDSS), as well as age at onset and familial MS. This study therefore indicates that there is no association of above HLA haplotypes with clinical presentation, disease duration, and disability in Iranian patients with MS which is in line with other previous studies in different ethnic groups.
Collapse
Affiliation(s)
- Mojdeh Ghabaee
- Department of Neurology, Iranian Center of Neurological Research, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nielsen TR, Rostgaard K, Askling J, Steffensen R, Oturai A, Jersild C, Koch-Henriksen N, Sørensen PS, Hjalgrim H. Effects of infectious mononucleosis and HLA-DRB1*15 in multiple sclerosis. Mult Scler 2009; 15:431-6. [PMID: 19153174 DOI: 10.1177/1352458508100037] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Both human leukocyte antigen (HLA)-DRB1*15 and Epstein-Barr virus infection presenting as infectious mononucleosis (IM) are recognized as risk factors for multiple sclerosis (MS). However, their combined effect and possible interaction on MS risk is not known. OBJECTIVE To assess the association between HLA-DRB1*15 and risk of MS in persons with and without IM. METHODS We compared the prevalence of DRB1*15 in MS patients with (n = 76) and without (n = 1,836) IM with the corresponding distributions in blood donors with (n = 62) and without (n = 484) IM histories. This allowed us to estimate the relative risk of MS associated with DRB1*15 in the presence and absence, respectively, of previous IM. We then estimated the interaction between DRB1*15 and IM as the ratio of the two individual odds ratios. RESULTS In IM-naïve individuals, DRB1*15 carried a 2.4-fold (95% confidence interval [CI], 2.0-3.0) increased MS risk. In contrast, among persons with IM history, DRB1*15 was associated with a 7.0-fold (95% CI, 3.3-15.4) increased MS risk. Thus, the MS risk conferred by HLA-DRB1*15 was 2.9 (95% CI, 1.3-6.5)-fold stronger in the presence than in the absence of IM. Combined with previous results, this result indicates that DRB1*15-positive persons with a history of IM may be at a 10.0-fold (95% CI, 6.0-17.9) increased risk of MS compared with persons who are DRB1*15 and IM-naïve. CONCLUSION DRB1*15 and IM may act in synergy causing MS.
Collapse
Affiliation(s)
- T R Nielsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ramagopalan SV, Deluca GC, Degenhardt A, Ebers GC. The genetics of clinical outcome in multiple sclerosis. J Neuroimmunol 2008; 201-202:183-99. [PMID: 18632165 DOI: 10.1016/j.jneuroim.2008.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory disease of the central nervous system (CNS), the clinical course of which varies considerably between patients. Genetic complexity and interactions with as yet unknown environmental factors have hindered researchers from fully elucidating the aetiology of the disease. In addition to influencing disease susceptibility, epidemiological evidence suggests that genetic factors may affect phenotypic expression of the disease. Genes that affect clinical outcome may be more effective therapeutic targets than those which determine susceptibility. We present in this review a comprehensive survey of the genes (both MHC- and non-MHC-related) that have been investigated for their role in disease outcome in MS. Recent studies implicating the role of the genotype and epistatic interactions in the MHC in determining outcome are highlighted.
Collapse
|
47
|
Svejgaard A. The immunogenetics of multiple sclerosis. Immunogenetics 2008; 60:275-86. [PMID: 18461312 DOI: 10.1007/s00251-008-0295-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 12/26/2022]
Abstract
The discoveries in the 1970s of strong associations between various diseases and certain human leukocyte antigen (HLA) factors were a revolution within genetic epidemiology in the last century by demonstrating for the first time how genetic markers can help unravel the genetics of disorders with complex genetic backgrounds. HLA controls immune response genes and HLA associations indicate the involvement of autoimmunity. Multiple sclerosis (MS) was one of the first conditions proven to be HLA associated involving primarily HLA class II factors. We review how HLA studies give fundamental information on the genetics of the susceptibility to MS, on the importance of linkage disequilibrium in association studies, and on the pathogenesis of MS. The HLA-DRB1*1501 molecule may explain about 50% of MS cases and its role in the pathogenesis is supported by studies of transgenic mice. Studies of polymorphic non-HLA genetic markers are discussed based on linkage studies and candidate gene approaches including complete genome scans. No other markers have so far rivaled the importance of HLA in the genetic susceptibility to MS. Recently, large international collaborations provided strong evidence for the involvement of polymorphism of two cytokine receptor genes in the pathogenesis of MS: the interleukin 7 receptor alpha chain gene (IL7RA) on chromosome 5p13 and the interleukin 2 receptor alpha chain gene (IL2RA (=CD25)) on chromosome 10p15. It is estimated that the C allele of a single nucleotide polymorphism, rs6897932, within the alternative spliced exon 6 of IL7RA is involved in about 30% of MS cases.
Collapse
Affiliation(s)
- Arne Svejgaard
- Department of Clinical Immunology, Section 7631, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|